101
|
Drilon A, Sharma MR, Johnson ML, Yap TA, Gadgeel S, Nepert D, Feng G, Reddy MB, Harney AS, Elsayed M, Cook AW, Wong CE, Hinklin RJ, Jiang Y, Brown EN, Neitzel NA, Laird ER, Wu WI, Singh A, Wei P, Ching KA, Gaudino JJ, Lee PA, Hartley DP, Rothenberg SM. SHP2 Inhibition Sensitizes Diverse Oncogene-Addicted Solid Tumors to Re-treatment with Targeted Therapy. Cancer Discov 2023; 13:1789-1801. [PMID: 37269335 PMCID: PMC10401072 DOI: 10.1158/2159-8290.cd-23-0361] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models. Patients with ALK fusion-positive lung cancer, BRAFV600E-mutant colorectal cancer, KRASG12D-mutant ovarian cancer, and ROS1 fusion-positive pancreatic cancer who previously developed targeted therapy resistance were treated with PF-07284892 on the first dose level of a first-in-human clinical trial. After progression on PF-07284892 monotherapy, a novel study design allowed the addition of oncogene-directed targeted therapy that had previously failed. Combination therapy led to rapid tumor and circulating tumor DNA (ctDNA) responses and extended the duration of overall clinical benefit. SIGNIFICANCE PF-07284892-targeted therapy combinations overcame bypass-signaling-mediated resistance in a clinical setting in which neither component was active on its own. This provides proof of concept of the utility of SHP2 inhibitors in overcoming resistance to diverse targeted therapies and provides a paradigm for accelerated testing of novel drug combinations early in clinical development. See related commentary by Hernando-Calvo and Garralda, p. 1762. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | | | - Timothy A. Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shirish Gadgeel
- Henry Ford Cancer Center/Henry Ford Health, Detroit, Michigan
| | - Dale Nepert
- Pfizer Boulder Research Unit, Boulder, Colorado
| | - Gang Feng
- Early Clinical Development, Pfizer, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | - Wen-I Wu
- Pfizer Boulder Research Unit, Boulder, Colorado
| | | | - Ping Wei
- Pfizer Oncology Research and Development, La Jolla, California
| | - Keith A. Ching
- Pfizer Oncology Research and Development, La Jolla, California
| | | | | | | | - S. Michael Rothenberg
- Pfizer Boulder Research Unit, Boulder, Colorado
- Pfizer Oncology Research and Development, La Jolla, California
| |
Collapse
|
102
|
Li J, Li X, Dong N, Yan S, Jing C, Ma T, Li W, Zhang C, Cai Y, Deng W. Driver and targetable alterations in Chinese patients with small bowel carcinoma. J Cancer Res Clin Oncol 2023; 149:6139-6150. [PMID: 36680582 DOI: 10.1007/s00432-022-04521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Small bowel carcinoma (SBA) is a rare gastrointestinal cancer with a poor prognosis. Recent genomic profiling studies revealed that the landscape of molecular alterations in SBA was distinct from colorectal cancer (CRC) and gastric cancer (GC). To explore driver and targetable alterations in SBA, we performed next-generation sequencing in 107 Chinese SBA patients. METHODS DNA from paraffin-embedded SBA samples and the corresponding peripheral blood control samples were analyzed through a next-generation sequencing panel. Somatic alterations including point mutations, indels, copy number alterations, gene fusions as well as pathogenic germline variants were characterized. RESULTS More than half of SBA cases carried KRAS mutations, including canonical (G12, G12, Q61) and atypical mutations (A146, L19, and K117). To our best knowledge, this was the first report of rare driver alterations including KRAS A146V/L19F, PIK3CA N345K/G364R/Q546E, and ZKSCAN1-MET fusion in SBA. Compared to KRAS-mutant patients, alternative activating alterations were enriched in KRAS wild-type patients, and some of them are targetable. Among BRAF-mutated SBA patients, class 1/2 BRAF mutants were mutually exclusive with RAS mutations, but class 3 BRAF mutants were not. Activating ERBB2 alternations, including amplification and activating mutations, represent the most common targetable alternation in this SBA cohort. Of note, the spectrums of BRAF and PIK3CA mutations in this Chinese SBA cohort were distinct from those of a European SBA cohort. Patients with three druggable mutations (PIK3CA, MAP2K1, KRAS G12C) had a high prevalence of concurring drivers, which may interfere with the clinical efficacy of single-target therapy. CONCLUSION Taken together, our work provided a comprehensive analysis of driver and targetable alterations in SBA, which can facilitate the practice of precision oncology in this challenging disease.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaomo Li
- Hangzhou Jichenjunchuang Medical Laboratory, Co. Ltd, Hangzhou, China
| | - Ningning Dong
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu Yan
- Department of Anorectal Surgery, Beijing Aerospace General Hospital, Beijing, China
| | - Chao Jing
- Department of General Surgery, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tonghui Ma
- Hangzhou Jichenjunchuang Medical Laboratory, Co. Ltd, Hangzhou, China
| | - Wei Li
- Hangzhou Jichenjunchuang Medical Laboratory, Co. Ltd, Hangzhou, China
| | - Chenghai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yi Cai
- Independent Researcher, Ellicott City, Maryland, USA.
| | - Wei Deng
- Department of General Surgery, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
103
|
Dao V, Heestand G. Beyond EGFR inhibitors in advanced colorectal cancer: Targeting BRAF and HER2. Curr Probl Cancer 2023; 47:100960. [PMID: 37285606 DOI: 10.1016/j.currproblcancer.2023.100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
The addition of antiepidermal growth factor receptor (EGFR) monoclonal antibodies, cetuximab or panitumumab, to conventional chemotherapy has improved clinical outcomes for rat sarcoma virus (RAS) wild-type advanced colorectal cancer patients, however, durable responses and 5-year overall survival rates remain limited. BRAF V600E somatic mutation and human epidermal growth factor receptor (HER2) amplification/overexpression have been separately implicated in primary resistance to anti-EGFR therapeutic strategies via aberrant activation of the mitogen-activated protein kinase (MAPK) signaling pathway, resulting in poorer outcomes. In addition to being a negative predictive biomarker for anti-EGFR therapy, BRAF V600E mutation and HER2 amplification/overexpression serve as positive predictors of response to therapies targeting these respective tumor promoters. This review will highlight key clinical studies that support the rational use of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) and HER2-targeted therapies, often in combination with other targeted agents, cytotoxic chemotherapy, and immune checkpoint inhibitors. We discuss current challenges with BRAF and HER2-targeted therapies in metastatic colorectal cancer and potential opportunities for improvement.
