101
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
102
|
Andreani G, Carrà G, Lingua MF, Maffeo B, Brancaccio M, Taulli R, Morotti A. Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets. Cancers (Basel) 2020; 12:cancers12030629. [PMID: 32182763 PMCID: PMC7139490 DOI: 10.3390/cancers12030629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (M.F.L.); (R.T.)
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
- Correspondence: ; Tel.: +39-011-9026305
| |
Collapse
|
103
|
Fang R, Pan R, Wang X, Liang Y, Wang X, Ma H, Zhou X, Xia Q, Rao Q. Inactivation of BRM/SMARCA2 sensitizes clear cell renal cell carcinoma to histone deacetylase complex inhibitors. Pathol Res Pract 2020; 216:152867. [PMID: 32067803 DOI: 10.1016/j.prp.2020.152867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/12/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
BRM, a key subunit of the SWI/SNF chromatin remodeling complex, is an important tumor suppressor gene in multiple tumors. BRM is not mutated, but rather epigenetically silenced in a variety of tumor types, which is different from many anti-cancer genes. In addition, histone deacetylase complex (HDAC) inhibitors are known to reverse BRM silencing, but they also inactivate it via acetylation of its c-terminus. HDAC inhibitors have been reported to be effective at pharmacologically restoring BRM and thereby inhibiting cancer cell growth. But we do not know which HDAC inhibitor, if any, regulate BRM in clear cell renal cell carcinoma (RCC). By using seven types of HDAC inhibitors, we found that Pan-HDAC inhibitors restored BRM protein expression. Despite their ability to restore BRM expression, these HDAC inhibitors also blocked BRM function when present. However, after their removal, we observed that BRM expression remained elevated for several days, and during this period, BRM activity was detected. In addition, HDAC3 and HDAC9 regulate BRM expression and function, especially for HDAC3 inhibitor, RGFP966. Our study demonstrated that knockdown of BRM promoted RCC cells proliferation, migration and invasion. RGFP966 inhibited the tumor progression of clear cell RCC by restoring BRM expression both in vivo and in vitro. In conclusion, HDAC3 is potential targets for clinical treatment, and our study provides a new approach for targeted therapy of BRM-negative clear cell RCC.
Collapse
Affiliation(s)
- Ru Fang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Rui Pan
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xiaotong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Yan Liang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Henghui Ma
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xiaojun Zhou
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Qiuyuan Xia
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
104
|
Yoshihara M, Oguchi A, Murakawa Y. Genomic Instability of iPSCs and Challenges in Their Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:23-47. [PMID: 31898780 DOI: 10.1007/978-3-030-31206-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of human-induced pluripotent stem cells (iPSCs) from somatic cells has opened the possibility to design novel therapeutic approaches. In 2014, the first-in-human clinical trial of iPSC-based therapy was conducted. However, the transplantation for the second patient was discontinued at least in part due to genetic aberrations detected in iPSCs. Moreover, many studies have reported genetic aberrations in iPSCs with the rapid progress in genomic technologies. The presence of genomic instability raises serious safety concerns and can hamper the advancement of iPSC-based therapies. Here, we summarize our current knowledge on genomic instability of iPSCs and challenges in their clinical applications. In view of the recent expansion of stem cell therapies, it is crucial to gain deeper mechanistic insights into the genetic aberrations, ranging from chromosomal aberrations, copy number variations to point mutations. On the basis of their origin, these genetic aberrations in iPSCs can be classified as (i) preexisting mutations in parental somatic cells, (ii) reprogramming-induced mutations, and (iii) mutations that arise during in vitro culture. However, it is still unknown whether these genetic aberrations in iPSCs can be an actual risk factor for adverse effects. Intersection of the genomic data on iPSCs with the patients' clinical follow-up data will help to produce evidence-based criteria for clinical application. Furthermore, we discuss novel approaches to generate iPSCs with fewer genetic aberrations. Better understanding of iPSCs from both basic and clinical aspects will pave the way for iPSC-based therapies.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
105
|
Lee YR, Pandolfi PP. PTEN Mouse Models of Cancer Initiation and Progression. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037283. [PMID: 31570383 DOI: 10.1101/cshperspect.a037283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is one of the most frequently mutated, deleted, and functionally inactivated tumor suppressor genes in human cancer. PTEN is found mutated both somatically and in the germline of patients with PTEN hamartoma tumor syndrome (PHTS). PTEN encodes a dual lipid and protein phosphatase that dephosphorylates the lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), in turn negatively regulating the oncogenic PI3K-AKT pathway, a key proto-oncogenic player in cancer development and progression. Because of importance of PTEN in tumorigenesis, a large number of sophisticated genetically engineered mouse models (GEMMs) has been designed to elucidate the underlying mechanisms by which the "PTEN pathway" promotes tumorigenesis, while simultaneously providing a well-tailored system for the identification of novel therapies and offering platforms for new drug discoveries. This review summarizes the major cancer mouse models through which the PTEN pathway has been genetically deconstructed, and outlines the rapid development of GEMMs toward more detailed functional and tissue-specific analysis.
Collapse
Affiliation(s)
- Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
106
|
Roquid KAR, Alcantara KMM, Garcia RL. Identification and validation of mRNA 3'untranslated regions of DNMT3B and TET3 as novel competing endogenous RNAs of the tumor suppressor PTEN. Int J Oncol 2020; 56:544-558. [PMID: 31894272 PMCID: PMC6959461 DOI: 10.3892/ijo.2019.4947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN inactivation is a frequent event in oncogenesis. Multiple regulatory mechanisms such as promoter hypermethylation, antisense regulation, histone modifications, targeting by microRNAs (miRNAs/miRs) and regulation by transcription factors have all been shown to affect the tumor suppressor functions of PTEN. More recently, the functional involvement of competing endogenous RNAs (ceRNAs) in miRNA‑dependent and coding‑independent regulation of genes shed light on the highly nuanced control of PTEN expression. The present study has identified and validated DNA methyltransferase 3β (DNMT3B) and TET methylcytosine dioxygenase 3 (TET3) as novel ceRNAs of PTEN, with which they share multiple miRNAs, in HCT116 colorectal cancer cells. miR‑4465 was identified and characterized as a miRNA that directly targets and regulates all 3 transcripts via their 3'untranslated regions (3'UTRs) through a combination of luciferase reporter assays, abrogation of miRNA response elements (MREs) via site‑directed mutagenesis, target protection of MREs with locked nucleic acids, RT‑qPCR assays and western blot analysis. Competitive miRNA sequestration was demonstrated upon reciprocal 3'UTR overexpression and siRNA‑mediated knockdown of their respective transcripts. Overexpression of DNMT3B or TET3 3'UTR promoted apoptosis and decreased migratory capacity, potentially because of shared miRNA sequestration and subsequent activation of PTEN expression. Knockdown of TET3 and DNMT3B decoupled their protein‑coding from miRNA‑dependent, coding‑independent functions. Furthermore, the findings suggested that the phenotypic outcome of ceRNAs is dictated largely by the number of shared miRNAs, and predictably, by the existence of other ceRNA networks in which they participate. Taken together, the findings of the present study identified DNMT3B and TET3 as novel ceRNAs of PTEN that may impact its dose‑sensitive tumor suppressive function.
