101
|
Peng Y, Lu Z, Li G, Piechowicz M, Anderson M, Uddin Y, Wu J, Qiu S. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain. Mol Psychiatry 2016; 21:925-35. [PMID: 26728565 PMCID: PMC4914424 DOI: 10.1038/mp.2015.182] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.
Collapse
Affiliation(s)
- Yun Peng
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Zhongming Lu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Guohui Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| | - Mariel Piechowicz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Miranda Anderson
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Yasin Uddin
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Jie Wu
- Division of Neurology, Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| |
Collapse
|
102
|
Galazo MJ, Emsley JG, Macklis JD. Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity. Neuron 2016; 91:90-106. [PMID: 27321927 DOI: 10.1016/j.neuron.2016.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
103
|
Bailey J, Taylor K. Non-human Primates in Neuroscience Research: The Case against its Scientific Necessity. Altern Lab Anim 2016; 44:43-69. [DOI: 10.1177/026119291604400101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Public opposition to non-human primate (NHP) experiments is significant, yet those who defend them cite minimal harm to NHPs and substantial human benefit. Here we review these claims of benefit, specifically in neuroscience, and show that: a) there is a default assumption of their human relevance and benefit, rather than robust evidence; b) their human relevance and essential contribution and necessity are wholly overstated; c) the contribution and capacity of non-animal investigative methods are greatly understated; and d) confounding issues, such as species differences and the effects of stress and anaesthesia, are usually overlooked. This is the case in NHP research generally, but here we specifically focus on the development and interpretation of functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), the understanding of neural oscillations and memory, and investigation of the neural control of movement and of vision/binocular rivalry. The increasing power of human-specific methods, including advances in fMRI and invasive techniques such as electrocorticography and single-unit recordings, is discussed. These methods serve to render NHP approaches redundant. We conclude that the defence of NHP use is groundless, and that neuroscience would be more relevant and successful for humans, if it were conducted with a direct human focus. We have confidence in opposing NHP neuroscience, both on scientific as well as on ethical grounds.
Collapse
|
104
|
Mozzi A, Forni D, Clerici M, Pozzoli U, Mascheretti S, Guerini FR, Riva S, Bresolin N, Cagliani R, Sironi M. The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep 2016; 6:22157. [PMID: 26912479 PMCID: PMC4766443 DOI: 10.1038/srep22157] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20100 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | | | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
- Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
105
|
Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, Rieger MA, Huang HC, Rajkovich K, Loerwald KW, Dekker JD, Tucker HO, Dougherty JD, Gibson JR, Konopka G. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev 2016; 29:2081-96. [PMID: 26494785 PMCID: PMC4617974 DOI: 10.1101/gad.267989.115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, Araujo et al. demonstrate that Foxp1 plays a role in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity by identifying the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.
Collapse
Affiliation(s)
- Daniel J Araujo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wesley Runnels
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simon Ammanuel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael A Rieger
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hung-Chung Huang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Biology, Jackson State University, Jackson, Mississippi 39217, USA
| | - Kacey Rajkovich
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kristofer W Loerwald
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joseph D Dekker
- University of Texas at Austin, Section of Molecular Genetics and Microbiology, Austin, Texas 78712, USA
| | - Haley O Tucker
- University of Texas at Austin, Section of Molecular Genetics and Microbiology, Austin, Texas 78712, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jay R Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
106
|
Konopka G, Roberts TF. Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders. Biol Psychiatry 2016; 79:53-61. [PMID: 26232298 PMCID: PMC4666779 DOI: 10.1016/j.biopsych.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
Abstract
Disruptions in speech, language, and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language compared with vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. We review animal models of vocal learning and vocal communication and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language, and vocal communication.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas.
