101
|
Behera JK, Mishra P, Jena AK, Behera B, Bhattacharya M. Human health implications of emerging diseases and the current situation in India's vaccine industry. SCIENCE IN ONE HEALTH 2023; 2:100046. [PMID: 39077045 PMCID: PMC11262297 DOI: 10.1016/j.soh.2023.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Emerging diseases are infectious diseases that pose significant threat to human health, causing millions of deaths and disabilities in the upcoming days. Periodic epidemics of new infections and old reinfections increase the global burden of disease prevalence. They can be caused by new pathogens or evolving ones, which change human behavior and environmental factors. Researchers have studied the dynamic connections between microbes, hosts, and the environment, but new infectious diseases like coronavirus disease 2019 (COVID-19), re-emerging diseases, and deliberately disseminated diseases persist despite earlier hopes of elimination. With heavy privatesector investments, Indian pharmacology now provides core Expanded Programme on Immunization vaccines to United Nations International Children's Emergency Fund, producing previously unattainable vaccines for diseases like meningitis, hepatitis B, pneumococcal conjugate, rotavirus, influenza A (H1N1), and COVID-19. India's vaccine sector has emerged, among the oriented leaders of the Bharat Biotech, Serum Institute of India, Panacea Biotech and Biological E. Specifically, the technology transferred from Western countries has benefited the sector, which produces 1.3 billion doses annually. The Serum Institute is the world's largest manufacturer of vaccines, providing measles and diphtheria-tetanus-pertussis vaccines to United Nations. The Serum Institute has developed several vaccines, including Nasovac, MenAfriVac, Pentavac, and an inactivated polio vaccine. India's success in vaccinations can be attributed to attractive investment conditions, government assistance, international alliances, and rising domestic technical talent. Despite its booming economy and technical advances, India's disproportionate share of the world's child mortality rate remains unchanged. However, the growing production and distribution of vaccinations in developing nations has initiated a new era, leading to a worldwide decline in childhood death and disease.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| |
Collapse
|
102
|
Wang W, Weng F, Zhu J, Li Q, Wu X. An Analytical Approach for Temporal Infection Mapping and Composite Index Development. MATHEMATICS 2023; 11:4358. [DOI: 10.3390/math11204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Significant and composite indices for infectious disease can have implications for developing interventions and public health. This paper presents an investment for developing access to further analysis of the incidence of individual and multiple diseases. This research mainly comprises two steps: first, an automatic and reproducible procedure based on functional data analysis techniques was proposed for analyzing the dynamic properties of each disease; second, orthogonal transformation was adopted for the development of composite indices. Between 2000 and 2019, nineteen class B notifiable diseases in China were collected for this study from the National Bureau of Statistics of China. The study facilitates the probing of underlying information about the dynamics from discrete incidence rates of each disease through the procedure, and it is also possible to obtain similarities and differences about diseases in detail by combining the derivative features. There has been great success in intervening in the majority of notifiable diseases in China, like bacterial or amebic dysentery and epidemic cerebrospinal meningitis, while more efforts are required for some diseases, like AIDS and virus hepatitis. The composite indices were able to reflect a more complex concept by combining individual incidences into a single value, providing a simultaneous reflection for multiple objects, and facilitating disease comparisons accordingly. For the notifiable diseases included in this study, there was superior management of gastro-intestinal infectious diseases and respiratory infectious diseases from the perspective of composite indices. This study developed a methodology for exploring the prevalent properties of infectious diseases. The development of effective and reliable analytical methods provides special insight into infectious diseases’ common dynamics and properties and has implications for the effective intervention of infectious diseases.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Medicine, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
- Data Mining Research Center, Xiamen University, Xiamen 361005, China
| | - Futian Weng
- School of Medicine, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
- Data Mining Research Center, Xiamen University, Xiamen 361005, China
| | - Jianping Zhu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
- Data Mining Research Center, Xiamen University, Xiamen 361005, China
- School of Management, Xiamen University, Xiamen 361005, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Xiaolong Wu
- School of Medicine, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
- Data Mining Research Center, Xiamen University, Xiamen 361005, China
| |
Collapse
|
103
|
Yadollahi M, Hosseinalipour H, Karajizadeh M, Alinaqi M, Fazeli P, Jowkar M, Jamali K, Yadollahi M. Investigating the prevalence of and predictive and risk factors for pulmonary embolism in patients with COVID-19 in Nemazee Teaching Hospital. Blood Res 2023; 58:127-132. [PMID: 37431097 PMCID: PMC10548293 DOI: 10.5045/br.2023.2023076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Background Pulmonary thromboembolism (PTE) is a significant contributing factor to vascular diseases. This study aimed to determine the prevalence of pulmonary thromboembolism and its predisposing factors in patients with COVID-19. Methods This cross-sectional study included 284 patients with COVID-19 who were admitted to Nemazee Teaching Hospital (Shiraz, Iran) between June and August 2021. All patients were diagnosed with COVID-19 by a physician based on clinical symptoms or positive polymerase chain reaction (PCR) test results. The collected data included demographic data and laboratory findings. Data were analyzed using the SPSS software. P≤0.05 was considered statistically significant. Results There was a significant difference in the mean age between the PTE group and non-PTE group (P=0.037). Moreover, the PTE group had a significantly higher prevalence of hypertension (36.7% vs. 21.8%, P=0.019), myocardial infarction (4.5% vs. 0%, P=0.006), and stroke (23.9% vs. 4.9%, P=0.0001). Direct bilirubin (P=0.03) and albumin (P=0.04) levels significantly differed between the PTE and non-PTE groups. Notably, there was a significant difference in the partial thromboplastin time (P=0.04) between the PTE and non-PTE groups. A regression analysis indicated that age (OR, 1.02; 95% CI, 1.00‒1.004; P=0.005), blood pressure (OR, 2.07; 95% CI, 1.12‒3.85; P=0.02), heart attack (OR, 1.02; 95% CI, 1.28‒6.06; P=0.009), and albumin level (OR, 0.39; 95% CI, 0.16‒0.97; P=0.04) were all independent predictors of PTE development. Conclusion Regression analysis revealed that age, blood pressure, heart attack, and albumin levels were independent predictors of PTE.
Collapse
Affiliation(s)
- Mahnaz Yadollahi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hessam Hosseinalipour
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Karajizadeh
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Alinaqi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
104
|
He S, Yan D, Shu H, Tang S, Wang X, Cheke RA. Randomness accelerates the dynamic clearing process of the COVID-19 outbreaks in China. Math Biosci 2023; 363:109055. [PMID: 37532101 DOI: 10.1016/j.mbs.2023.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
During the implementation of strong non-pharmaceutical interventions (NPIs), more than one hundred COVID-19 outbreaks induced by different strains in China were dynamically cleared in about 40 days, which presented the characteristics of small scale clustered outbreaks with low peak levels. To address how did randomness affect the dynamic clearing process, we derived an iterative stochastic difference equation for the number of newly reported cases based on the classical stochastic SIR model and calculate the stochastic control reproduction number (SCRN). Further, by employing the Bayesian technique, the change points of SCRNs have been estimated, which is an important prerequisite for determining the lengths of the exponential growth and decline phases. To reveal the influence of randomness on the dynamic zeroing process, we calculated the explicit expression of the mean first passage time (MFPT) during the decreasing phase using the relevant theory of first passage time (FPT), and the main results indicate that random noise can accelerate the dynamic zeroing process. This demonstrates that powerful NPI measures can rapidly reduce the number of infected people during the exponential decline phase, and enhanced randomness is conducive to dynamic zeroing, i.e. the greater the random noise, the shorter the average clearing time is. To confirm this, we chose 26 COVID-19 outbreaks in various provinces in China and fitted the data by estimating the parameters and change points. We then calculated the MFPTs, which were consistent with the actual duration of dynamic zeroing interventions.
Collapse
Affiliation(s)
- Sha He
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China
| | - Dingding Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongying Shu
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China
| | - Xia Wang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China.
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
105
|
Topluoglu S, Taylan-Ozkan A, Alp E. Impact of wars and natural disasters on emerging and re-emerging infectious diseases. Front Public Health 2023; 11:1215929. [PMID: 37727613 PMCID: PMC10505936 DOI: 10.3389/fpubh.2023.1215929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Emerging Infectious Diseases (EIDs) and Re-Emerging Infectious Diseases (REIDs) constitute significant health problems and are becoming of major importance. Up to 75% of EIDs and REIDs have zoonotic origin. Several factors such as the destruction of natural habitats leading humans and animals to live in close proximity, ecological changes due to natural disasters, population migration resulting from war or conflict, interruption or decrease in disease prevention programs, and insufficient vector control applications and sanitation are involved in disease emergence and distribution. War and natural disasters have a great impact on the emergence/re-emergence of diseases in the population. According to a World Bank estimation, two billion people are living in poverty and fragility situations. Wars destroy health systems and infrastructure, curtail existing disease control programs, and cause population movement leading to an increase in exposure to health risks and favor the emergence of infectious diseases. A total of 432 catastrophic cases associated with natural disasters were recorded globally in 2021. Natural disasters increase the risk of EID and REID outbreaks by damaging infrastructure and leading to displacement of populations. A Generic National Action Plan covering risk assessment, mechanism for action, determination of roles and responsibilities of each sector, the establishment of a coordination mechanism, etc. should be developed.
