101
|
Unichenko P, Yang JW, Luhmann HJ, Kirischuk S. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex. Pflugers Arch 2014; 467:1565-1575. [PMID: 25163767 DOI: 10.1007/s00424-014-1600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jeng-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
102
|
Lemak MS, Voloshanenko O, Draguhn A, Egorov AV. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons. Front Cell Neurosci 2014; 8:255. [PMID: 25221474 PMCID: PMC4145353 DOI: 10.3389/fncel.2014.00255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels) which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC) of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel) confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp) and whole-cell recordings from layer III (LIII) of the mEC in horizontal brain slices obtained at postnatal day (P) 6–13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.
Collapse
Affiliation(s)
- Maria S Lemak
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Oksana Voloshanenko
- Division of Signalling and Functional Genomics, German Cancer Research Center Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim Heidelberg, Germany
| |
Collapse
|
103
|
Parsing out the embryonic origin of subplate cell-type diversity. Proc Natl Acad Sci U S A 2014; 111:8325-6. [PMID: 24872445 DOI: 10.1073/pnas.1406937111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
104
|
Cichon NB, Denker M, Grün S, Hanganu-Opatz IL. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents. Front Neural Circuits 2014; 8:50. [PMID: 24904296 PMCID: PMC4034041 DOI: 10.3389/fncir.2014.00050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, in a first step time windows with discontinuous oscillations vs. epochs of network “silence” were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts (SB), which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts (NG). Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g., during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns during development.
Collapse
Affiliation(s)
- Nicole B Cichon
- Developmental Neurophysiology, Neuroanatomy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA Jülich, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA Jülich, Germany ; Theoretical Systems Neurobiology, RWTH Aachen University Aachen, Germany ; RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Neuroanatomy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
105
|
Ellis KM, O'Carroll DC, Lewis MD, Rychkov GY, Koblar SA. Neurogenic potential of dental pulp stem cells isolated from murine incisors. Stem Cell Res Ther 2014; 5:30. [PMID: 24572146 PMCID: PMC4055132 DOI: 10.1186/scrt419] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/19/2014] [Indexed: 02/08/2023] Open
Abstract
Introduction Interest in the use of dental pulp stem cells (DPSC) to enhance neurological recovery following stroke and traumatic injury is increasing following successful pre-clinical studies. A murine model of autologous neural stem cell transplantation would be useful for further pre-clinical investigation of the underlying mechanisms. However, while human-derived DPSC have been well characterised, the neurogenic potential of murine DPSC (mDPSC) has been largely neglected. In this study we demonstrate neuronal differentiation of DPSC from murine incisors in vitro. Methods mDPSC were cultured under neuroinductive conditions and assessed for neuronal and glial markers and electrophysiological functional maturation. Results mDPSC developed a neuronal morphology and high expression of neural markers nestin, ßIII-tubulin and GFAP. Neurofilament M and S100 were found in lower abundance. Differentiated cells also expressed protein markers for cholinergic, GABAergic and glutaminergic neurons, indicating a mixture of central and peripheral nervous system cell types. Intracellular electrophysiological analysis revealed the presence of voltage-gated L-type Ca2+ channels in a majority of cells with neuronal morphology. No voltage-gated Na+ or K+ currents were found and the cultures did not support spontaneous action potentials. Neuronal-like networks expressed the gap junction protein, connexin 43 but this was not associated with dye coupling between adjacent cells after injection of the low-molecular weight tracers Lucifer yellow or Neurobiotin. This indicated that the connexin proteins were not forming traditional gap junction channels. Conclusions The data presented support the differentiation of mDPSC into immature neuronal-like networks.
Collapse
|
106
|
Sava BA, Chen R, Sun H, Luhmann HJ, Kilb W. Taurine activates GABAergic networks in the neocortex of immature mice. Front Cell Neurosci 2014; 8:26. [PMID: 24550782 PMCID: PMC3912439 DOI: 10.3389/fncel.2014.00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/17/2014] [Indexed: 02/05/2023] Open
Abstract
Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors.
Collapse
Affiliation(s)
- Bogdan A Sava
- Institute of Physiology, University Medical Center Mainz Mainz, Germany
| | - Rongqing Chen
- Institute of Physiology, University Medical Center Mainz Mainz, Germany
| | - Haiyan Sun
- Institute of Physiology, University Medical Center Mainz Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz Mainz, Germany
| |
Collapse
|
107
|
Liao CC, Lee LJ. Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats. Neuropharmacology 2014; 77:81-9. [DOI: 10.1016/j.neuropharm.2013.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022]
|
108
|
Malk K, Metsäranta M, Vanhatalo S. Drug effects on endogenous brain activity in preterm babies. Brain Dev 2014; 36:116-23. [PMID: 23422259 DOI: 10.1016/j.braindev.2013.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Animal experiments have suggested that the quality of the early intermittent brain activity is important for shaping neuronal connectivity during developmental phase that corresponds to early prematurity. This is a pilot study aiming to assess whether spontaneous activity transients (SAT) in the early preterm babies are affected by drugs that are routinely used in neonatal intensive care. METHODS We collected retrospectively seventeen EEG recordings (15 babies, conceptional age 26-33weeks, no brain lesions) that were divided into groups according to drug administration at the time of EEG: phenobarbital, fentanyl, theophylline, and controls. SATs were extracted from the EEG for further analysis with several advanced time-series analysis paradigms. RESULTS The visual appearance of SATs was unaffected by drugs. Phenobarbital reduced the total power of the SAT events. Both fentanyl and phenobarbital reduced the length of SATs, and enhanced the oscillations at higher frequencies. Theophylline reduced the oscillatory activity at middle frequencies during SAT, but enhanced oscillations at higher frequencies during time-period prior to SAT. CONCLUSIONS Our findings suggest, that (i) all drugs examined affect brain activity in ways that are not seen in the visual EEG interpretation, and that (ii) both acute and long term (i.e. developmental) effects of these drugs on brain may warrant more attention as a part of optimizing preterm neurological care.