| | | |
Collapse
|
107
|
Silver DL. Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex. Bioessays 2015; 38:162-71. [PMID: 26642006 DOI: 10.1002/bies.201500108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cerebral cortex controls our most distinguishing higher cognitive functions. Human-specific gene expression differences are abundant in the cerebral cortex, yet we have only begun to understand how these variations impact brain function. This review discusses the current evidence linking non-coding regulatory DNA changes, including enhancers, with neocortical evolution. Functional interrogation using animal models reveals converging roles for our genome in key aspects of cortical development including progenitor cell cycle and neuronal signaling. New technologies, including iPS cells and organoids, offer potential alternatives to modeling evolutionary modifications in a relevant species context. Several diseases rooted in the cerebral cortex uniquely manifest in humans compared to other primates, thus highlighting the importance of understanding human brain differences. Future studies of regulatory loci, including those implicated in disease, will collectively help elucidate key cellular and genetic mechanisms underlying our distinguishing cognitive traits.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
108
|
van Rhijn JR, Vernes SC. Retinoic Acid Signaling: A New Piece in the Spoken Language Puzzle. Front Psychol 2015; 6:1816. [PMID: 26635706 PMCID: PMC4660430 DOI: 10.3389/fpsyg.2015.01816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/10/2015] [Indexed: 12/05/2022] Open
Abstract
Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech–motor output. Understanding the neuro-genetic mechanisms involved in the correct development and function of these pathways will shed light on how humans can effortlessly and innately use spoken language and help to elucidate what goes wrong in speech-language disorders. FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that includes receptive and expressive language impairments. The neuro-molecular mechanisms controlled by FOXP2 will give insight into our capacity for speech–motor control, but are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid (RA) signaling and to modify the cellular response to RA, a key regulator of brain development. Here we explore evidence that FOXP2 and RA function in overlapping pathways. We summate evidence at molecular, cellular, and behavioral levels that suggest an interplay between FOXP2 and RA that may be important for fine motor control and speech–motor output. We propose RA signaling is an exciting new angle from which to investigate how neuro-genetic mechanisms can contribute to the (spoken) language ready brain.
Collapse
Affiliation(s)
- Jon-Ruben van Rhijn
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Molecular Neurophysiology Group, Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Netherlands
| | - Sonja C Vernes
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| |
Collapse
|
109
|
Jamnikar U, Nikolic P, Belic A, Blas M, Gaser D, Francky A, Laux H, Blejec A, Baebler S, Gruden K. Transcriptome study and identification of potential marker genes related to the stable expression of recombinant proteins in CHO clones. BMC Biotechnol 2015; 15:98. [PMID: 26499110 PMCID: PMC4812793 DOI: 10.1186/s12896-015-0218-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells have become the host of choice for the production of recombinant proteins, due to their capacity for correct protein folding, assembly, and posttranslational modifications. The most widely used system for recombinant proteins is the gene amplification procedure that uses the CHO-Dhfr expression system. However, CHO cells are known to have a very unstable karyotype. This is due to chromosome rearrangements that can arise from translocations and homologous recombination, especially when cells with the CHO-Dhfr expression system are treated with methotrexate hydrate. The present method used in the industry for testing clones for their long-term stability of recombinant protein production is empirical, and it involves their cultivation over extended periods of time prior to the selection of the most suitable clone for further bioprocess development. The aim of the present study was the identification of marker genes that can predict stable expression of recombinant genes in particular clones early in the development stage. RESULTS The transcriptome profiles of CHO clones with stable and unstable recombinant protein production were investigated over 10-weeks of cultivation, using a DNA microarray. We identified 14 genes that were differentially expressed between the stable and unstable clones already at 2 weeks from the beginning of the cultivation. Their expression was validated by reverse-transcription quantitative real-time PCR (RT-qPCR). Furthermore, the k-nearest neighbour algorithm approach shows that the combination of the gene expression patterns of only five of these 14 genes is sufficient to predict stable recombinant protein production in clones in the early phases of cell-line development. CONCLUSIONS The exact molecular mechanisms that cause unstable recombinant protein production are not fully understood. However, the expression profiles of some genes in clones with stable and unstable recombinant protein production allow prediction of such instability early in the cell-line development stage. We have thus developed a proof-of-concept for a novel approach to eliminate unstable clones in the CHO-Dhfr expression system, which saves time and labour-intensive work in cell-line development.
Collapse
Affiliation(s)
- Uros Jamnikar
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Petra Nikolic
- Jozef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.
| | - Ales Belic
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Marjanca Blas
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Dominik Gaser
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Andrej Francky
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Holger Laux
- Novartis Pharma AG, WKL-681.1.08, 4002, Basel, Switzerland.