Collapse
Affiliation(s)
- Seher Topluoglu
- Provincial Health Directorate of Ankara, Republic of Türkiye Ministry of Health, Ankara, Türkiye
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Medical Faculty, TOBB University of Economics and Technology, Ankara, Türkiye
| | - Emine Alp
- Department of Clinical Microbiology and Infectious Diseases, Medical Faculty, Ankara Yildirim Beyazit University, Ankara, Türkiye
| |
Collapse
|
106
|
Phan T, Brozak S, Pell B, Oghuan J, Gitter A, Hu T, Ribeiro RM, Ke R, Mena KD, Perelson AS, Kuang Y, Wu F. Making waves: Integrating wastewater surveillance with dynamic modeling to track and predict viral outbreaks. WATER RESEARCH 2023; 243:120372. [PMID: 37494742 DOI: 10.1016/j.watres.2023.120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Wastewater surveillance has proved to be a valuable tool to track the COVID-19 pandemic. However, most studies using wastewater surveillance data revolve around establishing correlations and lead time relative to reported case data. In this perspective, we advocate for the integration of wastewater surveillance data with dynamic within-host and between-host models to better understand, monitor, and predict viral disease outbreaks. Dynamic models overcome emblematic difficulties of using wastewater surveillance data such as establishing the temporal viral shedding profile. Complementarily, wastewater surveillance data bypasses the issues of time lag and underreporting in clinical case report data, thus enhancing the utility and applicability of dynamic models. The integration of wastewater surveillance data with dynamic models can enhance real-time tracking and prevalence estimation, forecast viral transmission and intervention effectiveness, and most importantly, provide a mechanistic understanding of infectious disease dynamics and the driving factors. Dynamic modeling of wastewater surveillance data will advance the development of a predictive and responsive monitoring system to improve pandemic preparedness and population health.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI 48075, USA
| | - Jeremiah Oghuan
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna Gitter
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tao Hu
- Department of Geography, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Fuqing Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA.
| |
Collapse
|
107
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
108
|
Gwakisa P, George J, Sindato C, Ngonyoka A, Nnko H, Assenga J, Kimera S, Nessele MO. Pillars for successful operationalization of one health as an ecosystem approach: experience from a human-animal interface in the Maasai steppe in Tanzania. ONE HEALTH OUTLOOK 2023; 5:11. [PMID: 37649116 PMCID: PMC10469404 DOI: 10.1186/s42522-023-00087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Solving complex public health challenges requires integrated approaches to health, such as One Health. A key element of the One Health approach is the interrelationship between human, animal and environmental health and the associated multistakeholder collaboration across many cultural, disciplinary, institutional and sectoral boundaries. Here we describe a pragmatic approach for One Health operationalisation basing on our long-term engagement with communities faced with health challenges in a human-livestock-wildlife interface in the Maasai steppe in northern Tanzania. METHODS Using a qualitative study design we performed an outcome mapping to document insights on results integration from our previous project. Data were collected through participatory community meetings, in-depth interviews and field observations. Field notes were coded and analysed using inductive thematic analysis. RESULTS We found that effective implementation of One Health interventions in complex ecosystems works best by understanding local conditions and their context and by working closely with the local people and relevant disciplinary players as one complex adaptive system. Community engagement, systems analysis, transdisciplinarity as well as political commitment played critical roles in successful operationalization of One Health. We have further emphasized that project ownership is as important to the local community as it is to the researchers. When used in combination, these elements (community engagement, systems analysis, transdisciplinarity) provide essential pillars for co-creation and maintaining collective action to set a common vision across disciplines, serving as inputs for a metrics-based toolbox for One Health operationalisation. CONCLUSION Considering the novelty and complexity of One Health operationalisation, there is need also to develop scorecard-based guidance for assessment of One Health programs at local and national level. This paper proposes a framework for the optimization of an ecosystems-based One Health approach for prevention and control of Vector-Borne Diseases implemented at the local, sub-national or national level.
Collapse
Affiliation(s)
- Paul Gwakisa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania
| | - Janeth George
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania.
| | - Calvin Sindato
- National Institute for Medical Research, Tabora, Tanzania
| | | | | | | | - Sharadhuli Kimera
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania
| | - Moses Ole Nessele
- Food and Agriculture Organization of the United Nations (FAO), Country Office, Dodoma, United Republic of Tanzania
| |
Collapse
|
109
|
Morelle K, Barasona JA, Bosch J, Heine G, Daim A, Arnold J, Bauch T, Kosowska A, Cadenas-Fernández E, Aviles MM, Zuñiga D, Wikelski M, Vizcaino-Sanchez JM, Safi K. Accelerometer-based detection of African swine fever infection in wild boar. Proc Biol Sci 2023; 290:20231396. [PMID: 37644835 PMCID: PMC10465979 DOI: 10.1098/rspb.2023.1396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Infectious wildlife diseases that circulate at the interface with domestic animals pose significant threats worldwide and require early detection and warning. Although animal tracking technologies are used to discern behavioural changes, they are rarely used to monitor wildlife diseases. Common disease-induced behavioural changes include reduced activity and lethargy ('sickness behaviour'). Here, we investigated whether accelerometer sensors could detect the onset of African swine fever (ASF), a viral infection that induces high mortality in suids for which no vaccine is currently available. Taking advantage of an experiment designed to test an oral ASF vaccine, we equipped 12 wild boars with an accelerometer tag and quantified how ASF affects their activity pattern and behavioural fingerprint, using overall dynamic body acceleration. Wild boars showed a daily reduction in activity of 10-20% from the healthy to the viremia phase. Using change point statistics and comparing healthy individuals living in semi-free and free-ranging conditions, we show how the onset of disease-induced sickness can be detected and how such early detection could work in natural settings. Timely detection of infection in animals is crucial for disease surveillance and control, and accelerometer technology on sentinel animals provides a viable complementary tool to existing disease management approaches.
Collapse
Affiliation(s)
- Kevin Morelle
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Department of Game Management and Wildlife Biology, Czech University of Life Science, Prague, Czech Republic
| | - Jose Angel Barasona
- VISAVET Health Surveillance Center, Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | - Georg Heine
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
| | - Andreas Daim
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Institute of Wildlife Biology and Game Management (BOKU), Vienna, Austria
| | - Janosch Arnold
- Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| | - Toralf Bauch
- Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Daniel Zuñiga
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jose Manuel Vizcaino-Sanchez
- VISAVET Health Surveillance Center, Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | - Kamran Safi
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
| |
Collapse
|
110
|
Bressan P. First impressions of a new face are shaped by infection concerns. Evol Med Public Health 2023; 11:309-315. [PMID: 37706031 PMCID: PMC10497071 DOI: 10.1093/emph/eoad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/15/2023] Open
Abstract
Along with a classical immune system, we have evolved a behavioral one that directs us away from potentially contagious individuals. Here I show, using publicly available cross-cultural data, that this adaptation is so fundamental that our first impressions of a male stranger are largely driven by the perceived health of his face. Positive (likeable, capable, intelligent, trustworthy) and negative (unfriendly, ignorant, lazy) first impressions are affected by facial health in adaptively different ways, inconsistent with a mere halo effect; they are also modulated by one's current state of health and inclination to feel disgusted by pathogens. These findings, which replicated across two countries as different as the USA and India, suggest that instinctive perceptions of badness and goodness from faces are not two sides of the same coin but reflect the (nonsymmetrical) expected costs and benefits of interaction. Apparently, pathogens run the show-and first impressions come second. Lay Summary: Our first impressions of strangers (whether they seem trustworthy, intelligent, unfriendly, or aggressive) are shaped by how healthy their faces look and by our unconscious motivation to avoid infections. Bad and good impressions turn out to reflect the concrete, potentially vital, expected costs and benefits of interacting with our fellow humans. Apparently, pathogens run the show-and first impressions come second.
Collapse
Affiliation(s)
- Paola Bressan
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
111
|
Kabantiyok D, Gyang MD, Agada GO, Ogundeji A, Nyam D, Uhiara UG, Abiayi E, Dashe Y, Ngulukun S, Muhammad M, Adegboye OA, Emeto TI. Analysis of Retrospective Laboratory Data on the Burden of Bacterial Pathogens Isolated at the National Veterinary Research Institute Nigeria, 2018-2021. Vet Sci 2023; 10:505. [PMID: 37624292 PMCID: PMC10459836 DOI: 10.3390/vetsci10080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Farm animals harbour bacterial pathogens, which are often viewed as important indicators of animal health and determinants of food safety. To better understand the prevalence and inform treatment, we audited laboratory data at the Bacteriology Laboratory of the NVRI from 2018-2021. Antibiotics were classified into seven basic classes: quinolones, tetracyclines, beta-lactams, aminoglycosides, macrolides, nitrofuran, and cephalosporins. Trends were analysed using a generalised linear model with a log link function for the Poisson distribution, comparing proportions between years with an offset to account for the variability in the total number of organisms per year. Avian (73.18%) samples were higher than any other sample. The major isolates identified were Escherichia. coli, Salmonella spp., Klebsiella spp., Staphylococcus spp., Proteus spp., and Pseudomonas spp. We found that antimicrobial resistance to baseline antibiotics increased over the years. Of particular concern was the increasing resistance of Klebsiella spp. to cephalosporins, an important second-generation antibiotic. This finding underscores the importance of farm animals as reservoirs of pathogens harbouring antimicrobial resistance. Effective biosecurity, surveillance, and frugal use of antibiotics in farms are needed because the health of humans and animals is intricately connected.
