101
|
Hudson M, Bhogal N, Balls M. The Use of Non-Human Primates in Regulatory Toxicology: Comments Submitted by FRAME to the Home Office. Altern Lab Anim 2005. [DOI: 10.1177/026119290503300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Home Office have circulated a document that summarises the discussions of a Primate Stakeholders Forum. The Forum took place in January 2004, and was convened to address the issues raised and the recommendations made in the Animal Procedures Committee 2002 report on the use of primates under the Animals (Scientific Procedures) Act 1986. The report emphasises the need for more resources focused on alternatives to toxicological testing in primates, including harmonising worldwide regulatory requirements, investigating the relevance of primate models, and improving the retrospective analysis of procedures involving primates. The document called for reasoned comments about the report to be submitted to the Home Office. In response, FRAME submitted a comprehensive paper, which evaluated each of the Animal Procedures Committee's recommendations, along with the Home Office Forum's comments. FRAME believes that, in coming to a decision as to whether primates should be used for regulatory testing, there must be full consideration of all the information available, including whether the ethological needs of any given species can be met prior to, during and following experimental use. Where these needs cannot be met, there must be a concerted effort to develop alternative models for research and testing. However, this should not detract from the ultimate goal of phasing out primate research altogether.
Collapse
|
102
|
Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005; 79:12507-14. [PMID: 16160178 PMCID: PMC1211540 DOI: 10.1128/jvi.79.19.12507-12514.2005] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/01/2005] [Indexed: 11/20/2022] Open
Abstract
The published human genome sequence contains many thousands of endogenous retroviruses (HERVs) but all are defective, containing nonsense mutations or major deletions. Only the HERV-K(HML2) family has been active since the divergence of humans and chimpanzees; it contains many members that are human specific, as well as several that are insertionally polymorphic (an inserted element present only in some human individuals). Here we perform a genomewide survey of insertional polymorphism levels in this family by using the published human genome sequence and a diverse sample of 19 humans. We find that there are 113 human-specific HERV-K(HML2) elements in the human genome sequence, 8 of which are insertionally polymorphic (11 if we extrapolate to those within regions of the genome that were not suitable for amplification). The average rate of accumulation since the divergence with chimpanzees is thus approximately 3.8 x 10(-4) per haploid genome per generation. Furthermore, we find that the number of polymorphic elements is not significantly different from that predicted by a standard population genetic model that assumes constant activity of the family until the present. This suggests to us that the HERV-K(HML2) family may be active in present-day humans. Active (replication-competent) elements are likely to have inserted very recently and to be present at low allele frequencies, and they may be causing disease in the individuals carrying them. This view of the family from a population perspective rather than a genome perspective will inform the current debate about a possible role of HERV-K(HML2) in human disease.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Biological Sciences, Imperial College, Ascot, Berks, United Kingdom.
| | | | | | | | | | | |
Collapse
|
103
|
Osada N, Hirata M, Tanuma R, Kusuda J, Hida M, Suzuki Y, Sugano S, Gojobori T, Shen CKJ, Wu CI, Hashimoto K. Substitution rate and structural divergence of 5'UTR evolution: comparative analysis between human and cynomolgus monkey cDNAs. Mol Biol Evol 2005; 22:1976-82. [PMID: 15944441 DOI: 10.1093/molbev/msi187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The substitution rate and structural divergence in the 5'-untranslated region (UTR) were investigated by using human and cynomolgus monkey cDNA sequences. Due to the weaker functional constraint in the UTR than in the coding sequence, the divergence between humans and macaques would provide a good estimate of the nucleotide substitution rate and structural divergence in the 5'UTR. We found that the substitution rate in the 5'UTR (K5UTR) averaged approximately 10%-20% lower than the synonymous substitution rate (Ks). However, both the K5UTR and nonsynonymous substitution rate (Ka) were significantly higher in the testicular cDNAs than in the brain cDNAs, whereas the Ks did not differ. Further, an in silico analysis revealed that 27% (169/622) of macaque testicular cDNAs had an altered exon-intron structure in the 5'UTR compared with the human cDNAs. The fraction of cDNAs with an exon alteration was significantly higher in the testicular cDNAs than in the brain cDNAs. We confirmed by using reverse transcriptase-polymerase chain reaction that about one-third (6/16) of in silico "macaque-specific" exons in the 5'UTR were actually macaque specific in the testis. The results imply that positive selection increased K5UTR and structural alteration rate of a certain fraction of genes as well as Ka. We found that both positive and negative selection can act on the 5'UTR sequences.
Collapse
Affiliation(s)
- Naoki Osada
- Division of Genetic Resources, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Hedges DJ, Cordaux R, Xing J, Witherspoon DJ, Rogers AR, Jorde LB, Batzer MA. Modeling the amplification dynamics of human Alu retrotransposons. PLoS Comput Biol 2005; 1:e44. [PMID: 16201008 PMCID: PMC1239904 DOI: 10.1371/journal.pcbi.0010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 08/24/2005] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA) that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human–chimpanzee divergence. Nearly 50% of the human genome is composed of mobile elements. While much of this sequence consists of inactive “fossil” elements that are no longer actively moving or generating new copies, three families are currently proliferating in human genomes. Among these, the Alu lineage has reached a copy number of over 1 million and alone accounts for approximately 10% of the genome. While considerable evidence has been gathered concerning the underlying biological mechanisms of Alu mobilization and proliferation, a detailed understanding of Alu amplification history is currently lacking. Researchers are aware, for example, that several thousand Alu elements have inserted within the human genome since the divergence of humans and chimpanzees, but how those insertions were distributed over this ~6-million-year time period is currently unknown. In this work, the authors introduce a simulation framework that seeks to incorporate both sequence diversity and empirically gathered population data from human Alu elements, in order to provide a better understanding of the last several million years of human Alu evolution. The results suggest that a rapid explosion of Alu amplification at the time of the human–chimpanzee divergence is unlikely. Therefore, it is improbable that an increase in Alu retrotransposition activity was involved in the speciation of humans and chimpanzees.