Collapse
Affiliation(s)
- Kenneth Anthony R. Roquid
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Hesse, Germany
| | - Krizelle Mae M. Alcantara
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| |
Collapse
|
107
|
Clayton EA, Khalid S, Ban D, Wang L, Jordan IK, McDonald JF. Tumor suppressor genes and allele-specific expression: mechanisms and significance. Oncotarget 2020; 11:462-479. [PMID: 32064050 PMCID: PMC6996918 DOI: 10.18632/oncotarget.27468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Recent findings indicate that allele-specific expression (ASE) at specific cancer driver gene loci may be of importance in onset/progression of the disease. Of particular interest are loss-of-function (LOF) of tumor suppressor gene (TSGs) alleles. While LOF tumor suppressor mutations are typically considered to be recessive, if these mutant alleles can be significantly differentially expressed relative to wild-type alleles in heterozygotes, the clinical consequences could be significant. LOF TSG alleles are shown to be segregating at high frequencies in world-wide populations of normal/healthy individuals. Matched sets of normal and tumor tissues isolated from 233 cancer patients representing four diverse tumor types demonstrate functionally important changes in patterns of ASE in individuals heterozygous for LOF TSG alleles associated with cancer onset/progression. While a variety of molecular mechanisms were identified as potentially contributing to changes in ASE patterns in cancer, changes in DNA copy number and allele-specific alternative splicing possibly mediated by antisense RNA emerged as predominant factors. In conclusion, LOF TSGs are segregating in human populations at significant frequencies indicating that many otherwise healthy individuals are at elevated risk of developing cancer. Changes in ASE between normal and cancer tissues indicates that LOF TSG alleles may contribute to cancer onset/progression even when heterozygous with wild-type functional alleles.
Collapse
Affiliation(s)
- Evan A. Clayton
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shareef Khalid
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dongjo Ban
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
| | - I. King Jordan
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - John F. McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
108
|
Heudobler D, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Gerner C, Pantziarka P, Ghibelli L, Reichle A. Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue-Going Beyond Apoptosis Induction. Front Oncol 2019; 9:1408. [PMID: 31921665 PMCID: PMC6934003 DOI: 10.3389/fonc.2019.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
The current approach to systemic therapy for metastatic cancer is aimed predominantly at inducing apoptosis of cancer cells by blocking tumor-promoting signaling pathways or by eradicating cell compartments within the tumor. In contrast, a systems view of therapy primarily considers the communication protocols that exist at multiple levels within the tumor complex, and the role of key regulators of such systems. Such regulators may have far-reaching influence on tumor response to therapy and therefore patient survival. This implies that neoplasia may be considered as a cell non-autonomous disease. The multi-scale activity ranges from intra-tumor cell compartments, to the tumor, to the tumor-harboring organ to the organism. In contrast to molecularly targeted therapies, a systems approach that identifies the complex communications networks driving tumor growth offers the prospect of disrupting or "normalizing" such aberrant communicative behaviors and therefore attenuating tumor growth. Communicative reprogramming, a treatment strategy referred to as anakoinosis, requires novel therapeutic instruments, so-called master modifiers to deliver concerted tumor growth-attenuating action. The diversity of biological outcomes following pro-anakoinotic tumor therapy, such as differentiation, trans-differentiation, control of tumor-associated inflammation, etc. demonstrates that long-term tumor control may occur in multiple forms, inducing even continuous complete remission. Accordingly, pro-anakoinotic therapies dramatically extend the repertoire for achieving tumor control and may activate apoptosis pathways for controlling resistant metastatic tumor disease and hematologic neoplasia.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Department Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
109
|
Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, Chen H, Ishikawa T, Chiang SY, Katon J, Zhang Y, Shulga YV, Bester AC, Fung J, Monteleone E, Wan L, Shen C, Hsu CH, Papa A, Clohessy JG, Teruya-Feldstein J, Jain S, Wu H, Matesic L, Chen RH, Wei W, Pandolfi PP. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019; 364:364/6441/eaau0159. [PMID: 31097636 DOI: 10.1126/science.aau0159] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/30/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Activation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.
Collapse
Affiliation(s)
- Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hao Chen
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoki Ishikawa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shang-Yin Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jesse Katon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Zhang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yulia V Shulga
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Assaf C Bester
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emanuele Monteleone
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Molecular Biotechnology and Health Sciences, and GenoBiToUS, Genomics and Bioinformatics Service, University of Turin, Turin, Italy
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Chih-Hung Hsu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Julie Teruya-Feldstein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad, India
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Lydia Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
110
|
De P, Dey N. Mutation-Driven Signals of ARID1A and PI3K Pathways in Ovarian Carcinomas: Alteration Is An Opportunity. Int J Mol Sci 2019; 20:ijms20225732. [PMID: 31731647 PMCID: PMC6888220 DOI: 10.3390/ijms20225732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
The chromosome is a functionally dynamic structure. The dynamic nature of chromosome functionally connects it to almost every event within a cell, in health and sickness. Chromatin remodeling system acts in unison with the cell survival pathway in mediating a variety of cellular functions, including mitosis, differentiation, DNA damage repair, and apoptosis. In humans, the 16 SWI/SNF complexes are a class of nucleosome remodelers, and ARID1A, an epigenetic tumor suppressor, is a member of mammalian 17 chromatin remodeling complex, SWI/SNF. Alterations of chromatin remodeling system contribute to tumorigenic events in various cancers, including ovarian cancers. Oncogenic changes of genes of the PI3K pathway are one of the potential genetic determinants of ovarian carcinomas. In this review, we present the data demonstrating the co-occurrence of mutations of ARID1A and the PI3K pathway in our cohort of ovarian cancers from the Avera Cancer Institute (SD, USA). Taking into account data from our cohort and the cBioPortal, we interrogate the opportunity provided by this co-occurrence in the context of mutation-driven signals in the life cycle of a tumor cell and its response to the targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Pradip De
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- VieCure, Greenwood Village, CO 80112, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- Correspondence:
| |
Collapse
|
111
|
Wei R, Ren X, Kong H, Lv Z, Chen Y, Tang Y, Wang Y, Xiao L, Yu T, Hacibekiroglu S, Liang C, Nagy A, Bremner R, Chen D. Rb1/Rbl1/Vhl loss induces mouse subretinal angiomatous proliferation and hemangioblastoma. JCI Insight 2019; 4:127889. [PMID: 31613797 DOI: 10.1172/jci.insight.127889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Von Hippel-Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA-sequencing, ChIP, and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus. Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP) and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.
Collapse
Affiliation(s)
- Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Kong
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Lv
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Chen Liang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
112
|
Chen D, Zhang F, Zhao Q, Xu J. OmicsARules: a R package for integration of multi-omics datasets via association rules mining. BMC Bioinformatics 2019; 20:554. [PMID: 31703610 PMCID: PMC6839229 DOI: 10.1186/s12859-019-3171-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The improvements of high throughput technologies have produced large amounts of multi-omics experiments datasets. Initial analysis of these data has revealed many concurrent gene alterations within single dataset or/and among multiple omics datasets. Although powerful bioinformatics pipelines have been developed to store, manipulate and analyze these data, few explicitly find and assess the recurrent co-occurring aberrations across multiple regulation levels. RESULTS Here, we introduced a novel R-package (called OmicsARules) to identify the concerted changes among genes under association rules mining framework. OmicsARules embedded a new rule-interestingness measure, Lamda3, to evaluate the associated pattern and prioritize the most biologically meaningful gene associations. As demonstrated with DNA methlylation and RNA-seq datasets from breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA) and lung adenocarcinoma (LUAD), Lamda3 achieved better biological significance over other rule-ranking measures. Furthermore, OmicsARules can illustrate the mechanistic connections between methlylation and transcription, based on combined omics dataset. OmicsARules is available as a free and open-source R package. CONCLUSIONS OmicsARules searches for concurrent patterns among frequently altered genes, thus provides a new dimension for exploring single or multiple omics data across sequencing platforms.