| | - Andrej Blejec
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Spela Baebler
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
110
|
Zhao Y, Liu X, Sun H, Wang Y, Yang W, Ma H. Contactin‑associated protein‑like 2 expression in SH‑SY5Y cells is upregulated by a FOXP2 mutant with a shortened poly‑glutamine tract. Mol Med Rep 2015; 12:8162-8. [PMID: 26497390 DOI: 10.3892/mmr.2015.4483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The forkhead box protein P2 (FOXP2) gene encodes an important transcription factor that contains a polyglutamine (poly‑Q) tract and a forkhead DNA binding domain. It has been observed that FOXP2 is associated with speech sound disorder (SSD), and mutations that decrease the length of the poly‑Q tract were identified in the FOXP2 gene of SSD patients. However, the exact role of poly‑Q reduction is not well understood. In the present study, constructs expressing wild‑type and poly‑Q reduction mutants of FOXP2 were generated by polymerase chain reaction (PCR) using lentiviral vectors and transfected into the SH‑SY5Y neuronal cell line. Quantitative reverse transcription (qRT)‑PCR and western blotting indicated that infected cells stably expressed high levels of FOXP2. Using this cell model, the impact of FOXP2 on the expression of contactin‑associated protein‑like 2 (CNTNAP2) were investigated, and CNTNAP2 mRNA expression levels were observed to be significantly higher in cells expressing poly‑Q‑reduced FOXP2. In addition, the expression level of CASPR2, a mammalian homolog of Drosophila Neurexin IV, was increased in cells expressing the FOXP2 mutant. Demonstration of regulation by FOXP2 indicates that CNTNAP2 may also be involved in SSD.
Collapse
Affiliation(s)
- Yunjing Zhao
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Sun
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yueping Wang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wenzhu Yang
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Ma
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
111
|
Turesson HK, Ribeiro S. Can vocal conditioning trigger a semiotic ratchet in marmosets? Front Psychol 2015; 6:1519. [PMID: 26500583 PMCID: PMC4596241 DOI: 10.3389/fpsyg.2015.01519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 12/04/2022] Open
Abstract
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.
Collapse
Affiliation(s)
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
112
|
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development 2015; 142:3100-12. [DOI: 10.1242/dev.120048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and non-human – that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
113
|
Boeckx C, Benítez-Burraco A. Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci 2015; 9:291. [PMID: 26283924 PMCID: PMC4516893 DOI: 10.3389/fncel.2015.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research Barcelona, Spain ; Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
114
|
Shin YJ, Jeon YJ, Jung N, Park JW, Park HY, Jung SC. Substrate-specific gene expression profiles in different kidney cell types are associated with Fabry disease. Mol Med Rep 2015; 12:5049-57. [PMID: 26135632 PMCID: PMC4581816 DOI: 10.3892/mmr.2015.4010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/28/2015] [Indexed: 12/26/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding the α-galactosidase A (α-Gal A) lysosomal enzyme, which results in globotriaosylceramide (Gb3) storage in vascular endothelial cells and different cell types throughout the body. Involvement of the kidney and heart is life threatening, and fibrosis of these organs is considered to be involved in the pathogenesis of Fabry disease. An increased concentration of deacylated Gb3 (lyso‑Gb3) in the plasma of symptomatic patients has also been suggested as a causative molecular event. To elucidate the molecular mechanisms involved in renal fibrosis in Fabry disease, the present analyzed the changes in global gene expression prior to and following Gb3 or lyso‑Gb3 treatment in two types of kidney cell lines, human proximal renal tubular epithelial (HK‑2) and mouse renal glomerular mesangial (SV40 MES 13) cells. Gb3 and lyso‑Gb3 treatment regulated the expression of 199 and 328 genes in each cell type, demonstrating a >2.0‑fold change. The majority of the biological functions of the regulated genes were associated with fibrogenesis or epithelial‑mesenchymal transition (EMT). The gene expression patterns of sphingolipid‑treated HK‑2 cells were distinguishable from the patterns in the SV40 MES 13 cells. Several genes associated with the EMT were selected and evaluated further in kidney cells and in Fabry mouse kidney tissues. In the SV40 MES 13 cells, the DLL1, F8, and HOXA11 genes were downregulated, and FOXP2 was upregulated by treatment with Gb3 or lyso‑Gb3. In the HK‑2 cells, the ADAMTS6, BEST1, IL4, and MYH11 genes were upregulated. Upregulation of the FOXP2, COL15A1, IL4, and MYH11 genes was also observed in the Fabry mouse kidney tissues. The gene expression profiles in kidney cells following the addition of Gb3 or lyso‑Gb3 revealed substrate‑specific and cell‑specific patterns. These findings suggested that Gb3 and lyso‑Gb3 lead to renal fibrosis in Fabry disease through different biochemical modulations.