Collapse
Affiliation(s)
- Dale J Hedges
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Richard Cordaux
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jinchuan Xing
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - David J Witherspoon
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Alan R Rogers
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Microsystems, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
105
|
Hughes JF, Skaletsky H, Pyntikova T, Minx PJ, Graves T, Rozen S, Wilson RK, Page DC. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 2005; 437:100-3. [PMID: 16136134 DOI: 10.1038/nature04101] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 08/03/2005] [Indexed: 11/10/2022]
Abstract
The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437:69-87. [PMID: 16136131 DOI: 10.1038/nature04072] [Citation(s) in RCA: 1569] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 07/20/2005] [Indexed: 12/18/2022]
Abstract
Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.
Collapse
|
107
|
Abstract
The chimp was a great start. But the genomes of our other primate relatives will help to reveal a whole lot more, says Carina Dennis. The cover photo by Kevin Langergraber shows the adult female chimpanzee ‘Jolie’ in Kibale National Park, Uganda. This was taken on 16 August 2004, a few weeks before Jolie gave birth to her first infant. This week marks a landmark in the study of our closest living relative: the publication by the Chimpanzee Sequencing and Analysis Consortium of the initial sequence of the chimpanzee genome, together with a comparison with the human genome. The paper describes changes that have shaped human and chimpanzee species since the split from our common ancestor, and hints at what makes us uniquely human: 35 million single-nucleotide substitutions, 5 million small insertions and deletions, local rearrangements and a chromosome fusion. A comparison of gene duplications in chimpanzee and human genomes reveals gene expression differences that may underlie disease susceptibility. A study of primate genomes shows that subtelomeres are hot spots of recent chromosomal duplication and gene conversion. Conservation of Y-linked genes during human evolution is revealed by comparative sequencing in the chimpanzee. The final research paper in this collection fills a big gap in our knowledge: the first chimpanzee fossils ever found show that chimps and early humans inhabited the same environments in which they evolved and diverged. The fossils — three teeth — are from half-million-year-old sediments in Kenya that also yielded fossils of Homo . Four Progress reviews accompany these papers, looking at chimp culture, social behaviour, psychology and cognition. Elsewhere in the issue, researchers talk about working with chimpanzees, a feature summarizes other primate genome projects, and in two Commentaries, important ethical issues surrounding research on great apes are considered.
Collapse
|
108
|
Oldham MC, Geschwind DH. Evolutionary genetics: the human brain -- adaptation at many levels. Eur J Hum Genet 2005; 13:520-2. [PMID: 15756295 DOI: 10.1038/sj.ejhg.5201401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael C Oldham
- Program in Neurogenetics, Department of Neurology and Center for Neurobehavioral Genetics, The Neuropsychiatric Institute, UCLA School of Medicine, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
109
|
Belle EMS, Webster MT, Eyre-Walker A. Why are young and old repetitive elements distributed differently in the human genome? J Mol Evol 2005; 60:290-6. [PMID: 15871040 DOI: 10.1007/s00239-004-0020-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Accepted: 07/20/2004] [Indexed: 10/25/2022]
Abstract
Alu elements are not distributed homogeneously throughout the human genome: old elements are preferentially found in the GC-rich parts of the genome, while young Alus are more often found in the GC-poor parts of the genome. The process giving rise to this differential distribution remains poorly understood. Here we investigate whether this pattern could be due to a preferential degradation of Alu elements integrated in GC-poor regions by small indel mutations. We aligned 5.1 Mb of human and chimpanzee sequences and examined whether the rate of insertion and deletion inside Alu elements differed according to the base composition surrounding them. We found that Alu elements are not preferentially degraded in GC-poor regions by indel events. We also looked at whether very young L1 elements show the same change in distribution compared to older ones. This analysis indicated that L1 elements also show a shift in their distribution, although we could not assess it as precisely as for Alu elements. We propose that the differential distribution of Alu elements is likely to be due to a change in their pattern of insertion or their probability of fixation through evolutionary time.
Collapse
Affiliation(s)
- Elise M S Belle
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
110
|
Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, Liang P, Batzer MA. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 2005; 33:4040-52. [PMID: 16034026 PMCID: PMC1179734 DOI: 10.1093/nar/gki718] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of approximately 18 kb of sequence from the human genome and approximately 15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.