Collapse
Affiliation(s)
- Danze Chen
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
| | - Fan Zhang
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital, Shantou University Medical College (SUMC), Shantou, 515041, China
| | - Qianqian Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China.
| |
Collapse
|
113
|
Ohshima K, Fujiya K, Nagashima T, Ohnami S, Hatakeyama K, Urakami K, Naruoka A, Watanabe Y, Moromizato S, Shimoda Y, Ohnami S, Serizawa M, Akiyama Y, Kusuhara M, Mochizuki T, Sugino T, Shiomi A, Tsubosa Y, Uesaka K, Terashima M, Yamaguchi K. Driver gene alterations and activated signaling pathways toward malignant progression of gastrointestinal stromal tumors. Cancer Sci 2019; 110:3821-3833. [PMID: 31553483 PMCID: PMC6890443 DOI: 10.1111/cas.14202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022] Open
Abstract
Mutually exclusive KIT and PDGFRA mutations are considered to be the earliest events in gastrointestinal stromal tumors (GIST), but insufficient for their malignant progression. Herein, we aimed to identify driver genes and signaling pathways relevant to GIST progression. We investigated genetic profiles of 707 driver genes, including mutations, gene fusions, copy number gain or loss, and gene expression for 65 clinical specimens of surgically dissected GIST, consisting of six metastatic tumors and 59 primary tumors from stomach, small intestine, rectum, and esophagus. Genetic alterations included oncogenic mutations and amplification‐dependent expression enhancement for oncogenes (OG), and loss of heterozygosity (LOH) and expression reduction for tumor suppressor genes (TSG). We assigned activated OG and inactivated TSG to 27 signaling pathways, the activation of which was compared between malignant GIST (metastasis and high‐risk GIST) and less malignant GIST (low‐ and very low‐risk GIST). Integrative molecular profiling indicated that a greater incidence of genetic alterations of driver genes was detected in malignant GIST (96%, 22 of 23) than in less malignant GIST (73%, 24 of 33). Malignant GIST samples groups showed mutations, LOH, and aberrant expression dominantly in driver genes associated with signaling pathways of PI3K (PIK3CA, AKT1, and PTEN) and the cell cycle (RB1, CDK4, and CDKN1B). Additionally, we identified potential PI3K‐related genes, the expression of which was upregulated (SNAI1 and TPX2) or downregulated (BANK1) in malignant GIST. Based on our observations, we propose that inhibition of PI3K pathway signals might potentially be an effective therapeutic strategy against malignant progression of GIST.
Collapse
Affiliation(s)
- Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Watanabe
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sachi Moromizato
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
114
|
Naccarato AG, Lessi F, Zavaglia K, Scatena C, Al Hamad MA, Aretini P, Menicagli M, Roncella M, Ghilli M, Caligo MA, Mazzanti CM, Bevilacqua G. Mouse mammary tumor virus (MMTV) - like exogenous sequences are associated with sporadic but not hereditary human breast carcinoma. Aging (Albany NY) 2019; 11:7236-7241. [PMID: 31518337 PMCID: PMC6756874 DOI: 10.18632/aging.102252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 04/12/2023]
Abstract
The inheritance of mutated suppressor genes, such as BRCA1 and BRCA2, is acknowledged as an etiological factor in hereditary breast carcinoma (HBC). Two different molecular mechanisms are possible; the Knudson's "two hits" or the gene haploinsufficiency. Etiology of sporadic breast carcinoma (SBC) is not known, although data support the possible role of the betaretrovirus Mouse Mammary Tumor Virus (MMTV). This study analyzes the presence of MMTV exogenous sequences in two representative groups of HBC and SBC, excluding any contamination by murine and retroviral material and endogenous betaretroviruses. The 30.3% of 56 SBC contained MMTV sequences, against the 4.2% of 47 HBC (p < 0.001). Cases positive for viral sequences showed the presence of p14, signal peptide of the MMTV envelope precursor. This result was expected based on the fact that HBCs, having a specific genetic etiology, do not need the action of a carcinogenetic viral agent. Moreover, the striking results obtained by comparing two groups of vastly different tumors represent an additional element of quality control: the distinction between HBC and SBC is so well-defined that results cannot be ascribed to mere coincidence. This paper strengthens the hypothesis for a viral etiology for human sporadic breast carcinoma.
Collapse
Affiliation(s)
- Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | | | - Katia Zavaglia
- Division of Molecular Genetics, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Mohammad A. Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | | - Manuela Roncella
- Division of Surgery, Breast Center, Pisa University Hospital, Pisa, Italy
| | - Matteo Ghilli
- Division of Surgery, Breast Center, Pisa University Hospital, Pisa, Italy
| | - Maria Adelaide Caligo
- Division of Molecular Genetics, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | | | - Generoso Bevilacqua
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- “San Rossore” Hospital – Casa di Cura “San Rossore”, Pisa, Italy
| |
Collapse
|
115
|
Single-Gene Deletions Contributing to Loss of Heterozygosity in Saccharomyces cerevisiae: Genome-Wide Screens and Reproducibility. G3-GENES GENOMES GENETICS 2019; 9:2835-2850. [PMID: 31270132 PMCID: PMC6723133 DOI: 10.1534/g3.119.400429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loss of heterozygosity (LOH) is a phenomenon commonly observed in cancers; the loss of chromosomal regions can be both causal and indicative of underlying genome instability. Yeast has long been used as a model organism to study genetic mechanisms difficult to study in mammalian cells. Studying gene deletions leading to increased LOH in yeast aids our understanding of the processes involved, and guides exploration into the etiology of LOH in cancers. Yet, before in-depth mechanistic studies can occur, candidate genes of interest must be identified. Utilizing the heterozygous Saccharomyces cerevisiae deletion collection (≈ 6500 strains), 217 genes whose disruption leads to increased LOH events at the endogenously heterozygous mating type locus were identified. Our investigation to refine this list of genes to candidates with the most definite impact on LOH includes: secondary testing for LOH impact at an additional locus, gene ontology analysis to determine common gene characteristics, and positional gene enrichment studies to identify chromosomal regions important in LOH events. Further, we conducted extensive comparisons of our data to screens with similar, but distinct methodologies, to further distinguish genes that are more likely to be true contributors to instability due to their reproducibility, and not just identified due to the stochastic nature of LOH. Finally, we selected nine candidate genes and quantitatively measured their impact on LOH as a benchmark for the impact of genes identified in our study. Our data add to the existing body of work and strengthen the evidence of single-gene knockdowns contributing to genome instability.