Collapse
Affiliation(s)
- Kaija Malk
- Department of Children's Clinical Neurophysiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Chidren's hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Children's Clinical Neurophysiology, Helsinki University Central Hospital, Helsinki, Finland; Department of Neurological Sciences, University of Helsinki, Finland.
| |
Collapse
|
109
|
Luhmann HJ, Kirischuk S, Sinning A, Kilb W. Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol 2014; 26:72-8. [PMID: 24434608 DOI: 10.1016/j.conb.2013.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
110
|
Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol 2014; 592:13-31. [PMID: 24144877 PMCID: PMC3903349 DOI: 10.1113/jphysiol.2012.235119] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 01/17/2023] Open
Abstract
The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca(2+)/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits.
Collapse
Affiliation(s)
- Christian Lohmann
- C. Lohmann and H. W. Kessels: The Netherlands Institute for Neuroscience, the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands. Emails: ,
| | | |
Collapse
|
111
|
Luhmann HJ, Kilb W, Clusmann H. Malformations of cortical development and neocortical focus. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:35-61. [PMID: 25078498 DOI: 10.1016/b978-0-12-418693-4.00003-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
112
|
Brockmann MD, Kukovic M, Schönfeld M, Sedlacik J, Hanganu-Opatz IL. Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks. PLoS One 2013; 8:e83074. [PMID: 24376636 PMCID: PMC3869754 DOI: 10.1371/journal.pone.0083074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/07/2013] [Indexed: 02/04/2023] Open
Abstract
Due to improved survival rates and outcome of human infants experiencing a hypoxic-ischemic episode, cognitive dysfunctions have become prominent. They might result from abnormal communication within prefrontal-hippocampal networks, as synchrony and directed interactions between the prefrontal cortex and hippocampus account for mnemonic and executive performance. Here, we elucidate the structural and functional impact of hypoxic-ischemic events on developing prefrontal-hippocampal networks in an immature rat model of injury. The magnitude of infarction, cell loss and astrogliosis revealed that an early hypoxic-ischemic episode had either a severe or a mild/moderate outcome. Without affecting the gross morphology, hypoxia-ischemia with mild/moderate outcome diminished prefrontal neuronal firing and gamma network entrainment. This dysfunction resulted from decreased coupling synchrony within prefrontal-hippocampal networks and disruption of hippocampal theta drive. Thus, early hypoxia-ischemia may alter the functional maturation of neuronal networks involved in cognitive processing by disturbing the communication between the neonatal prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Marco D. Brockmann
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Kukovic
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Schönfeld
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L. Hanganu-Opatz
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
113
|
Abstract
Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
114
|
Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity. J Neural Transm (Vienna) 2013; 121:837-46. [PMID: 24178243 DOI: 10.1007/s00702-013-1109-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate in developing and injured neurons and on the role of gap junctions in neuronal cell death. A modified model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
|
115
|
Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci 2013; 7:184. [PMID: 24155690 PMCID: PMC3800850 DOI: 10.3389/fncel.2013.00184] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence this process. Here, we discuss the current state of the art regarding GlyRs during embryonic and postnatal brain development in light of recent findings about the cellular and molecular mechanisms that control brain development.