Collapse
Affiliation(s)
| | | | - Jianxin Wang
- Department of Cancer Genetics, Roswell Park Cancer InstituteElm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | - Ping Liang
- Department of Cancer Genetics, Roswell Park Cancer InstituteElm and Carlton Streets, Buffalo, NY 14263, USA
| | - Mark A. Batzer
- To whom correspondence should be addressed. Tel: +1 225 578 7102; Fax: +1 225 578 7113;
| |
Collapse
|
111
|
Abstract
Elucidation of complete nucleotide sequence of the human has revealed that coding sequences that store the information needed to synthesize functional proteins, occupy only 2% of the genomic region. The remaining 98%, barring few regulatory sequences, has been referred to as non-functional or junk DNA and consists of many kinds of repeat elements. In fact, human genome is the most repeat rich genome sequenced so far, in which more than half of the region is occupied by such sequences. Determination of significance of these repeats in the human genome has become the focus of many studies all over the world, especially after genome sequencing did not reveal any significant difference in coding regions between lower eukaryotes and human. In this article, we have focused on Alu repeats that are primate specific elements with many interesting biological properties. Moreover, these are the repeats with highest copy number in the human genome. We have highlighted different facets of their interaction with the genome and changing paradigms regarding their role in genome organization.
Collapse
Affiliation(s)
- Deepak Grover
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|
112
|
Magness CL, Fellin PC, Thomas MJ, Korth MJ, Agy MB, Proll SC, Fitzgibbon M, Scherer CA, Miner DG, Katze MG, Iadonato SP. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human. Genome Biol 2005; 6:R60. [PMID: 15998449 PMCID: PMC1175991 DOI: 10.1186/gb-2005-6-7-r60] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/04/2005] [Accepted: 05/23/2005] [Indexed: 11/17/2022] Open
Abstract
We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.
Collapse
Affiliation(s)
- Charles L Magness
- Illumigen Biosciences Inc., Suite 450, 2203 Airport Way South, Seattle, WA 98134, USA
| | - P Campion Fellin
- Illumigen Biosciences Inc., Suite 450, 2203 Airport Way South, Seattle, WA 98134, USA
| | - Matthew J Thomas
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
| | - Marcus J Korth
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
| | - Michael B Agy
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195-8070, USA
| | - Sean C Proll
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
| | - Matthew Fitzgibbon
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
| | - Christina A Scherer
- Illumigen Biosciences Inc., Suite 450, 2203 Airport Way South, Seattle, WA 98134, USA
| | - Douglas G Miner
- Illumigen Biosciences Inc., Suite 450, 2203 Airport Way South, Seattle, WA 98134, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195-8070, USA
| | - Shawn P Iadonato
- Illumigen Biosciences Inc., Suite 450, 2203 Airport Way South, Seattle, WA 98134, USA
| |
Collapse
|
113
|
Fukami-Kobayashi K, Shiina T, Anzai T, Sano K, Yamazaki M, Inoko H, Tateno Y. Genomic evolution of MHC class I region in primates. Proc Natl Acad Sci U S A 2005; 102:9230-4. [PMID: 15967992 PMCID: PMC1153716 DOI: 10.1073/pnas.0500770102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the origins of the MHC-B-MHC-C pair and the MHC class I chain-related molecule (MIC)A-MICB pair, we sequenced an MHC class I genomic region of humans, chimpanzees, and rhesus monkeys and analyzed the regions from an evolutionary stand-point, focusing first on LINE sequences that are paralogous within each of the first two species and orthologous between them. Because all the long interspersed nuclear element (LINE) sequences were fragmented and nonfunctional, they were suitable for conducting phylogenetic study and, in particular, for estimating evolutionary time. Our study has revealed that MHC-B and MHC-C duplicated 22.3 million years (Myr) ago, and the ape MICA and MICB duplicated 14.1 Myr ago. We then estimated the divergence time of the rhesus monkey by using other orthologous LINE sequences in the class I regions of the three primate species. The result indicates that rhesus monkeys, and possibly the Old World monkeys in general, diverged from humans 27-30 Myr ago. Interestingly, rhesus monkeys were found to have not the pair of MHC-B and MHC-C but many repeated genes similar to MHC-B. These results support our inference that MHC-B and MHC-C duplicated after the divergence between apes and Old World monkeys.
Collapse
|
114
|
Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, J Sninsky J, Adams MD, Cargill M. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 2005; 3:e170. [PMID: 15869325 PMCID: PMC1088278 DOI: 10.1371/journal.pbio.0030170] [Citation(s) in RCA: 678] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.
Collapse
Affiliation(s)
- Rasmus Nielsen
- Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Glazko G, Veeramachaneni V, Nei M, Makałowski W. Eighty percent of proteins are different between humans and chimpanzees. Gene 2005; 346:215-9. [PMID: 15716009 DOI: 10.1016/j.gene.2004.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/01/2004] [Accepted: 11/05/2004] [Indexed: 11/16/2022]
Abstract
The chimpanzee is our closest living relative. The morphological differences between the two species are so large that there is no problem in distinguishing between them. However, the nucleotide difference between the two species is surprisingly small. The early genome comparison by DNA hybridization techniques suggested a nucleotide difference of 1-2%. Recently, direct nucleotide sequencing confirmed this estimate. These findings generated the common belief that the human is extremely close to the chimpanzee at the genetic level. However, if one looks at proteins, which are mainly responsible for phenotypic differences, the picture is quite different, and about 80% of proteins are different between the two species. Still, the number of proteins responsible for the phenotypic differences may be smaller since not all genes are directly responsible for phenotypic characters.
Collapse
Affiliation(s)
- Galina Glazko
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
116
|
Wernersson R, Schierup MH, Jørgensen FG, Gorodkin J, Panitz F, Stærfeldt HH, Christensen OF, Mailund T, Hornshøj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GKS, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 2005; 6:70. [PMID: 15885146 PMCID: PMC1142312 DOI: 10.1186/1471-2164-6-70] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 05/10/2005] [Indexed: 02/01/2023] Open
Abstract
Background Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls. Results We have generated ~3.84 million shotgun sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. Conclusion The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific regions for analysis and resequencing.