Collapse
|
116
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
117
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: The Dam of Stemness in Cancer. Cancers (Basel) 2019; 11:E1076. [PMID: 31366089 PMCID: PMC6721423 DOI: 10.3390/cancers11081076] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Francesca Luongo
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Colonna
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica Calapà
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Vitale
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Micol E Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli"-I.R.C.C.S., Largo Francesco Vito 1-8, 00168 Rome, Italy.
| |
Collapse
|
118
|
Shin J, Kim D, Kim HL, Choi M, Koh Y, Yoon SS. Oncogenic effects of germline variants in lysosomal storage disease genes. Genet Med 2019; 21:2695-2705. [PMID: 31341245 DOI: 10.1038/s41436-019-0588-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Clinical and experimental evidence has suggested pathobiological crosstalk between lysosomal storage diseases (LSDs) and cancer. We aimed to elucidate the association between germline variants in LSD genes and cancer. METHODS We performed aggregate rare variant association analysis of potentially pathogenic variants (PPVs) in 42 LSD genes and >30 histological types of cancer using genome sequencing data from 2567 cancer patients (Pan-Cancer cohort) and 2504 healthy individuals (1000 Genomes cohort) and exome sequencing data from 53,105 individuals without cancer (ExAC cohort). RESULTS PPVs were significantly enriched in the Pan-Cancer cohort compared with the 1000 Genomes cohort (PPV prevalence, 20.7% vs. 13.5%; P = 8.7 × 10-12). Cancer risk was higher in individuals with a greater number of PPVs (P = 7.3 × 10-12). Population structure-adjusted optimal sequence kernel association test (SKAT-O) revealed 37 significantly associated cancer type-LSD gene pairs. These results were supported by the consistent tendency toward enrichment of PPVs in cancer patients compared with the ExAC cohort. Cancer developed earlier in PPV carriers than in wild-type patients. Analysis of tumor transcriptomic data from the pancreatic adenocarcinoma cohort revealed 508 genes differentially expressed according to PPV carrier status, which were highly enriched in the core signaling pathways of pancreatic cancer. CONCLUSION Carriers of PPVs in LSD genes are at increased risk of cancer.
Collapse
Affiliation(s)
- Junghoon Shin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Daeyoon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Woman's University School of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youngil Koh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
| | - Sung-Soo Yoon
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
119
|
Shiseki M, Ishii M, Okada M, Ohwashi M, Wang YH, Osanai S, Yoshinaga K, Mori N, Motoji T, Tanaka J. Expression analysis of genes located within the common deleted region of del(20q) in patients with myelodysplastic syndromes. Leuk Res 2019; 84:106175. [PMID: 31299412 DOI: 10.1016/j.leukres.2019.106175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
Deletion of the long arm of chromosome 20 (del(20q)) is observed in 5-10% of patients with myelodysplastic syndromes (MDS). We examined the expression of 28 genes within the common deleted region (CDR) of del(20q), which we previously determined by a CGH array using clinical samples, in 48 MDS patients with (n = 28) or without (n = 20) chromosome 20 abnormalities and control subjects (n = 10). The expression level of 8 of 28 genes was significantly reduced in MDS patients with chromosome 20 abnormalities compared to that of control subjects. In addition, the expression of BCAS4, ADA, and YWHAB genes was significantly reduced in MDS patients without chromosome 20 abnormalities, which suggests that these three genes were commonly involved in the molecular pathogenesis of MDS. To evaluate the clinical significance, we analyzed the impact of the expression level of each gene on overall survival (OS). According to the Cox proportional hazard model, multivariate analysis indicated that reduced BCAS4 expression was associated with inferior OS, but the difference was not significant (HR, 3.77; 95% CI, 0.995-17.17; P = 0.0509). Functional analyses are needed to understand the biological significance of reduced expression of these genes in the pathogenesis of MDS.
Collapse
Affiliation(s)
- Masayuki Shiseki
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Mayuko Ishii
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Michiko Okada
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mari Ohwashi
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Satoko Osanai
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kentaro Yoshinaga
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Naoki Mori
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshiko Motoji
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
120
|
Palumbo E, Zhao B, Xue B, Uversky VN, Davé V. Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. J Biomol Struct Dyn 2019; 38:2253-2266. [PMID: 31232187 DOI: 10.1080/07391102.2019.1630005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
121
|
Tlemsani C, Pécuchet N, Gruber A, Laurendeau I, Danel C, Riquet M, Le Pimpec-Barthes F, Fabre E, Mansuet-Lupo A, Damotte D, Alifano M, Luscan A, Rousseau B, Vidaud D, Varin J, Parfait B, Bieche I, Leroy K, Laurent-Puig P, Terris B, Blons H, Vidaud M, Pasmant E. NF1 mutations identify molecular and clinical subtypes of lung adenocarcinomas. Cancer Med 2019; 8:4330-4337. [PMID: 31199580 PMCID: PMC6675708 DOI: 10.1002/cam4.2175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/09/2018] [Accepted: 03/28/2019] [Indexed: 01/05/2023] Open
Abstract
The tumor suppressor gene neurofibromin 1 (NF1) is a major regulator of the RAS-MAPK pathway. NF1 mutations occur in lung cancer but were not extensively explored. We hypothesized that NF1-mutated tumors could define a specific population with a distinct clinical and molecular profile. We performed NF1 sequencing using next generation sequencing (NGS) in 154 lung adenocarcinoma surgical specimens with known KRAS, EGFR, TP53, BRAF, HER2, and PIK3CA status, to evaluate the molecular and clinical specificities of NF1-mutated lung cancers. Clinical data were retrospectively collected, and their associations with molecular profiles assessed. In this series, 24 tumors were NF1 mutated (17.5%) and 11 were NF1 deleted (8%). There was no mutation hotspot. NF1 mutations were rarely associated with other RAS-MAPK pathway mutations. Most of patients with NF1 alterations were males (74.3%) and smokers (74.3%). Overall survival and disease-free survival were statistically better in patients with NF1 alterations (N = 34) than in patients with KRAS mutations (N = 30) in univariate analysis. Our results confirm that NF1 is frequently mutated and represents a distinct molecular and clinical subtype of lung adenocarcinoma.
Collapse
Affiliation(s)
- Camille Tlemsani
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | | | - Aurelia Gruber
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Ingrid Laurendeau
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Claire Danel
- Service d'Anatomopathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Marc Riquet
- Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Elizabeth Fabre
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service d'Oncologie Médicale, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Audrey Mansuet-Lupo
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Diane Damotte
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Armelle Luscan
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Benoit Rousseau
- Service d'Oncologie Médicale, hôpital Henri-Mondor, AP-HP, Créteil, France.,Faculté de médecine de Créteil, Université Paris Est, Créteil, France.,Faculté de médecine de Créteil, Institut Mondor de recherche biomédicale, Inserm U955 équipe 18, Créteil, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Jennifer Varin
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Beatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Ivan Bieche
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Service de Génétique, Institut Curie, Paris, France
| | - Karen Leroy
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Laurent-Puig
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service de Biochimie, Pharmacologie et Biologie Moléculaire, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Benoit Terris
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Helene Blons
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service de Biochimie, Pharmacologie et Biologie Moléculaire, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| |
Collapse
|
122
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
123
|
Dehner LP, Schultz KA, Hill DA. Pleuropulmonary Blastoma: More Than a Lung Neoplasm of Childhood. MISSOURI MEDICINE 2019; 116:206-210. [PMID: 31527943 PMCID: PMC6690274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pleuropulmonary blastoma (PPB), the most common primary malignant neoplasm of the lung in childhood, occurs in the same early age group (0-6 years) as the other more common solid tumors such as neuroblastoma and Wilms tumor. The tumor begins as a cystic lung lesion with the potential over a period of 3-5 years to progress to a high grade multipatterned primitive sarcoma in the absence of a malignant epithelial component. Several years after its initial description as a unique clinicopathologic entity, this and other tumors appeared to have a familial predilection which was later confirmed with the discovery of a heterozygous germline mutation in DICER1 whose protein is a member of ribonuclease III family of enzymes. It is estimated that 75%-80% of children with a PPB have the germline mutation. The other notable finding from our studies is the identification of a family of extrapulmonary neoplasms, including cystic nephroma and Sertoli-Leydig cell tumor of the ovary as two examples, also with DICER1 mutations.