Collapse
Affiliation(s)
- Vinh Dao
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Gregory Heestand
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
104
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
105
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides as Potential Multi-Target Antiproliferative Agents. Pharmaceuticals (Basel) 2023; 16:1039. [PMID: 37513950 PMCID: PMC10385579 DOI: 10.3390/ph16071039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
A small set of indole-based derivatives, IV and Va-I, was designed and synthesized. Compounds Va-i demonstrated promising antiproliferative activity, with GI50 values ranging from 26 nM to 86 nM compared to erlotinib's 33 nM. The most potent antiproliferative derivatives-Va, Ve, Vf, Vg, and Vh-were tested for EGFR inhibitory activity. Compound Va demonstrated the highest inhibitory activity against EGFR with an IC50 value of 71 ± 06 nM, which is higher than the reference erlotinib (IC50 = 80 ± 05 nM). Compounds Va, Ve, Vf, Vg, and Vh were further tested for BRAFV600E inhibitory activity. The tested compounds inhibited BRAFV600E with IC50 values ranging from 77 nM to 107 nM compared to erlotinib's IC50 value of 60 nM. The inhibitory activity of compounds Va, Ve, Vf, Vg, and Vh against VEGFR-2 was also determined. Finally, in silico docking experiments attempted to investigate the binding mode of compounds within the active sites of EGFR, BRAFV600E, and VEGFR-2.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71234, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
106
|
Al-Wahaibi LH, El-Sheref EM, Hassan AA, Bräse S, Nieger M, Youssif BGM, Ibrahim MAA, Tawfeek HN. Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAF V600E Dual Inhibitors Endowed with Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1014. [PMID: 37513926 PMCID: PMC10384562 DOI: 10.3390/ph16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
2,3,4-trisubstituted thiazoles 3a-i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a-i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a-i demonstrated good antiproliferative activity, with GI50 values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50 value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E inhibitory assays' results matched the antiproliferative assay's results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E and EGFR, with values of -8.7 and -8.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - S Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University, El-Minia 61519, Egypt
| |
Collapse
|
107
|
Ruff SM, Shannon AH, Pawlik TM. The Role of Targeted Therapy in the Multi-Disciplinary Approach to Colorectal Liver Metastasis. Cancers (Basel) 2023; 15:3513. [PMID: 37444625 DOI: 10.3390/cancers15133513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related mortality in the United States. Among newly diagnosed patients with CRC, 20% will present with metastatic disease and another 25% will develop metastases. The surgical resection of the primary tumor and metastatic disease sites confers the best chance at long-term survival. Unfortunately, many patients will recur after resection or present with unresectable disease. As such, metastatic CRC is commonly treated with a combination of surgery, systemic therapy, and/or liver-directed therapies. Despite best efforts, 5-year survival for unresectable metastatic CRC is only about 20%. CRC is a heterogeneous disease and the underlying genetic differences inform behavior, treatment strategy, and prognosis. Given the limitations of cytotoxic chemotherapy and the growing role of molecular profiling, research has focused on identifying and developing targeted therapies. We herein review how genetic profiling informs prognosis, crucial cell-signaling pathways that play a role in CRC carcinogenesis, and currently approved targeted therapies for metastatic CRC.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Alexander H Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
108
|
Ros J, Rodríguez-Castells M, Saoudi N, Baraibar I, Salva F, Tabernero J, Élez E. Treatment of BRAF-V600E mutant metastatic colorectal cancer: new insights and biomarkers. Expert Rev Anticancer Ther 2023; 23:797-806. [PMID: 37482749 DOI: 10.1080/14737140.2023.2236794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION The presence of a BRAF-V600E mutation in metastatic colorectal cancer (mCRC) is observed in approximately 12% of cases and is associated with poor prognosis and aggressive disease. Unlike melanoma, the development of successful BRAF blockade in colorectal cancer has been complex. The phase III BEACON trial made significant progress in the development of BRAF inhibitors by establishing encorafenib-cetuximab as the new standard of care for patients with mCRC who have progressed to one or two previous lines of treatment. Nonetheless, not all patients respond to encorafenib-based combinations, and some responses are short-lived. Identifying new strategies to boost antitumor activity and improve survival is paramount. AREAS COVERED The development of targeted therapy for BRAF-V600E mCRC starting with BRAF inhibitors as monotherapy through novel combinations with anti-VEGF or anti-PD1 agents to enhance antitumor activity is reviewed, with a particular focus on the development of predictive and prognostic biomarkers. EXPERT OPINION There is a crucial need to better understand tumor biology and develop accurate and reliable biomarkers to enhance the antitumor activity of encorafenib-based combinations. The RNF43 mutation is an accurate and reliable predictive biomarker of response, and combinations that target crosstalk between the MAPK pathway, the immune system, and WNT pathways seem promising.
Collapse
Affiliation(s)
- Javier Ros
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Rodríguez-Castells
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Nadia Saoudi
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Iosune Baraibar
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Francesc Salva
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Josep Tabernero
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Elena Élez
- Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
109
|
Trédan O, Toulmonde M, Le Tourneau C, Montane L, Italiano A, Ray-Coquard I, De La Fouchardière C, Bertucci F, Gonçalves A, Gomez-Roca C, You B, Attignon V, Boyault S, Cassier PA, Dufresne A, Tabone-Eglinger S, Viari A, Sohier E, Kamal M, Garin G, Blay JY, Pérol D. Sorafenib in Molecularly Selected Cancer Patients: Final Analysis of the MOST-Plus Sorafenib Cohort. Cancers (Basel) 2023; 15:3441. [PMID: 37444551 DOI: 10.3390/cancers15133441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND MOST-plus is a multicenter, randomized, open-label, adaptive Phase II trial evaluating the clinical benefit of targeted treatments matched to molecular alteration in advanced/metastatic solid tumors. Sorafenib was tested on patients with tumors harboring sorafenib-targeted genes. METHODS The MOST-plus trial used a randomized discontinuation design. After 12 weeks of sorafenib (400 mg, po BID), patients with progressive disease discontinued study, patients with objective response were proposed to continue sorafenib, whereas patients with stable disease (SD) were randomly assigned (1:1) to the maintenance or interruption of treatment. The primary endpoint was RECIST version 1.1 progression-free rate at 16 weeks after randomization (PFR-16w). Secondary endpoints included progression-free survival (PFS), overall survival (OS), and toxicity. Statistical analyses used a sequential Bayesian approach with interim efficacy analyses. The enrolment could be stopped in the case of a 95% probability for the estimated PFR-16w to be higher in the maintenance than in the interruption arm (NCT02029001). RESULTS 151 patients were included, of whom 35 had SD at 12 weeks of Sorafenib. For the 35 patients with SD on sorafenib, the PFR-16w was 65% [95% credibility interval 43.4-83.7] in the continuation arm and 25% [7.8-48.1] in the interruption arm. Median PFS and OS were improved in the maintenance versus the interruption arm (mPFS: 5.6 [95%CI 1.97-6.77] months versus 2.0 [95%CI 1.61-3.91] months (p = 0.0231) and mOS: 14.3 [95%CI 8.9-23.8] versus 8.0 months [95%CI 3.5-15.2] (p = 0.0857)). CONCLUSION Sorafenib showed activity in progressive patients with solid tumors harboring somatic genomic alterations in sorafenib-targeted genes. Continuing sorafenib when SD is achieved improves PFR compared to interruption.
Collapse
Affiliation(s)
- Olivier Trédan
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Maud Toulmonde
- Medical Oncology Department, Institut Bergonié, 33076 Bordeaux, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, 75005 Paris, France
| | - Laure Montane
- Department of Clinical Research and Innovation, Léon Bérard Cancer Center, 69008 Lyon, France
| | - Antoine Italiano
- Medical Oncology Department, Institut Bergonié, 33076 Bordeaux, France
| | | | | | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Carlos Gomez-Roca
- Medical Oncology Department, Institute Universitaire de Cancérologie de Toulouse, 31037 Toulouse, France
| | - Benoit You
- Department of Medical Oncology, Lyon Sud Hospital Center, CITOHL, Institute of Cancerology, Hospices Civils de Lyon (IC-HCL), 69495 Lyon, France
| | - Valéry Attignon
- Genomic Platform, Léon Bérard Cancer Center, 69008 Lyon, France
| | | | | | - Armelle Dufresne
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France
| | | | - Alain Viari
- Gilles Thomas Bioinformatic Platform, Léon Bérard Cancer Center, 69008 Lyon, France
| | - Emilie Sohier
- Gilles Thomas Bioinformatic Platform, Léon Bérard Cancer Center, 69008 Lyon, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, 75005 Paris, France
| | - Gwenaël Garin
- Department of Clinical Research and Innovation, Léon Bérard Cancer Center, 69008 Lyon, France
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France
| | - David Pérol
- Department of Clinical Research and Innovation, Léon Bérard Cancer Center, 69008 Lyon, France
| |
Collapse
|
110
|
Kim S, Carvajal R, Kim M, Yang HW. Kinetics of RTK activation determine ERK reactivation and resistance to dual BRAF/MEK inhibition in melanoma. Cell Rep 2023; 42:112570. [PMID: 37252843 DOI: 10.1016/j.celrep.2023.112570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
The combination of BRAF and MEK inhibitors (BRAFi/MEKi) has shown promising response rates in treating BRAF-mutant melanoma by inhibiting ERK activation. However, treatment efficacy is limited by the emergence of drug-tolerant persister cells (persisters). Here, we show that the magnitude and duration of receptor tyrosine kinase (RTK) activation determine ERK reactivation and persister development. Our single-cell analysis reveals that only a small subset of melanoma cells exhibits effective RTK and ERK activation and develops persisters, despite uniform external stimuli. The kinetics of RTK activation directly influence ERK signaling dynamics and persister development. These initially rare persisters form major resistant clones through effective RTK-mediated ERK activation. Consequently, limiting RTK signaling suppresses ERK activation and cell proliferation in drug-resistant cells. Our findings provide non-genetic mechanistic insights into the role of heterogeneity in RTK activation kinetics in ERK reactivation and BRAFi/MEKi resistance, suggesting potential strategies for overcoming drug resistance in BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Richard Carvajal
- Department of Medicine, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
111
|
Mooradian MJ, Cleary JM, Giobbie-Hurder A, Darville LNF, Parikh A, Buchbinder EI, Cohen JV, Lawrence DP, Shapiro GI, Keer H, Chen HX, Ivy SP, Smalley KSM, Koomen JM, Sullivan RJ. Dose-escalation trial of combination dabrafenib, trametinib, and AT13387 in patients with BRAF-mutant solid tumors. Cancer 2023; 129:1904-1918. [PMID: 37042037 PMCID: PMC10793106 DOI: 10.1002/cncr.34730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Combination BRAF and MEK inhibitor therapy is an active regimen in patients who have BRAF V600E-mutated tumors; however, the clinical efficacy of this therapy is limited by resistance. Preclinically, the addition of heat shock protein 90 (HSP90) inhibition improves the efficacy of BRAF inhibitor therapy in both BRAF inhibitor-sensitive and BRAF inhibitor-resistant mutant cell lines. METHODS Cancer Therapy Evaluation Program study 9557 (ClinicalTrials.gov identifier NCT02097225) is a phase 1 study that was designed to assess the safety and efficacy of the small-molecule HSP90 inhibitor, AT13387, in combination with dabrafenib and trametinib in BRAF V600E/K-mutant solid tumors. Correlative analyses evaluated the expression of HSP90 client proteins and chaperones. RESULTS Twenty-two patients with metastatic, BRAF V600E-mutant solid tumors were enrolled using a 3 + 3 design at four dose levels, and 21 patients were evaluable for efficacy assessment. The most common tumor type was colorectal cancer (N = 12). Dose-limiting toxicities occurred in one patient at dose level 3 and in one patient at dose level 4; specifically, myelosuppression and fatigue, respectively. The maximum tolerated dose was oral dabafenib 150 mg twice daily, oral trametinib 2 mg once daily, and intravenous AT13387 260 mg/m2 on days 1, 8, and 15. The best response was a partial response in two patients and stable disease in eight patients, with an overall response rate of 9.5% (90% exact confidence interval [CI], 2%-27%), a disease control rate of 47.6% (90% CI, 29%-67%), and a median overall survival of 5.1 months (90% CI, 3.4-7.6 months). There were no consistent proteomic changes associated with response or resistance, although responders did have reductions in BRAF expression, and epidermal growth factor receptor downregulation using HSP90 inhibition was observed in one patient who had colorectal cancer. CONCLUSIONS HSP90 inhibition combined with BRAF/MEK inhibition was safe and produced evidence of modest disease control in a heavily pretreated population. Additional translational work may identify tumor types and resistance mechanisms that are most sensitive to this approach.