Collapse
Affiliation(s)
- Rasmus Wernersson
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Center, University of Aarhus, Aarhus, Denmark
| | - Frank G Jørgensen
- Bioinformatics Research Center, University of Aarhus, Aarhus, Denmark
| | - Jan Gorodkin
- Division of Genetics, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| | - Frank Panitz
- Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, Foulum, Denmark
| | - Hans-Henrik Stærfeldt
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Ole F Christensen
- Bioinformatics Research Center, University of Aarhus, Aarhus, Denmark
| | - Thomas Mailund
- Bioinformatics Research Center, University of Aarhus, Aarhus, Denmark
| | - Henrik Hornshøj
- Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, Foulum, Denmark
| | - Ami Klein
- Division of Genetics, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| | - Jun Wang
- Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
- Beijing Genomics Institute, Beijing, China
| | - Bin Liu
- Beijing Genomics Institute, Beijing, China
| | | | - Wei Dong
- Beijing Genomics Institute, Beijing, China
| | - Wei Li
- Beijing Genomics Institute, Beijing, China
| | | | - Jun Yu
- Beijing Genomics Institute, Beijing, China
| | - Jian Wang
- Beijing Genomics Institute, Beijing, China
| | - Christian Bendixen
- Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, Foulum, Denmark
| | - Merete Fredholm
- Division of Genetics, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | | | - Lars Bolund
- Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
- Beijing Genomics Institute, Beijing, China
| |
Collapse
|
117
|
Song B, Gold B, O'Huigin C, Javanbakht H, Li X, Stremlau M, Winkler C, Dean M, Sodroski J. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5alpha exhibits lineage-specific length and sequence variation in primates. J Virol 2005; 79:6111-21. [PMID: 15857996 PMCID: PMC1091705 DOI: 10.1128/jvi.79.10.6111-6121.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 12/18/2004] [Indexed: 11/20/2022] Open
Abstract
Tripartite motif (TRIM) proteins are composed of RING, B-box 2, and coiled coil domains. Some TRIM proteins, such as TRIM5alpha, also possess a carboxy-terminal B30.2(SPRY) domain and localize to cytoplasmic bodies. TRIM5alpha has recently been shown to mediate innate intracellular resistance to retroviruses, an activity dependent on the integrity of the B30.2 domain, in particular primate species. An examination of the sequences of several TRIM proteins related to TRIM5 revealed the existence of four variable regions (v1, v2, v3, and v4) in the B30.2 domain. Species-specific variation in TRIM5alpha was analyzed by amplifying, cloning, and sequencing nonhuman primate TRIM5 orthologs. Lineage-specific expansion and sequential duplication occurred in the TRIM5alpha B30.2 v1 region in Old World primates and in v3 in New World monkeys. We observed substitution patterns indicative of selection bordering these particular B30.2 domain variable elements. These results suggest that occasional, complex changes were incorporated into the TRIM5alpha B30.2 domain at discrete time points during the evolution of primates. Some of these time points correspond to periods during which primates were exposed to retroviral infections, based on the appearance of particular endogenous retroviruses in primate genomes. The results are consistent with a role for TRIM5alpha in innate immunity against retroviruses.
Collapse
Affiliation(s)
- Byeongwoon Song
- Dana-Farber Cancer Institute, 44 Binney Street, JFB 824, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kehrer-Sawatzki H, Szamalek JM, Tänzer S, Platzer M, Hameister H. Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 2005; 85:542-50. [PMID: 15820305 DOI: 10.1016/j.ygeno.2005.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 01/25/2005] [Indexed: 12/01/2022]
Abstract
In addition to the fusion of human chromosome 2, nine pericentric inversions are the most conspicuous karyotype differences between humans and chimpanzees. In this study we identified the breakpoint regions of the pericentric inversion of chimpanzee chromosome 11 (PTR 11) homologous to human chromosome 9 (HSA 9). The break in homology between PTR 11p and HSA 9p12 maps to pericentromeric segmental duplications, whereas the breakpoint region orthologous to 9q21.33 is located in intergenic single-copy sequences. Close to the inversion breakpoint in PTR 11q, large blocks of alpha satellites are located, which indicate the presence of the centromere. Since G-banding analysis and the comparative BAC analyses performed in this study imply that the inversion breaks occurred in the region homologous to HSA 9q21.33 and 9p12, but not within the centromere, the structure of PTR 11 cannot be explained by a single pericentric inversion. In addition to this pericentric inversion of PTR 11, further events like centromere repositioning or a second smaller inversion must be assumed to explain the structure of PTR 11 compared with HSA 9.
Collapse
|
119
|
Affiliation(s)
- Paul M Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
120
|
Tateno Y, Saitou N, Okubo K, Sugawara H, Gojobori T. DDBJ in collaboration with mass-sequencing teams on annotation. Nucleic Acids Res 2005; 33:D25-8. [PMID: 15608189 PMCID: PMC539974 DOI: 10.1093/nar/gki020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the past year, we at DDBJ (DNA Data Bank of Japan; http://www.ddbj.nig.ac.jp) collected and released 1 066 084 entries or 718 072 425 bases including the whole chromosome 22 of chimpanzee, the whole-genome shotgun sequences of silkworm and various others. On the other hand, we hosted workshops for human full-length cDNA annotation and participated in jamborees of mouse full-length cDNA annotation. The annotated data are made public at DDBJ. We are also in collaboration with a RIKEN team to accept and release the CAGE (Cap Analysis Gene Expression) data under a new category, MGA (Mass Sequences for Genome Annotation). The data will be useful for studying gene expression control in many aspects.