Collapse
Affiliation(s)
- Louis P Dehner
- Louis P. Dehner, MD, MSMA member since 1990 and Missouri Medicine Editorial Board member for Pathology, is Professor of Pathology at Washington University School of Medicine, St. Louis, Missouri
| | - Kris Ann Schultz
- Kris Ann Schultz, MD, Director, International Pleuropulmonary Blastoma and DICER1 Registry, and pediatric hematologist-oncologist of Children's Minnesota-Children's - Children's Hospital and Clinics, Minneapolis, MN
| | - D Ashley Hill
- D. Ashley Hill, MD, Professor of Pathology, George Washington University School of Medicine and Health Sciences, and Children's National Medical Center, Washington, D.C
| |
Collapse
|
124
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
125
|
Ferri C, Weich N, Gutiérrez L, De Brasi C, Bengió M, Zapata P, Fundia A, Larripa I. Single nucleotide polymorphism in PTEN-Long gene: A risk factor in chronic myeloid leukemia. Gene 2019; 694:71-75. [DOI: 10.1016/j.gene.2019.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
|
126
|
Dong L, Li G, Li Y, Zhu Z. Upregulation of Long Noncoding RNA GAS5 Inhibits Lung Cancer Cell Proliferation and Metastasis via miR-205/PTEN Axis. Med Sci Monit 2019; 25:2311-2319. [PMID: 30926767 PMCID: PMC6452771 DOI: 10.12659/msm.912581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) is a key part of noncoding RNA class and increasing evidences have manifested that it plays a significant role in the physiology and pathology. The growth arrest-specific transcript 5 (GAS5) is a vital tumor suppressor in some types of cancers. However, the function of GAS5 in lung cancer remains largely no clear. The purpose of the current study was to identify the biological role of GAS5 in non-small cell lung cancer (NSCLC). Material/Methods To study the role of GAS5 in the NSCLC, the RT-PCR, Western Blot, Luciferase assay, and RNA immunoprecipitation assay was employed to determine the relationship of GAS5, miR-205, and PTEN. CCK8 assay, Cell migration and invasion assay was used for the role of GAS5 in lung cancer cell proliferation and metastasis. Results The results indicated that GAS5 was drastically downregulated in lung cancer cell lines. Further functional analysis showed that down-expression of GAS5 remarkably induced NSCLC growth, migration, and invasion. The luciferase reporter assays determined that miR-205 was a direct target of GAS5 in lung cancer. Moreover, the Phosphatase and tensin homologue (PTEN) was known as a direct target of miR-205 and miR-205/PTEN rescued the effects of GAS5 in NSCLC cells. Conclusions To sum up, our results illustrate that upregulation of GAS5 in NSCLC suppresses its growth, migration, and invasion via the miR-205/PTEN axis.
Collapse
Affiliation(s)
- Lizhen Dong
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Guangming Li
- Department of Pathogen Biology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yongmei Li
- Department of Pathogen Biology, Tianjin Medical University, Tianjin, China (mainland)
| | - Ze Zhu
- Department of Pathogen Biology, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
127
|
Darwich R, Ghazawi FM, Rahme E, Alghazawi N, Burnier JV, Sasseville D, Burnier MN, Litvinov IV. Retinoblastoma Incidence Trends in Canada: A National Comprehensive Population-Based Study. J Pediatr Ophthalmol Strabismus 2019; 56:124-130. [PMID: 30889267 DOI: 10.3928/01913913-20190128-02] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine the incidence rates and geographic distribution of retinoblastoma in Canada to aid cancer control programs. METHODS Patients with retinoblastoma whose data were available from the Canadian Cancer Registry (CCR) and Le Registre Québécois du Cancer (LRQC) were studied. Using third edition International Classification of Diseases for Oncology (ICD-O) codes, the authors examined the incidence rates and geographic distribution of patients with retinoblastoma between 1992 and 2010. Patient data including sex, age, and laterality of the retinoblastoma were analyzed. RESULTS Between 1992 and 2010 in Canada, the average annual incidence rate of retinoblastoma was 11.58 cases per 1 million children younger than 5 years (95% CI [confidence interval]: 10.48 to 12.76). The incidence rate was stable over time, with an average age at diagnosis of 2.30 ± 6.85 years and no gender predilection. The laterality of the reported cases was 81.48% for uni-lateral cases and 18.52% for bilateral cases. Provincially, Nova Scotia had twice the national average and the highest incidence rates of retinoblastoma across the Canadian provinces. CONCLUSIONS This is the first study to define the disease burden of retinoblastoma and to highlight important longitudinal, geographic, and spatial differences in the distribution of retinoblastoma in Canada between 1992 and 2010. The results of this study indicate continuity of clinical trends between Canada, the United States, and other developed countries. [J Pediatr Ophthalmol Strabismus. 2019;56(2):124-130.].
Collapse
|
128
|
Kagohara LT, Stein-O’Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2019; 17:49-63. [PMID: 28968850 PMCID: PMC5860551 DOI: 10.1093/bfgp/elx018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daria A Gaykalova
- Corresponding authors: Daria A. Gaykalova, Otolaryngology - Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Rm 574, CRBII Baltimore, MD 21231, USA. Tel.: +1 410 614 2745; Fax: +1 410 614 1411; E-mail: ; Elana J. Fertig, Assistant Professor of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, 550 N Broadway, 1101 E Baltimore, MD 21205, USA. Tel.: +1 410 955 4268; Fax: +1 410 955 0859; E-mail:
| | | |
Collapse
|
129
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
130
|
Park MK, Yao Y, Xia W, Setijono SR, Kim JH, Vila IK, Chiu HH, Wu Y, Billalabeitia EG, Lee MG, Kalb RG, Hung MC, Pandolfi PP, Song SJ, Song MS. PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression. Nat Commun 2019; 10:636. [PMID: 30733438 PMCID: PMC6367354 DOI: 10.1038/s41467-019-08481-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
PTEN is a lipid phosphatase that antagonizes the PI3K/AKT pathway and is recognized as a major dose-dependent tumor suppressor. The cellular mechanisms that control PTEN levels therefore offer potential routes to therapy, but these are as yet poorly defined. Here we demonstrate that PTEN plays an unexpected role in regulating its own stability through the transcriptional upregulation of the deubiquitinase USP11 by the PI3K/FOXO pathway, and further show that this feedforward mechanism is implicated in its tumor-suppressive role, as mice lacking Usp11 display increased susceptibility to PTEN-dependent tumor initiation, growth and metastasis. Notably, USP11 is downregulated in cancer patients, and correlates with PTEN expression and FOXO nuclear localization. Our findings therefore demonstrate that PTEN-PI3K-FOXO-USP11 constitute the regulatory feedforward loop that improves the stability and tumor suppressive activity of PTEN. PTEN is a lipid phosphatase that functions as a dose-dependent tumor suppressor through the PI3K/AKT pathway. Here the authors describe a signaling feedback mechanism where PTEN stability is regulated through transcriptional upregulation of X-linked ubiquitin-specific protease 11 (USP11) via the PI3K/FOXO pathway.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie Rebecca Setijono
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Jae Hwan Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Biomedical Sciences, Seoul National University College of Medicine, Houston, Seoul, 03080, Republic of Korea
| | - Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Hsuan Chiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Enrique González Billalabeitia
- Department of Clinical Oncology, Hospital Universitario Morales Meseguer-IMIB, Universidad Católica San Antonio de Murcia-UCAM, Murcia, 30007, Spain
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
131
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 716] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
132
|
Lee H, Thacker S, Sarn N, Dutta R, Eng C. Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder. Transl Psychiatry 2019; 9:13. [PMID: 30664625 PMCID: PMC6341090 DOI: 10.1038/s41398-018-0364-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
There is a strong genetic association between germline PTEN mutation and autism spectrum disorder (ASD), making Pten-mutant models exemplary for the study of ASD pathophysiology. We developed the Ptenm3m4 mouse, where Pten is largely restricted from the nucleus, which recapitulates patient-like, autism-related phenotypes: behavioral changes, macrocephaly, and white matter abnormalities. This study aimed to investigate the contribution of oligodendrocyte (OL) lineage differentiation and functional changes in myelination to the white matter phenotype. OL lineage differentiation and myelination in Ptenm3m4 mice was studied using immunohistochemical and electron microscopic analyses. We also used primary oligodendrocyte progenitor cells (OPCs) to determine the effect of the Ptenm3m4 mutation on OPC proliferation, migration and maturation. Finally, we assessed the myelinating competency of mutant OLs via co-culture with wildtype dorsal root ganglia (DRG) neurons. The in vivo analyses of Ptenm3m4/m3m4 murine brains showed deficits in proteolipid protein (Plp) trafficking in myelinating OLs. Despite the increased expression of myelin proteins in the brain, myelin deposition was observed to be abnormal, often occurring adjacent to, rather than around axons. Mutant primary OPCs showed enhanced proliferation and migration. Furthermore, mutant OPCs matured precociously, exhibiting aberrant myelination in vitro. Mutant OPCs, when co-cultured with wildtype DRG neurons, showed an inability to properly ensheath axons. Our findings provide evidence that the Ptenm3m4 mutation disrupts the differentiation and myelination programs of developing OLs. OL dysfunction in the Ptenm3m4 model explains the leukodystrophy phenotype, a feature commonly associated with autism, and highlights the growing importance of glial dysfunction in autism pathogenesis.