Collapse
Affiliation(s)
- Dennis Kabantiyok
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Moses D. Gyang
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Godwin O. Agada
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Alice Ogundeji
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Daniel Nyam
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Uchechi G. Uhiara
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Elmina Abiayi
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Yakubu Dashe
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Sati Ngulukun
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Maryam Muhammad
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Oyelola A. Adegboye
- Menzies School of Public Health, Charles Darwin University, Casuarina, NT 0811, Australia
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
112
|
Quach HQ, Goergen KM, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. Virus-specific and shared gene expression signatures in immune cells after vaccination in response to influenza and vaccinia stimulation. Front Immunol 2023; 14:1168784. [PMID: 37600811 PMCID: PMC10436507 DOI: 10.3389/fimmu.2023.1168784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background In the vaccine era, individuals receive multiple vaccines in their lifetime. Host gene expression in response to antigenic stimulation is usually virus-specific; however, identifying shared pathways of host response across a wide spectrum of vaccine pathogens can shed light on the molecular mechanisms/components which can be targeted for the development of broad/universal therapeutics and vaccines. Method We isolated PBMCs, monocytes, B cells, and CD8+ T cells from the peripheral blood of healthy donors, who received both seasonal influenza vaccine (within <1 year) and smallpox vaccine (within 1 - 4 years). Each of the purified cell populations was stimulated with either influenza virus or vaccinia virus. Differentially expressed genes (DEGs) relative to unstimulated controls were identified for each in vitro viral infection, as well as for both viral infections (shared DEGs). Pathway enrichment analysis was performed to associate identified DEGs with KEGG/biological pathways. Results We identified 2,906, 3,888, 681, and 446 DEGs in PBMCs, monocytes, B cells, and CD8+ T cells, respectively, in response to influenza stimulation. Meanwhile, 97, 120, 20, and 10 DEGs were identified as gene signatures in PBMCs, monocytes, B cells, and CD8+ T cells, respectively, upon vaccinia stimulation. The majority of DEGs identified in PBMCs were also found in monocytes after either viral stimulation. Of the virus-specific DEGs, 55, 63, and 9 DEGs occurred in common in PBMCs, monocytes, and B cells, respectively, while no DEGs were shared in infected CD8+ T cells after influenza and vaccinia. Gene set enrichment analysis demonstrated that these shared DEGs were over-represented in innate signaling pathways, including cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, Toll-like receptor signaling, RIG-I-like receptor signaling pathways, cytosolic DNA-sensing pathways, and natural killer cell mediated cytotoxicity. Conclusion Our results provide insights into virus-host interactions in different immune cells, as well as host defense mechanisms against viral stimulation. Our data also highlights the role of monocytes as a major cell population driving gene expression in ex vivo PBMCs in response to viral stimulation. The immune response signaling pathways identified in this study may provide specific targets for the development of novel virus-specific therapeutics and improved vaccines for vaccinia and influenza. Although influenza and vaccinia viruses have been selected in this study as pathogen models, this approach could be applicable to other pathogens.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
113
|
Eberhardt AT, Manzoli DE, Fernandez C, Zurvera D, Monje LD. Capybara density and climatic factors as modulators of Ehrlichia prevalence in questing ticks in the Iberá wetlands, Argentina. Sci Rep 2023; 13:12237. [PMID: 37507526 PMCID: PMC10382574 DOI: 10.1038/s41598-023-39557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023] Open
Abstract
We evaluated the presence of Ehrlichia spp. in unfed capybara ticks, Amblyomma dubitatum, and explored its association with capybaras density, ticks density and environmental variables. We observed that in the Iberá wetlands ecoregion A. dubitatum is infected by "Candidatus Ehrlichia hydrochoerus" and in a lesser extent with an Ehrlichia species closely related to Ehrlichia chaffeensis. The frequency of "Ca. Ehrlichia hydrochoerus" presence in A. dubitatum was not associated with vector abundance, but the probability of finding "Ca. Ehrlichia hydrochoerus"-infected ticks increased when the density of capybaras was low two months before. We hypothesize that when the density of capybaras decreases, A. dubitatum immature stages may seek out alternative hosts one of which could exhibit high realized reservoir competence for "Ca. Ehrlichia hydrochoerus", leading to an increased prevalence of this ehrlichiae in questing A. dubitatum. High minimum temperatures and high cumulative rainfall in the time period previous to tick collection (15 to 60 days) were positively correlated with the prevalence of "Ca. Ehrlichia hydrochoerus" infection in A. dubitatum. Our results suggest that a combination of factors (both biological and abiotic) could raise the risk of human exposure to tick-borne Ehrlichia in the Iberá wetlands ecoregion.
Collapse
Affiliation(s)
- Ayelen T Eberhardt
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, S3080, Esperanza, Santa Fe, Argentina
| | - Darío E Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, S3080, Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Camilo Fernandez
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, S3080, Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Daniel Zurvera
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, S3080, Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Lucas D Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, S3080, Esperanza, Santa Fe, Argentina.
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Santa Fe, Argentina.
| |
Collapse
|
114
|
Lin S, Chen H, Wang R, Jiang T, Wang R, Yu F. Hollow silver-gold alloy nanoparticles for enhanced photothermal/photodynamic synergetic therapy against bacterial infection and acceleration of wound healing. Biomater Sci 2023; 11:4874-4889. [PMID: 37293878 DOI: 10.1039/d3bm00567d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection seriously restricts the wound healing process due to severe inflammation and delayed wound healing. Unfortunately, the overuse or improper use of antibiotics leads to the advent of multidrug-resistant strains and intractable biofilms, severely affecting the therapeutic effect. Therefore, there is an urgent need to develop antibiotic-free strategies to accelerate the healing process of wounds with bacterial infection. Considering that single photothermal therapy (PTT) or photodynamic therapy (PDT) cannot fully meet the requirements of clinical sterilization and accelerating wound healing, herein, hollow silver-gold alloy nanoparticles immobilized with the photosensitizer molecule Ce6 (Ag@Au-Ce6 NPs) integrated with PTT and PDT are proposed for killing bacteria and accelerating wound healing. The photothermal conversion properties of Ag@Au-Ce6 NPs are obtained using an infrared thermal imager, and the generation of singlet oxygen (1O2) is verified with an 1O2 fluorescent probe DCFH-DA. Manipulated by near-infrared laser triggered mild hyperthermia and limited ROS amount, Ag@Au-Ce6 NPs could effectively kill bacteria that are free and colonized on the surface of wounded skin, promoting epithelium migration and vascularization, further accelerating wound healing, which showed great promise for biomedical application.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hui Chen
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
115
|
Ahmad M, Muttahir Uddin M, Ahad Wani A, Majeed I, Aziz R, Naqash M. Trend of SARS-Cov-2-Specific IgG Antibody Titers Among COVID-19 Pneumonia Patients: A Nine-Month Follow-Up. Cureus 2023; 15:e40860. [PMID: 37489184 PMCID: PMC10363370 DOI: 10.7759/cureus.40860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Introduction Understanding the dynamics of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) spike antibody titers after natural infection is important for understanding immunological memory. This longitudinal study was conducted to assess the trend in serum SARS-CoV-2 IgG spike antibody titers in a cohort of recovered cases up to nine months after SARS infection. Materials and methods We examined the neutralizing antibody response (IgG spike) in serum samples from a cohort of 86 SARS-CoV-2 quantitative polymerase chain reaction (qPCR)-confirmed infection, comprising cases having minor COVID-19 pneumonia and severity, which was determined by CT severity scores. Patients were enrolled in August/September 2020 and serum samples have been processed at one, three, six, and nine months. CT severity scores were rated between 1-25 and antibody titers≥ 1.4 were considered positive. Results The mean anti-SARS-CoV-2-specific IgG antibody titers at one month, three months, six months, and nine months were 22.02 ± 18.36, 14.62 ± 12.61, 8.93 ± 8.10, and 3.86 ± 5.70, respectively. The difference was statistically significant. The seropositivity rates (titer ≥1.4 IU) were 93.02%, 82.56%, 76.74%, and 58.14% at one, three, six, and nine months after infection, respectively. Cases with severe CT severity scores showed significantly higher mean antibody levels at all follow-up visits.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of General Medicine, SKIMS (Sher-i-Kashmir Institute of Medical Sciences) Medical College, Srinagar, IND
| | | | - Abdul Ahad Wani
- Department of General Medicine, SKIMS (Sher-i-Kashmir Institute of Medical Sciences) Medical College, Srinagar, IND
| | - Ishrat Majeed
- Department of Community Medicine, Government Medical College (GMC), Srinagar, IND
| | - Ruquaya Aziz
- Department of Biochemistry, SKIMS (Sher-i-Kashmir Institute of Medical Sciences) Medical College, Srinagar, IND
| | - Mubarak Naqash
- Department of General Medicine and Biochemistry, SKIMS (Sher-i-Kashmir Institute of Medical Sciences) Medical College, Srinagar, IND
| |
Collapse
|
116
|
Awadalla ME, Alkadi H, Alarjani M, Al-Anazi AE, Ibrahim MA, ALOhali TA, Enani M, Alturaiki W, Alosaimi B. Moderately Low Effectiveness of the Influenza Quadrivalent Vaccine: Potential Mismatch between Circulating Strains and Vaccine Strains. Vaccines (Basel) 2023; 11:1050. [PMID: 37376439 PMCID: PMC10304586 DOI: 10.3390/vaccines11061050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The annual seasonal influenza vaccination is the most effective way of preventing influenza illness and hospitalization. However, the effectiveness of influenza vaccines has always been controversial. Therefore, we investigated the ability of the quadrivalent influenza vaccine to induce effective protection. Here we report strain-specific influenza vaccine effectiveness (VE) against laboratory-confirmed influenza cases during the 2019/2020 season, characterized by the co-circulation of four different influenza strains. During 2019-2020, 778 influenza-like illness (ILI) samples were collected from 302 (39%) vaccinated ILI patients and 476 (61%) unvaccinated ILI patients in Riyadh, Saudi Arabia. VE was found to be 28% and 22% for influenza A and B, respectively. VE for preventing A(H3N2) and A(H1N1)pdm09 illness was 37.4% (95% CI: 43.7-54.3) and 39.2% (95% CI: 21.1-28.9), respectively. The VE for preventing influenza B Victoria lineage illness was 71.7% (95% CI: -0.9-3), while the VE for the Yamagata lineage could not be estimated due to the limited number of positive cases. The overall vaccine effectiveness was moderately low at 39.7%. Phylogenetic analysis revealed that most of the Flu A genotypes in our dataset clustered together, indicating their close genetic relatedness. In the post-COVID-19 pandemic, flu B-positive cases have reached three-quarters of the total number of influenza-positive cases, indicating a nationwide flu B surge. The reasons for this phenomenon, if related to the quadrivalent flu VE, need to be explored. Annual monitoring and genetic characterization of circulating influenza viruses are important to support Influenza surveillance systems and to improve influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Maaweya E. Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Modhi Alarjani