Collapse
Affiliation(s)
- Meghan J. Mooradian
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James M. Cleary
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Departments of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lancia N. F. Darville
- Department of Proteomics and Metabolomics Core, Moffitt Cancer Center, Tampa, Florida, USA
| | - Aparna Parikh
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth I. Buchbinder
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Justine V. Cohen
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Donald P. Lawrence
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Geoffrey I. Shapiro
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Harold Keer
- Astex Pharmaceuticals Inc., Pleasanton, California, USA
| | - Helen X. Chen
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - Susan Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | | | - John M. Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ryan J. Sullivan
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
112
|
Liu K, Cui Y, Li H, Mi J, Wang H, Zhuang Y, Tang L, Liu J, Tian C, Zhang Z, Zhou J, Shi H, Tian X, Liu P. The mechanism investigation of mutation genes in liver and lung metastasis of colorectal cancer by using NGS technique. Crit Rev Oncol Hematol 2023:104057. [PMID: 37328085 DOI: 10.1016/j.critrevonc.2023.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND We analyzed the somatic mutation distributions as well as pathways associated with liver/lung metastasis of CRC using next-generation sequencing panel. METHODS We detected the somatic SNV/indel mutations of 1126 tumor-related genes in CRC, liver/lung metastasis of CRC and liver /lung cancer. We combined the MSK and GEO datasets to identified the genes and pathways related to the metastasis of CRC. RESULTS We identified 174 genes related to liver metastasis of CRC, 78 genes related to lung metastasis of CRC, and 57 genes related to both liver and lung metastasis in two datasets. The genes related to liver and lung metastasis were collectively enriched in various pathways. Finally we found that IRS1, BRCA2, EphA5, PTPRD, BRAF, and PTEN could be prognosis-related genes in CRC metastasis. CONCLUSION Our finding may help clarify the pathogenesis of CRC metastasis more clearly and provide new perspectives for the diagnosis and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Colorectal Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yunlong Cui
- Department of Hepatobiliary Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hua Li
- Department of Endoscopy, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jiahui Mi
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yan Zhuang
- Department of Colorectal Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Liang Tang
- Department of Colorectal Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jia Liu
- Department of Colorectal Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin 300381, China
| | - Zhenzhen Zhang
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin 300381, China
| | - Jiang Zhou
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin 300381, China
| | - Haijing Shi
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Xin Tian
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| |
Collapse
|
113
|
Napolitano S, Woods M, Lee HM, De Falco V, Martini G, Della Corte CM, Martinelli E, Famiglietti V, Ciardiello D, Anderson A, Fowlkes NW, Villareal OE, Sorokin A, Kanikarla P, Coker O, Morris V, Altucci L, Tabernero J, Troiani T, Ciardiello F, Kopetz S. Antitumor Efficacy of Dual Blockade with Encorafenib + Cetuximab in Combination with Chemotherapy in Human BRAFV600E-Mutant Colorectal Cancer. Clin Cancer Res 2023; 29:2299-2309. [PMID: 37040395 PMCID: PMC10261917 DOI: 10.1158/1078-0432.ccr-22-3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Encorafenib + cetuximab (E+C) is an effective therapeutic option in chemorefractory BRAFV600E metastatic colorectal cancer (mCRC). However, there is a need to improve the efficacy of this molecular-targeted therapy and evaluate regimens suitable for untreated BRAFV600E in patients with mCRC. EXPERIMENTAL DESIGN We performed a series of in vivo studies using BRAFV600E mCRC tumor xenografts. Mice were randomized to receive 5-fluoruracil (5-FU), irinotecan, or oxaliplatin regimens (FOLFIRI or FOLFOX), (E+C) or the combination. Patients received long-term treatment until disease progression, with deescalation strategies used to mimic maintenance therapy. Transcriptomic changes after progression on cytotoxic chemotherapy or targeted therapy were assessed. RESULTS Antitumor activity of either FOLFIRI or E+C was better as first-line treatment as compared with second-line, with partial cross-resistance seen between a cytotoxic regimen and targeted therapy with an average 62% loss of efficacy for FOLFIRI after E+C and a 45% loss of efficacy of E+C after FOLFIRI (P < 0.001 for both). FOLFIRI-treated models had upregulation of epithelial-mesenchymal transition (EMT) and MAPK pathway activation, where E+C treated models had suppressed MAPK signaling. In contrast, with chemotherapy with E+C, EMT and MAPK signaling remained suppressed. FOLFOX or FOLFIRI, each in combination with E+C, were the most active first-line treatments as compared with E+C or to chemotherapy alone. Furthermore, FOLFOX in combination with E+C as first-line induction therapy, followed by E+C ± 5-FU as maintenance therapy, was the most effective strategy for long-term disease control. CONCLUSIONS These results support the combination of cytotoxic chemotherapy and molecular-targeted therapy as a promising therapeutic approach in the first-line treatment of BRAFV600E mCRC.
Collapse
Affiliation(s)
- Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Melanie Woods
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hey Min Lee
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincenzo De Falco
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giulia Martini
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Erika Martinelli
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Vincenzo Famiglietti
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Amanda Anderson
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Wall Fowlkes
- Veterinary Medicine & Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Oscar Eduardo Villareal
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexey Sorokin
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preeti Kanikarla
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Olu Coker
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van Morris
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d' Hebron Hospital Campus, Barcelona, Spain
- Institute of Oncology, University of Vic/Central University of Catalonia, Barcelona, Spain
- Oncology Institute of Barcelona-Quironsalud, Biomedical Research Center in Cancer, Barcelona, Spain
| | - Teresa Troiani
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Scott Kopetz
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
114
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
115
|
Sun L, Yu J, Guinney J, Qin B, Sinicrope FA. USP10 Regulates ZEB1 Ubiquitination and Protein Stability to Inhibit ZEB1-Mediated Colorectal Cancer Metastasis. Mol Cancer Res 2023; 21:578-590. [PMID: 36940483 PMCID: PMC10239320 DOI: 10.1158/1541-7786.mcr-22-0552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1) is a transcription factor that can promote tumor invasion and metastasis by inducing epithelial-to-mesenchymal transition (EMT). To date, regulation of ZEB1 by RAS/RAF signaling remains unclear, and few studies have examined posttranslation modification of ZEB1, including its ubiquitination. In human colorectal cancer cell lines with RAS/RAF/MEK/ERK activation, an interaction of ZEB1 with the deubiquitinase ubiquitin-specific protease 10 (USP10) was identified whereby USP10 modifies ZEB1 ubiquitination and promotes its proteasomal degradation. Regulation of the USP10-ZEB1 interaction by MEK-ERK signaling was shown whereby constitutive activation of ERK can phosphorylate USP10 at Ser236 to impair its interaction with ZEB1 and enable ZEB1 protein stabilization. Stabilized ZEB1 was shown to promote colorectal cancer metastatic colonization in a mouse tail vein injection model. Conversely, MEK-ERK inhibition blocked USP10 phosphorylation and enhanced the USP10-ZEB1 interaction shown to suppress ZEB1-mediated tumor cell migration and metastasis. In conclusion, we demonstrate a novel function of USP10 in the regulation of ZEB1 protein stability and its ability to mediate tumor metastasis in a preclinical model. IMPLICATIONS The MEK-ERK-regulated interaction of USP10 with ZEB1 can promote the proteasomal degradation of ZEB1 and thereby suppress its demonstrated ability to mediate tumor metastasis.