Collapse
Affiliation(s)
- Hyunpil Lee
- 0000 0001 0675 4725grid.239578.2Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Stetson Thacker
- 0000 0001 0675 4725grid.239578.2Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA ,0000 0004 0435 0569grid.254293.bCleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Nicholas Sarn
- 0000 0001 0675 4725grid.239578.2Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA ,0000 0001 2164 3847grid.67105.35Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Ranjan Dutta
- 0000 0004 0435 0569grid.254293.bCleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA ,0000 0001 0675 4725grid.239578.2Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA. .,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, USA. .,Germline High Risk Cancer Focus Group, Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, USA.
| |
Collapse
|
133
|
Bihr S, Ohashi R, Moore AL, Rüschoff JH, Beisel C, Hermanns T, Mischo A, Corrò C, Beyer J, Beerenwinkel N, Moch H, Schraml P. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Neoplasia 2019; 21:247-256. [PMID: 30660076 PMCID: PMC6355619 DOI: 10.1016/j.neo.2018.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bi-allelic inactivation of the VHL gene on chromosome 3p is the characteristic feature in most clear cell renal cell carcinomas (ccRCC). Frequent gene alterations were also identified in SETD2, BAP1 and PBRM1, all of which are situated on chromosome 3p and encode histone/chromatin regulators. The relationship between gene mutation, loss of protein expression and the correlations with clinicopathological parameters is important for the understanding of renal cancer progression. We analyzed PBRM1 and BAP1 protein expression as well as the tri-methylation state of H3K36 as a surrogate marker for SETD2 activity in more than 700 RCC samples. In ccRCC loss of nuclear PBRM1 (68%), BAP1 (40%) and H3K36me3 (47%) expression was significantly correlated with each other, advanced tumor stage, poor tumor differentiation (P < .0001 each), and necrosis (P < .005) Targeted next generation sequencing of 83 ccRCC samples demonstrated a significant association of genetic mutations in PBRM1, BAP1, and SETD2 with absence of PBRM1, BAP1, and HEK36me3 protein expression (P < .05, each). By assigning the protein expression patterns to evolutionary subtypes, we revealed similar clinical phenotypes as suggested by TRACERx Renal. Given their important contribution to tumor suppression, we conclude that combined functional inactivation of PBRM1, BAP1, SETD2 and pVHL is critical for ccRCC progression.
Collapse
Affiliation(s)
- Svenja Bihr
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Riuko Ohashi
- Histopathology Core Facility, Niigata University Faculty of Medicine, Niigata, Japan
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Axel Mischo
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Jörg Beyer
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland.
| |
Collapse
|
134
|
Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J Appl Genet 2019; 60:37-47. [PMID: 30627967 PMCID: PMC6373410 DOI: 10.1007/s13353-018-00480-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) is a heterogenous group of neurodevelopmental disorders characterized by problems in social interaction and communication as well as the presence of repetitive and stereotyped behavior. It is estimated that the prevalence of ASD is 1–2% in the general population with the average male to female ratio 4–5:1. Although the causes of ASD remain largely unknown, the studies have shown that both genetic and environmental factors play an important role in the etiology of these disorders. Array comparative genomic hybridization and whole exome/genome sequencing studies identified common and rare copy number or single nucleotide variants in genes encoding proteins involved in brain development, which play an important role in neuron and synapse formation and function. The genetic etiology is recognized in ~ 25–35% of patients with ASD. In this article, we review the current state of knowledge about the genetic etiology of ASD and also propose a diagnostic algorithm for patients.