Collapse
Affiliation(s)
- Y Tateno
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima, 411-8540, Japan.
| | | | | | | | | |
Collapse
|
121
|
Harding RM, McVean G. A structured ancestral population for the evolution of modern humans. Curr Opin Genet Dev 2005; 14:667-74. [PMID: 15531162 DOI: 10.1016/j.gde.2004.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The view that modern humans evolved through a bottleneck from a single founding group of archaic Homo is being challenged by new analyses of contemporary genetic variation. A wide range of middle to late Pleistocene ages for gene genealogies and evidence for early population structures point to a diverse and scattered ancestry associated with a metapopulation history of local extinctions, re-colonization and admixture. A different balance of the same processes has shaped chimpanzee diversity.
Collapse
Affiliation(s)
- Rosalind M Harding
- Biological Anthropology Unit and Statistics Department, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
| | | |
Collapse
|
122
|
Abstract
This is the year of the chimpanzee genome. Chimpanzee chromosome 22 has been sequenced and soon will be followed by the whole genome, and thousands of chimpanzee cDNA sequences are available for comparative analysis. Not only does this genomic information allow us to identify human-specific changes in particular genes that are potentially under selection, but also to understand molecular evolutionary dynamics characterizing the two most closely related mammalian genomes sequenced so far. Studies comparing gene expression in chimpanzees and other closely related primates reveal significant species differences in brain, liver and fibroblasts. New empirical data, in combination with models of speciation, are giving insight into how humans and chimpanzees speciated.
Collapse
Affiliation(s)
- Maryellen Ruvolo
- Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
123
|
Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, McVean GAT, Gabriel SB, Reich D, Donnelly P, Altshuler D. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 2005; 308:107-11. [PMID: 15705809 DOI: 10.1126/science.1105322] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We compared fine-scale recombination rates at orthologous loci in humans and chimpanzees by analyzing polymorphism data in both species. Strong statistical evidence for hotspots of recombination was obtained in both species. Despite approximately 99% identity at the level of DNA sequence, however, recombination hotspots were found rarely (if at all) at the same positions in the two species, and no correlation was observed in estimates of fine-scale recombination rates. Thus, local patterns of recombination rate have evolved rapidly, in a manner disproportionate to the change in DNA sequence.
Collapse
Affiliation(s)
- Wendy Winckler
- Department of Molecular Biology and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114-2622, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
125
|
Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 2005; 3:e42. [PMID: 15678168 PMCID: PMC544929 DOI: 10.1371/journal.pbio.0030042] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/01/2004] [Indexed: 01/28/2023] Open
Abstract
Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human–chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees. A comparison of hominid and rodent lineages reveals that the gene control regions of hominids are not conserved and are accumulating mutations, suggesting widespread degradation of the hominid genome
Collapse
|
126
|
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, Department of Biological Sciences, University of Denver, Colorado 80206, USA.
| | | |
Collapse
|
127
|
Dehnert M, Helm WE, Hütt MT. Information theory reveals large-scale synchronisation of statistical correlations in eukaryote genomes. Gene 2005; 345:81-90. [PMID: 15716116 DOI: 10.1016/j.gene.2004.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/18/2004] [Accepted: 11/09/2004] [Indexed: 11/20/2022]
Abstract
We study short-range correlations in DNA sequences with methods from information theory and statistics. We find a persisting degree of identity between the correlation patterns of different chromosomes of a species. Except for the case of human and chimpanzee inter-species differences in this correlation pattern allow robust species distinction: in a clustering tree based upon the correlation curves on the level of individual chromosomes distinct clusters for the individual species are found. This capacity of distinguishing species persists, even when the length of the underlying sequences is drastically reduced. In comparison to the standard tool for studying symbol correlations in DNA sequences, namely the mutual information function, we find that an autoregressive model for higher order Markov processes significantly improves species distinction due to an implicit subtraction of random background.
Collapse
Affiliation(s)
- Manuel Dehnert
- Bioinformatics Group, Department of Biology, Darmstadt University of Technology, D-64287 Darmstadt, Germany
| | | | | |
Collapse
|
128
|
Kramer DA. Commentary: Gene-environment interplay in the context of genetics, epigenetics, and gene expression. J Am Acad Child Adolesc Psychiatry 2005; 44:19-27. [PMID: 15608540 DOI: 10.1097/01.chi.0000145804.30112.6b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To comment on the article in this issue of the Journal by Professor Michael Rutter, "Environmentally Mediated Risks for Psychopathology: Research Strategies and Findings," in the context of current research findings on gene-environment interaction, epigenetics, and gene expression. METHOD Animal and human studies are reviewed that differentiate the role of gene expression in developmental biology and psychopathology as well as studies that begin to specify the biological mechanisms involved in determining how genotype is translated into phenotype. RESULTS Genetic instructions are not translated directly into phenotypic traits but are modified potentially at two levels: the transcription process wherein messenger RNA is produced, and translation when protein synthesis occurs. Interplay of genetic and environmental factors determines the final product of gene expression as measured by the when, where, and amount of protein synthesized. Epigenetic processes may operate at the level of messenger RNA to control gene expression. CONCLUSIONS The field of developmental psychopathology is providing the theoretical and research framework to explore the conceptual space between the genome and the environment. Natural selection has provided mechanisms that operate within that space to facilitate adaptation to the environment. These mechanisms are more robust than genetics alone in determining the phenotype of each individual organism.