Collapse
Affiliation(s)
- Lei Sun
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China (current address)
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Bo Qin
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, 55905, USA
| | - Frank A. Sinicrope
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN, 55905, USA
- Departments of Medicine and Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic and Mayo Comprehensive Cancer Center, Rochester, MN, 55905, USA
| |
Collapse
|
116
|
Inagaki C, Matoba R, Yuki S, Shiozawa M, Tsuji A, Inoue E, Muro K, Ichikawa W, Fujii M, Sunakawa Y. The BEETS (JACCRO CC-18) trial: an observational and translational study of BRAF-mutated metastatic colorectal cancer. Future Oncol 2023; 19:1165-1174. [PMID: 37458152 DOI: 10.2217/fon-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
For BRAF V600E-mutated metastatic colorectal cancer (mCRC), the BEACON phase 3 trial showed survival benefit of triplet therapy with cetuximab (anti-EGFR antibody), encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) as well as doublet therapy with cetuximab and encorafenib over irinotecan-based chemotherapy plus anti-EGFR antibody. Both regimens are standards of care in Japan, but definite biomarkers for predicting efficacy and selecting treatment remain lacking. The mechanisms underlying resistance to these regimens also warrant urgent exploration to further evolve treatment. This prospective observational/translational study evaluated real-word clinical outcomes with cetuximab and encorafenib with or without binimetinib for BRAF-mutated mCRC patients and investigated biomarkers for response and resistance by collecting blood samples before and after treatment. Clinical Trial Registration: UMIN000045530 (https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000051983).
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan
| | - Ryo Matoba
- DNA Chip Research Inc., 1-15-1, Kaigan, Minato-ku, Tokyo 105-0022, Japan
| | - Satoshi Yuki
- Department of Gastroenterology & Hepatology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Manabu Shiozawa
- Department of Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa 241-8515, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Eisuke Inoue
- Showa University Research Administration Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Wataru Ichikawa
- Division of Medical Oncology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan
| | - Masashi Fujii
- Japan Clinical Cancer Research Organization (JACCRO), 1-64 Kanda-Jimbocho, Chiyoda-ku, Tokyo 101-0051, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
117
|
Ros J, Matito J, Villacampa G, Comas R, Garcia A, Martini G, Baraibar I, Saoudi N, Salvà F, Martin Á, Antista M, Toledo R, Martinelli E, Pietrantonio F, Boccaccino A, Cremolini C, Dientsmann R, Tabernero J, Vivancos A, Elez E. Plasmatic BRAF-V600E allele fraction as a prognostic factor in metastatic colorectal cancer treated with BRAF combinatorial treatments. Ann Oncol 2023; 34:543-552. [PMID: 36921693 DOI: 10.1016/j.annonc.2023.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Combination of a BRAF inhibitor (BRAFi) and an anti-epidermal growth factor receptor (EGFR), with or without a MEK inhibitor (MEKi), improves survival in BRAF-V600E-mutant metastatic colorectal cancer (mCRC) over standard chemotherapy. However, responses are heterogeneous and there are no available biomarkers to assess patient prognosis or guide doublet- or triplet-based regimens. In order to better characterize the clinical heterogeneity observed, we assessed the prognostic and predictive role of the plasmatic BRAF allele fraction (AF) for these combinations. PATIENTS AND METHODS A prospective discovery cohort including 47 BRAF-V600E-mutant patients treated with BRAFi-anti-EGFR ± MEKi in clinical trials and real-world practice was evaluated. Results were validated in an independent multicenter cohort (n= 29). Plasmatic BRAF-V600E AF cut-off at baseline was defined in the discovery cohort with droplet digital PCR (ddPCR). All patients had tissue-confirmed BRAF-V600E mutations. RESULTS Patients with high AF have major frequency of liver metastases and more metastatic sites. In the discovery cohort, median progression-free survival (PFS) and overall survival (OS) were 4.4 and 10.1 months, respectively. Patients with high BRAF AF (≥2%, n = 23) showed worse PFS [hazard ratio (HR) 2.97, 95% confidence interval (CI) 1.55-5.69; P = 0.001] and worse OS (HR 3.28, 95% CI 1.58-6.81; P = 0.001) than low-BRAF AF patients (<2%, n = 24). In the multivariable analysis, BRAF AF levels maintained independent significance. In the validation cohort, high BRAF AF was associated with worse PFS (HR 3.83, 95% CI 1.60-9.17; P = 0.002) and a trend toward worse OS was observed (HR 1.86, 95% CI 0.80-4.34; P = 0.15). An exploratory analysis of predictive value showed that high-BRAF AF patients (n = 35) benefited more from triplet therapy than low-BRAF AF patients (n = 41; PFS and OS interaction tests, P < 0.01). CONCLUSIONS Plasmatic BRAF AF determined by ddPCR is a reliable surrogate of tumor burden and aggressiveness in BRAF-V600E-mutant mCRC treated with a BRAFi plus an anti-EGFR with or without a MEKi and identifies patients who may benefit from treatment intensification. Our results warrant further validation of plasmatic BRAF AF to refine clinical stratification and guide treatment strategies.
Collapse
Affiliation(s)
- J Ros
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Matito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Villacampa
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; The Institute of Cancer Research, London, UK
| | - R Comas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Garcia
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Martini
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - I Baraibar
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - N Saoudi
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - F Salvà
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Á Martin
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - M Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - R Toledo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - E Martinelli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - F Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - A Boccaccino
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - C Cremolini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - R Dientsmann
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - E Elez
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
118
|
Schillinger G. [Genetic tumour diagnostics and personalised medicine from a systems perspective]. ZEITSCHRIFT FUR EVIDENZ, FORTBILDUNG UND QUALITAT IM GESUNDHEITSWESEN 2023; 179:91-94. [PMID: 37183116 DOI: 10.1016/j.zefq.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
High-quality studies are necessary and feasible in personalised medicine in order to evaluate the benefits across the entire treatment chain of biomarker tests and resulting treatments in regard to patient-relevant endpoints. With the introduction of genome sequencing in oncology, a considerable number of new treatment concepts with mostly low-quality evidence can be expected. High quality requirements, interdisciplinary cooperation structures, knowledge-generating care and the connection of patient care at the expense of the statutory health insurance funds, with research at the expense of the manufacturers or public funding, are necessary.