Collapse
Affiliation(s)
- Ariel Avila
- Cell Physiology, BIOMED Research Institute, Hasselt University Diepenbeek, Belgium ; Groupe Interdisciplinaire Génoprotéomique Appliquée-Neurosciences, Centre Hospitalier Universitaire Sart Tilman, University of Liége Liège, Belgium ; Groupe Interdisciplinaire Génoprotéomique Appliquée-Research, Centre Hospitalier Universitaire Sart Tilman, University of Liège Liège, Belgium
| | | | | |
Collapse
|
116
|
Carmeli C, Bonifazi P, Robinson HPC, Small M. Quantifying network properties in multi-electrode recordings: spatiotemporal characterization and inter-trial variation of evoked gamma oscillations in mouse somatosensory cortex in vitro. Front Comput Neurosci 2013; 7:134. [PMID: 24137127 PMCID: PMC3797413 DOI: 10.3389/fncom.2013.00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022] Open
Abstract
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a “static” functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
Collapse
Affiliation(s)
- Cristian Carmeli
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
117
|
Cappello S, Gray MJ, Badouel C, Lange S, Einsiedler M, Srour M, Chitayat D, Hamdan FF, Jenkins ZA, Morgan T, Preitner N, Uster T, Thomas J, Shannon P, Morrison V, Di Donato N, Van Maldergem L, Neuhann T, Newbury-Ecob R, Swinkells M, Terhal P, Wilson LC, Zwijnenburg PJG, Sutherland-Smith AJ, Black MA, Markie D, Michaud JL, Simpson MA, Mansour S, McNeill H, Götz M, Robertson SP. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet 2013; 45:1300-8. [DOI: 10.1038/ng.2765] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/26/2013] [Indexed: 02/08/2023]
|
118
|
Bitzenhofer SH, Hanganu-Opatz IL. Oscillatory coupling within neonatal prefrontal-hippocampal networks is independent of selective removal of GABAergic neurons in the hippocampus. Neuropharmacology 2013; 77:57-67. [PMID: 24056266 DOI: 10.1016/j.neuropharm.2013.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
GABAergic neurons have been proposed to control oscillatory entrainment and cognitive processing in prefrontal-hippocampal networks. Co-activation of these networks emerges already during neonatal development, with hippocampal theta bursts driving prefrontal oscillations via axonal projections. The cellular substrate of neonatal prefrontal-hippocampal communication and in particular, the role of GABAergic neurons, is still unknown. Here, we used saporin-conjugated anti-vesicular GABA transporter antibodies to cause selective immunotoxic lesion of GABAergic neurons in the CA1 area of the hippocampus during the first postnatal week. Without affecting the somatic development of rat pups, the lesion impaired the generation of hippocampal sharp waves, but not of theta bursts during neonatal development. Moreover, the oscillatory entrainment and firing of neonatal prefrontal cortex as well as the early prefrontal-hippocampal synchrony were largely independent of GABAergic neurotransmission in the hippocampus. Thus, hippocampal interneurons are critical elements for the ontogeny of hippocampal sharp waves, but seem to not control the directed oscillatory coupling between the neonatal prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
119
|
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 2013; 7:139. [PMID: 24027498 PMCID: PMC3760143 DOI: 10.3389/fncir.2013.00139] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/13/2022] Open
Abstract
In the last three decades it became evident that the GABAergic system plays an essential role for the development of the central nervous system, by influencing the proliferation of neuronal precursors, neuronal migration and differentiation, as well as by controlling early activity patterns and thus formation of neuronal networks. GABA controls neuronal development via depolarizing membrane responses upon activation of ionotropic GABA receptors. However, many of these effects occur before the onset of synaptic GABAergic activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors and immature neurons. This review summarizes our current knowledge about the role of tonic GABAergic currents during early brain development. In this review we compare the temporal sequence of the expression and functional relevance of different GABA receptor subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other possible endogenous agonists of GABAA receptors. In addition, we describe functional consequences mediated by the GABAergic system during early developmental periods and discuss current models about the origin of extrasynaptic GABA and/or other endogenous GABAergic agonists during early developmental states. Finally, we present evidence that tonic GABAergic activity is also critically involved in the generation of physiological as well as pathophysiological activity patterns before and after the establishment of functional GABAergic synaptic connections.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | |
Collapse
|
120
|
Khazipov R, Minlebaev M, Valeeva G. Early gamma oscillations. Neuroscience 2013; 250:240-52. [PMID: 23872391 DOI: 10.1016/j.neuroscience.2013.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. In contrast to adult gamma oscillations, synchronized through gamma-rhythmic perisomatic inhibition, EGOs are primarily driven through feedforward gamma-rhythmic excitatory input from the thalamus. The recruitment of cortical interneurons to EGOs and the emergence of feedforward inhibition are observed by the end of the first postnatal week. EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.
Collapse
Affiliation(s)
- R Khazipov
- INMED - INSERM U901, University Aix-Marseille II, Marseille, France; Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | | | | |
Collapse
|
121
|
Abstract
The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.
Collapse
Affiliation(s)
- Dragos Niculescu
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
122
|
Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Prog Neurobiol 2013. [DOI: 10.1016/j.pneurobio.2012.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
123
|
Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proc Natl Acad Sci U S A 2013; 110:3555-60. [PMID: 23401504 DOI: 10.1073/pnas.1218510110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders.
Collapse
|
124
|
A role for silent synapses in the development of the pathway from layer 2/3 to 5 pyramidal cells in the neocortex. J Neurosci 2012; 32:13085-99. [PMID: 22993426 DOI: 10.1523/jneurosci.1262-12.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The integration of neurons within the developing cerebral cortex is a prolonged process dependent on a combination of molecular and physiological cues. To examine the latter we used laser scanning photostimulation (LSPS) of caged glutamate in conjunction with whole-cell patch-clamp electrophysiology to probe the integration of pyramidal cells in the sensorimotor regions of the mouse neocortex. In the days immediately after postnatal day 5 (P5) the origin of the LSPS-evoked AMPA receptor (AMPAR)-mediated synaptic inputs were diffuse and poorly defined with considerable variability between cells. Over the subsequent week this coalesced and shifted, primarily influenced by an increased contribution from layers 2/3 cells, which became a prominent motif of the afferent input onto layer 5 pyramidal cells regardless of cortical region. To further investigate this particular emergent translaminar connection, we alternated our mapping protocol between two holding potentials (-70 and +40 mV) allowing us to detect exclusively NMDA receptor (NMDAR)-mediated inputs. This revealed distal MK-801-sensitive synaptic inputs that predict the formation of the mature, canonical layer 2/3 to 5 pathway. However, these were a transient feature and had been almost entirely converted to AMPAR synapses at a later age (P16). To examine the role of activity in the recruitment of early NMDAR synapses, we evoked brief periods (20 min) of rhythmic bursting. Short intense periods of activity could cause a prolonged augmentation of the total input onto pyramidal cells up until P12; a time point when the canonical circuit has been instated and synaptic integration shifts to a more consolidatory phase.