Collapse
|
135
|
Vysotskaya IV, Letyagin V, Shabanov M, Kirsanov V, Kim E, Levkina N. Current Issues in Carcinogenesis. CLINICAL ONCOHEMATOLOGY 2019; 12:101-106. [DOI: 10.21320/2500-2139-2019-12-1-101-106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The review presents current data on the major pathogenetic mechanisms underlying uncontrolled growth and dissemination of tumor and its resistance to conventional treatment. Cell genetic instability associated with accumulation of mutations in genes controlling cell growth and differentiation is a key factor in tumor proliferation. Due understanding and detailed analysis of carcinogenesis processes provide the basis for creation of new anticancer drugs which in turn enables optimization and individualization of cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - E.A. Kim
- IM Sechenov First Moscow State Medical University
| | - N.V. Levkina
- IM Sechenov First Moscow State Medical University
| |
Collapse
|
136
|
Easwaran H, Baylin SB. Origin and Mechanisms of DNA Methylation Dynamics in Cancers. RNA TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14792-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
137
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
138
|
Chen M, Zhang J, Berger AH, Diolombi MS, Ng C, Fung J, Bronson RT, Castillo-Martin M, Thin TH, Cordon-Cardo C, Plevin R, Pandolfi PP. Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis. J Clin Invest 2018; 129:215-222. [PMID: 30475228 DOI: 10.1172/jci99699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023] Open
Abstract
Recurrent broad-scale heterozygous deletions are frequently observed in human cancer. Here we tested the hypothesis that compound haploinsufficiency of neighboring genes at chromosome 8p promotes tumorigenesis. By targeting the mouse orthologs of human DOK2 and DUSP4 genes, which were co-deleted in approximately half of human lung adenocarcinomas, we found that compound-heterozygous deletion of Dok2 and Dusp4 in mice resulted in lung tumorigenesis with short latency and high incidence, and that their co-deletion synergistically activated MAPK signaling and promoted cell proliferation. Conversely, restoration of DOK2 and DUSP4 in lung cancer cells suppressed MAPK activation and cell proliferation. Importantly, in contrast to downregulation of DOK2 or DUSP4 alone, concomitant downregulation of DOK2 and DUSP4 was associated with poor survival in human lung adenocarcinoma. Therefore, our findings lend in vivo experimental support to the notion that compound haploinsufficiency, due to broad-scale chromosome deletions, constitutes a driving force in tumorigenesis.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alice H Berger
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Moussa S Diolombi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Tin Htwe Thin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
139
|
Gaviraghi M, Vivori C, Pareja Sanchez Y, Invernizzi F, Cattaneo A, Santoliquido BM, Frenquelli M, Segalla S, Bachi A, Doglioni C, Pelechano V, Cittaro D, Tonon G. Tumor suppressor PNRC1 blocks rRNA maturation by recruiting the decapping complex to the nucleolus. EMBO J 2018; 37:embj.201899179. [PMID: 30373810 DOI: 10.15252/embj.201899179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Vivori
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Yerma Pareja Sanchez
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Francesca Invernizzi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Cattaneo
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Benedetta Maria Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
140
|
Wohak LE, Baranski AC, Krais AM, Schmeiser HH, Phillips DH, Arlt VM. The impact of p53 function on the metabolic activation of the carcinogenic air pollutant 3-nitrobenzanthrone and its metabolites 3-aminobenzanthrone and N-hydroxy-3-aminobenzanthrone in human cells. Mutagenesis 2018; 33:311-321. [PMID: 30215795 PMCID: PMC6180618 DOI: 10.1093/mutage/gey025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e. TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-)]. As a measure of metabolic competence, DNA adduct formation was determined using 32P-postlabelling. Wild-type (WT) p53 did not affect the bioactivation of 3-NBA; no difference in DNA adduct formation was observed in TP53(+/+), TP53(+/-) and TP53(-/-) cells. Bioactivation of both metabolites 3-ABA and N-OH-3-ABA on the other hand was WT-TP53 dependent. Lower 3-ABA- and N-OH-3-ABA-DNA adduct levels were found in TP53(+/-) and TP53(-/-) cells compared to TP53(+/+) cells, and p53's impact was attributed to differences in cytochrome P450 (CYP) 1A1 expression for 3-ABA whereas for N-OH-3-ABA, an impact of this tumour suppressor on sulphotransferase (SULT) 1A1/3 expression was detected. Mutant R248W-p53 protein function was similar to or exceeded the ability of WT-p53 in activating 3-NBA and its metabolites, measured as DNA adducts. However, identification of the xenobiotic-metabolising enzyme(s) (XMEs), through which mutant-p53 regulates these responses, proved difficult to decipher. For example, although both mutant cell lines exhibited higher CYP1A1 induction after 3-NBA treatment compared to TP53(+/+) cells, 3-NBA-derived DNA adduct levels were only higher in TP53(R248W/-) cells but not in TP53(R248W/+) cells. Our results show that p53's influence on carcinogen activation depends on the agent studied and thereby on the XMEs that mediate the bioactivation of that particular compound. The phenomenon of p53 regulating CYP1A1 expression in human cells is consistent with other recent findings; however, this is the first study highlighting the impact of p53 on sulphotransferase-mediated (i.e. SULT1A1) carcinogen metabolism in human cells.
Collapse
Affiliation(s)
- Laura E Wohak
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, UK
| | - Ann-Christin Baranski
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Annette M Krais
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit, Health Impact of Environmental Hazards, King’s College London, Public Health England and Imperial College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit, Health Impact of Environmental Hazards, King’s College London, Public Health England and Imperial College London, London, UK
| |
Collapse
|
141
|
Neff R, Rush CM, Smith B, Backes FJ, Cohn DE, Goodfellow PJ. Functional characterization of recurrent FOXA2 mutations seen in endometrial cancers. Int J Cancer 2018; 143:2955-2961. [PMID: 30091462 DOI: 10.1002/ijc.31784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
FOXA2, a member of the forkhead family of DNA-binding proteins, is frequently mutated in uterine cancers. Most of the mutations observed in uterine cancers are frameshifts and stops. FOXA2 is considered to be a driver gene in uterine cancers, functioning as a haploinsufficient tumor suppressor. The functional consequences of FOXA2 mutations, however, have not yet been determined. We evaluated the effects that frameshift mutations and a recurrent missense mutation have on FOXA2 transcriptional activity. Recurrent N-terminal frameshifts resulted in truncated proteins that failed to translocate to the nucleus and have no transcriptional activity using an E-cadherin/luciferase reporter assay. Protein abundance was reduced for the recurrent p.S169 W mutation, as was transcriptional activity. A C-terminal frameshift mutation had increased FOXA2 levels evidenced by both Western blot and immunofluorescence. Given that FOXA2 is a recognized activator of E-cadherin (CDH1) expression and E-cadherin's potential role in epithelial-to-mesenchymal transition in a wide range of cancer types, we tested the hypothesis that FOXA2 mutations in primary uterine cancer specimens would be associated with reduced CDH1 transcript levels. qRT-PCR revealed significantly lower levels of CDH1 expression in primary tumors with FOXA2 mutations. Our findings in vitro and in vivo suggest that reduced transcriptional activity associated with FOXA2 mutations in uterine cancers is likely to contribute to protumorigenic changes in gene expression.
Collapse
Affiliation(s)
- Robert Neff
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Craig M Rush
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Blair Smith
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH.,University of Missouri-Kansas City School of Medicine, Kansas City, KS
| | - Floor J Backes
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - David E Cohn
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Paul J Goodfellow
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| |
Collapse
|
142
|
Pleiman JK, Irving AA, Wang Z, Toraason E, Clipson L, Dove WF, Deming DA, Newton MA. The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLoS Genet 2018; 14:e1007611. [PMID: 30188895 PMCID: PMC6143270 DOI: 10.1371/journal.pgen.1007611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/18/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Conservation over three mammalian genera-the mouse, rat, and human-has been found for a subset of the transcripts whose level differs between the adenoma and normal epithelium of the colon. Pde4b is one of the triply conserved transcripts whose level is enhanced both in the colonic adenoma and in the normal colonic epithelium, especially adjacent to adenomas. It encodes the phosphodiesterase PDE4B, specific for cAMP. Loss of PDE4B function in the ApcMin/+ mouse leads to a significant increase in the number of colonic adenomas. Similarly, Pde4b-deficient ApcMin/+ mice are hypersensitive to treatment by the inflammatory agent DSS, becoming moribund soon after treatment. These observations imply that the PDE4B function protects against ApcMin-induced adenomagenesis and inflammatory lethality. The paradoxical enhancement of the Pde4b transcript in the adenoma versus this inferred protective function of PDE4B can be rationalized by a feedback model in which PDE4B is first activated by early oncogenic stress involving cAMP and then, as reported for frank human colon cancer, inactivated by epigenetic silencing.
