101
|
Han H, Monroe N, Votteler J, Shakya B, Sundquist WI, Hill CP. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). J Biol Chem 2015; 290:13490-9. [PMID: 25833946 DOI: 10.1074/jbc.m115.642355] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.
Collapse
Affiliation(s)
- Han Han
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Nicole Monroe
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Jörg Votteler
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Binita Shakya
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Wesley I Sundquist
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Christopher P Hill
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| |
Collapse
|
102
|
Guo EZ, Xu Z. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J Biol Chem 2015; 290:8396-408. [PMID: 25657007 DOI: 10.1074/jbc.m114.607903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.
Collapse
Affiliation(s)
| | - Zhaohui Xu
- From the Life Science Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
103
|
Vild CJ, Li Y, Guo EZ, Liu Y, Xu Z. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5. J Biol Chem 2015; 290:7291-303. [PMID: 25637630 DOI: 10.1074/jbc.m114.616730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. Here, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct from what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr(182)) at the core of LIP5NTD structure. Mutation of Tyr(182) partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.
Collapse
Affiliation(s)
- Cody J Vild
- From the Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | - Yan Li
- From the Life Sciences Institute and
| | | | - Yuan Liu
- From the Life Sciences Institute and
| | - Zhaohui Xu
- From the Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
104
|
Blocking ESCRT-mediated envelopment inhibits microtubule-dependent trafficking of alphaherpesviruses in vitro. J Virol 2014; 88:14467-78. [PMID: 25297998 DOI: 10.1128/jvi.02777-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) and, as reported here, pseudorabies virus (PRV) utilize the ESCRT apparatus to drive cytoplasmic envelopment of their capsids. Here, we demonstrate that blocking ESCRT-mediated envelopment using the dominant-negative inhibitor Vps4A-EQ (Vps4A in which glutamate [E] at position 228 in the ATPase active site is replaced by a glutamine [Q]) reduced the ability of HSV and PRV particles to subsequently traffic along microtubules in vitro. HSV and PRV capsid-associated particles with bound green fluorescent protein (GFP)-labeled Vps4A-EQ were readily detected by fluorescence microscopy in cytoplasmic extracts of infected cells. These Vps4A-EQ-associated capsid-containing particles bound to microtubules in vitro but were unable to traffic along them. Using a PRV strain expressing a fluorescent capsid and a fluorescently tagged form of the envelope protein gD, we found that similar numbers of gD-positive and gD-negative capsid-associated particles accumulated in cytoplasmic extracts under our conditions. Both classes of PRV particle bound to microtubules in vitro with comparable efficiency, and similar results were obtained for HSV using anti-gD immunostaining. The gD-positive and gD-negative PRV capsids were both capable of trafficking along microtubules in vitro; however, motile gD-positive particles were less numerous and their trafficking was more sensitive to the inhibitory effects of Vps4A-EQ. We discuss our data in the context of microtubule-mediated trafficking of naked and enveloped alphaherpesvirus capsids. IMPORTANCE The alphaherpesviruses include several important human pathogens. These viruses utilize microtubule-mediated transport to travel through the cell cytoplasm; however, the molecular mechanisms of trafficking are not well understood. In this study, we have used a cell-free system to examine the requirements for microtubule trafficking and have attempted to distinguish between the movement of so-called "naked" and membrane-associated cytoplasmic alphaherpesvirus capsids.
Collapse
|
105
|
Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, Henrion E, Dionne-Laporte A, Fougerat A, Pshezhetsky AV, Venkateswaran S, Rouleau GA, Michaud JL. De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10:e1004772. [PMID: 25356899 PMCID: PMC4214635 DOI: 10.1371/journal.pgen.1004772] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023] Open
Abstract
Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.
Collapse
Affiliation(s)
| | - Myriam Srour
- CHU Sainte-Justine Research Center, Montreal, Canada
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, Canada
| | | | - Hussein Daoud
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lysanne Patry
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ousmane Diallo
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edouard Henrion
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne Fougerat
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pediatrics and Department of Neurosciences, University of Montreal, Montreal, Canada
| |
Collapse
|
106
|
Shen QT, Schuh AL, Zheng Y, Quinney K, Wang L, Hanna M, Mitchell JC, Otegui MS, Ahlquist P, Cui Q, Audhya A. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. ACTA ACUST UNITED AC 2014; 206:763-77. [PMID: 25202029 PMCID: PMC4164947 DOI: 10.1083/jcb.201403108] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cryo-EM and molecular dynamics simulations reveal unexpected flexibility in individual monomers and a stable interface between monomers in the spiral filaments formed by the ESCRT-III subunit Vps32/CHMP4B. The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts.