Collapse
|
125
|
Activity-dependent callosal axon projections in neonatal mouse cerebral cortex. Neural Plast 2012; 2012:797295. [PMID: 23213574 PMCID: PMC3507157 DOI: 10.1155/2012/797295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/21/2012] [Indexed: 12/18/2022] Open
Abstract
Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.
Collapse
|
126
|
Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 2012; 32:10982-94. [PMID: 22875932 DOI: 10.1523/jneurosci.1322-12.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity in the developing brain contributes to its maturation, but how this activity is coordinated between distinct cortical regions and whether it might reflect developing sensory circuits is not well understood. Here, we address this question by imaging the spread and synchronization of cortical activity using voltage-sensitive dyes (VSDs) in the developing rat in vivo. In postnatal day 4-6 rats (n = 10), we collected spontaneous changes in VSD signal that reflect underlying membrane potential changes over a large craniotomy (50 mm2) that encompassed both the sensory and motor cortices of both hemispheres. Bursts of depolarization that occurred approximately once every 12 s were preceded by spontaneous twitches of the hindlimbs and/or tail. The close association with peripheral movements suggests that these bursts may represent a slow component of spindle bursts, a prominent form of activity in the developing somatosensory cortex. Twitch-associated cortical activity was synchronized between subregions of somatosensory cortex, which reflected the synchronized twitching of the limbs and tail. This activity also spread asymmetrically, toward the midline of the brain. We found that the spatial and temporal structure of such spontaneous cortical bursts closely matched that of sensory-evoked activity elicited via direct stimulation of the periphery. These data suggest that spontaneous cortical activity provides a recurring template of functional cortical circuits within the developing cortex and could contribute to the maturation of integrative connections between sensory and motor cortices.
Collapse
|
127
|
Yang JM, Zhang J, Yu YQ, Duan S, Li XM. Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. ACTA ACUST UNITED AC 2012; 24:98-109. [PMID: 23042741 DOI: 10.1093/cercor/bhs291] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disturbed development of the parvalbumin-positive fast-spiking (FS) interneurons in the prefrontal cortex (PFC) is closely associated with many neuropsychiatric disorders such as schizophrenia and autism. FS interneurons form at least 2 microcircuits in the PFC: one with pyramidal neurons (FS-PN) through chemical synapses; the other with other FS interneurons (FS-FS) via chemical and electrical synapses. It is currently unknown when and how these circuits are established in the PFC during early development. Here, we used G42 mice, in which FS interneurons are specifically labeled with enhanced green fluorescent protein, to make dual whole-cell recordings from postnatal day 3 (P3) to P30 to study the development of FS interneuronal networks in the PFC. We found that FS interneurons were poorly developed in terms of the membrane and network properties during the first postnatal week, both of which exhibited an abrupt maturation during the second postnatal week. The development of FS interneuronal microcircuits lasted throughout early adulthood. Thus, our data suggest that FS interneurons might not be involved in generating cortical oscillatory activity and γ oscillations during the first postnatal week. Our data also indicate an independent development of electrical and chemical synapses among FS interneuronal networks during the early period.
Collapse
Affiliation(s)
- Jian-Ming Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
128
|
Egorov AV, Draguhn A. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity. Mech Dev 2012; 130:412-23. [PMID: 23032193 DOI: 10.1016/j.mod.2012.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
Abstract
Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully understand the rules governing transition from immature to mature patterns of network activity.
Collapse
Affiliation(s)
- Alexei V Egorov
- Institute of Physiology and Pathophysiology, University of Heidelberg and Bernstein Center for Computational Neuroscience-BCCN Heidelberg/Mannheim, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
129
|
Abstract
A recent study has found that spontaneous neural activity in the developing visual cortex has two distinct origins - local intracortical circuits and spontaneous activity in the retina.