Collapse
Affiliation(s)
- Youn-Jeong Shin
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Yeo Jin Jeon
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Namhee Jung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Hae-Young Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158‑710, Republic of Korea
| |
Collapse
|
115
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
116
|
Chakraborty M, Walløe S, Nedergaard S, Fridel EE, Dabelsteen T, Pakkenberg B, Bertelsen MF, Dorrestein GM, Brauth SE, Durand SE, Jarvis ED. Core and Shell Song Systems Unique to the Parrot Brain. PLoS One 2015; 10:e0118496. [PMID: 26107173 PMCID: PMC4479475 DOI: 10.1371/journal.pone.0118496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Solveig Walløe
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Signe Nedergaard
- Danish National Police, National Centre of Forensic Services, Vanloese, Denmark
| | - Emma E. Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
| | - Torben Dabelsteen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Gerry M. Dorrestein
- Dutch Research Institute of Avian and Exotic Animals, Veldhoven, The Netherlands
| | - Steven E. Brauth
- University of Maryland, College Park, MA, United States of America
| | - Sarah E. Durand
- LaGuardia Community College, New York, NY, United States of America
| | - Erich D. Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
117
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
118
|
Balari S, Lorenzo G. It is an organ, it is new, but it is not a new organ. Conceptualizing language from a homological perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
119
|
Gascoyne DM, Spearman H, Lyne L, Puliyadi R, Perez-Alcantara M, Coulton L, Fisher SE, Croucher PI, Banham AH. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest. PLoS One 2015; 10:e0128513. [PMID: 26034982 PMCID: PMC4452790 DOI: 10.1371/journal.pone.0128513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.
Collapse
Affiliation(s)
- Duncan M. Gascoyne
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU United Kingdom
| | - Hayley Spearman
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU United Kingdom
| | - Linden Lyne
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU United Kingdom
| | - Rathi Puliyadi
- Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN United Kingdom
| | - Marta Perez-Alcantara
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU United Kingdom
| | - Les Coulton
- Academic Unit of Bone Biology, Dept of Human Metabolism, University of Sheffield, Sheffield, S10 2RX United Kingdom
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU United Kingdom
- * E-mail:
| |
Collapse
|
120
|
Abstract
The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Byoung-Il Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
121
|
Wang R, Chen CC, Hara E, Rivas MV, Roulhac PL, Howard JT, Chakraborty M, Audet JN, Jarvis ED. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J Comp Neurol 2015; 523:892-906. [PMID: 25424606 PMCID: PMC4329046 DOI: 10.1002/cne.23719] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
Abstract
Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
- Computational Biology and Bioinformatics Program, Institute for Genome Science and Policy, Duke UniversityDurham, North Carolina, 27710
- Beijing Prosperous BiopharmBeijing, 100085, China
| | - Chun-Chun Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| | - Erina Hara
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| | - Miriam V Rivas
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
- Research Service, Veterans Affairs Medical CenterDurham North Carolina, 27710
| | - Petra L Roulhac
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| | - Mukta Chakraborty
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| | - Jean-Nicolas Audet
- Department of Biology, McGill UniversityMontreal, Quebec, H3A 1B1, Canada
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical CenterDurham, North Carolina, 27710
| |
Collapse
|
122
|
Mendoza E, Tokarev K, Düring DN, Retamosa EC, Weiss M, Arpenik N, Scharff C. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol 2015; 523:1318-40. [PMID: 25556631 DOI: 10.1002/cne.23731] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/07/2022]
Abstract
Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
123
|
Winden KD, Bragin A, Engel J, Geschwind DH. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy. Neurobiol Dis 2015; 78:35-44. [PMID: 25818007 DOI: 10.1016/j.nbd.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
The molecular basis of epileptogenesis is poorly characterized. Studies in humans and animal models have identified an electrophysiological signature that precedes the onset of epilepsy, which has been termed fast ripples (FRs) based on its frequency. Multiple lines of evidence implicate regions generating FRs in epileptogenesis, and FRs appear to demarcate the seizure onset zone, suggesting a role in ictogenesis as well. We performed gene expression analysis comparing areas of the dentate gyrus that generate FRs to those that do not generate FRs in a well-characterized rat model of epilepsy. We identified a small cohort of genes that are differentially expressed in FR versus non-FR brain tissue and used quantitative PCR to validate some of those that modulate neuronal excitability. Gene expression network analysis demonstrated conservation of gene co-expression between non-FR and FR samples, but examination of gene connectivity revealed changes that were most pronounced in the cm-40 module, which contains several genes associated with synaptic function and the differentially expressed genes Kcna4, Kcnv1, and Npy1r that are down-regulated in FRs. We then demonstrate that the genes within the cm-40 module are regulated by seizure activity and enriched for the targets of the RNA binding protein Elavl4. Our data suggest that seizure activity induces co-expression of genes associated with synaptic transmission and that this pattern is attenuated in areas displaying FRs, implicating the failure of this mechanism in the generation of FRs.