Collapse
|
119
|
Al-Wahaibi LH, Abou-Zied HA, Beshr EAM, Youssif BGM, Hayallah AM, Abdel-Aziz M. Design, Synthesis, Antiproliferative Actions, and DFT Studies of New Bis-Pyrazoline Derivatives as Dual EGFR/BRAF V600E Inhibitors. Int J Mol Sci 2023; 24:9104. [PMID: 37240450 PMCID: PMC10218941 DOI: 10.3390/ijms24109104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Some new Bis-pyrazoline hybrids 8-17 with dual EGFR and BRAFV600E inhibitors have been developed. The target compounds were synthesized and tested in vitro against four cancer cell lines. Compounds 12, 15, and 17 demonstrated strong antiproliferative activity with GI50 values of 1.05 µM, 1.50 µM, and 1.20 µM, respectively. Hybrids showed dual inhibition of EGFR and BRAFV600E. Compounds 12, 15, and 17 inhibited EGFR-like erlotinib and exhibited promising anticancer activity. Compound 12 is the most potent inhibitor of cancer cell proliferation and BRAFV600E. Compounds 12 and 17 induced apoptosis by increasing caspase 3, 8, and Bax levels, and resulted in the downregulation of the antiapoptotic Bcl2. The molecular docking studies verified that compounds 12, 15, and 17 have the potential to be dual EGFR/BRAFV600E inhibitors. Additionally, in silico ADMET prediction revealed that most synthesized bis-pyrazoline hybrids have low toxicity and adverse effects. DFT studies for the two most active compounds, 12 and 15, were also carried out. The values of the HOMO and LUMO energies, as well as softness and hardness, were computationally investigated using the DFT method. These findings agreed well with those of the in vitro research and molecular docking study.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| |
Collapse
|
120
|
Van Cutsem E, Taieb J, Yaeger R, Yoshino T, Grothey A, Maiello E, Elez E, Dekervel J, Ross P, Ruiz-Casado A, Graham J, Kato T, Ruffinelli JC, André T, Carrière Roussel E, Klauck I, Groc M, Vedovato JC, Tabernero J. ANCHOR CRC: Results From a Single-Arm, Phase II Study of Encorafenib Plus Binimetinib and Cetuximab in Previously Untreated BRAFV600E-Mutant Metastatic Colorectal Cancer. J Clin Oncol 2023; 41:2628-2637. [PMID: 36763936 PMCID: PMC10414717 DOI: 10.1200/jco.22.01693] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/12/2022] [Accepted: 12/27/2022] [Indexed: 02/12/2023] Open
Abstract
PURPOSE The positive BEACON colorectal cancer (CRC) safety lead-in, evaluating encorafenib + cetuximab + binimetinib in previously treated patients with BRAFV600E-mutated metastatic CRC (mCRC), prompted the design of the phase II ANCHOR CRC study (ClinicalTrails.gov identifier: NCT03693170). ANCHOR CRC aimed to evaluate efficacy, safety, and quality of life with first-line encorafenib + binimetinib + cetuximab in BRAFV600E-mutated mCRC. METHODS In this multicenter, open-label, single-arm study, patients with BRAFV600E-mutated mCRC received oral encorafenib 300 mg once daily and binimetinib 45 mg twice daily in 28-day cycles, plus intravenous cetuximab 400 mg/m2 once on day 1 of cycle 1, then 250 mg/m2 once weekly for the first seven cycles, and 500 mg/m2 once on Days 1 and 15 from cycle 8 onward. The primary end point was locally assessed confirmed objective response rate (cORR), and secondary end points included centrally assessed cORR, progression-free survival, overall survival (OS), quality of life, and safety and tolerability. RESULTS Among 95 patients, the locally assessed cORR was 47.4% (95% CI, 37.0 to 57.9) with all partial responses. Since the lower limit of the 95% CI exceeded 30%, the primary end point was met. With a median follow-up duration of 20.1 months, the median progression-free survival on the basis of local assessments was 5.8 months and the median OS was 18.3 months. Treatment was well tolerated, with no unexpected toxicities. Using Patient Global Impression of Changes, substantial improvement in symptoms was consistently reported in ≥ 30% of patients from cycle 3 to cycle 10. CONCLUSION The ANCHOR CRC study showed that the scientifically driven combination of encorafenib + binimetinib + cetuximab was active in the first-line setting of BRAFV600E-mutated mCRC with a manageable safety profile. Further first-line evaluation is ongoing (ClinicalTrails.gov identifier: NCT04607421).
Collapse
Affiliation(s)
| | - Julien Taieb
- Department of Hepatogastroenterology and Gastrointestinal Oncology, University Paris-cité (Paris Descartes), SIRIC CARPEM, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Axel Grothey
- West Cancer Center and Research Institute, Germantown, TN
| | - Evaristo Maiello
- Oncology Unit, Foundation IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Elena Elez
- Department of Medical Oncology, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Paul Ross
- Department of Oncology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Ana Ruiz-Casado
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain
| | - Janet Graham
- Dept of Medical Oncology, Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, UK
| | - Takeshi Kato
- Department of Colorectal Surgery, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Jose C. Ruffinelli
- Institut Català dˊOncologia LˊHospitalet–Hospital, Duran i Reynals, Barcelona, Spain
| | - Thierry André
- Sorbonne University; Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, Paris, France
| | | | - Isabelle Klauck
- Pierre Fabre, Medical & Patient/Consumer Division, Boulogne, France
| | - Mélanie Groc
- Pierre Fabre, Medical & Patient/Consumer Division, Langlade, France
| | | | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron Barcelona Hospital, Vall d’Hebron Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| |
Collapse
|
121
|
Piringer G, Decker J, Trommet V, Kühr T, Heibl S, Dörfler K, Thaler J. Ongoing complete response after treatment cessation with dabrafenib, trametinib, and cetuximab as third-line treatment in a patient with advanced BRAF V600E mutated, microsatellite-stable colon cancer: A case report and literature review. Front Oncol 2023; 13:1166545. [PMID: 37213293 PMCID: PMC10196488 DOI: 10.3389/fonc.2023.1166545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Metastatic BRAFV600E mutated colorectal cancer is associated with poor overall survival and modest effectiveness to standard therapies. Furthermore, survival is influenced by the microsatellite status. Patients with microsatellite-stable and BRAFV600E mutated colorectal cancer have the worst prognosis under the wide range of genetic subgroups in colorectal cancer. Herein, we present a patient case of an impressive therapeutic efficacy of dabrafenib, trametinib, and cetuximab as later-line therapy in a 52-year-old woman with advanced BRAFV600E mutated, microsatellite-stable colon cancer. This patient achieved a complete response after 1 year of triple therapy. Due to skin toxicity grade 3 and recurrent urinary tract infections due to mucosal toxicity, a therapy de-escalation to dabrafenib and trametinib was performed, and the double therapy was administered for further 41 months with ongoing complete response. For 1 year, the patient was off therapy and is still in complete remission.
Collapse
Affiliation(s)
- Gudrun Piringer
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Jörn Decker
- Department of Internal Medicine, Klinikum Rohrbach, Rohrbach, Austria
| | - Vera Trommet
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
| | - Thomas Kühr
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Konrad Dörfler
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
122
|
Kollipara S, Ahmed T, Praveen S. Physiologically based pharmacokinetic modelling to predict drug-drug interactions for encorafenib. Part I. Model building, validation, and prospective predictions with enzyme inhibitors, inducers, and transporter inhibitors. Xenobiotica 2023; 53:366-381. [PMID: 37609899 DOI: 10.1080/00498254.2023.2250856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Encorafenib, a potent BRAF kinase inhibitor undergoes significant metabolism by CYP3A4 (83%) and CYP2C19 (16%) and also a substrate of P-glycoprotein (P-gp). Because of this, encorafenib possesses potential for enzyme-transporter related interactions. Clinically, its drug-drug interactions (DDIs) with CYP3A4 inhibitors (posaconazole, diltiazem) were reported and hence there is a necessity to study DDIs with multiple enzyme inhibitors, inducers, and P-gp inhibitors.USFDA recommended clinical CYP3A4, CYP2C19, P-gp inhibitors, CYP3A4 inducers were selected and prospective DDIs were simulated using physiologically based pharmacokinetic modelling (PBPK). Impact of dose (50 mg vs. 300 mg) and staggering of administrations (0-10 h) on the DDIs were predicted.PBPK models for encorafenib, perpetrators simulated PK parameters within twofold prediction error. Clinically reported DDIs with posaconazole and diltiazem were successfully predicted.CYP2C19 inhibitors did not result in significant DDI whereas strong CYP3A4 inhibitors resulted in DDI ratio up to 4.5. Combining CYP3A4, CYP2C19 inhibitors yielded DDI equivalent CYP3A4 alone. Strong CYP3A4 inducers yielded DDI ratio up to 0.3 and no impact of P-gp inhibitors on DDIs was observed. The DDIs were not impacted by dose and staggering of administration. Overall, this work indicated significance of PBPK modelling for evaluating clinical DDIs with enzymes, transporters and interplay.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivadasu Praveen
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
123
|
Zhang Y, Wang Y, Zhang B, Li P, Zhao Y. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed Pharmacother 2023; 163:114786. [PMID: 37119736 DOI: 10.1016/j.biopha.2023.114786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common digestive diseases worldwide. It has steadily ascended to the top three cancers in terms of incidence and mortality. The primary cause is the inability to diagnose it at an early stage. Therefore, early detection and diagnosis are essential for colorectal cancer prevention. Although there are now various methods for CRC early detection, in addition to recent developments in surgical and multimodal therapy, the poor prognosis and late detection of CRC still remain significant. Thus, it is important to investigate novel technologies and biomarkers to improve the sensitization and specification of CRC diagnosis. Here, we present some common methods and biomarkers for early detection and diagnosis of CRC, we hope this review will encourage the adoption of screening programs and the clinical use of these potential molecules as biomarkers for CRC early detection and prognosis.
Collapse
Affiliation(s)
- Yue Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Shandong Province, China
| | - Bingqiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
124
|
Tiedt R, King FJ, Stamm C, Niederst MJ, Delach S, Zumstein-Mecker S, Meltzer J, Mulford IJ, Labrot E, Engstler BS, Baltschukat S, Kerr G, Golji J, Wyss D, Schnell C, Ainscow E, Engelman JA, Sellers WR, Barretina J, Caponigro G, Porta DG. Integrated CRISPR screening and drug profiling identifies combination opportunities for EGFR, ALK, and BRAF/MEK inhibitors. Cell Rep 2023; 42:112297. [PMID: 36961816 DOI: 10.1016/j.celrep.2023.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/11/2022] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer. Our approach includes genome-wide CRISPR screens with or without drugs targeting the oncogenic driver ("anchor therapy"), and large-scale pairwise combination screens of anchor therapies with 351 other drugs. Interestingly, targeting of a small number of genes, including MCL1, BCL2L1, and YAP1, sensitizes multiple cell lines to the respective anchor therapy. Data from drug combination screens with EGF816 and ceritinib indicate that dasatinib and agents disrupting microtubules act synergistically across many cell lines. Finally, we show that a higher-order-combination screen with 26 selected drugs in two resistant EGFR-mutant lung cancer cell lines identified active triplet combinations.