Collapse
Affiliation(s)
- Qing-Tao Shen
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Amber L Schuh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Yuqing Zheng
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Kyle Quinney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Lei Wang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Hanna
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie C Mitchell
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Marisa S Otegui
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Qiang Cui
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
107
|
Davies BA, Norgan AP, Payne JA, Schulz ME, Nichols MD, Tan JA, Xu Z, Katzmann DJ. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 α7 and α9 to stimulate ATP hydrolysis. J Biol Chem 2014; 289:28707-18. [PMID: 25164817 DOI: 10.1074/jbc.m114.580696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) function in a variety of membrane remodeling processes including multivesicular body sorting, abscission during cytokinesis, budding of enveloped viruses, and repair of the plasma membrane. Vps4 ATPase activity modulates ESCRT function and is itself modulated by its cofactor Vta1 and its substrate ESCRT-III. The carboxyl-terminal Vta1/SBP-1/Lip5 (VSL) domain of Vta1 binds to the Vps4 β-domain to promote Vps4 oligomerization-dependent ATP hydrolysis. Additionally, the Vps4 stimulatory element (VSE) of Vta1 contributes to enhancing Vps4 oligomer ATP hydrolysis. The VSE is also required for Vta1-dependent stimulation of Vps4 by ESCRT-III subunits. However, the manner by which the Vta1 VSE contributes to Vps4 activation is unknown. Existing structural data were used to generate a model of the Vta1 VSE in complex with Vps4. This model implicated residues within the small ATPase associated with various activities (AAA) domain, specifically α-helices 7 and 9, as relevant contact sites. Rational generation of Vps4 mutants defective for VSE-mediated stimulation, as well as intergenic compensatory mutations, support the validity of this model. These findings have uncovered the Vps4 surface responsible for coordinating ESCRT-III-stimulated Vta1 input during ESCRT function and identified a novel mechanism of Vps4 stimulation.
Collapse
Affiliation(s)
- Brian A Davies
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andrew P Norgan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Johanna A Payne
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Mary E Schulz
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, the Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Micah D Nichols
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, Byron High School, Byron, Minnesota 55920, and
| | - Jason A Tan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhaohui Xu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - David J Katzmann
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,
| |
Collapse
|
108
|
Nastou KC, Tsaousis GN, Kremizas KE, Litou ZI, Hamodrakas SJ. The human plasma membrane peripherome: visualization and analysis of interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:397145. [PMID: 25057483 PMCID: PMC4095733 DOI: 10.1155/2014/397145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
A major part of membrane function is conducted by proteins, both integral and peripheral. Peripheral membrane proteins temporarily adhere to biological membranes, either to the lipid bilayer or to integral membrane proteins with noncovalent interactions. The aim of this study was to construct and analyze the interactions of the human plasma membrane peripheral proteins (peripherome hereinafter). For this purpose, we collected a dataset of peripheral proteins of the human plasma membrane. We also collected a dataset of experimentally verified interactions for these proteins. The interaction network created from this dataset has been visualized using Cytoscape. We grouped the proteins based on their subcellular location and clustered them using the MCL algorithm in order to detect functional modules. Moreover, functional and graph theory based analyses have been performed to assess biological features of the network. Interaction data with drug molecules show that ~10% of peripheral membrane proteins are targets for approved drugs, suggesting their potential implications in disease. In conclusion, we reveal novel features and properties regarding the protein-protein interaction network created by peripheral proteins of the human plasma membrane.
Collapse
Affiliation(s)
- Katerina C. Nastou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Georgios N. Tsaousis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Kimon E. Kremizas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Zoi I. Litou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Stavros J. Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
109
|
Adell MAY, Vogel GF, Pakdel M, Müller M, Lindner H, Hess MW, Teis D. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. ACTA ACUST UNITED AC 2014; 205:33-49. [PMID: 24711499 PMCID: PMC3987140 DOI: 10.1083/jcb.201310114] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and -II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA-adenosine triphosphatase Vps4 disassembles and recycles the ESCRT-III complex, thereby terminating the ESCRT pathway. A mechanistic role for Vps4 in intraluminal vesicle (ILV) formation has been unclear. By combining yeast genetics, biochemistry, and electron tomography, we find that ESCRT-III assembly on endosomes is required to induce or stabilize the necks of growing MVB ILVs. Yet, ESCRT-III alone is not sufficient to complete ILV biogenesis. Rather, binding of Vps4 to ESCRT-III, coordinated by interactions with Vps2 and Snf7, is coupled to membrane neck constriction during ILV formation. Thus, Vps4 not only recycles ESCRT-III subunits but also cooperates with ESCRT-III to drive distinct membrane-remodeling steps, which lead to efficient membrane scission at the end of ILV biogenesis in vivo.
Collapse
Affiliation(s)
- Manuel Alonso Y Adell
- Division of Cell Biology and 2 Division of Clinical Biochemistry, Biocenter; and 3 Division of Histology and Embryology; Innsbruck Medical University, Innsbruck 6020, Austria
| | | | | | | | | | | | | |
Collapse
|
110
|
Choudhuri K, Llodrá J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 2014; 507:118-23. [PMID: 24487619 PMCID: PMC3949170 DOI: 10.1038/nature12951] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Abstract
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.