Collapse
Affiliation(s)
- Kellen D Winden
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dan H Geschwind
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
124
|
|
125
|
Farkas MH, Au ED, Sousa ME, Pierce EA. RNA-Seq: Improving Our Understanding of Retinal Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a017152. [PMID: 25722474 PMCID: PMC4561396 DOI: 10.1101/cshperspect.a017152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past several years, rapid technological advances have allowed for a dramatic increase in our knowledge and understanding of the transcriptional landscape, because of the ability to study gene expression in greater depth and with more detail than previously possible. To this end, RNA-Seq has quickly become one of the most widely used methods for studying transcriptomes of tissues and individual cells. Unlike previously favored analysis methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq derived transcriptomes provide a basis for widening the scope of research to identify potential targets in the treatment of retinal disease.
Collapse
Affiliation(s)
- Michael H Farkas
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Elizabeth D Au
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Maria E Sousa
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
126
|
Abstract
In response to an Essay by Johan Bolhuis and co-authors, Phillip Lieberman contends that rather than arising from a key recent innovation ("merge"), language arose by gradual evolution of ancient capabilities.
Collapse
Affiliation(s)
- Philip Lieberman
- Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
127
|
Insights into the genetic foundations of human communication. Neuropsychol Rev 2015; 25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Collapse
|
128
|
Nord AS, Pattabiraman K, Visel A, Rubenstein JLR. Genomic perspectives of transcriptional regulation in forebrain development. Neuron 2015; 85:27-47. [PMID: 25569346 PMCID: PMC4438709 DOI: 10.1016/j.neuron.2014.11.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain.
Collapse
Affiliation(s)
- Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | - Kartik Pattabiraman
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - John L R Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| |
Collapse
|
129
|
Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, Mouncastle J, Moseley MA, Thompson JW, Soderblom EJ, Iriki A, Kato M, Gilbert MTP, Zhang G, Bakken T, Bongaarts A, Bernard A, Lein E, Mello CV, Hartemink AJ, Jarvis ED. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 2014; 346:1256846. [PMID: 25504733 DOI: 10.1126/science.1256846] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.
Collapse
Affiliation(s)
- Andreas R Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| | - Erina Hara
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam V Rivas
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Petra L Roulhac
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ganeshkumar Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jacquelyn Mouncastle
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Kato
- Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Trygve Bakken
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | | | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
130
|
The sound of one hand clapping: overdetermination and the pansensory nature of communication. Behav Brain Sci 2014; 37:546-7; discussion 577-604. [PMID: 25514936 DOI: 10.1017/s0140525x13003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two substantive issues are relevant to discussions of the evolution of acoustic communication and merit further consideration here. The first is the importance of communicative ontogeny and the impact of the proximal social environment on the early development of communication and language. The second is the emerging evidence for a number of non-linguistic roles of FOXP2 and its orthologs.
Collapse
|
131
|
Benítez-Burraco A, Boeckx C. FOXP2, retinoic acid, and language: a promising direction. Front Cell Neurosci 2014; 8:387. [PMID: 25431551 PMCID: PMC4230053 DOI: 10.3389/fncel.2014.00387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/30/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
132
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
133
|
Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC, Bhasin MK, Raimo M, Hanson SE, Marusyk A, El-Ashry D, Hematti P, Polyak K, Mechta-Grigoriou F, Mariani O, Volinia S, Vincent-Salomon A, Taverna D, Karnoub AE. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 2014; 15:762-74. [PMID: 25515522 DOI: 10.1016/j.stem.2014.10.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/27/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular responses of breast cancer cells (BCCs) to MSC influences remain incompletely understood. Here, we show that MSCs cause aberrant expression of microRNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties. We demonstrate that such MSC-deregulated microRNAs constitute a network that converges on and represses the expression of FOXP2, a forkhead transcription factor tightly associated with speech and language development. FOXP2 knockdown in BCCs was sufficient in promoting CSC propagation, tumor initiation, and metastasis. Importantly, elevated microRNA-199a and depressed FOXP2 expression levels are prominent features of malignant clinical breast cancer and are associated significantly with poor survival. Our results identify molecular determinants of cancer progression of potential utility in the prognosis and therapy of breast cancer.