Collapse
Affiliation(s)
- Douglas A Kramer
- University of Wisconsin Medical School, Madison, WI 53715-2635, USA.
| |
Collapse
|
129
|
Kitano T, Saitou N. Evolutionary Conservation of 5' upstream Sequence of Nine Genes between Human and Great Apes. Genes Genet Syst 2005; 80:225-32. [PMID: 16172534 DOI: 10.1266/ggs.80.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleotide sequences of nine 5' upstream gene regions for human, chimpanzee, gorilla, and orangutan were determined. We estimated nucleotide differences (d) for each region between human and great apes. The overall d was 0.027 (ranged from 0.004 to 0.052). Rates of nucleotide substitution were estimated by using d and divergence times of human, chimpanzee, gorilla, and orangutan. The overall rate of nucleotide substitution between human and other hominoids was estimated to be 0.52-0.85 x 10(-9). This rate in 5' upstream regions was lower than that of synonymous sites, suggesting that 5' upstream regions have evolved under some functional constraints. Because lower rates have been reported for coding sequences in primates compared to rodents, we also estimated the rate (1.17-1.76 x 10(-9)) of nucleotide substitutions for the corresponding 5' upstream regions in rodents (mouse/rat comparison). Thus the primate rate was lower than rodent rate also for the 5' upstream regions.
Collapse
Affiliation(s)
- Takashi Kitano
- Division of Population Genetics, National Institute of Genetics Mishima, Japan
| | | |
Collapse
|
130
|
Martinez L, Reategui EP, Fonseca LR, Sierra-Montes JM, Terreros MC, Pereira-Simon S, Herrera RJ. Superimposing Polymorphism: The Case of a Point Mutation within a Polymorphic Alu Insertion. Hum Hered 2005; 59:109-17. [PMID: 15838180 DOI: 10.1159/000085225] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 01/25/2005] [Indexed: 11/19/2022] Open
Abstract
The COL3A1 Alu insertion is a member of the AluY subfamily. It has been found to be absent in non-human primates and polymorphic in worldwide human populations. The integration of the element into the human genome seems to have preceded the initial migration(s) of anatomically modern humans out of the African continent. Although the insertion has been detected in populations from all the continents, its highest frequency values are located within sub-Saharan Africa. The sequence alignment of the COL3A1 insertion from several African individuals revealed a bi-allelic single nucleotide polymorphism (SNP) at the downstream terminus of the element's poly-A tract. Once discovered, a selective PCR procedure was designed to determine the frequency of both alleles in 19 worldwide populations. The A-allele in this binary SNP experiences a clinal increase in the eastward direction from Africa to Southeast Asia and Mongolia, reaching fixation in the two latter regions. The T variant, on the other hand, exhibits a westward clinal increase outside of Africa, with its lowest frequency in Asia and achieving fixation in northern Europe. The presence of this internal SNP extends the usefulness provided by the polymorphic Alu insertion (PAI). It is possible that superimposing polymorphisms like this one found in the COL3A1 locus may accentuate signals from genetic drift events allowing for visualization of recent dispersal patterns.
Collapse
Affiliation(s)
- Laisel Martinez
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5:725-38. [PMID: 15510164 DOI: 10.1038/nrg1448] [Citation(s) in RCA: 451] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sequence of chromosome 21 was a turning point for the understanding of Down syndrome. Comparative genomics is beginning to identify the functional components of the chromosome and that in turn will set the stage for the functional characterization of the sequences. Animal models combined with genome-wide analytical methods have proved indispensable for unravelling the mysteries of gene dosage imbalance.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
132
|
Abe K, Noguchi H, Tagawa K, Yuzuriha M, Toyoda A, Kojima T, Ezawa K, Saitou N, Hattori M, Sakaki Y, Moriwaki K, Shiroishi T. Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC-end sequence-SNP analysis. Genome Res 2004; 14:2439-47. [PMID: 15574823 PMCID: PMC534668 DOI: 10.1101/gr.2899304] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 09/27/2004] [Indexed: 11/24/2022]
Abstract
MSM/Ms is an inbred strain derived from the Japanese wild mouse, Mus musculus molossinus. It is believed that subspecies molossinus has contributed substantially to the genome constitution of common laboratory strains of mice, although the majority of their genome is derived from the west European M. m. domesticus. Information on the molossinus genome is thus essential not only for genetic studies involving molossinus but also for characterization of common laboratory strains. Here, we report the construction of an arrayed bacterial artificial chromosome (BAC) library from male MSM/Ms genomic DNA, covering approximately 1x genome equivalent. Both ends of 176,256 BAC clone inserts were sequenced, and 62,988 BAC-end sequence (BES) pairs were mapped onto the C57BL/6J genome (NCBI mouse Build 30), covering 2,228,164 kbp or 89% of the total genome. Taking advantage of the BES map data, we established a computer-based clone screening system. Comparison of the MSM/Ms and C57BL/6J sequences revealed 489,200 candidate single nucleotide polymorphisms (SNPs) in 51,137,941 bp sequenced. The overall nucleotide substitution rate was as high as 0.0096. The distribution of SNPs along the C57BL/6J genome was not uniform: The majority of the genome showed a high SNP rate, and only 5.2% of the genome showed an extremely low SNP rate (percentage identity = 0.9997); these sequences are likely derived from the molossinus genome.