Collapse
Affiliation(s)
- Kaushik Choudhuri
- 1] Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2]
| | - Jaime Llodrá
- 1] Program in Structural Biology, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2]
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Jones Tsai
- Department of Biomedical Engineering, Columbia University, 500 W 120th Street, New York, New York 10027, USA
| | - Susana Gordo
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Program in Immunology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kai W Wucherpfennig
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Program in Immunology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, 500 W 120th Street, New York, New York 10027, USA
| | - David L Stokes
- 1] Program in Structural Biology, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, 540 First Avenue, New York, New York 10016, USA [2] New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Michael L Dustin
- 1] Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA [2] Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| |
Collapse
|
111
|
Vild CJ, Xu Z. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity. J Biol Chem 2014; 289:10378-10386. [PMID: 24567329 DOI: 10.1074/jbc.m113.532960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.
Collapse
Affiliation(s)
- Cody J Vild
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | - Zhaohui Xu
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
112
|
Katsiarimpa A, Muñoz A, Kalinowska K, Uemura T, Rojo E, Isono E. The ESCRT-III-Interacting Deubiquitinating Enzyme AMSH3 is Essential for Degradation of Ubiquitinated Membrane Proteins in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:727-36. [DOI: 10.1093/pcp/pcu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
113
|
The oligomeric state of the active Vps4 AAA ATPase. J Mol Biol 2014; 426:510-25. [PMID: 24161953 PMCID: PMC3919030 DOI: 10.1016/j.jmb.2013.09.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/07/2023]
Abstract
The cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type Saccharomyces cerevisiae and Sulfolobus solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size-exclusion chromatography and equilibrium analytical ultracentrifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p-Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double-ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits.
Collapse
|
114
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
115
|
Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division. Extremophiles 2014; 18:331-9. [PMID: 24399085 DOI: 10.1007/s00792-013-0618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1-3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.
Collapse
|
116
|
Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. ACTA ACUST UNITED AC 2013; 203:299-313. [PMID: 24165940 PMCID: PMC3812978 DOI: 10.1083/jcb.201304123] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atg38 provides a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate PI3-kinase complex I formation. Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation.
Collapse
Affiliation(s)
- Yasuhiro Araki
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
BACKGROUND Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells. However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like HIV-1 that recruit multiple different ESCRT factors to initiate budding. RESULTS In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT proteins and "rescue" experiments with exogenous siRNA-resistant wild type and mutant constructs revealed budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding. Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions. CONCLUSIONS We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting the stepwise processes of lentivirus assembly and ESCRT-mediated budding.
Collapse
Affiliation(s)
- Virginie Sandrin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| |
Collapse
|
118
|
Interaction maps of the Saccharomyces cerevisiae ESCRT-III protein Snf7. EUKARYOTIC CELL 2013; 12:1538-46. [PMID: 24058170 DOI: 10.1128/ec.00241-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae ESCRT-III protein Snf7 is part of an intricate interaction network at the endosomal membrane. Interaction maps of Snf7 were established by measuring the degree of binding of individual binding partners to putative binding motifs along the Snf7 sequence by glutathione S-transferase (GST) pulldown. For each interaction partner, distinct binding profiles were obtained. The following observations were made. The ESCRT-III subunits Vps20 and Vps24 showed a complementary binding pattern, suggesting a model for the series of events in the ESCRT-III functional cycle. Vps4 bound to individual Snf7 motifs but not to full-length Snf7. This suggests that Vps4 does not bind to the closed conformation of Snf7. We also demonstrate for the first time that the ALIX/Bro1 homologue Rim20 binds to the α6 helix of Snf7. Analysis of a Snf7 α6 deletion mutant showed that the α6 helix is crucial for binding of Bro1 and Rim20 in vivo and is indispensable for the multivesicular body (MVB)-sorting and Rim-signaling functions of Snf7. The Snf7Δα6 protein still appeared to be incorporated into ESCRT-III complexes at the endosomal membrane, but disassembly of the complex seemed to be defective. In summary, our study argues against the view that the ESCRT cycle is governed by single one-to-one interactions between individual components and emphasizes the network character of the ESCRT interactions.
Collapse
|
119
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
120
|
Korbei B, Luschnig C. Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:809-23. [PMID: 23981390 DOI: 10.1111/jipb.12059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/16/2013] [Indexed: 05/08/2023]
Abstract
Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Crosstalk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localization and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.
Collapse
Affiliation(s)
- Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
121
|
Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2013; 2:a006924. [PMID: 22762019 DOI: 10.1101/cshperspect.a006924] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A defining property of retroviruses is their ability to assemble into particles that can leave producer cells and spread infection to susceptible cells and hosts. Virion morphogenesis can be divided into three stages: assembly, wherein the virion is created and essential components are packaged; budding, wherein the virion crosses the plasma membrane and obtains its lipid envelope; and maturation, wherein the virion changes structure and becomes infectious. All of these stages are coordinated by the Gag polyprotein and its proteolytic maturation products, which function as the major structural proteins of the virus. Here, we review our current understanding of the mechanisms of HIV-1 assembly, budding, and maturation, starting with a general overview and then providing detailed descriptions of each of the different stages of virion morphogenesis.