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Abdullah E. Al-Anazi
- Comprehensive Cancer Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Mohanad A. Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Thamer Ahmad ALOhali
- Medical Protocol Department, Kind Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mushira Enani
- Dr. Sulaiman Alhabib Medical Group, Department of Medicine, Olaya Medical Complex, Riyadh 11643, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| |
Collapse
|
117
|
Atari N, Erster O, Shteinberg YH, Asraf H, Giat E, Mandelboim M, Goldstein I. Proof-of-concept for effective antiviral activity of an in silico designed decoy synthetic mRNA against SARS-CoV-2 in the Vero E6 cell-based infection model. Front Microbiol 2023; 14:1113697. [PMID: 37152730 PMCID: PMC10157240 DOI: 10.3389/fmicb.2023.1113697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The positive-sense single-stranded (ss) RNA viruses of the Betacoronavirus (beta-CoV) genus can spillover from mammals to humans and are an ongoing threat to global health and commerce, as demonstrated by the current zoonotic pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current anti-viral strategies focus on vaccination or targeting key viral proteins with antibodies and drugs. However, the ongoing evolution of new variants that evade vaccination or may become drug-resistant is a major challenge. Thus, antiviral compounds that circumvent these obstacles are needed. Here we describe an innovative antiviral modality based on in silico designed fully synthetic mRNA that is replication incompetent in uninfected cells (termed herein PSCT: parasitic anti-SARS-CoV-2 transcript). The PSCT sequence was engineered to include key untranslated cis-acting regulatory RNA elements of the SARS-CoV-2 genome, so as to effectively compete for replication and packaging with the standard viral genome. Using the Vero E6 cell-culture based SARS-CoV-2 infection model, we determined that the intracellular delivery of liposome-encapsulated PSCT at 1 hour post infection significantly reduced intercellular SARS-CoV-2 replication and release into the extracellular milieu as compared to mock treatment. In summary, our findings are a proof-of-concept for the therapeutic feasibility of in silico designed mRNA compounds formulated to hinder the replication and packaging of ssRNA viruses sharing a comparable genomic-structure with beta-CoVs.
Collapse
Affiliation(s)
- Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oran Erster
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
| | | | - Hadar Asraf
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
| | - Eitan Giat
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Itamar Goldstein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
118
|
Yajie H, Shenglan W, Wei Z, Rufang L, Tingting Y, Yunhui Z, Jie S. Global quantitative proteomic analysis profiles of host protein expression in response to Enterovirus A71 infection in bronchial epithelial cells based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS uncovers the key role of proteasome in virus replication. Virus Res 2023; 330:199118. [PMID: 37072100 DOI: 10.1016/j.virusres.2023.199118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic human pathogen which mainly caused hand, foot and mouth disease (HFMD) mostly in children under 5 years-old. Generally, EV-A71-associated HFMD is a relatively self-limiting febrile disease, but there will still be a small percentage of patients with rapid disease progression and severe neurological complications. To date, the underlying mechanism of EV-A71 inducing pathological injury of central nervous system (CNS) remains largely unclear. It has been investigated and discussed the changes of mRNA, miRNA and circRNA expression profile during infection by EV-A71 in our previous studies. However, these studies were only analyzed at the RNA level, not at the protein level. It's the protein levels that ultimately do the work in the body. Here, to address this, we performed a tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS approach to quantitatively identify cellular proteome changes at 24 h post-infection (hpi) in EV-A71-infected 16HBE cells. In total, 6615 proteins were identified by using TMT coupled with LC-MS/MS in this study. In the EV-A71- and mock-infected groups, 210 differentially expressed proteins were found, including 86 upregulated and 124 downregulated proteins, at 24 hpi. To ensure the validity and reliability of the proteomics data, 3 randomly selected proteins were verified by Western blot and Immunofluorescence analysis, and the results were consistent with the TMT results. Subsequently, functional enrichment analysis indicated that the up-regulated and down-regulated proteins were individually involved in various biological processes and signaling pathways, including metabolic process, AMPK signaling pathway, Neurotrophin signaling pathway, Viral myocarditis, GABAergic synapse, and so on. Moreover, among these enriched functional analysis, the "Proteasome" pathway was up-regulated, which has caught our attention. Inhibition of proteasome was found to obviously suppress the EV-A71 replication. Finally, further in-depth analysis revealed that these differentially expressed proteins contained distinct domains and localized in different subcellular components. Taken together, our data provided a comprehensive view of host cell response to EV-A71 and identified host proteins may lead to better understanding of the pathogenic mechanisms and host responses to EV-A71 infection, and also to the identification of new therapeutic targets for EV-A71 infection.
Collapse
Affiliation(s)
- Hu Yajie
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.; Yunnan Provincial Key Laboratory of Clinical Virology
| | - Wang Shenglan
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Rufang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Tingting
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Yunhui
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China..
| | - Song Jie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
119
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
120
|
Tatavarti R, Nadimpalli S, Mangina GVK, Kiran Machiraju N, Pachiyappan A, Hiremath S, Jagannathan V, Viswanathan P. Photonic system for real-time detection, discrimination, and quantification of microbes in air. FRONTIERS IN PHYSICS 2023; 11. [DOI: 10.3389/fphy.2023.1118885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We report the results of the non-invasive photonic system AUM for remote detection and characterization of different pathogenic bacterial strains and mixtures. AUM applies the concepts of elastic light scattering, statistical mechanics, artificial intelligence, and machine learning to identify, classify and quantify various microbes in the scattering volume in real-time and, therefore, can become a potential tool in controlling and managing diseases caused by pathogenic microbes.
Collapse
|
121
|
Kahraman O, Turunc E, Dogen A, Binzet R. Synthesis of Graphene Quantum Dot Magnesium Hydroxide Nanocomposites and Investigation of Their Antioxidant and Antimicrobial Activities. Curr Microbiol 2023; 80:181. [PMID: 37046124 DOI: 10.1007/s00284-023-03286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
In this paper, we synthesized graphene quantum dots magnesium hydroxide nanocomposites (GQDs/Mg(OH)2). The synthesized nanocomposites were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Malvern Zetasizer. The antimicrobial and antioxidant properties of the obtained GQDs/Mg(OH)2 nanocomposites were investigated. GQDs/Mg(OH)2 nanocomposites have MIC values of 15.625 μg/mL against fungi (C. metapsilosis and C. parapsilosis) and 62.5 μg/mL against Gram (+) (S. pneumonia and E. faecalis) and Gram (-) (E. coli). The synthesized GQDs/Mg(OH)2 nanocomposites showed moderate antioxidant activity. The results showed that at 100-µg/mL GQDs/Mg(OH)2 nanocomposite concentration, the H2O2 scavenging activity was 62.18%.
Collapse
Affiliation(s)
- Oskay Kahraman
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey
| | - Ersan Turunc
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33160, Mersin, Turkey
| | - Riza Binzet
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
122
|
Aodah AH, Hashmi S, Akhtar N, Ullah Z, Zafar A, Zaki RM, Khan S, Ansari MJ, Jawaid T, Alam A, Ali MS. Formulation Development, Optimization by Box-Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels 2023; 9:gels9040322. [PMID: 37102934 PMCID: PMC10137727 DOI: 10.3390/gels9040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
There are many different infections and factors that can lead to skin illnesses, but bacteria and fungi are the most frequent. The goal of this study was to develop a hexatriacontane-loaded transethosome (HTC-TES) for treating skin conditions caused by microbes. The HTC-TES was developed utilizing the rotary evaporator technique, and Box-Behnken design (BBD) was utilized to improve it. The responses chosen were particle size (nm) (Y1), polydispersity index (PDI) (Y2), and entrapment efficiency (Y3), while the independent variables chosen were lipoid (mg) (A), ethanol (%) (B), and sodium cholate (mg) (C). The optimized TES formulation with code F1, which contains lipoid (mg) (A) 90, ethanol (%) (B) 25, and sodium cholate (mg) (C) 10, was chosen. Furthermore, the generated HTC-TES was used for research on confocal laser scanning microscopy (CLSM), dermatokinetics, and in vitro HTC release. The results of the study reveal that the ideal formulation of the HTC-loaded TES had the following characteristics: 183.9 nm, 0.262 mV, -26.61 mV, and 87.79% particle size, PDI, and entrapment efficiency, respectively. An in vitro study on HTC release found that the rates of HTC release for HTC-TES and conventional HTC suspension were 74.67 ± 0.22 and 38.75 ± 0.23, respectively. The release of hexatriacontane from TES fit the Higuchi model the best, and the Korsmeyer-Peppas model indicates the release of HTC followed a non-Fickian diffusion. By having a higher negative value for cohesiveness, the produced gel formulation demonstrated its stiffness, whereas good spreadability indicated better gel application to the surface. In a dermatokinetics study, it was discovered that TES gel considerably increased HTC transport in the epidermal layers (p < 0.05) when compared to HTC conventional formulation gel (HTC-CFG). The CLSM of rat skin treated with the rhodamine B-loaded TES formulation demonstrated a deeper penetration of 30.0 µm in comparison to the hydroalcoholic rhodamine B solution (0.15 µm). The HTC-loaded transethosome was determined to be an effective inhibitor of pathogenic bacterial growth (S. aureus and E. coli) at a concentration of 10 mg/mL. It was discovered that both pathogenic strains were susceptible to free HTC. According to the findings, HTC-TES gel can be employed to enhance therapeutic outcomes through antimicrobial activity.