Collapse
Affiliation(s)
- Ralph Tiedt
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Frederick J King
- Novartis Institutes for BioMedical Research, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Christelle Stamm
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Matthew J Niederst
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA.
| | - Scott Delach
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | | | - Jodi Meltzer
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Iain J Mulford
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Emma Labrot
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | | | - Sabrina Baltschukat
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Javad Golji
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Daniel Wyss
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Christian Schnell
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Edward Ainscow
- Novartis Institutes for BioMedical Research, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Jeffrey A Engelman
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - William R Sellers
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Jordi Barretina
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Giordano Caponigro
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Diana Graus Porta
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| |
Collapse
|
125
|
Morimoto Y, Yamashita N, Hirose H, Fushimi A, Haratake N, Daimon T, Bhattacharya A, Ahmad R, Suzuki Y, Takahashi H, Kufe DW. MUC1-C is necessary for SHP2 activation and BRAF inhibitor resistance in BRAF(V600E) mutant colorectal cancer. Cancer Lett 2023; 559:216116. [PMID: 36878307 PMCID: PMC10408991 DOI: 10.1016/j.canlet.2023.216116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Colorectal cancers (CRCs) harboring the BRAF(V600E) mutation are associated with aggressive disease and resistance to BRAF inhibitors by feedback activation of the receptor tyrosine kinase (RTK)→RAS→MAPK pathway. The oncogenic MUC1-C protein promotes progression of colitis to CRC; whereas there is no known involvement of MUC1-C in BRAF(V600E) CRCs. The present work demonstrates that MUC1 expression is significantly upregulated in BRAF(V600E) vs wild-type CRCs. We show that BRAF(V600E) CRC cells are dependent on MUC1-C for proliferation and BRAF inhibitor (BRAFi) resistance. Mechanistically, MUC1-C integrates induction of MYC in driving cell cycle progression with activation of the SHP2 phosphotyrosine phosphatase, which enhances RTK-mediated RAS→ERK signaling. We demonstrate that targeting MUC1-C genetically and pharmacologically suppresses (i) activation of MYC, (ii) induction of the NOTCH1 stemness factor, and (iii) the capacity for self-renewal. We also show that MUC1-C associates with SHP2 and is required for SHP2 activation in driving BRAFi-induced feedback of ERK signaling. In this way, targeting MUC1-C in BRAFi-resistant BRAF(V600E) CRC tumors inhibits growth and sensitizes to BRAF inhibition. These findings demonstrate that MUC1-C is a target for the treatment of BRAF(V600E) CRCs and for reversing their resistance to BRAF inhibitors by suppressing the feedback MAPK pathway.
Collapse
Affiliation(s)
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yozo Suzuki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
126
|
Feng J, Hu Z, Xia X, Liu X, Lian Z, Wang H, Wang L, Wang C, Zhang X, Pang X. Feedback activation of EGFR/wild-type RAS signaling axis limits KRAS G12D inhibitor efficacy in KRAS G12D-mutated colorectal cancer. Oncogene 2023; 42:1620-1633. [PMID: 37020035 PMCID: PMC10181928 DOI: 10.1038/s41388-023-02676-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Colorectal cancer (CRC), which shows a high degree of heterogeneity, is the third most deadly cancer worldwide. Mutational activation of KRASG12D occurs in approximately 10-12% of CRC cases, but the susceptibility of KRASG12D-mutated CRC to the recently discovered KRASG12D inhibitor MRTX1133 has not been fully defined. Here, we report that MRTX1133 treatment caused reversible growth arrest in KRASG12D-mutated CRC cells, accompanied by partial reactivation of RAS effector signaling. Through a drug-anchored synthetic lethality screen, we discovered that epidermal growth factor receptor (EGFR) inhibition was synthetic lethal with MRTX1133. Mechanistically, MRTX1133 treatment downregulated the expression of ERBB receptor feedback inhibitor 1 (ERRFI1), a crucial negative regulator of EGFR, thereby causing EGFR feedback activation. Notably, wild-type isoforms of RAS, including H-RAS and N-RAS, but not oncogenic K-RAS, mediated signaling downstream of activated EGFR, leading to RAS effector signaling rebound and reduced MRTX1133 efficacy. Blockade of activated EGFR with clinically used antibodies or kinase inhibitors suppressed the EGFR/wild-type RAS signaling axis, sensitized MRTX1133 monotherapy, and caused the regression of KRASG12D-mutant CRC organoids and cell line-derived xenografts. Overall, this study uncovers feedback activation of EGFR as a prominent molecular event that restricts KRASG12D inhibitor efficacy and establishes a potential combination therapy consisting of KRASG12D and EGFR inhibitors for patients with KRASG12D-mutated CRC.
Collapse
Affiliation(s)
- Juanjuan Feng
- Southern Medical University Affiliated Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhongwei Hu
- Southern Medical University Affiliated Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xinting Xia
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaogu Liu
- Southern Medical University Affiliated Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhengke Lian
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
127
|
Lin-Rahardja K, Weaver DT, Scarborough JA, Scott JG. Evolution-Informed Strategies for Combating Drug Resistance in Cancer. Int J Mol Sci 2023; 24:6738. [PMID: 37047714 PMCID: PMC10095117 DOI: 10.3390/ijms24076738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
The ever-changing nature of cancer poses the most difficult challenge oncologists face today. Cancer's remarkable adaptability has inspired many to work toward understanding the evolutionary dynamics that underlie this disease in hopes of learning new ways to fight it. Eco-evolutionary dynamics of a tumor are not accounted for in most standard treatment regimens, but exploiting them would help us combat treatment-resistant effectively. Here, we outline several notable efforts to exploit these dynamics and circumvent drug resistance in cancer.
Collapse
Affiliation(s)
- Kristi Lin-Rahardja
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Davis T. Weaver
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica A. Scarborough
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob G. Scott
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Translational Hematology & Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
| |
Collapse
|
128
|
Shin D, Cho KH. Critical transition and reversion of tumorigenesis. Exp Mol Med 2023; 55:692-705. [PMID: 37009794 PMCID: PMC10167317 DOI: 10.1038/s12276-023-00969-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
Cancer is caused by the accumulation of genetic alterations and therefore has been historically considered to be irreversible. Intriguingly, several studies have reported that cancer cells can be reversed to be normal cells under certain circumstances. Despite these experimental observations, conceptual and theoretical frameworks that explain these phenomena and enable their exploration in a systematic way are lacking. In this review, we provide an overview of cancer reversion studies and describe recent advancements in systems biological approaches based on attractor landscape analysis. We suggest that the critical transition in tumorigenesis is an important clue for achieving cancer reversion. During tumorigenesis, a critical transition may occur at a tipping point, where cells undergo abrupt changes and reach a new equilibrium state that is determined by complex intracellular regulatory events. We introduce a conceptual framework based on attractor landscapes through which we can investigate the critical transition in tumorigenesis and induce its reversion by combining intracellular molecular perturbation and extracellular signaling controls. Finally, we present a cancer reversion therapy approach that may be a paradigm-changing alternative to current cancer cell-killing therapies.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Reasearch Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
129
|
Mansinho A, Fernandes RM, Carneiro AV. Histology-Agnostic Drugs: A Paradigm Shift-A Narrative Review. Adv Ther 2023; 40:1379-1392. [PMID: 36418841 PMCID: PMC10070286 DOI: 10.1007/s12325-022-02362-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
Cancer diagnosis and therapeutics have been traditionally based on pathologic classification at the organ of origin. The availability of an unprecedented amount of clinical and biologic data provides a unique window of opportunity for the development of new drugs. What was once treated as a homogeneous disease with a one-size-fits-all approach was shown to be a rather heterogeneous condition, with multiple targetable mutations that can vary during the course of the disease. Clinical trial designs have had to adapt to the exponential growth of targetable mechanisms and new agents, with ensuing challenges that are closer to those experienced with rare diseases and orphan medicines. To face these problems, precision/enrichment and other novel trial designs have been developed, and the concept of histology-agnostic targeted therapeutic agents has emerged. Patients are selected for a specific agent based on specific genomic or molecular alterations, with the same compound used to potentially treat a multiplicity of cancers, granted that the actionable driver alteration is present. There are currently approved drugs for such indications, but this approach has raised issues on multiple levels. This review aims to address the challenges of this new concept and provide insights into possible solutions and frameworks on how to tackle them.