Collapse
Affiliation(s)
- Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | |
Collapse
|
122
|
Allison R, Lumb JH, Fassier C, Connell JW, Ten Martin D, Seaman MNJ, Hazan J, Reid E. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. ACTA ACUST UNITED AC 2013; 202:527-43. [PMID: 23897888 PMCID: PMC3734076 DOI: 10.1083/jcb.201211045] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inclusion of IST1 into the ESCRT complex allows recruitment of the microtubule-severing protein spastin to promote fission of recycling tubules from the endosome. Mechanisms coordinating endosomal degradation and recycling are poorly understood, as are the cellular roles of microtubule (MT) severing. We show that cells lacking the MT-severing protein spastin had increased tubulation of and defective receptor sorting through endosomal tubular recycling compartments. Spastin required the ability to sever MTs and to interact with ESCRT-III (a complex controlling cargo degradation) proteins to regulate endosomal tubulation. Cells lacking IST1 (increased sodium tolerance 1), an endosomal sorting complex required for transport (ESCRT) component to which spastin binds, also had increased endosomal tubulation. Our results suggest that inclusion of IST1 into the ESCRT complex allows recruitment of spastin to promote fission of recycling tubules from the endosome. Thus, we reveal a novel cellular role for MT severing and identify a mechanism by which endosomal recycling can be coordinated with the degradative machinery. Spastin is mutated in the axonopathy hereditary spastic paraplegia. Zebrafish spinal motor axons depleted of spastin or IST1 also had abnormal endosomal tubulation, so we propose this phenotype is important for axonal degeneration.
Collapse
Affiliation(s)
- Rachel Allison
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Norgan AP, Davies BA, Azmi IF, Schroeder AS, Payne JA, Lynch GM, Xu Z, Katzmann DJ. Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J Biol Chem 2013; 288:26147-26156. [PMID: 23880759 DOI: 10.1074/jbc.m113.494112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) impact multiple cellular processes including multivesicular body sorting, abscission, and viral budding. The AAA-ATPase Vps4 is required for ESCRT function, and its full activity is dependent upon the co-factor Vta1. The Vta1 carboxyl-terminal Vta1 SBP1 Lip5 (VSL) domain stimulates Vps4 function by facilitating oligomerization of Vps4 into its active state. Here we report the identification of the Vps4 stimulatory element (VSE) within Vta1 that is required for additional stimulation of Vps4 activity in vitro and in vivo. VSE activity is autoinhibited in a manner dependent upon the unstructured linker region joining the amino-terminal microtubule interacting and trafficking domains and the carboxyl-terminal VSL domain. The VSE is also required for Vta1-mediated Vps4 stimulation by ESCRT-III subunits Vps60 and Did2. These results suggest that ESCRT-III binding to the Vta1 microtubule interacting and trafficking domains relieves linker region autoinhibition of the VSE to produce maximal activation of Vps4 during ESCRT function.
Collapse
Affiliation(s)
- Andrew P Norgan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Brian A Davies
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ishara F Azmi
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andreas S Schroeder
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Johanna A Payne
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gregory M Lynch
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,; Becker Middle School, Becker, Minnesota 55308, and
| | - Zhaohui Xu
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - David J Katzmann
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
124
|
Dobro MJ, Samson RY, Yu Z, McCullough J, Ding HJ, Chong PLG, Bell SD, Jensen GJ. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 2013; 24:2319-27. [PMID: 23761076 PMCID: PMC3727925 DOI: 10.1091/mbc.e12-11-0785] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ESCRT filaments wrap helically around liposomes and assemble into various helical structures in vitro. Dividing Sulfolobus cells further exhibit a thin, dynamic belt coating division furrows. Together these data suggest that spiraling filaments are involved in membrane scission. The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT–CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.
Collapse
Affiliation(s)
- Megan J Dobro
- School of Natural Science, Hampshire College, Amherst, MA 01002, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Functional interplay between a virus and the ESCRT machinery in archaea. Proc Natl Acad Sci U S A 2013; 110:10783-7. [PMID: 23754419 DOI: 10.1073/pnas.1301605110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently it has been discovered that a number of eukaryotic viruses, including HIV, coopt the cellular Endosomal Sorting Complex Required for Transport (ESCRT) machinery to affect egress from infected cells. Strikingly, the ESCRT apparatus is conserved in a subset of Archaea, including members of the genus Sulfolobus where it plays a role in cytokinesis. In the current work, we reveal that the archaeal virus Sulfolobus turreted icosahedral virus isolated from Yellowstone National Park's acidic hot springs also exploits the host ESCRT machinery in its replication cycle. Moreover, perturbation of normal ESCRT function abrogates viral replication and, thus, prevents establishment of a productive Sulfolobus turreted icosahedral virus infection. We propose that the Sulfolobus ESCRT machinery is involved in viral assembly within the cytoplasm and in escape from the infected cell by using a unique lysis mechanism. Our results support an ancient origin for viruses "hijacking" ESCRT proteins to complete their replication cycle and thus identify a critical host-virus interaction conserved between two domains of life.