Collapse
Affiliation(s)
- Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sana Hashmi
- Department of Pharmaceutical Sciences, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Zabih Ullah
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shamshir Khan
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
123
|
Zhou Z, Gu J, Wang Y. Editorial: Evolutionary mechanisms of infectious diseases, volume II. Front Microbiol 2023; 14:1192566. [PMID: 37077239 PMCID: PMC10106751 DOI: 10.3389/fmicb.2023.1192566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Zhan Zhou
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, NY, United States
- Jianying Gu
| | - Yufeng Wang
- Department of Molecular Microbiology Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
- Yufeng Wang
| |
Collapse
|
124
|
Zhao X, Wang LY, Tang CY, Li K, Huang YH, Duan YR, Zhang ST, Ke K, Su BH, Yang W. Electro-microenvironment modulated inhibition of endogenous biofilms by piezo implants for ultrasound-localized intestinal perforation disinfection. Biomaterials 2023; 295:122055. [PMID: 36805242 DOI: 10.1016/j.biomaterials.2023.122055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Endogenous bacterial infections from damaged gastrointestinal (GI) organs have high potential to cause systemic inflammatory responses and life-threatening sepsis. Current treatments, including systemic antibiotic administration and surgical suturing, are difficult in preventing bacterial translocation and further infection. Here, we report a wireless localized stimulator composed of a piezo implant with high piezoelectric output serving as an anti-infective therapy patch, which aims at modulating the electro-microenvironment of biofilm around GI wounds for effective inhibition of bacterial infection if combined with ultrasound (US) treatment from outside the body. The pulsed charges generated by the piezo implant in response to US stimulation transfer into bacterial biofilms, effectively destroying their macromolecular components (e.g., membrane proteins), disrupting the electron transport chain of biofilms, and inhibiting bacterial proliferation, as proven by experimental studies and theoretical calculations. The piezo implant, in combination with US stimulation, also exhibits successful in vivo anti-infection efficacy in a rat cecal ligation and puncture (CLP) model. The proposed strategy, combining piezo implants with controllable US activation, creates a promising pathway for inhibiting endogenous bacterial infection caused by GI perforation.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Ya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yan-Hao Huang
- School of Materials Science and Engineering, Chongqing Jiao Tong University, Chongqing, 400074, China
| | - Yan-Ran Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Bai-Hai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
125
|
Huo L, Yu Y. The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks. CHAOS, SOLITONS, AND FRACTALS 2023; 169:113229. [PMID: 36844432 PMCID: PMC9942607 DOI: 10.1016/j.chaos.2023.113229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In recent years, as the COVID-19 global pandemic evolves, many unprecedented new patterns of epidemic transmission continue to emerge. Reducing the impact of negative information diffusion, calling for individuals to adopt immunization behaviors, and decreasing the infection risk are of great importance to maintain public health and safety. In this paper, we construct a coupled negative information-behavior-epidemic dynamics model by considering the influence of the individual's self-recognition ability and physical quality in multiplex networks. We introduce the Heaviside step function to explore the effect of decision-adoption process on the transmission for each layer, and assume the heterogeneity of the self-recognition ability and physical quality obey the Gaussian distribution. Then, we use the microscopic Markov chain approach (MMCA) to describe the dynamic process and derive the epidemic threshold. Our findings suggest that increasing the clarification strength of mass media and enhancing individuals' self-recognition ability can facilitate the control of the epidemic. And, increasing physical quality can delay the epidemic outbreak and leads to suppress the scale of epidemic transmission. Moreover, the heterogeneity of the individuals in the information diffusion layer leads to a two-stage phase transition, while it leads to a continuous phase transition in the epidemic layer. Our results can provide favorable references for managers in controlling negative information, urging immunization behaviors and suppressing epidemics.
Collapse
Affiliation(s)
- Liang'an Huo
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Yu
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
126
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
127
|
Shin J, Rahman MM, Kim J, Marcombe S, Jung J. Genetic Diversity of Dengue Vector Aedes albopictus Collected from South Korea, Japan, and Laos. INSECTS 2023; 14:297. [PMID: 36975982 PMCID: PMC10051289 DOI: 10.3390/insects14030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aedes albopictus is native to Southeast Asia and has emerged as a major vector for vector-borne diseases that are spreading rapidly worldwide. Recent studies have shown that Ae. albopictus populations have different genetic groups dependent on their thermal adaptations; however, studies on Korean populations are limited. In this study, we analyzed the genetic diversity and structure of two mitochondrial genes (COI and ND5) and sixteen microsatellites in mosquitoes inhabiting Korea, Japan, and Laos. The results indicate that the Korean population has low genetic diversity, with an independent cluster distinct from the Laos population. Mixed clusters have also been observed in the Korean population. On the basis of these findings, two hypotheses are proposed. First, certain Korean populations are native. Second, some subpopulations that descended from the metapopulation (East Asian countries) were introduced to Japan before migrating to Korea. Furthermore, we previously demonstrated that Ae. albopictus appears to have been imported to Korea. In conclusion, the dengue-virus-carrying mosquitoes could migrate to Korea from Southeast Asian epidemic regions, where they can survive during the severe winter months. The key findings can be used to establish an integrated pest management strategy based on population genetics for the Korean Ae. albopictus population.
Collapse
Affiliation(s)
- Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- The Division of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Juil Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Program of Applied Biology, Division of Bio-resource Sciences, CALS, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sébastien Marcombe
- Vector Control Consulting—South East Asia (VCC-SEA), Vientian 01000, Laos
| | - Jongwoo Jung
- The Division of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
128
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
129
|
Vascular Endothelial Growth Factor A Contributes to Increased Mammalian Respiratory Epithelial Permeability Induced by Pasteurella multocida Infection. Microbiol Spectr 2023:e0455422. [PMID: 36916939 PMCID: PMC10101004 DOI: 10.1128/spectrum.04554-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Pasteurella multocida infection can cause significant zoonotic respiratory problems in both humans and animals, but little is known about the mechanisms used by P. multocida to invade and cross the mammalian respiratory barrier. In this study, we investigated the influence of P. multocida infection on the dysfunction of the respiratory epithelial barrier. In vivo tests in mouse infection models demonstrated that P. multocida infection significantly increased epithelial permeability and increased the expression of vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in murine tracheae and lungs. In murine lung epithelial cell (MLE-12) models, P. multocida infection decreased the expression of tight junctions (ZO-1) and adherens junctions (β-catenin and E-cadherin) proteins but induced the activation of hypoxia-inducible factor 1α (HIF-1α) and VEGFA signaling. When the expression of HIF-1α is suppressed, the induction of VEGFA and ZO-1 expression by P. multocida infection is decreased. We also found that intervention of HIF-1α and VEGFA signaling affected infection outcomes caused by respiratory bacteria in mouse models. Most importantly, we demonstrate that P. multocida infection increases the permeability of human respiratory epithelial cells and that this process is associated with the activation of HIF-1α and VEGFA signaling and likely contributes to the pathogenesis of P. multocida infection in humans. IMPORTANCE The mammalian respiratory epithelium forms the first line of defense against infections with P. multocida, an important zoonotic respiratory pathogen. In this study, we found that P. multocida infection increased respiratory epithelial permeability and promoted the induction of the HIF-1α-VEGFA axis in both mouse and murine cell models. Similar findings were also demonstrated in human respiratory epithelial cells. The results from this study provide important knowledge about the pathogenesis of P. multocida causing infections in both animals and humans.