Collapse
Affiliation(s)
- Jennifer K. Pleiman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Amy A. Irving
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Erik Toraason
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - William F. Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Dustin A. Deming
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
143
|
Lee SH, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 2018; 561:127-131. [PMID: 30150773 PMCID: PMC6527314 DOI: 10.1038/s41586-018-0465-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
DNA mutations are known cancer drivers. Here we investigated whether mRNA events that are upregulated in cancer can functionally mimic the outcome of genetic alterations. RNA sequencing or 3'-end sequencing techniques were applied to normal and malignant B cells from 59 patients with chronic lymphocytic leukaemia (CLL)1-3. We discovered widespread upregulation of truncated mRNAs and proteins in primary CLL cells that were not generated by genetic alterations but instead occurred by intronic polyadenylation. Truncated mRNAs caused by intronic polyadenylation were recurrent (n = 330) and predominantly affected genes with tumour-suppressive functions. The truncated proteins generated by intronic polyadenylation often lack the tumour-suppressive functions of the corresponding full-length proteins (such as DICER and FOXN3), and several even acted in an oncogenic manner (such as CARD11, MGA and CHST11). In CLL, the inactivation of tumour-suppressor genes by aberrant mRNA processing is substantially more prevalent than the functional loss of such genes through genetic events. We further identified new candidate tumour-suppressor genes that are inactivated by intronic polyadenylation in leukaemia and by truncating DNA mutations in solid tumours4,5. These genes are understudied in cancer, as their overall mutation rates are lower than those of well-known tumour-suppressor genes. Our findings show the need to go beyond genomic analyses in cancer diagnostics, as mRNA events that are silent at the DNA level are widespread contributors to cancer pathogenesis through the inactivation of tumour-suppressor genes.
Collapse
Affiliation(s)
- Shih-Han Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irtisha Singh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tri-I Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, USA
| | - Sarah Tisdale
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
144
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
145
|
Differential expression of miRNA199b-5p as a novel biomarker for sporadic and hereditary parathyroid tumors. Sci Rep 2018; 8:12016. [PMID: 30104706 PMCID: PMC6089933 DOI: 10.1038/s41598-018-30484-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many tumors; however, miRNA regulation in parathyroid tumors remains poorly understood. To identify differentially expressed miRNAs between sporadic and hereditary parathyroid tumors and to analyze their correlation with clinicopathological features, a microarray containing 887 miRNAs was performed; then, the differentially expressed miRNAs were validated by qRT-PCR using 25 sporadic and 12 hereditary parathyroid tumors and 24 normal parathyroid tissue samples. A receiver operating characteristic curve (ROC) analysis was applied to evaluate the utility of the miRNAs for distinguishing parathyroid tumor types. Compared to the miRNAs in the normal parathyroid tissues, 10 miRNAs were differentially expressed between the sporadic and hereditary parathyroid tumors. Seven of these miRNAs (let-7i, miR-365, miR-125a-3p, miR-125a-5p, miR-142-3p, miR-193b, and miR-199b-5p) were validated in the parathyroid tumor samples. Among these miRNAs, only miR-199b-5p was differentially expressed (P < 0.001); miR-199b-5p was significantly downregulated and negatively associated with PTH levels (γ = −0.579, P = 0.002) in the sporadic tumors but was upregulated in the hereditary tumors. This miRNA showed 67% sensitivity and 100% specificity for distinguishing sporadic and hereditary parathyroid tumors. These results reveal altered expression of a miRNA between sporadic and hereditary parathyroid tumors and the potential role of miR-199b-5p as a novel biomarker for distinguishing these two types of parathyroid tumors.
Collapse
|
146
|
Yue Y, Zhou K, Li J, Jiang S, Li C, Men H. MSX1 induces G0/G1 arrest and apoptosis by suppressing Notch signaling and is frequently methylated in cervical cancer. Onco Targets Ther 2018; 11:4769-4780. [PMID: 30127625 PMCID: PMC6091477 DOI: 10.2147/ott.s165144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objectives of this study were to investigate the expression of MSX1 in cervical cells and tissues, the methylation status of the MSX1 promoter, the influence of overexpression of gene MSX1 on the proliferation, migration, and invasion of HeLa and SiHa cells, and finally the possible molecular mechanisms responsible for the suppressive effects of MSX1 upon cervical cancer cells. PATIENTS AND METHODS Semi-quantitative and quantitative reverse transcription-polymerase chain reactions were used to investigate the expression levels of MSX1, and methylation-specific polymerase chain reaction (MSP) was performed to investigate promoter methylation status in cervical cancer cell lines, primary cervical tissues, and normal cervical tissues. Clone formation, Cell Counting Kit-8 (CCK-8), cell wound scratch, and transwell assays were performed to verify whether MSX1 could inhibit the proliferation and migration of cervical cancer cells. Western blot was used to analyze the effect of MSX1 upon Notch1, Jagged1, c-Myc, cleaved PARP, cleaved caspse-3, and cyclin D1 (CCND1). RESULTS MSX1 was frequently downregulated or silenced in 60.0% (3/5) of cervical cancer cell lines. The promoter methylation of MSX1 was detected in 42.0% (42/100) of primary tumor tissues, while no methylation was observed in normal cervical tissues. Pharmacological demethylation reduced MSX1 promoter methylation levels and restored the expression of MSX1. The overexpression of MSX1 in cervical cancer cells thus inhibited the proliferation and migration of cervical cancer cells. The overexpression of MSX1 in cervical cancer cells downregulated the expression levels of Notch1, Jagged1, and c-Myc but upregulated the expression levels of CCND1, cleaved PARP, and cleaved caspase-3. CONCLUSION MSX1 appears to be a functional tumor suppressor that regulates tumorigenesis in cervical cancer by antagonizing Notch signaling.
Collapse
Affiliation(s)
- Yujuan Yue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Zhou
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Jiachu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shan Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chunyan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haitao Men
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
147
|
Sementino E, Menges CW, Kadariya Y, Peri S, Xu J, Liu Z, Wilkes RG, Cai KQ, Rauscher FJ, Klein-Szanto AJ, Testa JR. Inactivation of Tp53 and Pten drives rapid development of pleural and peritoneal malignant mesotheliomas. J Cell Physiol 2018; 233:8952-8961. [PMID: 29904909 DOI: 10.1002/jcp.26830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 02/03/2023]
Abstract
Malignant mesothelioma (MM) is a therapy-resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1-associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K-PTEN-AKT-mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L ;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus-expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt-mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yuwaraj Kadariya
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jinfei Xu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Zemin Liu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Richard G Wilkes
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Frank J Rauscher
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, Pennsylvania
| | | | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
148
|
Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood 2018; 132:469-483. [PMID: 29891534 DOI: 10.1182/blood-2018-03-838235] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway.
Collapse
|
149
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
150
|
Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, Kircher M, Khechaduri A, Dines JN, Hause RJ, Bhatia S, Evans WE, Relling MV, Yang W, Shendure J, Fowler DM. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet 2018; 50:874-882. [PMID: 29785012 PMCID: PMC5980760 DOI: 10.1038/s41588-018-0122-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022]
Abstract
Determining the pathogenicity of genetic variants is a critical challenge, and functional assessment is often the only option. Experimentally characterizing millions of possible missense variants in thousands of clinically important genes requires generalizable, scalable assays. We describe variant abundance by massively parallel sequencing (VAMP-seq), which measures the effects of thousands of missense variants of a protein on intracellular abundance simultaneously. We apply VAMP-seq to quantify the abundance of 7,801 single-amino-acid variants of PTEN and TPMT, proteins in which functional variants are clinically actionable. We identify 1,138 PTEN and 777 TPMT variants that result in low protein abundance, and may be pathogenic or alter drug metabolism, respectively. We observe selection for low-abundance PTEN variants in cancer, and show that p.Pro38Ser, which accounts for ~10% of PTEN missense variants in melanoma, functions via a dominant-negative mechanism. Finally, we demonstrate that VAMP-seq is applicable to other genes, highlighting its generalizability.
Collapse
Affiliation(s)
- Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jason J Stephany
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Melissa A Chiasson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vanessa E Gray
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Arineh Khechaduri
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer N Dines
- Department of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Ronald J Hause
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Smita Bhatia
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Genetic Networks Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|