Collapse
Affiliation(s)
- André Mansinho
- Serviço de Oncologia Médica, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Miguel Fernandes
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - António Vaz Carneiro
- Instituto de Saúde Baseada na Evidência, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
- BC/CDI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
130
|
Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:222-236. [PMID: 36828759 PMCID: PMC10365888 DOI: 10.1016/j.tips.2023.01.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
Metastatic colorectal cancer (mCRC) remains a lethal disease with an approximately 14% 5-year survival rate. While early-stage colorectal cancer (CRC) can be cured by surgery with or without adjuvant chemotherapy, mCRC cannot be eradicated due to a large burden of disseminated cancer cells comprising therapy-resistant metastasis-competent cells. To address this gap, recent studies have focused on further elucidating the molecular mechanisms underlying colorectal metastasis and recognizing the limitations of available therapeutic interventions. In this review, we discuss newfound factors that regulate CRC cell dissemination and colonization of distant organs, such as genetic mutations, identification of metastasis-initiating cells (MICs), epithelial-mesenchymal transition (EMT), and the tumor microenvironment (TME). We also review current treatments for mCRC, therapeutic regimens undergoing clinical trials, and trending preclinical studies being investigated to target treatment-resistant mCRC.
Collapse
Affiliation(s)
- Alice E Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo G Giancotti
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
131
|
|
132
|
Downs BM, Hoang TM, Cope L. Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3225-3234. [PMID: 36811956 DOI: 10.1021/acs.langmuir.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered flowing plasma, removing the need to extract the plasma from the body. This technology has provided the first opportunity to investigate whether microfluidic flow cell design can affect the capture of ctDNA in unaltered plasma. With inspiration from microfluidic mixer flow cells designed to capture circulating tumor cells and exosomes, we constructed four microfluidic mixer flow cells. Next, we investigated the effects of these flow cell designs and the flow rate on the rate of captured spiked-in BRAF T1799A (BRAFMut) ctDNA in unaltered flowing plasma using surface-immobilized dCas9. Once the optimal mass transfer rate of ctDNA, identified by the optimal ctDNA capture rate, was determined, we investigated whether the design of the microfluidic device, flow rate, flow time, and the number of spiked-in mutant DNA copies affected the rate of capture by the dCas9 capture system. We found that size modifications to the flow channel had no effect on the flow rate required to achieve the optimal capture rate of ctDNA. However, decreasing the size of the capture chamber decreased the flow rate required to achieve the optimal capture rate. Finally, we showed that, at the optimal capture rate, different microfluidic designs using different flow rates could capture DNA copies at a similar rate over time. In this study, the optimal capture rate of ctDNA in unaltered plasma was identified by adjusting the flow rate in each of the passive microfluidic mixer flow cells. However, further validation and optimization of the dCas9 capture system are required before it is ready to be used clinically.
Collapse
Affiliation(s)
- Bradley M Downs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Leslie Cope
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
133
|
Fowler M, Tobback H, Karuri A, Fernández-Ortega P. Nursing care and management of adverse events for patients with BRAF V600E-mutant metastatic colorectal cancer receiving encorafenib in combination with cetuximab: a review. Support Care Cancer 2023; 31:204. [PMID: 36881161 PMCID: PMC9989561 DOI: 10.1007/s00520-023-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/05/2023] [Indexed: 03/08/2023]
Abstract
Encorafenib is a B-Raf proto-oncogene serine/threonine-protein kinase (BRAF) inhibitor, approved in the EU and USA, in combination with the epidermal growth factor receptor (EGFR) inhibitor cetuximab, for the treatment of patients with BRAFV600E-mutant metastatic colorectal cancer (mCRC). In the pivotal BEACON CRC trial, patients achieved longer survival with encorafenib in combination with cetuximab vs. conventional chemotherapy. This targeted therapy regimen is also generally better tolerated than cytotoxic treatments. However, patients may present with adverse events unique to the regimen and characteristic of BRAF and EGFR inhibitors, which produce their own set of challenges. Nurses play an essential role in navigating the care of patients with BRAFV600E-mutant mCRC and managing adverse events that patients may experience. This includes early and efficient identification of treatment-related adverse events, subsequent management of adverse events and education of patients and their caregivers around key adverse events. This manuscript aims to provide support to nurses managing patients with BRAFV600E-mutant mCRC receiving encorafenib in combination with cetuximab, by summarising potential adverse events and providing guidance on how to manage them. Special attention will be paid to the presentation of key adverse events, dose modifications that may be required, practical recommendations and supportive care measures.
Collapse
Affiliation(s)
- Matthew Fowler
- University Hospitals of Derby and Burton NHSFT, Uttoxeter Road, DE22 3NE, Derby, UK.
| | | | | | - Paz Fernández-Ortega
- Institut Català d'Oncologia, Granvia de l'Hospitalet, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
134
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
135
|
Westermarck J. Inhibition of adaptive therapy tolerance in cancer: is triplet mitochondrial targeting the key? Mol Oncol 2023; 17:537-540. [PMID: 36852624 PMCID: PMC10061276 DOI: 10.1002/1878-0261.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted therapies have become a mainstay in the treatment of cancer, but their long-term efficacy is compromised by acquired drug resistance. Acquired therapy resistance develops via two phases-first through adaptive development of nongenetic drug tolerance, which is followed by stable resistance through the acquisition of genetic mutations. Drug tolerance has been described in practically all clinical cancer treatment contexts, and detectable drug-tolerant tumors are highly associated with treatment relapse and poor survival. Thereby, novel therapeutic strategies are needed to overcome cancer therapy tolerance. Recent studies have identified a critical role of mitochondrial mechanisms in defining cancer cell sensitivity to targeted therapies and the surprising effects of established cancer therapies on mitochondria. Here, these recent studies are reviewed emphasizing an emerging concept of triplet therapies including three compounds targeting different cancer cell vulnerabilities but including at least one compound that targets the mitochondria. These mitochondria-targeting triplet therapies have very promising preclinical effects in overcoming cancer therapy tolerance. Potential strategies of how to overcome challenges in the clinical translation of mitochondria-targeting triplet therapies are also discussed.
Collapse
Affiliation(s)
- Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland.,Institute of Biomedicine, University of Turku, Finland
| |
Collapse
|
136
|
Ye J, Wu J, Liu B. Therapeutic strategies of dual-target small molecules to overcome drug resistance in cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188866. [PMID: 36842765 DOI: 10.1016/j.bbcan.2023.188866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
137
|
Gouda M, Subbiah V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open 2023; 8:100788. [PMID: 36842301 PMCID: PMC9984800 DOI: 10.1016/j.esmoop.2023.100788] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BRAF activation occurs as part of the mitogen-activated protein kinase (MAPK) cellular signaling pathway which leads to increased cellular proliferation and survival. Mutations in BRAF can result in unbridled activation of downstream kinases with subsequent uncontrolled cellular growth that formulate the basis for oncogenesis in multiple tumor types. Targeting BRAF by selective inhibitors has been one of the early successes in precision oncology. Agents have been explored either as monotherapy or in combination with MEK inhibition in BRAF V600-mutant pan-cancers and with EGFR inhibition in colorectal cancer. Spectrum of BRAF inhibition has evolved from being melanoma-specific to being a pan-cancer target. In this article, we review BRAF and MEK inhibitor drug development journey from tissue-specific melanoma, non-small-cell lung cancer, and anaplastic thyroid cancer to tissue-agnostic approvals.
Collapse
Affiliation(s)
- M.A. Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - V. Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston,MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, USA,Correspondence to: Prof. Vivek Subbiah, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Unit 455, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel: +1-713-563-1930 @VivekSubbiah
| |
Collapse
|
138
|
Ruff SM, Pawlik TM. A Review of Translational Research for Targeted Therapy for Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15051395. [PMID: 36900187 PMCID: PMC10000872 DOI: 10.3390/cancers15051395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Colorectal cancer is the third most common cause of cancer-related death in the United States, with 20% of patients presenting with metastatic disease at the time of diagnosis. Metastatic colon cancer is often treated with a combination of surgery, systemic therapy (chemotherapy, biologic therapy, immunotherapy), and/or regional therapy (hepatic artery infusion pumps). Utilizing the molecular and pathologic features of the primary tumor to tailor treatment for patients may improve overall survival. Rather than a "one size fits all" approach, a more nuanced treatment plan guided by the unique features of a patient's tumor and the tumor's microenvironment can more effectively treat the disease. Basic science work to elucidate new drug targets, understand mechanisms of evasion, and develop drugs and drug combinations is critical to inform clinical trials and identify novel, effective therapies for metastatic colorectal cancer. Through the lens of key targets for metastatic colorectal cancer, this review discusses how work in the basic science lab translates into clinical trials.