Collapse
Affiliation(s)
- Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
With the completion of the human genome sequence and the advent of technologies to study functional aspects of genomes, molecular comparisons between humans and other primates have gained momentum. The comparison of the human genome to the genomes of species closely related to humans allows the identification of genomic features that set primates apart from other mammals and of features that set certain primates notably humans apart from other primates. In this article, we review recent progress in these areas with an emphasis on how comparative approaches may be used to identify functionally relevant features unique to the human genome.
Collapse
Affiliation(s)
- Wolfgang Enard
- Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | |
Collapse
|
134
|
Saitou N. Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenet Genome Res 2004; 108:16-21. [PMID: 15545711 DOI: 10.1159/000080797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 03/11/2004] [Indexed: 01/01/2023] Open
Abstract
The phylogenetic relationship of human and apes are reviewed. The history of molecular phylogenetic studies in this field is then discussed, as is the role of natural selection at the molecular level. It is argued that approximately 10,000 genetic changes are responsible for creating human specific phenotypes. A genome-wide comparison is necessary to decipher those changes.
Collapse
Affiliation(s)
- N Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
| |
Collapse
|
135
|
Hudson M, Bhogal N. Scientific Procedures on Living Animals in Great Britain in 2003: The Facts, Figures and Consequences. Altern Lab Anim 2004; 32:473-85. [PMID: 15656772 DOI: 10.1177/026119290403200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The statistics for animal procedures performed in 2003 were recently released by the Home Office. They indicate that, for the second year running, there was a significant increase in the number of laboratory animal procedures undertaken in Great Britain. The species and genera used, the numbers of toxicology and non-toxicology procedures, and the overall trends, are described. The implications of these latest statistics are discussed with reference to key areas of interest and to the impact of existing regulations and pending legislative reforms.
Collapse
Affiliation(s)
- Michelle Hudson
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK.
| | | |
Collapse
|
136
|
Preuss TM, Cáceres M, Oldham MC, Geschwind DH. Human brain evolution: insights from microarrays. Nat Rev Genet 2004; 5:850-60. [PMID: 15520794 DOI: 10.1038/nrg1469] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several recent microarray studies have compared gene-expression patterns n humans, chimpanzees and other non-human primates to identify evolutionary changes that contribute to the distinctive cognitive and behavioural characteristics of humans. These studies support the surprising conclusion that the evolution of the human brain involved an upregulation of gene expression relative to non-human primates, a finding that could be relevant to understanding human cerebral physiology and function. These results show how genetic and genomic methods can shed light on the basis of human neural and cognitive specializations, and have important implications for neuroscience, anthropology and medicine.
Collapse
Affiliation(s)
- Todd M Preuss
- Division of Neuroscience and Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
137
|
Abstract
Many phylogenetic inference methods are based on Markov models of sequence evolution. These are usually expressed in terms of a matrix (Q) of instantaneous rates of change but some models of amino acid replacement, most notably the PAM model of Dayhoff and colleagues, were originally published only in terms of time-dependent probability matrices (P(t)). Previously published methods for deriving Q have used eigen-decomposition of an approximation to P(t). We show that the commonly used value of t is too large to ensure convergence of the estimates of elements of Q. We describe two simpler alternative methods for deriving Q from information such as that published by Dayhoff and colleagues. Neither of these methods requires approximation or eigen-decomposition. We identify the methods used to derive various different versions of the Dayhoff model in current software, perform a comparison of existing and new implementations, and, to facilitate agreement among scientists using supposedly identical models, recommend that one of the new methods be used as a standard.
Collapse
|
138
|
Robledo R, Bender P, Leonard J, Zhu B, Osoegawa K, de Jong P, Xu X, Yao Z, Roe B. The immunoglobulin lambda variable light-chain region in primates has been shaped by multiple, independent, small-scale and large-scale insertion/deletion events. Genomics 2004; 84:678-85. [PMID: 15475245 DOI: 10.1016/j.ygeno.2004.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
We analyzed genomes of nonhuman primates to determine the ancestral state of a 9.1-kb insertion/deletion polymorphism, located on human chromosome 22. The 9.1-kb+ allele was found in 16 chimpanzees, 3 bonobos, and 2 Bornean orangutans; however, 9 chimpanzees and 6 Sumatran orangutans showed neither the 9.1-kb+ nor the 9.1-kb- allele, but a novel allele, termed 9.1-kbnull. A clone from a chimpanzee BAC library carrying the 9.1-kbnull allele was sequenced: the BAC DNA aligns with the human chromosome 22 reference sequence except for a 75-kb region, suggesting that the 9.1-kbnull allele originated from a deletion. Furthermore, the 9.1-kb+ chromosomes of chimpanzees and bonobos contain a 1030-nucleotide sequence, absent in humans, that may result from a retro-transposition insertion in their common ancestor. Our results provide additional evidence that human chromosome 22 has undergone multiple small-scale and large-scale insertions and deletions since sharing a common ancestor with other primates.