Collapse
|
130
|
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing. Viruses 2023; 15:v15030750. [PMID: 36992458 PMCID: PMC10056474 DOI: 10.3390/v15030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
Collapse
|
131
|
Schläppi D, Chejanovsky N, Yañez O, Neumann P. Virus transmission via honey bee prey and potential impact on cocoon-building in labyrinth spiders (Agelena labyrinthica). PLoS One 2023; 18:e0282353. [PMID: 36857367 PMCID: PMC9977037 DOI: 10.1371/journal.pone.0282353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Interspecies transmission of RNA viruses is a major concern for human and animal health. However, host-range, transmission routes and especially the possible impact of these viruses on alternative hosts are often poorly understood. Here, we investigated the role of the labyrinth spider, Agelena labyrinthica, as a potential alternative host of viruses commonly known from western honey bees, Apis mellifera. Field-collected spiders were screened for Acute bee paralysis virus (ABPV), Black queen cell virus, Chronic bee paralysis virus, Deformed wing virus type A and B (DWV-B), Israeli acute paralysis virus, Lake Sinai virus and Sacbrood virus. In a laboratory experiment, labyrinth spiders were fed with ABPV and DWV-B infected honey bees or virus free control food. Our results show that natural infections of A. labyrinthica with these viruses are common in the field, as 62.5% of the samples were positive for at least one virus, supporting their wide host range. For DWV-B, the laboratory data indicate that foodborne transmission occurs and that high virus titres may reduce cocoon building, which would be the first report of clinical symptoms of DWV in Araneae. Since cocoons are tokens of fitness, virus transmission from honey bees might affect spider populations, which would constitute a concern for nature conservation.
Collapse
Affiliation(s)
- Daniel Schläppi
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
132
|
Li Y, Xia X, Hou W, Lv H, Liu J, Li X. How Effective are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:1109-1128. [PMID: 36883070 PMCID: PMC9985878 DOI: 10.2147/ijn.s397298] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has been deemed a global crisis that affects humans worldwide. Novel anti-infection strategies are desperately needed because of the limitations of conventional antibiotics. However, the increasing gap between clinical demand and antimicrobial treatment innovation, as well as the membrane permeability obstacle especially in gram-negative bacteria fearfully restrict the reformation of antibacterial strategy. Metal-organic frameworks (MOFs) have the advantages of adjustable apertures, high drug-loading rates, tailorable structures, and superior biocompatibilities, enabling their utilization as drug delivery carriers in biotherapy applications. Additionally, the metal elements in MOFs are usually bactericidal. This article provides a review of the state-of-The-art design, the underlying antibacterial mechanisms and antibacterial applications of MOF- and MOF-based drug-loading materials. In addition, the existing problems and future perspectives of MOF- and MOF-based drug-loading materials are also discussed.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Wenxue Hou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
133
|
Kayingo G. Emerging, Reemerging Infectious Diseases and Global Pandemic Preparedness. PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
134
|
Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms 2023; 11:microorganisms11030629. [PMID: 36985203 PMCID: PMC10056906 DOI: 10.3390/microorganisms11030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
New antiviral drugs and new preventive antiviral strategies are a target of intense scientific interest. Thanks to their peculiar properties, nanomaterials play an important role in this field, and, in particular, among metallic materials, silver nanoparticles were demonstrated to be effective against a wide range of viruses, in addition to having a strong antibacterial effect. Although the mechanism of antiviral action is not completely clarified, silver nanoparticles can directly act on viruses, and on their first steps of interaction with the host cell, depending on several factors, such as size, shape, functionalization and concentration. This review provides an overview of the antiviral properties of silver nanoparticles, along with their demonstrated mechanisms of action and factors mainly influencing their properties. In addition, the fields of potential application are analyzed, demonstrating the versatility of silver nanoparticles, which can be involved in several devices and applications, including biomedical applications, considering both human and animal health, environmental applications, such as air filtration and water treatment, and for food and textile industry purposes. For each application, the study level of the device is indicated, if it is either a laboratory study or a commercial product.
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Turin, Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
- Correspondence: ; Tel.: +39-(011)-090-4325
| |
Collapse
|
135
|
Li S, Zhu L, Zhang L, Zhang G, Ren H, Lu L. Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3328. [PMID: 36834023 PMCID: PMC9960491 DOI: 10.3390/ijerph20043328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease that has threatened Chinese residents for nearly a century. Although comprehensive prevent and control measures were taken, the HFRS epidemic in China presents a rebounding trend in some areas. Urbanization is considered as an important influencing factor for the HFRS epidemic in recent years; however, the relevant research has not been systematically summarized. This review aims to summarize urbanization-related environmental factors and the HFRS epidemic in China and provide an overview of research perspectives. The literature review was conducted following the PRISMA protocol. Journal articles on the HFRS epidemic in both English and Chinese published before 30 June 2022 were identified from PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI). Inclusion criteria were defined as studies providing information on urbanization-related environmental factors and the HFRS epidemic. A total of 38 studies were included in the review. Changes brought by urbanization on population, economic development, land use, and vaccination program were found to be significantly correlated with the HFRS epidemic. By changing the ecological niche of humans-affecting the rodent population, its virus-carrying rate, and the contact opportunity and susceptibility of populations-urbanization poses a biphasic effect on the HFRS epidemic. Future studies require systematic research framework, comprehensive data sources, and effective methods and models.
Collapse
Affiliation(s)
- Shujuan Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingli Zhu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lidan Zhang
- Department of Public Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Guoyan Zhang
- Beijing Dong Cheng Center for Disease Control and Prevention, Beijing 100010, China
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
136
|
Nairz M, Todorovic T, Gehrer CM, Grubwieser P, Burkert F, Zimmermann M, Trattnig K, Klotz W, Theurl I, Bellmann-Weiler R, Weiss G. Single-Center Experience in Detecting Influenza Virus, RSV and SARS-CoV-2 at the Emergency Department. Viruses 2023; 15:470. [PMID: 36851685 PMCID: PMC9958692 DOI: 10.3390/v15020470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) on respiratory tract swabs has become the gold standard for sensitive and specific detection of influenza virus, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this retrospective analysis, we report on the successive implementation and routine use of multiplex RT-PCR testing for patients admitted to the Internal Medicine Emergency Department (ED) at a tertiary care center in Western Austria, one of the hotspots in the early coronavirus disease 2019 (COVID-19) pandemic in Europe. Our description focuses on the use of the Cepheid® Xpert® Xpress closed RT-PCR system in point-of-care testing (POCT). Our indications for RT-PCR testing changed during the observation period: From the cold season 2016/2017 until the cold season 2019/2020, we used RT-PCR to diagnose influenza or RSV infection in patients with fever and/or respiratory symptoms. Starting in March 2020, we used the RT-PCR for SARS-CoV-2 and a multiplex version for the combined detection of all these three respiratory viruses to also screen subjects who did not present with symptoms of infection but needed in-hospital medical treatment for other reasons. Expectedly, the switch to a more liberal RT-PCR test strategy resulted in a substantial increase in the number of tests. Nevertheless, we observed an immediate decline in influenza virus and RSV detections in early 2020 that coincided with public SARS-CoV-2 containment measures. In contrast, the extensive use of the combined RT-PCR test enabled us to monitor the re-emergence of influenza and RSV detections, including asymptomatic cases, at the end of 2022 when COVID-19 containment measures were no longer in place. Our analysis of PCR results for respiratory viruses from a real-life setting at an ED provides valuable information on the epidemiology of those infections over several years, their contribution to morbidity and need for hospital admission, the risk for nosocomial introduction of such infection into hospitals from asymptomatic carriers, and guidance as to how general precautions and prophylactic strategies affect the dynamics of those infections.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, Pneumology), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | - Günter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, Pneumology), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
137
|
Kim YE, Kang HY. [Effects of a Nursing Simulation Learning Module on Clinical Reasoning Competence, Clinical Competence, Performance Confidence, and Anxiety in COVID-19 Patient-Care for Nursing Students]. J Korean Acad Nurs 2023; 53:87-100. [PMID: 36898687 DOI: 10.4040/jkan.22130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE This study aimed to develop a nursing simulation learning module for coronavirus disease 2019 (COVID-19) patient-care and examine its effects on clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient care for nursing students. METHODS A non-equivalent control group pre- and post-test design was employed. The study participants included 47 nursing students (23 in the experimental group and 24 in the control group) from G City. A simulation learning module for COVID-19 patient-care was developed based on the Jeffries simulation model. The module consisted of a briefing, simulation practice, and debriefing. The effects of the simulation module were measured using clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient-care. Data were analyzed using χ²-test, Fisher's exact test, t-test, Wilcoxon signed-rank test, and Mann-Whitney U test. RESULTS The levels of clinical reasoning competence, clinical competence, and performance confidence of the experimental group were significantly higher than that of the control group, and the level of anxiety was significantly low after simulation learning. CONCLUSION The nursing simulation learning module for COVID-19 patient-care is more effective than the traditional method in terms of improving students' clinical reasoning competence, clinical competence, and performance confidence, and reducing their anxiety. The module is expected to be useful for educational and clinical environments as an effective teaching and learning strategy to empower nursing competency and contribute to nursing education and clinical changes.
Collapse
Affiliation(s)
- Ye-Eun Kim
- Department of Nursing, Dongshin University, Naju, Korea
| | - Hee-Young Kang
- Department of Nursing, Chosun University, Gwangju, Korea.
| |
Collapse
|
138
|
Discovery of oxazoline-triazole based hybrid molecules as DNA gyrase inhibitors: A new class of potential Anti-tubercular agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
139
|
Abstract
Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations-commonly known as "collapse." This survey of Holocene human-environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address.