Collapse
|
126
|
Identification of phosphorylation sites in the C-terminal region of charged multivesicular body protein 1A (CHMP1A). Biosci Biotechnol Biochem 2013; 77:1317-9. [PMID: 23748770 DOI: 10.1271/bbb.130065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human charged multivesicular body protein 1A (CHMP1A) displayed two bands on SDS-PAGE and differences in efficiency of complex formation with IST1. By site-directed mutagenesis and phosphate-affinity PAGE, we identified Ser(179) and Ser(182) located in the C-terminal region as major phosphorylation sites that cause a mobility shift, but interaction with IST1 was not affected by Ser-to-Ala mutations.
Collapse
|
127
|
Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev Cell 2013; 25:520-33. [PMID: 23726974 DOI: 10.1016/j.devcel.2013.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargoes. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargoes.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Chiang CP, Li CH, Jou Y, Chen YC, Lin YC, Yang FY, Huang NC, Yen HE. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2385-400. [PMID: 23580756 PMCID: PMC3654428 DOI: 10.1093/jxb/ert097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed.
Collapse
Affiliation(s)
- Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hua Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yingtzy Jou
- Department of Life Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| | - Yu-Chan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Chung Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fang-Yu Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Nu-Chuan Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
129
|
Maemoto Y, Kiso S, Shibata H, Maki M. Analysis of limited proteolytic activity of calpain-7 using non-physiological substrates in mammalian cells. FEBS J 2013; 280:2594-607. [DOI: 10.1111/febs.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Maemoto
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Satomi Kiso
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| |
Collapse
|
130
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
131
|
Richter CM, West M, Odorizzi G. Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. J Cell Sci 2013; 126:1881-90. [PMID: 23444383 DOI: 10.1242/jcs.122499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of the endosomal sorting complex required for transport (ESCRT)-III executes the formation of intralumenal vesicles (ILVs) at endosomes. Repeated cycles of ESCRT-III function requires disassembly of the complex by Vps4, an ATPase with a microtubule interaction and trafficking (MIT) domain that binds MIT-interacting motifs (MIM1 or MIM2) in ESCRT-III subunits. We identified a putative MIT domain at the N-terminus of Doa4, which is the ubiquitin (Ub) hydrolase in Saccharomyces cerevisiae that deubiquitinates ILV cargo proteins. The Doa4 N-terminus is predicted to have the α-helical structure common to MIT domains, and it binds directly to a MIM1-like sequence in the Vps20 subunit of ESCRT-III. Disrupting this interaction does not prevent endosomal localization of Doa4 but enhances the defect in ILV cargo protein deubiquitination observed in cells lacking Bro1, which is an ESCRT-III effector protein that stimulates Doa4 catalytic activity. Deletion of the BRO1 gene (bro1Δ) blocks ILV budding, but ILV budding was rescued upon disrupting the interaction between Vps20 and Doa4. This rescue in ILV biogenesis requires Doa4 expression but is independent of its Ub hydrolase activity. Thus, binding of Vps20 to the Doa4 N-terminus inhibits a non-catalytic function of Doa4 that promotes ILV formation.
Collapse
Affiliation(s)
- Caleb M Richter
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
132
|
Iwaya N, Takasu H, Goda N, Shirakawa M, Tanaka T, Hamada D, Hiroaki H. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain. J Biochem 2013; 153:473-81. [PMID: 23423459 DOI: 10.1093/jb/mvt012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.
Collapse
Affiliation(s)
- Naoko Iwaya
- Laboratory of Structural and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
133
|
Nielsen TT, Mizielinska S, Hasholt L, Isaacs AM, Nielsen JE. Reversal of pathology in CHMP2B-mediated frontotemporal dementia patient cells using RNA interference. J Gene Med 2013; 14:521-9. [PMID: 22786763 DOI: 10.1002/jgm.2649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frontotemporal dementia is the second most common form of young-onset dementia after Alzheimer's disease, and several genetic forms of frontotemporal dementia are known. A rare genetic variant is caused by a point mutation in the CHMP2B gene. CHMP2B is a component of the ESCRT-III complex, which is involved in endosomal trafficking of proteins targeted for degradation in lysosomes. Mutations in CHMP2B result in abnormal endosomal structures in patient fibroblasts and patient brains, probably through a gain-of-function mechanism, suggesting that the endosomal pathway plays a central role in the pathogenesis of the disease. METHODS In the present study, we used lentiviral vectors to efficiently knockdown CHMP2B by delivering microRNA embedded small hairpin RNAs. RESULTS We show that CHMP2B can be efficiently knocked down in patient fibroblasts using an RNA interference approach and that the knockdown causes reversal of the abnormal endosomal phenotype observed in patient fibroblasts. CONCLUSIONS This is the first description of a treatment that reverses the cellular pathology caused by mutant CHMP2B and suggests that RNA interference might be a feasible therapeutic strategy. Furthermore, it provides the first proof of a direct link between the disease-causing mutation and the cellular phenotype in cells originating from CHMP2B mutation patients.