Collapse
Affiliation(s)
- Renato Robledo
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Perry GH, Verrelli BC, Stone AC. Comparative analyses reveal a complex history of molecular evolution for human MYH16. Mol Biol Evol 2004; 22:379-82. [PMID: 15470226 DOI: 10.1093/molbev/msi004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe the pattern of molecular evolution at a sarcomeric myosin gene, MYH16, using more than 30,000 bp of exon and intron sequence data from the chimpanzee and human genome sequencing projects to evaluate the timing and consequences of a human lineage-specific frameshift deletion. We estimate the age of the deletion at approximately 5.3 MYA. This estimate is consistent with the time of human and chimpanzee divergence and is significantly older than the first appearance of the genus Homo in the fossil record. We also find conflicting estimates of nonsynonymous fixation rates (d(N)) across different regions of this gene, revealing a complex pattern inconsistent with a simple model of pseudogene evolution for human MYH16.
Collapse
|
140
|
|
141
|
Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart YY, Ruvolo M, Walsh CA. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 2004; 36:1008-13. [PMID: 15322546 DOI: 10.1038/ng1419] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 08/04/2004] [Indexed: 01/30/2023]
Abstract
Joubert syndrome is a congenital brain malformation of the cerebellar vermis and brainstem with abnormalities of axonal decussation (crossing in the brain) affecting the corticospinal tract and superior cerebellar peduncles. Individuals with Joubert syndrome have motor and behavioral abnormalities, including an inability to walk due to severe clumsiness and 'mirror' movements, and cognitive and behavioral disturbances. Here we identified a locus associated with Joubert syndrome, JBTS3, on chromosome 6q23.2-q23.3 and found three deleterious mutations in AHI1, the first gene to be associated with Joubert syndrome. AHI1 is most highly expressed in brain, particularly in neurons that give rise to the crossing axons of the corticospinal tract and superior cerebellar peduncles. Comparative genetic analysis of AHI1 indicates that it has undergone positive evolutionary selection along the human lineage. Therefore, changes in AHI1 may have been important in the evolution of human-specific motor behaviors.
Collapse
Affiliation(s)
- Russell J Ferland
- Division of Neurogenetics and Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, NRB 266, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The sequence of chimpanzee chromosome 22 is starting to help us to define the set of genetic attributes that are unique to humans, but interpreting the biological consequences of these remains a major challenge.
Collapse
Affiliation(s)
- Tarjei S Mikkelsen
- Broad Institute, Massachusetts Institute of Technology and Harvard University, 320 Charles Street, Cambridge, MA 02139, USA.
| |
Collapse
|
143
|
Affiliation(s)
- Maynard V Olson
- University of Washington Genome Center, Departments of Medicine and Genome Sciences, Seattle, WA 98195, USA.
| | | |
Collapse
|
144
|
Taylor TD. After 'completion': the changing face of human chromosomes 21 and 22. Genome Biol 2004; 5:111. [PMID: 15239819 PMCID: PMC463270 DOI: 10.1186/gb-2004-5-7-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the four years since the publication of the first two 'complete' human chromosome sequences the type of research being done on each has shifted subtly, reflecting the impact of genomic data on biological science in general. In the four years since the publication of the first two 'complete' human chromosome sequences the type of research being done on each has shifted subtly, reflecting the impact of genomic data on biological science in general. There is now considerably more gene-expression evidence to support predicted genes, and the annotation of functions for previously unknown genes, including those implicated in disease, is gradually improving.
Collapse
Affiliation(s)
- Todd Duane Taylor
- RIKEN Genomic Sciences Center, Human Genome Research Group, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
145
|
Maloney B, Ge YW, Greig N, Lahiri DK. Presence of a “CAGA box” in the
APP
gene unique to amyloid plaque‐forming species and absent in all
APLP
‐1/2 genes: implications in Alzheimer's disease. FASEB J 2004; 18:1288-90. [PMID: 15208260 DOI: 10.1096/fj.03-1703fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Potentially toxic amyloid beta-peptide (Abeta) in Alzheimer's disease (AD) is generated from a family of Abeta-containing precursor proteins (APP), which is regulated via the 5'-untranslated region (5'-UTR) of its mRNA. We analyzed 5'-UTRs of the APP superfamily, including amyloid plaque-forming and non-amyloid plaque-forming species, and of prions (27 different DNA sequences). A "CAGA" sequence proximal to the "ATG" start codon was present in a location unique to APP genes of amyloid plaque-forming species and absent in all other genes surveyed. This CAGA box is immediately upstream of an interleukin-1-responsive element (acute box). In addition, the proximal CAGA box is predicted to appear on a stem-loop structure in both human and guinea pig APP mRNA. This stem-loop is part of a predicted bulge-loop that encompasses a known iron regulatory element (IRE). Electrophoretic mobility shift with segments of the APP 5'-UTR showed that a region with the proximal CAGA sequence binds nuclear proteins, and this UTR fragment is active in a reporter gene functional assay. Thus, the 5'-UTR in the human APP but not those of APP-like proteins contains a specific region that may participate in APP regulation and may determine a more general model for amyloid generation as seen in AD. The 5'-UTR of human APP contains several interesting control elements, such as an acute box element, a CAGA box, an IRE, and a transforming growth factor-beta-responsive element, that could control APP expression and provide suitable and specific drug targets for AD.
Collapse
Affiliation(s)
- Bryan Maloney
- Departments of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
146
|
|
147
|
Nelson L. Chimp chromosome creates puzzles. Nature 2004. [DOI: 10.1038/news040524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
148
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447475 DOI: 10.1002/cfg.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|