Collapse
|
140
|
Charalampous P, Haagsma JA, Jakobsen LS, Gorasso V, Noguer I, Padron-Monedero A, Sarmiento R, Santos JV, McDonald SA, Plass D, Wyper GMA, Assunção R, von der Lippe E, Ádám B, AlKerwi A, Arabloo J, Baltazar AL, Bikbov B, Borrell-Pages M, Brus I, Burazeri G, Chaintoutis SC, Chen-Xu J, Chkhaberidze N, Cilovic-Lagarija S, Corso B, Cuschieri S, Di Bari C, Dopelt K, Economou M, Emeto TI, Fantke P, Fischer F, Freitas A, García-González JM, Gazzelloni F, Gissler M, Gkitakou A, Gulmez H, Gunes S, Haller S, Haneef R, Hincapié CA, Hynds P, Idavain J, Ilic M, Ilic I, Isola G, Kabir Z, Kamusheva M, Kolkhir P, Konar NM, Kostoulas P, Kulimbet M, La Vecchia C, Lauriola P, Levi M, Majer M, Mechili EA, Monasta L, Mondello S, Muñoz Laguna J, Nena E, Ng ESW, Nguewa P, Niranjan V, Nola IA, O'Caoimh R, Obradović M, Pallari E, Peyroteo M, Pinheiro V, Pranjic N, Reina Ortiz M, Riva S, Santoso CMA, Santric Milicevic M, Schmitt T, Speybroeck N, Sprügel M, Steiropoulos P, Stevanovic A, Thygesen LC, Tozija F, Unim B, Bektaş Uysal H, Varga O, Vasic M, Vieira RJ, Yigit V, Devleesschauwer B, Pires SM. Burden of infectious disease studies in Europe and the United Kingdom: a review of methodological design choices. Epidemiol Infect 2023; 151:e19. [PMID: 36621004 PMCID: PMC9990389 DOI: 10.1017/s0950268823000031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
This systematic literature review aimed to provide an overview of the characteristics and methods used in studies applying the disability-adjusted life years (DALY) concept for infectious diseases within European Union (EU)/European Economic Area (EEA)/European Free Trade Association (EFTA) countries and the United Kingdom. Electronic databases and grey literature were searched for articles reporting the assessment of DALY and its components. We considered studies in which researchers performed DALY calculations using primary epidemiological data input sources. We screened 3053 studies of which 2948 were excluded and 105 studies met our inclusion criteria. Of these studies, 22 were multi-country and 83 were single-country studies, of which 46 were from the Netherlands. Food- and water-borne diseases were the most frequently studied infectious diseases. Between 2015 and 2022, the number of burden of infectious disease studies was 1.6 times higher compared to that published between 2000 and 2014. Almost all studies (97%) estimated DALYs based on the incidence- and pathogen-based approach and without social weighting functions; however, there was less methodological consensus with regards to the disability weights and life tables that were applied. The number of burden of infectious disease studies undertaken across Europe has increased over time. Development and use of guidelines will promote performing burden of infectious disease studies and facilitate comparability of the results.
Collapse
Affiliation(s)
- Periklis Charalampous
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Juanita A. Haagsma
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lea S. Jakobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Vanessa Gorasso
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Isabel Noguer
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | | | - Rodrigo Sarmiento
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
- Medicine School, University of Applied and Environmental Sciences, Bogota, Colombia
| | - João Vasco Santos
- CINTESIS@RISE – Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine of the University of Porto, Porto, Portugal
- MEDCIDS – Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
- Public Health Unit, Agrupamentos de Centro de Saúde Grande Porto V – Porto Ocidental, Administração Regional de Saúde do Norte, Porto, Portugal
| | - Scott A. McDonald
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dietrich Plass
- Department for Exposure Assessment and Environmental Health Indicators, German Environment Agency, Berlin, Germany
| | | | - Ricardo Assunção
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Elena von der Lippe
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ala'a AlKerwi
- Directorate of Health, Service Epidemiology and Statistics, Luxembourg, Luxembourg
| | - Jalal Arabloo
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Ana Lúcia Baltazar
- Scientific-Pedagogical Unit of Dietetics and Nutrition, Coimbra Health School, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Boris Bikbov
- Dipartimento di Politiche per la Salute, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Iris Brus
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Genc Burazeri
- Department of Public Health, Faculty of Medicine, University of Medicine, Tirana, Albania
| | - Serafeim C. Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - José Chen-Xu
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
- Public Health Unit, Primary Health Care Cluster Baixo Mondego, Coimbra, Portugal
| | - Nino Chkhaberidze
- Department of Medical Statistics, National Center for Disease Control and Public Health of Georgia, Georgia, Georgia
| | | | - Barbara Corso
- Neuroscience Institute, National Research Council, Padova, Italy
| | - Sarah Cuschieri
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Carlotta Di Bari
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Keren Dopelt
- Department of Public Health, Ashkelon Academic College, Ashkelon, Israel
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mary Economou
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Florian Fischer
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alberto Freitas
- CINTESIS@RISE – Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine of the University of Porto, Porto, Portugal
- MEDCIDS – Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | - Mika Gissler
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Academic Primary Health Care Centre, Stockholm, Sweden
- Research Centre for Child Psychiatry and Invest Research Flagship, University of Turku, Turku, Finland
| | - Artemis Gkitakou
- Department of Internal Medicine and Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hakan Gulmez
- Department of Family Medicine, Faculty of Medicine, İzmir Democracy University, Izmir, Turkey
| | - Sezgin Gunes
- Department of Multidisciplinary Molecular Medicine, Graduate Institute, Ondokuz Mayis University, Samsun, Turkey
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Sebastian Haller
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Romana Haneef
- Department of Non-Communicable Diseases and Injuries, Santé Publique France, Saint-Maurice, France
| | - Cesar A. Hincapié
- EBPI-UZWH Musculoskeletal Epidemiology Research Group, University of Zurich and Balgrist University Hospital, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
- University Spine Centre Zurich (UWZH), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul Hynds
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Jane Idavain
- Department of Health Statistics, National Institute for Health Development, Tallinn, Estonia
| | - Milena Ilic
- Department of Epidemiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Irena Ilic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Zubair Kabir
- Public Health & Epidemiology, School of Public Health, University College Cork, Cork, Ireland
| | - Maria Kamusheva
- Department of Organization & Economics of Pharmacy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Pavel Kolkhir
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Naime Meriç Konar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Polychronis Kostoulas
- Laboratory of Epidemiology and Artificial Intelligence, Faculty of Public Health, University of Thessaly, Thessaly, Greece
| | - Mukhtar Kulimbet
- Health Research Institute, Al Farabi Kazakh National University, Almaty, Kazakhstan
- Atchabarov Scientific Research Institute of Fundamental Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Lauriola
- Italian Network of Sentinel Physicians for the Environment (RIMSA), International Society Doctors for the Environment (ISDE), Federazione Nazione Ordine dei Medici (FNOMCeO), Arezzo, Italy
| | - Miriam Levi
- Epidemiology Unit, Department of Prevention, Local Health Authority Tuscany Centre, Florence, Italy
| | - Marjeta Majer
- Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Enkeleint A. Mechili
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Crete, Greece
- Department of Healthcare, Faculty of Public Health, University of Vlora, Vlora, Albania
| | - Lorenzo Monasta
- Institute of Maternal, Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Javier Muñoz Laguna
- EBPI-UZWH Musculoskeletal Epidemiology Research Group, University of Zurich and Balgrist University Hospital, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
- University Spine Centre Zurich (UWZH), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Evangelia Nena
- Laboratory of Social Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Edmond S. W. Ng
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, Pamplona, Spain
| | - Vikram Niranjan
- School of Public Health, Physiotherapy and Sport Sciences, University College Dublin, Dublin, Ireland
| | - Iskra Alexandra Nola
- Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Rónán O'Caoimh
- Department of Geriatric Medicine, Mercy University Hospital, Grenville Place, Cork City, Ireland
- Department of Gerontology and Rehabilitation, University College Cork, St Finbarr's Hospital, Douglas road, Cork City, Ireland
| | - Marija Obradović
- Department of Preventive and Pediatric Dentistry, Faculty of Medicine, University of Banja Luka, Bosnia, Herzegovina
| | - Elena Pallari
- Health Innovation Network, Minerva House, Montague Cl, London, UK
| | - Mariana Peyroteo
- Comprehensive Health Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vera Pinheiro
- Public Health Unit, Matosinhos Local Health Unit, Matosinhos, Portugal
- CINTESIS – Centre for Health Technology and Services Research, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Nurka Pranjic
- Department of Occupational Medicine, School of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Miguel Reina Ortiz
- School of Public and Population Health, Boise State University, Boise, USA
| | - Silvia Riva
- Department of Psychology and Pedagogic Science, St Mary's University, London, UK
| | | | | | - Tugce Schmitt
- Department of International Health, Care and Public Health Research Institute – CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Niko Speybroeck
- Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - Maximilian Sprügel
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aleksandar Stevanovic
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lau Caspar Thygesen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Fimka Tozija
- Faculty of Medicine, Saints Cyril and Methodius University of Skopje, Skopje, North Macedonia
| | - Brigid Unim
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore Di Sanità, Rome, Italy
| | - Hilal Bektaş Uysal
- Department of Internal Medicine, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Orsolya Varga
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Milena Vasic
- Faculty of Dentistry Pancevo, University Business Academy in Novi Sad, Pancevo, Serbia
- Institute of Public Health of Serbia Dr Milan Jovanović Batut, Belgrade, Serbia
| | - Rafael José Vieira
- CINTESIS@RISE – Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine of the University of Porto, Porto, Portugal
- MEDCIDS – Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vahit Yigit
- Department of Health Management, Suleyman Demirel University, Isparta, Turkey
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Sara M. Pires
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
141
|
Khaled Ahmed S, Mohammed Ali R, Maha Lashin M, Fayroz Sherif F. Designing a new fast solution to control isolation rooms in hospitals depending on artificial intelligence decision. Biomed Signal Process Control 2023; 79:104100. [PMID: 36042791 PMCID: PMC9412665 DOI: 10.1016/j.bspc.2022.104100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Decreasing the COVID spread of infection among patients at physical isolation hospitals during the coronavirus pandemic was the main aim of all governments in the world. It was required to increase isolation places in the hospital's rules to prevent the spread of infection. To deal with influxes of infected COVID-19 patients’ quick solutions must be explored. The presented paper studies converting natural rooms in hospitals into isolation sections and constructing new isolation cabinets using prefabricated components as alternative and quick solutions. Artificial Intelligence (AI) helps in the selection and making of a decision on which type of solution will be used. A Multi-Layer Perceptron Neural Network (MLPNN) model is a type of artificial intelligence technique used to design and implement on time, cost, available facilities, area, and spaces as input parameters. The MLPNN result decided to select a prefabricated approach since it saves 43% of the time while the cost was the same for the two approaches. Forty-five hospitals have implemented a prefabricated solution which gave excellent results in a short period of time at reduced costs based on found facilities and spaces. Prefabricated solutions provide a shorter time and lower cost by 43% and 78% in average values respectively as compared to retrofitting existing natural ventilation rooms.