Collapse
Affiliation(s)
- Benjamin G Cuiffo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antoine Campagne
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Institut Curie, 75248 Paris Cedex 05, France
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Antonio Lembo
- Department of Molecular Biotechnology and Health Sciences, University of Turin and MBC, 10126 Torino, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Turin and MBC, 10126 Torino, Italy
| | - Evan C Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Monica Raimo
- Department of Molecular Biotechnology and Health Sciences, University of Turin and MBC, 10126 Torino, Italy
| | - Summer E Hanson
- Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53792, USA
| | - Andriy Marusyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dorraya El-Ashry
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peiman Hematti
- Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, Human Anatomy Branch, University of Ferrara, 44121 Ferrara, Italy
| | | | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin and MBC, 10126 Torino, Italy
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
134
|
Fu L, Shi Z, Luo G, Tu W, Wang X, Fang Z, Li X. Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3' untranslated region. Mol Brain 2014; 7:71. [PMID: 25269856 PMCID: PMC4189591 DOI: 10.1186/s13041-014-0071-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/18/2014] [Indexed: 01/11/2023] Open
Abstract
Background Mutations in the human FOXP2 gene cause speech and language impairments. The FOXP2 protein is a transcription factor that regulates the expression of many downstream genes, which may have important roles in nervous system development and function. An adequate amount of functional FOXP2 protein is thought to be critical for the proper development of the neural circuitry underlying speech and language. However, how FOXP2 gene expression is regulated is not clearly understood. The FOXP2 mRNA has an approximately 4-kb-long 3′ untranslated region (3′ UTR), twice as long as its protein coding region, indicating that FOXP2 can be regulated by microRNAs (miRNAs). Findings We identified multiple miRNAs that regulate the expression of the human FOXP2 gene using sequence analysis and in vitro cell systems. Focusing on let-7a, miR-9, and miR-129-5p, three brain-enriched miRNAs, we show that these miRNAs regulate human FOXP2 expression in a dosage-dependent manner and target specific sequences in the FOXP2 3′ UTR. We further show that these three miRNAs are expressed in the cerebellum of the human fetal brain, where FOXP2 is known to be expressed. Conclusions Our results reveal novel regulatory functions of the human FOXP2 3′ UTR sequence and regulatory interactions between multiple miRNAs and the human FOXP2 gene. The expression of let-7a, miR-9, and miR-129-5p in the human fetal cerebellum is consistent with their roles in regulating FOXP2 expression during early cerebellum development. These results suggest that various genetic and environmental factors may contribute to speech and language development and related neural developmental disorders via the miRNA-FOXP2 regulatory network. Electronic supplementary material The online version of this article (doi:10.1186/s13041-014-0071-0) contains supplementary material, which is available to authorized users.
Collapse
|
135
|
Usui N, Co M, Konopka G. Decoding the molecular evolution of human cognition using comparative genomics. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:103-16. [PMID: 25247723 DOI: 10.1159/000365182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia and Alzheimer's disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene coexpression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance of and methods for functional studies of the individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Tex., USA
| | | | | |
Collapse
|
136
|
Perdomo-Sabogal A, Kanton S, Walter MBC, Nowick K. The role of gene regulatory factors in the evolutionary history of humans. Curr Opin Genet Dev 2014; 29:60-7. [PMID: 25215414 DOI: 10.1016/j.gde.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Sabina Kanton
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Maria Beatriz C Walter
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Katja Nowick
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
137
|
Fontenot M, Konopka G. Molecular networks and the evolution of human cognitive specializations. Curr Opin Genet Dev 2014; 29:52-9. [PMID: 25212263 DOI: 10.1016/j.gde.2014.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 12/25/2022]
Abstract
Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases.