Collapse
Affiliation(s)
- Marla Feller
- Department of Molecular & Cell Biology, University of California Berkely, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
130
|
Belousov AB. Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junctions. Brain Res 2012; 1487:123-30. [PMID: 22771704 DOI: 10.1016/j.brainres.2012.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/23/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early post-natal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on the regulation of neuronal gap junction coupling by glutamate during development and injury and on the role of gap junctions in neuronal cell death. A novel model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
131
|
Sun H, Luhmann HJ, Kilb W. Resonance properties of different neuronal populations in the immature mouse neocortex. Eur J Neurosci 2012; 36:2753-62. [PMID: 22748148 DOI: 10.1111/j.1460-9568.2012.08196.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vivo recordings in the immature neocortex revealed spontaneous and sensory-driven oscillatory activity from delta (0.5-4 Hz) to gamma (30-100 Hz) frequencies. In order to investigate whether the resonance properties of distinct neuronal populations in the immature neocortex contribute to these network oscillations, we performed whole-cell patch-clamp recordings from visually identified neurons in tangential and coronal neocortical slices from postnatal day (P)0-P7 C57Bl/6 mice. Subthreshold resonance was analysed by sinusoidal current injection of varying frequency. All Cajal-Retzius cells showed subthreshold resonance, with an average frequency of 2.6 ± 0.1 Hz (n = 60), which was massively reduced by ZD7288, a blocker of hyperpolarization-activated cation currents. Approximately 65.6% (n = 61) of the supragranular pyramidal neurons showed subthreshold resonance, with an average frequency of 1.4 ± 0.1 Hz (n = 40). Application of Ni(2+) suppressed subthreshold resonance, suggesting that low-threshold calcium currents contribute to resonance in these neurons. Approximately 63.6% (n = 77) of the layer V pyramidal neurons showed subthreshold resonance, with an average frequency of 1.4 ± 0.2 Hz (n = 49), which was abolished by ZD7288. Only 44.1% (n = 59) of the subplate neurons showed subthreshold resonance, with an average frequency of 1.3 ± 0.2 Hz (n = 26) and a small resonance strength. In summary, these results demonstrate that neurons in all investigated layers show resonance behavior, with either hyperpolarization-activated cation or low-threshold calcium currents contributing to the subthreshold resonance. The observed resonance frequencies are in the range of slow activity patterns observed in the immature neocortex, suggesting that subthreshold resonance may support the generation of this activity.
Collapse
Affiliation(s)
- Haiyan Sun
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | |
Collapse
|
132
|
Nimmervoll B, White R, Yang JW, An S, Henn C, Sun JJ, Luhmann HJ. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. ACTA ACUST UNITED AC 2012; 23:1742-55. [PMID: 22700645 DOI: 10.1093/cercor/bhs156] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.
Collapse
Affiliation(s)
- Birgit Nimmervoll
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz D-55128, Germany
| | | | | | | | | | | | | |
Collapse
|
133
|
Hoerder-Suabedissen A, Molnár Z. Molecular Diversity of Early-Born Subplate Neurons. Cereb Cortex 2012; 23:1473-83. [DOI: 10.1093/cercor/bhs137] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
134
|
Yang JW, An S, Sun JJ, Reyes-Puerta V, Kindler J, Berger T, Kilb W, Luhmann HJ. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. ACTA ACUST UNITED AC 2012; 23:1299-316. [PMID: 22593243 DOI: 10.1093/cercor/bhs103] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Yu YC, He S, Chen S, Fu Y, Brown KN, Yao XH, Ma J, Gao KP, Sosinsky GE, Huang K, Shi SH. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 2012; 486:113-7. [PMID: 22678291 PMCID: PMC3599787 DOI: 10.1038/nature10958] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/14/2012] [Indexed: 02/08/2023]
Abstract
Radial glial cells are the primary neural progenitor cells in the developing neocortex. Consecutive asymmetric divisions of individual radial glial progenitor cells produce a number of sister excitatory neurons that migrate along the elongated radial glial fibre, resulting in the formation of ontogenetic columns. Moreover, sister excitatory neurons in ontogenetic columns preferentially develop specific chemical synapses with each other rather than with nearby non-siblings. Although these findings provide crucial insight into the emergence of functional columns in the neocortex, little is known about the basis of this lineage-dependent assembly of excitatory neuron microcircuits at single-cell resolution. Here we show that transient electrical coupling between radially aligned sister excitatory neurons regulates the subsequent formation of specific chemical synapses in the neocortex. Multiple-electrode whole-cell recordings showed that sister excitatory neurons preferentially form strong electrical coupling with each other rather than with adjacent non-sister excitatory neurons during early postnatal stages. This preferential coupling allows selective electrical communication between sister excitatory neurons, promoting their action potential generation and synchronous firing. Interestingly, although this electrical communication largely disappears before the appearance of chemical synapses, blockade of the electrical communication impairs the subsequent formation of specific chemical synapses between sister excitatory neurons in ontogenetic columns. These results suggest a strong link between lineage-dependent transient electrical coupling and the assembly of precise excitatory neuron microcircuits in the neocortex.
Collapse
Affiliation(s)
- Yong-Chun Yu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Krüger HS, Hanganu-Opatz IL. Neonatal cholinergic lesion alters the acoustic structure of infant rat vocalization but not the early cognitive development. Dev Psychobiol 2012; 55:294-308. [DOI: 10.1002/dev.21029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/02/2012] [Indexed: 11/09/2022]
|
137
|
Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci 2012; 32:692-702. [PMID: 22238105 DOI: 10.1523/jneurosci.1538-11.2012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat primary somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates.