Collapse
|
142
|
Long T, Ye Z, Tang Y, Shi J, Wen J, Chen C, Huo Q. Comparison of bacterial community structure in PM 2.5 during hazy and non-hazy periods in Guilin, South China. AEROBIOLOGIA 2023; 39:87-103. [PMID: 36568442 PMCID: PMC9762634 DOI: 10.1007/s10453-022-09777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/09/2022] [Indexed: 05/19/2023]
Abstract
UNLABELLED In recent years, significant efforts have been made to study changes in the levels of air pollutants at regional and urban scales, and changes in bioaerosols during air pollution events have attracted increasing attention. In this study, the bacterial structure of PM2.5 was analysed under different environmental conditions during hazy and non-hazy periods in Guilin. A total of 32 PM2.5 samples were collected in December 2020 and July 2021, and the microbial community structures were analysed using high-throughput sequencing methods. The results show that air pollution and climate change alter the species distribution and community diversity of bacteria in PM2.5, particularly Sphingomonas and Pseudomonas. The structure of the bacterial community composition is related to diurnal variation, vertical height, and urban area and their interactions with various environmental factors. This is a comprehensive study that characterises the variability of bacteria associated with PM2.5 in a variety of environments, highlighting the impacts of environmental effects on the atmospheric microbial community. The results will contribute to our understanding of haze trends in China, particularly the relationship between bioaerosol communities and the urban environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09777-0.
Collapse
Affiliation(s)
- Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Ziwei Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Yanchun Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jiaxin Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jianhui Wen
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
- Guilin Ecological Environmental Monitoring Center, Guilin, 541004 China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| |
Collapse
|
143
|
Calidonio JM, Hamad-Schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochim Biophys Acta Gen Subj 2023; 1867:130266. [PMID: 36309294 PMCID: PMC11193098 DOI: 10.1016/j.bbagen.2022.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid antigen assays have been attractive for decentralized, point of care diagnostics because of their low cost, robustness, and ease of use. The development of a diagnostic assay for a newly emerging infectious disease needs to take into account the progression of a disease, whether there is human to human transmission, and patient biomarker levels with time, and these all impact the choice of antigen targets and affinity agents. SCOPE OF REVIEW The factors involved in the biophysical design of rapid antigen immunoassays are discussed, focusing on antigen selection and designing for cross-reactivity. State of the art in the biophysical characterization of protein-ligand or antigen-antibody interactions, the different types of affinity agents used in immunoassays, and biochemical conjugation strategies are described. MAJOR CONCLUSIONS Antigen choice is a critical factor in immunoassay diagnostic development, and should account for the properties of the virion, virus, and disease progression. Biophysical and biochemical aspects of immunoassays are critical for performance. GENERAL SIGNIFICANCE This review can serve as an instructive guide to aid in diagnostic development for future emerging diseases.
Collapse
Affiliation(s)
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Massachusetts Boston, Boston, MA, USA; School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
144
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|
145
|
Risk of Viral Infectious Diseases from Live Bats, Primates, Rodents and Carnivores for Sale in Indonesian Wildlife Markets. Viruses 2022; 14:v14122756. [PMID: 36560762 PMCID: PMC9786693 DOI: 10.3390/v14122756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Southeast Asia is considered a global hotspot of emerging zoonotic diseases. There, wildlife is commonly traded under poor sanitary conditions in open markets; these markets have been considered 'the perfect storm' for zoonotic disease transmission. We assessed the potential of wildlife trade in spreading viral diseases by quantifying the number of wild animals of four mammalian orders (Rodentia, Chiroptera, Carnivora and Primates) on sale in 14 Indonesian wildlife markets and identifying zoonotic viruses potentially hosted by these animals. We constructed a network analysis to visualize the animals that are traded alongside each other that may carry similar viruses. We recorded 6725 wild animals of at least 15 species on sale. Cities and markets with larger human population and number of stalls, respectively, offered more individuals for sale. Eight out of 15 animal taxa recorded are hosts of 17 zoonotic virus species, nine of which can infect more than one species as a host. The network analysis showed that long-tailed macaque has the greatest potential for spreading viral diseases, since it is simultaneously the most traded species, sold in 13/14 markets, and a potential host for nine viruses. It is traded alongside pig-tailed macaques in three markets, with which it shares six viruses in common (Cowpox, Dengue, Hepatitis E, Herpes B, Simian foamy, and Simian retrovirus type D). Short-nosed fruit bats and large flying foxes are potential hosts of Nipah virus and are also sold in large quantities in 10/14 markets. This study highlights the need for better surveillance and sanitary conditions to avoid the negative health impacts of unregulated wildlife markets.
Collapse
|
146
|
Warinner C. An Archaeology of Microbes. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2022. [DOI: 10.1086/721976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Warinner
- Department of Anthropology, Harvard University, Cambridge MA, USA 02138, and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 04103
| |
Collapse
|
147
|
Iron Deficiency Anemia and COVID-19. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
148
|
Ince B, Sezgintürk MK. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Analyt Chem 2022; 157:116725. [PMID: 35815063 PMCID: PMC9252863 DOI: 10.1016/j.trac.2022.116725] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Bacteria, viruses, and parasites are harmful microorganisms that cause infectious diseases. Early detection of diseases is critical to prevent disease transmission and provide epidemic preparedness, as these can cause widespread deaths and public health crises, particularly in resource-limited countries. Lateral flow assay (LFA) systems are simple-to-use, disposable, inexpensive diagnostic devices to test biomarkers in blood and urine samples. Thus, LFA has recently received significant attention, especially during the pandemic. Here, first of all, the design principles and working mechanisms of existing LFA methods are examined. Then, current LFA implementation strategies are presented for communicable disease diagnoses, including COVID-19, zika and dengue, HIV, hepatitis, influenza, malaria, and other pathogens. Furthermore, this review focuses on an overview of current problems and accessible solutions in detecting infectious agents and diseases by LFA, focusing on increasing sensitivity with various detection methods. In addition, future trends in LFA-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Bahar Ince
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
149
|
Epidemics and the Military: Responding to COVID-19 in Uganda. Soc Sci Med 2022; 314:115482. [PMID: 36370659 PMCID: PMC9617651 DOI: 10.1016/j.socscimed.2022.115482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
The UN Security Council's response to Ebola in 2014 legitimised militarised responses. It also influenced responses to COVID-19 in some African countries. Yet, little is known about the day-to-day impacts for ordinary citizens of mobilising armies for epidemic control. Drawing on 18 months ethnographic research, this article analyses militarised responses to COVID-19 during, and following, two lockdowns at contrasting sites in Uganda: a small town in Pakwach district and a village in Kasese district. Both field sites lie close to the border of the Democratic Republic of Congo. Although the practice of health security varied between sites, the militarised response had more impact than the disease in these two places. The armed forces scaled back movement from urban conurbations to rural and peri-urban areas; while simultaneously enabling locally based official public authorities to use the proclaimed priorities of President Museveni's government to enhance their position and power. This led to a situation whereby inhabitants created new modes of mutuality to resist or subvert the regulations being enforced, including the establishment of new forms of cross-border movement. These findings problematise the widely held view that Uganda's response to COVID-19 was successful. Overall, it is argued that the on-going securitisation of global health has helped to create the political space to militarise the response. While this has had unknown effects on the prevalence of COVID-19, it has entrenched unaccountable modes of public authority and created a heightened sense of insecurity on the ground. The tendency to condone the violent practice of militarised public health programmes by international and national actors reflects a broader shift in the acceptance of more authoritarian forms of governance.
Collapse
|
150
|
Roche B, Morand S. [Biodiversity loss, first step for viral emergences]. Med Sci (Paris) 2022; 38:1039-1042. [PMID: 36692263 DOI: 10.1051/medsci/2022160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Today, the emergence of zoonoses is one of the biggest concerns for human health. With the recent examples of the Ebola virus, avian flus or coronaviruses, this threat is intensifying and raising fears of pandemics of the same magnitude as Covid-19. In this article, we review the state of knowledge about the mechanisms involved in these emergences, especially the impact of human activities on ecosystems, the intensive breeding of domestic animals or wildlife trade. We conclude on the importance of adopting a real integrated "One Health" approach in order to implement solutions at the beginning of this process of emergence and thus prevent new catastrophes.
Collapse
Affiliation(s)
- Benjamin Roche
- Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Serge Morand
- Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|