Collapse
Affiliation(s)
- Troels Tolstrup Nielsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | | | | | | | | | | |
Collapse
|
134
|
Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology 2013; 10:5. [PMID: 23305486 PMCID: PMC3558412 DOI: 10.1186/1742-4690-10-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
135
|
Jou Y, Chiang CP, Yen HE. Changes in cellular distribution regulate SKD1 ATPase activity in response to a sudden increase in environmental salinity in halophyte ice plant. PLANT SIGNALING & BEHAVIOR 2013; 8:e27433. [PMID: 24390077 PMCID: PMC4091238 DOI: 10.4161/psb.27433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halophyte Mesembryanthemum crystallinum L. (ice plant) rapidly responds to sudden increases in salinity in its environment by activating specific salt-tolerant mechanisms. One major strategy is to regulate a series of ion transporters and proton pumps to maintain cellular Na(+)/K(+) homeostasis. Plant SKD1 (suppressor of K(+) transport growth defect 1) proteins accumulate in cells actively engaged in the secretory processes, and play a critical role in intracellular protein trafficking. Ice plant SKD1 redistributes from the cytosol to the plasma membrane hours after salt stressed. In combination with present knowledge of this protein, we suggest that stress facilitates SKD1 movement to the plasma membrane where ADP/ATP exchange occurs, and functions in the regulation of membrane components such as ion transporters to avoid ion toxicity.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Biotechnology; National Pingtung University of Science and Technology; Neipu, Pingtung, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences; National Chung Hsing University; Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences; National Chung Hsing University; Taichung, Taiwan
- Correspondence to: Hungchen Emilie Yen,
| |
Collapse
|
136
|
Xu J, Nonogaki M, Madhira R, Ma HY, Hermanson O, Kioussi C, Gross MK. Population-specific regulation of Chmp2b by Lbx1 during onset of synaptogenesis in lateral association interneurons. PLoS One 2012; 7:e48573. [PMID: 23284619 PMCID: PMC3528757 DOI: 10.1371/journal.pone.0048573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022] Open
Abstract
Chmp2b is closely related to Vps2, a key component of the yeast protein complex that creates the intralumenal vesicles of multivesicular bodies. Dominant negative mutations in Chmp2b cause autophagosome accumulation and neurodegenerative disease. Loss of Chmp2b causes failure of dendritic spine maturation in cultured neurons. The homeobox gene Lbx1 plays an essential role in specifying postmitotic dorsal interneuron populations during late pattern formation in the neural tube. We have discovered that Chmp2b is one of the most highly regulated cell-autonomous targets of Lbx1 in the embryonic mouse neural tube. Chmp2b was expressed and depended on Lbx1 in only two of the five nascent, Lbx1-expressing, postmitotic, dorsal interneuron populations. It was also expressed in neural tube cell populations that lacked Lbx1 protein. The observed population-specific expression of Chmp2b indicated that only certain population-specific combinations of sequence specific transcription factors allow Chmp2b expression. The cell populations that expressed Chmp2b corresponded, in time and location, to neurons that make the first synapses of the spinal cord. Chmp2b protein was transported into neurites within the motor- and association-neuropils, where the first synapses are known to form between E11.5 and E12.5 in mouse neural tubes. Selective, developmentally-specified gene expression of Chmp2b may therefore be used to endow particular neuronal populations with the ability to mature dendritic spines. Such a mechanism could explain how mammalian embryos reproducibly establish the disynaptic cutaneous reflex only between particular cell populations.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Mariko Nonogaki
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Ravi Madhira
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
137
|
Jouvenet N. Dynamics of ESCRT proteins. Cell Mol Life Sci 2012; 69:4121-33. [PMID: 22669260 PMCID: PMC11114710 DOI: 10.1007/s00018-012-1035-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
Proteins of the ESCRT (endosomal sorting complex required for transport) complex function in membrane fission processes, such as multivesicular body (MVBs) formation, the terminal stages of cytokinesis, and separation of enveloped viruses from the plasma membrane. In mammalian cells, the machinery consists of a network of more than 20 proteins, organized into three complexes (ESCRT-I, -II, and -III), and other associated proteins such as the ATPase vacuolar protein sorting 4 (Vps4). Early biochemical studies of MVBs biogenesis in yeast support a model of sequential recruitment of ESCRT complexes on membranes. Live-cell imaging of ESCRT protein dynamics during viral budding and cytokinesis now reveal that this long-standing model of sequential assembly and disassembly holds true in mammalian cells.