Collapse
|
138
|
Hartley C, Berthouze L, Mathieson SR, Boylan GB, Rennie JM, Marlow N, Farmer SF. Long-range temporal correlations in the EEG bursts of human preterm babies. PLoS One 2012; 7:e31543. [PMID: 22363669 PMCID: PMC3283672 DOI: 10.1371/journal.pone.0031543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/11/2012] [Indexed: 02/07/2023] Open
Abstract
The electrical activity in the very early human preterm brain, as recorded by scalp EEG, is mostly discontinuous and has bursts of high-frequency oscillatory activity nested within slow-wave depolarisations of high amplitude. The temporal organisation of the occurrence of these EEG bursts has not been previously investigated. We analysed the distribution of the EEG bursts in 11 very preterm (23-30 weeks gestational age) human babies through two estimates of the Hurst exponent. We found long-range temporal correlations (LRTCs) in the occurrence of these EEG bursts demonstrating that even in the very immature human brain, when the cerebral cortical structure is far from fully developed, there is non-trivial temporal structuring of electrical activity.
Collapse
Affiliation(s)
- Caroline Hartley
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
- University College London Institute of Child Health, London, United Kingdom
| | - Luc Berthouze
- University College London Institute of Child Health, London, United Kingdom
- Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, United Kingdom
| | - Sean R. Mathieson
- Elizabeth Garrett Anderson University College London Institute for Women's Health, London, United Kingdom
| | - Geraldine B. Boylan
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Janet M. Rennie
- Elizabeth Garrett Anderson University College London Institute for Women's Health, London, United Kingdom
| | - Neil Marlow
- Elizabeth Garrett Anderson University College London Institute for Women's Health, London, United Kingdom
| | - Simon F. Farmer
- Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
139
|
Myers MM, Grieve PG, Izraelit A, Fifer WP, Isler JR, Darnall RA, Stark RI. Developmental profiles of infant EEG: overlap with transient cortical circuits. Clin Neurophysiol 2012; 123:1502-11. [PMID: 22341979 DOI: 10.1016/j.clinph.2011.11.264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify spectral power in frequency specific bands and commonly observed types of bursting activities in the EEG during early human development. METHODS An extensive archive of EEG data from human infants from 35 to 52 weeks postmenstrual age obtained in a prior multi-center study was analyzed using power spectrum analyses and a high frequency burst detection algorithm. RESULTS Low frequency power increased with age; however, high frequency power decreased from 35 to 45 weeks. This unexpected decrease was largely attributable to a rapid decline in the number of high frequency bursts. CONCLUSIONS The decline in high frequency bursting activity overlaps with a developmental shift in GABA's actions on neurons from depolarizing to hyperpolarizing and the dissolution of the gap junction circuitry of the cortical subplate. SIGNIFICANCE We postulate that quantitative characterization of features of the EEG unique to early development provide indices for tracking changes in specific neurophysiologic mechanisms that are critical for normal development of brain function.
Collapse
Affiliation(s)
- M M Myers
- Department of Psychiatry, Columbia University, New York, NY 10032 United States.
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
A major question in neocortical research is the extent to which neuronal organization is stereotyped. Previous studies have revealed functional clustering and neuronal interactions among cortical neurons located within tens of micrometers in the tangential orientation (orientation parallel to the pial surface). In the tangential orientation at this scale, however, it is unknown whether the distribution of neuronal subtypes is random or has any stereotypy. We found that the tangential arrangement of subcerebral projection neurons, which are a major pyramidal neuron subtype in mouse layer V, was not random but significantly periodic. This periodicity, which was observed in multiple cortical areas, had a typical wavelength of 30 μm. Under specific visual stimulation, neurons in single repeating units exhibited strongly correlated c-Fos expression. Therefore, subcerebral projection neurons have a periodic arrangement, and neuronal activity leading to c-Fos expression is similar among neurons in the same repeating units. These results suggest that the neocortex has a periodic functional micro-organization composed of a major neuronal subtype in layer V.
Collapse
|
141
|
Abstract
The cholinergic drive enhances input processing in attentional and mnemonic context by interacting with the activity of prefrontal-hippocampal networks. During development, acetylcholine modulates neuronal proliferation, differentiation, and synaptic plasticity, yet its contribution to the maturation of cognitive processing resulting from early entrainment of neuronal networks in oscillatory rhythms remains widely unknown. Here we show that cholinergic projections growing into the rat prefrontal cortex (PFC) toward the end of the first postnatal week boost the generation of nested gamma oscillations superimposed on discontinuous spindle bursts by acting on functional muscarinic but not nicotinic receptors. Although electrical stimulation of cholinergic nuclei increased the occurrence of nested gamma spindle bursts by 41%, diminishment of the cholinergic input by either blockade of the receptors or chronic immunotoxic lesion had the opposite effect. This activation of locally generated gamma episodes by direct cholinergic projections to the PFC was accompanied by indirect modulation of underlying spindle bursts via cholinergic control of hippocampal theta activity. With ongoing maturation and switch of network activity from discontinuous bursts to continuous theta-gamma rhythms, accumulating cholinergic projections acting on both muscarinic and nicotinic receptors mediated the transition from high-amplitude slow to low-amplitude fast rhythms in the PFC. By exerting multiple actions on the oscillatory entrainment of developing prefrontal-hippocampal networks, the cholinergic input may refine them for later gating processing in executive and mnemonic tasks.