Collapse
Affiliation(s)
- Miles Fontenot
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
138
|
Wohlgemuth S, Adam I, Scharff C. FoxP2 in songbirds. Curr Opin Neurobiol 2014; 28:86-93. [PMID: 25048597 DOI: 10.1016/j.conb.2014.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Humans with mutations in the transcription factor FOXP2 display a severe speech disorder. Songbirds are a powerful model system to study FoxP2. Like humans, songbirds communicate via vocalizations that are imitatively learned during critical periods and this learning is influenced by social factors and relies on functionally lateralized neural circuits. During the past five years significant progress has been made moving from a descriptive to a more mechanistic understanding of how FoxP2 functions in songbirds. Current evidence from molecular and electrophysiological studies indicates that FoxP2 is important for shaping synaptic plasticity of specific neuron populations. One future goal will be to identify the transcriptional regulation orchestrated by FoxP2 and its associated molecular network that brings about these physiological effects. This will be key to further unravel how FoxP2 influences synaptic function and thereby contributes to auditory guided vocal motor behavior in the songbird model.
Collapse
Affiliation(s)
- Sandra Wohlgemuth
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Iris Adam
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Constance Scharff
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| |
Collapse
|
139
|
French CA, Fisher SE. What can mice tell us about Foxp2 function? Curr Opin Neurobiol 2014; 28:72-9. [PMID: 25048596 DOI: 10.1016/j.conb.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
Collapse
Affiliation(s)
- Catherine A French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
140
|
Transcriptional Regulation by FOXP1, FOXP2, and FOXP4 Dimerization. J Mol Neurosci 2014; 55:437-48. [DOI: 10.1007/s12031-014-0359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
141
|
Mendoza E, Colomb J, Rybak J, Pflüger HJ, Zars T, Scharff C, Brembs B. Drosophila FoxP mutants are deficient in operant self-learning. PLoS One 2014; 9:e100648. [PMID: 24964149 PMCID: PMC4070984 DOI: 10.1371/journal.pone.0100648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Intact function of the Forkhead Box P2 (FOXP2) gene is necessary for normal development of speech and language. This important role has recently been extended, first to other forms of vocal learning in animals and then also to other forms of motor learning. The homology in structure and in function among the FoxP gene members raises the possibility that the ancestral FoxP gene may have evolved as a crucial component of the neural circuitry mediating motor learning. Here we report that genetic manipulations of the single Drosophila orthologue, dFoxP, disrupt operant self-learning, a form of motor learning sharing several conceptually analogous features with language acquisition. Structural alterations of the dFoxP locus uncovered the role of dFoxP in operant self-learning and habit formation, as well as the dispensability of dFoxP for operant world-learning, in which no motor learning occurs. These manipulations also led to subtle alterations in the brain anatomy, including a reduced volume of the optic glomeruli. RNAi-mediated interference with dFoxP expression levels copied the behavioral phenotype of the mutant flies, even in the absence of mRNA degradation. Our results provide evidence that motor learning and language acquisition share a common ancestral trait still present in extant invertebrates, manifest in operant self-learning. This 'deep' homology probably traces back to before the split between vertebrate and invertebrate animals.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Rybak
- Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Troy Zars
- Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Constance Scharff
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Björn Brembs
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
142
|
Nitric oxide signaling in the development and evolution of language and cognitive circuits. Neurosci Res 2014; 86:77-87. [PMID: 24933499 DOI: 10.1016/j.neures.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
Abstract
The neocortex underlies not only remarkable motor and sensory capabilities, but also some of our most distinctly human cognitive functions. The emergence of these higher functions during evolution was accompanied by structural changes in the neocortex, including the acquisition of areal specializations such as Broca's speech and language area. The study of these evolutionary mechanisms, which likely involve species-dependent gene expression and function, represents a substantial challenge. These species differences, however, may represent valuable opportunities to understand the molecular underpinnings of neocortical evolution. Here, we discuss nitric oxide signaling as a candidate mechanism in the assembly of neocortical circuits underlying language and higher cognitive functions. This hypothesis was based on the highly specific mid-fetal pattern of nitric oxide synthase 1 (NOS1, previously nNOS) expression in the pyramidal (projection) neurons of two human neocortical areas respectively involved in speech and language, and higher cognition; the frontal operculum (FOp) and the anterior cingulate cortex (ACC). This expression is transiently present during mid-gestation, suggesting that NOS1 may be involved in the development of these areas and the assembly of their neural circuits. As no other gene product is known to exhibit such exquisite spatiotemporal expression, NOS1 represents a remarkable candidate for these functions.