Collapse
|
138
|
Ghoujal B, Milev MP, Ajamian L, Abel K, Mouland AJ. ESCRT-II's involvement in HIV-1 genomic RNA trafficking and assembly. Biol Cell 2012; 104:706-21. [PMID: 22978549 DOI: 10.1111/boc.201200021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION Several host proteins play crucial roles in the HIV-1 replication cycle. The endosomal sorting complex required for transport (ESCRT) exemplifies a large, multi-component host machinery that is required by HIV-1 for viral budding. ESCRT promotes the inward budding of vesicles from the membranes of late endosomes to generate multi-vesicular bodies. However, HIV-1 co-opts the ESCRT to enable outwards budding of virus particles from the plasma membrane, a phenomenon that is topologically similar to multi-vesicular body biogenesis. A role for ESCRTII in mRNA trafficking has been established in Drosophila in which the ESCRT-II components, Vps22 and Vps36, promote the localisation of the bicoid mRNA in the fertilised egg. This is achieved via specific interactions with the Staufen protein. In this work, we investigated a possible implication of ESCRT-II in the HIV-1 replication cycle. RESULTS Co-immunoprecipitation analyses and live cell tri-molecular fluorescence complementation assays revealed that interactions between EAP30 and Gag and another between EAP30 and Staufen1 occur in mammalian cells. We then depleted EAP30 (the orthologue for Vps22) by siRNA to target ESCRT-II in HIV-1 expressing cells. This treatment disrupted ESCRT-II function and leads to the degradation of the two other ESCRT-II complex proteins, EAP45 and EAP20, as well as the associated Rab7-interacting lysosomal protein. The depletion of EAP30 led to dramatically reduced viral structural protein Gag and virus production levels, without any effect on viral RNA levels. On the contrary, the overexpression of EAP30 led to a several-fold increase in virus production. Unexpec-tedly, siRNA-mediated depletion of EAP30 led to a block to HIV-1 genomic RNA trafficking and resulted in the accumulation of genomic RNA in the nucleus and juxtanuclear domains. CONCLUSIONS Our data provide the first evidence that the Staufen1-ESCRT-II interaction is evolutionarily conserved from lower to higher eukaryotes and reveal a novel role for EAP30 in the control of HIV-1 RNA trafficking and gene expression.
Collapse
Affiliation(s)
- Bashar Ghoujal
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital and the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
139
|
Yang Z, Vild C, Ju J, Zhang X, Liu J, Shen J, Zhao B, Lan W, Gong F, Liu M, Cao C, Xu Z. Structural basis of molecular recognition between ESCRT-III-like protein Vps60 and AAA-ATPase regulator Vta1 in the multivesicular body pathway. J Biol Chem 2012; 287:43899-908. [PMID: 23105107 DOI: 10.1074/jbc.m112.390724] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The AAA-ATPase Vps4 is critical for function of the multivesicular body sorting pathway, which impacts cellular phenomena ranging from receptor down-regulation to viral budding to cytokinesis. Vps4 activity is stimulated by the interaction between Vta1 and Vps60, but the structural basis for this interaction is unclear. The fragment Vps60(128-186) was reported to display the full activity of Vps60. Vta1 interacts with Vps60 using its N-terminal domain (Vta1NTD). In this work, the structure of Vps60(128-186) in complex with Vta1NTD was determined using NMR techniques, demonstrating a novel recognition mode of the microtubule-interacting and transport (MIT) domain in which Vps60(128-186) interacts with Vta1NTD through helices α4' and α5', extending over Vta1NTD MIT2 domain helices 1-3. The Vps60 binding does not result in Vta1 conformational changes, further revealing the fact that Vps4 ATPase is enhanced by the interaction between Vta1 and Vps60 in an unanticipated manner.
Collapse
Affiliation(s)
- Zhongzheng Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Skalicky JJ, Arii J, Wenzel DM, Stubblefield WMB, Katsuyama A, Uter NT, Bajorek M, Myszka DG, Sundquist WI. Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport. J Biol Chem 2012; 287:43910-26. [PMID: 23105106 DOI: 10.1074/jbc.m112.417899] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic "leucine collar" that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.
Collapse
Affiliation(s)
- Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Du X, Kazim AS, Dawes IW, Brown AJ, Yang H. The AAA ATPase VPS4/SKD1 Regulates Endosomal Cholesterol Trafficking Independently of ESCRT-III. Traffic 2012; 14:107-19. [DOI: 10.1111/tra.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Abdulla S. Kazim
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Andrew J. Brown
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
142
|
ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc Natl Acad Sci U S A 2012; 109:17424-9. [PMID: 23045692 DOI: 10.1073/pnas.1206839109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.
Collapse
|
143
|
Endosomal sorting related protein CHMP2B is localized in Lewy bodies and glial cytoplasmic inclusions in α-synucleinopathy. Neurosci Lett 2012; 527:16-21. [DOI: 10.1016/j.neulet.2012.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 12/23/2022]
|
144
|
CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nat Genet 2012; 44:1260-4. [PMID: 23023333 PMCID: PMC3567443 DOI: 10.1038/ng.2425] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/05/2012] [Indexed: 01/20/2023]
|
145
|
Lee S, Chang J, Renvoisé B, Tipirneni A, Yang S, Blackstone C. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol Biol Cell 2012; 23:4347-61. [PMID: 23015756 PMCID: PMC3496609 DOI: 10.1091/mbc.e12-04-0292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The MITD1 is an largely uncharacterized MIT domain–containing protein. This protein localizes to the midbody, with its recruitment dependent on selective interactions with a number of ESCRT-III proteins. These interactions are required for proper abscission. Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission.