Collapse
|
142
|
Czarnecki A, Tscherter A, Streit J. Network activity and spike discharge oscillations in cortical slice cultures from neonatal rat. Eur J Neurosci 2012; 35:375-88. [PMID: 22276985 DOI: 10.1111/j.1460-9568.2011.07966.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Network bursts and oscillations are forms of spontaneous activity in cortical circuits that have been described in vivo and in vitro. Searching for mechanisms involved in their generation, we investigated the collective network activity and spike discharge oscillations in cortical slice cultures of neonatal rats, combining multielectrode arrays with patch clamp recordings from individual neurons. The majority of these cultures showed spontaneous collective network activity [population bursts (PBs)] that could be described as neuronal avalanches. The largest of these PBs were followed by fast spike discharge oscillations in the beta to theta range, and sometimes additional repetitive PBs, together forming seizure-like episodes. During such episodes, all neurons showed sustained depolarization with increased spike rates. However, whereas regular-spiking (RS) and fast-spiking (FS) neurons fired during the PBs, only the FS neurons fired during the fast oscillations. Blockade of N-methyl-d-aspartate receptors reduced the depolarization and suppressed both the increased FS neuron firing and the oscillations. To investigate the generation of PBs, we studied the network responses to electrical stimulation. For most of the stimulation sites, the relationship between the stimulated inputs and the evoked PBs was linear. From a few stimulation sites, however, large PBs could be evoked with small inputs, indicating the activation of hub circuits. Taken together, our findings suggests that the oscillations originate from recurrent inhibition in local networks of depolarized inhibitory FS interneurons, whereas the PBs originate from recurrent excitation in networks of RS and FS neurons that is initiated in hub circuits.
Collapse
Affiliation(s)
- Antonny Czarnecki
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | | | | |
Collapse
|
143
|
Siegel F, Heimel JA, Peters J, Lohmann C. Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol 2012; 22:253-8. [PMID: 22264606 DOI: 10.1016/j.cub.2011.12.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/18/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.
Collapse
Affiliation(s)
- Friederike Siegel
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
144
|
Intact In Vitro Preparations of the Neonatal Rodent Cortex: Analysis of Cellular Properties and Network Activity. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
145
|
Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp Neurol 2011; 234:20-30. [PMID: 22198136 DOI: 10.1016/j.expneurol.2011.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 12/17/2022]
Abstract
Behavioral recovery in animal models of human CNS syndromes suggests that transplanted stem cell derivatives can augment damaged neural networks but the mechanisms behind potentiated recovery remain elusive. Here we use microelectrode array (MEA) technology to document neural activity and network integration as rat primary neurons and rat hippocampal neural progenitor cells (NPCs) differentiate and mature. The natural transition from neuroblast to functional excitatory neuron consists of intermediate phases of differentiation characterized by coupled activity. High-frequency network-wide bursting or "superbursting" is a hallmark of early plasticity that is ultimately refined into mature stable neural network activity. Microelectrode array (MEA)-plated neurons transition through this stage of coupled superbursting before establishing mature neuronal phenotypes in vitro. When plated alone, adult rat hippocampal NPC-derived neurons fail to establish the synchronized bursting activity that neurons in primary and embryonic stem cell-derived cultures readily form. However, adult rat hippocampal NPCs evoke re-emergent superbursting in electrophysiologically mature rat primary neural cultures. Developmental superbursting is thought to accompany transient states of heightened plasticity both in culture preparations and across brain regions. Future work exploring whether NPCs can re-stimulate developmental states in injury models would be an interesting test of their regenerative potential.
Collapse
|
146
|
Whittington MA, Cunningham MO, LeBeau FEN, Racca C, Traub RD. Multiple origins of the cortical γ rhythm. Dev Neurobiol 2011; 71:92-106. [PMID: 21154913 DOI: 10.1002/dneu.20814] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gamma rhythms (30-80 Hz) are a near-ubiquitous feature of neuronal population activity in mammalian cortices. Their dynamic properties permit the synchronization of neuronal responses to sensory input within spatially distributed networks, transient formation of local neuronal "cell assemblies," and coherent response patterns essential for intercortical regional communication. Each of these phenomena form part of a working hypothesis for cognitive function in cortex. All forms of physiological gamma rhythm are inhibition based, being characterized by rhythmic trains of inhibitory postsynaptic potentials in populations of principal neurons. It is these repeating periods of relative enhancement and attenuation of the responsivity of major cell groups in cortex that provides a temporal structure shared across many millions of neurons. However, when considering the origins of these repeating trains of inhibitory events considerable divergence is seen depending on cortical region studied and mode of activation of gamma rhythm generating networks. Here, we review the evidence for involvement of multiple subtypes of interneuron and focus on different modes of activation of these cells. We conclude that most massively parallel brain regions have different mechanisms of gamma rhythm generation, that different mechanisms have distinct functional correlates, and that switching between different local modes of gamma generation may be an effective way to direct cortical communication streams. Finally, we suggest that developmental disruption of the endophenotype for certain subsets of gamma-generating interneuron may underlie cognitive deficit in psychiatric illness.