Collapse
|
143
|
DasGupta S, Ferreira CH, Miesenböck G. FoxP influences the speed and accuracy of a perceptual decision in Drosophila. Science 2014; 344:901-4. [PMID: 24855268 PMCID: PMC4206523 DOI: 10.1126/science.1252114] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNA interference with FoxP expression in αβ core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision toward commitment.
Collapse
Affiliation(s)
- Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Clara Howcroft Ferreira
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK.
| |
Collapse
|
144
|
Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, Mulligan CK, Sioshansi PC, Zhu C, Coppola G, Bordet T, Pruss RM, Chesselet MF. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014; 69:263-75. [PMID: 24844147 DOI: 10.1016/j.nbd.2014.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Vera Medvedeva
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Patrick Lee
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Nicholas Bove
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sheila M Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Magali Michaud
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Vincent Lemesre
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Stefano Patassini
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Krystal De La Rosa
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Caitlin K Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Pedrom C Sioshansi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Chunni Zhu
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Giovanni Coppola
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Thierry Bordet
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Marie-Françoise Chesselet
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
145
|
Chiu YC, Li MY, Liu YH, Ding JY, Yu JY, Wang TW. Foxp2 regulates neuronal differentiation and neuronal subtype specification. Dev Neurobiol 2014; 74:723-38. [PMID: 24453072 DOI: 10.1002/dneu.22166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/31/2022]
Abstract
Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain.
Collapse
Affiliation(s)
- Yi-Chi Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | | | | | | | | | | |
Collapse
|
146
|
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19:141-3. [PMID: 24457522 PMCID: PMC4238281 DOI: 10.1038/mp.2013.160] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
147
|
|
148
|
Linton DL, Pangle WM, Wyatt KH, Powell KN, Sherwood RE. Identifying key features of effective active learning: the effects of writing and peer discussion. CBE LIFE SCIENCES EDUCATION 2014; 13:469-77. [PMID: 25185230 PMCID: PMC4152208 DOI: 10.1187/cbe.13-12-0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigated some of the key features of effective active learning by comparing the outcomes of three different methods of implementing active-learning exercises in a majors introductory biology course. Students completed activities in one of three treatments: discussion, writing, and discussion + writing. Treatments were rotated weekly between three sections taught by three different instructors in a full factorial design. The data set was analyzed by generalized linear mixed-effect models with three independent variables: student aptitude, treatment, and instructor, and three dependent (assessment) variables: change in score on pre- and postactivity clicker questions, and coding scores on in-class writing and exam essays. All independent variables had significant effects on student performance for at least one of the dependent variables. Students with higher aptitude scored higher on all assessments. Student scores were higher on exam essay questions when the activity was implemented with a writing component compared with peer discussion only. There was a significant effect of instructor, with instructors showing different degrees of effectiveness with active-learning techniques. We suggest that individual writing should be implemented as part of active learning whenever possible and that instructors may need training and practice to become effective with active learning.
Collapse
Affiliation(s)
- Debra L Linton
- *Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Wiline M Pangle
- *Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Kevin H Wyatt
- Department of Biology, Ball State University, Muncie, IN 47306
| | - Karli N Powell
- Mathematics Department, Linden High School, Linden, MI 48451
| | | |
Collapse
|
149
|
Abstract
To understand the emergence of human higher cognition, we must understand its biological substrate--the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
150
|
Prilutsky D, Palmer NP, Smedemark-Margulies N, Schlaeger TM, Margulies DM, Kohane IS. iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends Mol Med 2013; 20:91-104. [PMID: 24374161 DOI: 10.1016/j.molmed.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
The elucidation of disease etiologies and establishment of robust, scalable, high-throughput screening assays for autism spectrum disorders (ASDs) have been impeded by both inaccessibility of disease-relevant neuronal tissue and the genetic heterogeneity of the disorder. Neuronal cells derived from induced pluripotent stem cells (iPSCs) from autism patients may circumvent these obstacles and serve as relevant cell models. To date, derived cells are characterized and screened by assessing their neuronal phenotypes. These characterizations are often etiology-specific or lack reproducibility and stability. In this review, we present an overview of efforts to study iPSC-derived neurons as a model for autism, and we explore the plausibility of gene expression profiling as a reproducible and stable disease marker.
Collapse
Affiliation(s)
- Daria Prilutsky
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan P Palmer
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - David M Margulies
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Developmental Medicine, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|