Collapse
Affiliation(s)
- Seongju Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
146
|
Koumanov F, Pereira VJ, Whitley PR, Holman GD. GLUT4 traffic through an ESCRT-III-dependent sorting compartment in adipocytes. PLoS One 2012; 7:e44141. [PMID: 23049745 PMCID: PMC3458039 DOI: 10.1371/journal.pone.0044141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/30/2012] [Indexed: 12/16/2022] Open
Abstract
In insulin target tissues, GLUT4 is known to traffic through multiple compartments that may involve ubiquitin- and/or SUMO-dependent targeting. During these trafficking steps, GLUT4 is sorted into a storage reservoir compartment that is acutely released by insulin signalling processes that are downstream of PI 3-kinase associated changes in inositol phospholipids. As ESCRT components have recently been found to influence cellular sorting processes that are related to changes in both ubiquitination and inositol phospholipids, we have examined whether GLUT4 traffic is routed through ESCRT dependent sorting steps. Introduction of the dominant negative inhibitory constructs of the ESCRT-III components CHMP3 (CHMP3(1–179)) and Vps4 (GFP-Vps4E235Q) into rat adipocytes leads to the accumulation of GLUT4 in large, coalesced and extended vesicles structures that co-localise with the inhibitory constructs over large parts of the extended structure. A new swollen hybrid and extensively ubiquitinated compartment is produced in which GLUT4 co-localises more extensively with the endosomal markers including EEA1 and transferrin receptors but also with the TGN marker syntaxin6. These perturbations are associated with failure of insulin action on GLUT4 traffic to the cell surface and suggest impairment in an ESCRT-dependent sorting step used for GLUT4 traffic to its specialised reservoir compartment.
Collapse
Affiliation(s)
- Françoise Koumanov
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | | | | | | |
Collapse
|
147
|
Identification of the HIV-1 NC binding interface in Alix Bro1 reveals a role for RNA. J Virol 2012; 86:11608-15. [PMID: 22896625 DOI: 10.1128/jvi.01260-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 recruits members of ESCRT, the cell membrane fission machinery that promotes virus exit. HIV-1 Gag protein gains access to ESCRT directly by binding Alix, an ESCRT-associated protein that promotes budding. The Alix Bro1 and V domains bind Gag NC and p6 regions, respectively. Whereas V-p6 binding and function are well characterized, residues in Bro1 that interact with NC and their functional contribution to Alix-mediated HIV-1 budding are unknown. We mapped Bro1 residues that constitute the NC binding interface and found that they are critical for function. Intriguingly, residues involved in interactions on both sides of the Bro1-NC interface are positively charged, suggesting the involvement of a negatively charged cellular factor serving as a bridge. Nuclease treatment eliminated Bro1-NC interactions, revealing the involvement of RNA. These findings establish a direct role for NC in mediating interactions with ESCRT necessary for virus release and report the first evidence of RNA involvement in such recruitments.
Collapse
|
148
|
Abstract
Multivesicular bodies (MVBs) are unique organelles in the endocytic pathway that contain vesicles in their lumen. Sorting and incorporation of material into such vesicles is a critical cellular process that has been intensely studied following discovery of the ESCRT (endosomal sorting complex required for transport) machinery just more than a decade ago. In this review, we summarize current understanding of the cellular functions of MVBs and how the ESCRT machinery contributes to MVB morphogenesis. We also highlight the importance of MVBs and ESCRTs in human health. We identify critical areas in which further mechanistic and spatiotemporal studies in living cells will advance this exciting area of research.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
149
|
Budding of Enveloped Viruses: Interferon-Induced ISG15-Antivirus Mechanisms Targeting the Release Process. Adv Virol 2012; 2012:532723. [PMID: 22666250 PMCID: PMC3362814 DOI: 10.1155/2012/532723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022] Open
Abstract
Pathogenic strains of viruses that infect humans are encapsulated in membranes derived from the host cell in which they infect. After replication, these viruses are released by a budding process that requires cell/viral membrane scission. As such, this represents a natural target for innate immunity mechanisms to interdict enveloped virus spread and recent advances in this field will be the subject of this paper.
Collapse
|
150
|
Mu R, Dussupt V, Jiang J, Sette P, Rudd V, Chuenchor W, Bello NF, Bouamr F, Xiao TS. Two distinct binding modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B. Structure 2012; 20:887-98. [PMID: 22484091 PMCID: PMC3350598 DOI: 10.1016/j.str.2012.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/18/2012] [Accepted: 03/11/2012] [Indexed: 01/07/2023]
Abstract
Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.
Collapse
Affiliation(s)
- Ruiling Mu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jiansheng Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Paola Sette
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victoria Rudd
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Watchalee Chuenchor
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Nana F. Bello
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Corresponding authors: Tsan Sam Xiao, PhD, Phone: 301 402 9782, Fax: 301 480 1291, . Fadila Bouamr, PhD, Phone: 301 496 4099, Fax: 301 402 0226,
| | - Tsan Sam Xiao
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
- Corresponding authors: Tsan Sam Xiao, PhD, Phone: 301 402 9782, Fax: 301 480 1291, . Fadila Bouamr, PhD, Phone: 301 496 4099, Fax: 301 402 0226,
| |
Collapse
|