Collapse
Affiliation(s)
- Miles A Whittington
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| | | | | | | | | |
Collapse
|
147
|
Taga G, Watanabe H, Homae F. Spatiotemporal properties of cortical haemodynamic response to auditory stimuli in sleeping infants revealed by multi-channel near-infrared spectroscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4495-511. [PMID: 22006903 DOI: 10.1098/rsta.2011.0238] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multi-channel near-infrared spectroscopy (NIRS) has been used as a neuroimaging tool to study functional activation of the developing brain in infants. In this paper, we focus on spatiotemporal dynamics of cortical oxygenation changes during sensory processing in young infants. We use a 94-channel NIRS system to assess the activity of wide regions of the cortex in quietly sleeping three-month-old infants. Auditory stimuli composed of a random sequence of pure tones induced haemodynamic changes not only in the temporal auditory regions, but also in the occipital and frontal regions. Analyses of phase synchronization showed that mutual synchronizations of signal changes among the cortical regions were much stronger than the stimulus-induced synchronizations of signal changes. Furthermore, analyses of phase differences among cortical regions revealed phase advancement of the bilateral temporal auditory regions, and phase gradient in a posterior direction from the temporal auditory regions to the occipital regions and in an anterior direction within the frontal regions. We argue that multi-channel NIRS is capable of detecting the precise timing of cortical activation and its flow in the global network of the developing brain.
Collapse
Affiliation(s)
- Gentaro Taga
- Graduate School of Education, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
148
|
Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 2011; 34:1677-86. [DOI: 10.1111/j.1460-9568.2011.07878.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
149
|
Picardo MA, Guigue P, Bonifazi P, Batista-Brito R, Allene C, Ribas A, Fishell G, Baude A, Cossart R. Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus. Neuron 2011; 71:695-709. [PMID: 21867885 DOI: 10.1016/j.neuron.2011.06.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2011] [Indexed: 11/19/2022]
Abstract
Connectivity in the developing hippocampus displays a functional organization particularly effective in supporting network synchronization, as it includes superconnected hub neurons. We have previously shown that hub network function is supported by a subpopulation of GABA neurons. However, it is unclear whether hub cells are only transiently present or later develop into distinctive subclasses of interneurons. These questions are difficult to assess given the heterogeneity of the GABA neurons and the poor early expression of markers. To circumvent this conundrum, we used "genetic fate mapping" that allows for the selective labeling of GABA neurons based on their place and time of origin. We show that early-generated GABA cells form a subpopulation of hub neurons, characterized by an exceptionally widespread axonal arborization and the ability to single-handedly impact network dynamics when stimulated. Pioneer hub neurons remain into adulthood, when they acquire the classical markers of long-range projecting GABA neurons.
Collapse
|
150
|
McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE. Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience 2011; 199:51-63. [PMID: 22027237 DOI: 10.1016/j.neuroscience.2011.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/22/2011] [Accepted: 10/11/2011] [Indexed: 02/04/2023]
Abstract
Schizophrenia (Sz), along with other neuropsychiatric disorders, is associated clinically with abnormalities in neocortical gamma frequency (30-80 Hz) oscillations. In Sz patients, these abnormalities include both increased and decreased gamma activity, and show a strong association with Sz symptoms. For several decades, administration of sub-anesthetic levels of ketamine has provided the most comprehensive experimental model of Sz-symptoms. While acute application of ketamine precipitates a psychotic-like state in a number of animal models, as well as humans, the underlying mechanisms behind this effect, including alteration of neuronal network properties, are incompletely understood, making an in vitro level analysis particularly important. Previous in vitro studies have had difficulty inducing gamma oscillations in neocortical slices maintained in submerged-type recording chambers necessary for visually guided whole-cell recordings from identified neurons. Consequently, here, we validated a modified method to evoke gamma oscillations using brief, focal application of the glutamate receptor agonist kainate (KA), in slices prepared from mice expressing green fluorescent protein in GABAergic interneurons (GAD67-GFP knock-in mice). Using this method, gamma oscillations dependent on activation of AMPA and GABA(A) receptors were reliably elicited in slices containing mouse prelimbic cortex, the rodent analogue of the human dorsolateral prefrontal cortex. Examining the effects of ketamine on this model, we found that bath application of ketamine significantly potentiated KA-elicited gamma power, an effect mimicked by selective NMDAR antagonists including a selective antagonist of NMDARs containing the NR2B subunit. Importantly, ketamine, unlike more specific NMDAR antagonists, also reduced the peak frequency of KA-elicited oscillatory activity. Our findings indicate that this effect is mediated not through NMDAR, but through slowing the decay kinetics of GABA(A) receptor-mediated inhibitory postsynaptic currents in identified GABAergic interneurons. These in vitro findings may help explain the complexities of gamma findings in clinical studies of Sz and prove useful in developing new therapeutic strategies.
Collapse
Affiliation(s)
- J M McNally
- Laboratory of Neuroscience, VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, 940 Belmont Street, Research 151C, Brockton, MA 02301, USA
| | | | | | | | | |
Collapse
|