Collapse
|
139
|
Nelson BE, Roszik J, Janku F, Hong DS, Kato S, Naing A, Piha-Paul S, Fu S, Tsimberidou A, Cabanillas M, Busaidy NL, Javle M, Byers LA, Heymach JV, Meric-Bernstam F, Subbiah V. BRAF v600E-mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study. NPJ Precis Oncol 2023; 7:19. [PMID: 36801912 PMCID: PMC9938883 DOI: 10.1038/s41698-022-00341-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 02/20/2023] Open
Abstract
Combined BRAF + MEK inhibition is FDA approved for BRAF V600E-mutant solid tumors except for colorectal cancer. However, beyond MAPK mediated resistance several other mechanisms of resistance such as activation of CRAF, ARAF, MET, P13K/AKT/mTOR pathway exist among other complex pathways. In the VEM-PLUS study, we performed a pooled analysis of four phase one studies evaluating the safety and efficacy of vemurafenib monotherapy and vemurafenib combined with targeted therapies (sorafenib, crizotinib, or everolimus) or carboplatin plus paclitaxel in advanced solid tumors harboring BRAF V600 mutations. When vemurafenib monotherapy was compared with the combination regimens, no significant differences in OS or PFS durations were noted, except for inferior OS in the vemurafenib and paclitaxel and carboplatin trial (P = 0.011; HR, 2.4; 95% CI, 1.22-4.7) and in crossover patients (P = 0.0025; HR, 2.089; 95% CI, 1.2-3.4). Patients naïve to prior BRAF inhibitors had statistically significantly improved OS at 12.6 months compared to 10.4 months in the BRAF therapy refractory group (P = 0.024; HR, 1.69; 95% CI 1.07-2.68). The median PFS was statistically significant between both groups, with 7 months in the BRAF therapy naïve group compared to 4.7 months in the BRAF therapy refractory group (P = 0.016; HR, 1.80; 95% CI 1.11-2.91). The confirmed ORR in the vemurafenib monotherapy trial (28%) was higher than that in the combination trials. Our findings suggest that, compared with vemurafenib monotherapy, combinations of vemurafenib with cytotoxic chemotherapy or with RAF- or mTOR-targeting agents do not significantly extend the OS or PFS of patients who have solid tumors with BRAF V600E mutations. Gaining a better understanding of the molecular mechanisms of BRAF inhibitor resistance, balancing toxicity and efficacy with novel trial designs are warranted.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jason Roszik
- grid.240145.60000 0001 2291 4776Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Filip Janku
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David S. Hong
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shumei Kato
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Aung Naing
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sarina Piha-Paul
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Siqing Fu
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Apostolia Tsimberidou
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maria Cabanillas
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Naifa Lamki Busaidy
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Milind Javle
- grid.240145.60000 0001 2291 4776Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren Averett Byers
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - John V. Heymach
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Subbiah
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
140
|
Tang YL, Li DD, Duan JY, Sheng LM, Wang X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J Gastroenterol 2023; 29:926-948. [PMID: 36844139 PMCID: PMC9950860 DOI: 10.3748/wjg.v29.i6.926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and common malignancies in the world. Chemotherapy has been the conventional treatment for metastatic CRC (mCRC) patients. However, the effects of chemotherapy have been unsatisfactory. With the advent of targeted therapy, the survival of patients with CRC have been prolonged. Over the past 20 years, targeted therapy for CRC has achieved substantial progress. However, targeted therapy has the same challenge of drug resistance as chemotherapy. Consequently, exploring the resistance mechanism and finding strategies to address the resistance to targeted therapy, along with searching for novel effective regimens, is a constant challenge in the mCRC treatment, and it is also a hot research topic. In this review, we focus on the current status on resistance to existing targeted therapies in mCRC and discuss future developments.
Collapse
Affiliation(s)
- Yuan-Ling Tang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan-Dan Li
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yu Duan
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei-Ming Sheng
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
141
|
Xie J, Liu J, Zhao M, Li X, Wang Y, Zhao Y, Cao H, Ji M, Chen M, Hou P. Disulfiram/Cu Kills and Sensitizes BRAF-Mutant Thyroid Cancer Cells to BRAF Kinase Inhibitor by ROS-Dependently Relieving Feedback Activation of MAPK/ERK and PI3K/AKT Pathways. Int J Mol Sci 2023; 24:ijms24043418. [PMID: 36834830 PMCID: PMC9968072 DOI: 10.3390/ijms24043418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BRAFV600E, the most common genetic alteration, has become a major therapeutic target in thyroid cancer. Vemurafenib (PLX4032), a specific inhibitor of BRAFV600E kinase, exhibits antitumor activity in patients with BRAFV600E-mutated thyroid cancer. However, the clinical benefit of PLX4032 is often limited by short-term response and acquired resistance via heterogeneous feedback mechanisms. Disulfiram (DSF), an alcohol-aversion drug, shows potent antitumor efficacy in a copper (Cu)-dependent way. However, its antitumor activity in thyroid cancer and its effect on cellular response to BRAF kinase inhibitors remain unclear. Antitumor effects of DSF/Cu on BRAFV600E-mutated thyroid cancer cells and its effect on the response of these cells to BRAF kinase inhibitor PLX4032 were systematically assessed by a series of in vitro and in vivo functional experiments. The molecular mechanism underlying the sensitizing effect of DSF/Cu on PLX4032 was explored by Western blot and flow cytometry assays. DSF/Cu exhibited stronger inhibitory effects on the proliferation and colony formation of BRAFV600E-mutated thyroid cancer cells than DSF treatment alone. Further studies revealed that DSF/Cu killed thyroid cancer cells by ROS-dependent suppression of MAPK/ERK and PI3K/AKT signaling pathways. Our data also showed that DSF/Cu strikingly increased the response of BRAFV600E-mutated thyroid cancer cells to PLX4032. Mechanistically, DSF/Cu sensitizes BRAF-mutant thyroid cancer cells to PLX4032 by inhibiting HER3 and AKT in an ROS-dependent way and subsequently relieving feedback activation of MAPK/ERK and PI3K/AKT pathways. This study not only implies potential clinical use of DSF/Cu in cancer therapy but also provides a new therapeutic strategy for BRAFV600E-mutated thyroid cancers.
Collapse
Affiliation(s)
- Jingyi Xie
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Juan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Man Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinru Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuelei Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
142
|
Ducreux M, Tabernero J, Grothey A, Arnold D, O'Dwyer PJ, Gilberg F, Abbas A, Thakur MD, Prizant H, Irahara N, Tahiri A, Schmoll HJ, Van Cutsem E, de Gramont A. Clinical and exploratory biomarker findings from the MODUL trial (Cohorts 1, 3 and 4) of biomarker-driven maintenance therapy for metastatic colorectal cancer. Eur J Cancer 2023; 184:137-150. [PMID: 36921494 DOI: 10.1016/j.ejca.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE MODUL is an adaptable, signal-seeking trial of biomarker-driven maintenance therapy following first-line induction treatment in patients with metastatic colorectal cancer (mCRC). We report findings from Cohorts 1 (BRAFmut), 3 (human epidermal growth factor 2 [HER2]+) and 4 (HER2‒/high microsatellite instability, HER2‒/microsatellite stable [MSS]/BRAFwt or HER2‒/MSS/BRAFmut/RASmut). METHODS Patients with unresectable, previously untreated mCRC without disease progression following standard induction treatment (5-fluorouracil/leucovorin [5-FU/LV] plus oxaliplatin plus bevacizumab) were randomly assigned to control (fluoropyrimidine plus bevacizumab) or cohort-specific experimental maintenance therapy (Cohort 1: vemurafenib plus cetuximab plus 5-FU/LV; Cohort 3: capecitabine plus trastuzumab plus pertuzumab; Cohort 4: cobimetinib plus atezolizumab). The primary efficacy end-point was progression-free survival (PFS). RESULTS Cohorts 1, 3 and 4 did not reach target sample size because of early study closure. In Cohort 1 (n = 60), PFS did not differ between treatment arms (hazard ratio, 0.95; 95% confidence intervals 0.50-1.82; P = 0.872). However, Cohort 1 exploratory biomarker data showed preferential selection for mitogen-activated protein kinase (MAPK) pathway mutations (mainly KRAS, NRAS, MAP2K1 or BRAF) in the experimental arm but not the control arm. In Cohort 3 (n = 5), PFS ranged from 3.6 to 14.7 months versus 4.0 to 5.4 months in the experimental and control arms, respectively. In Cohort 4 (n = 99), PFS was shorter in the experimental arm (hazard ratio, 1.44; 95% confidence intervals 0.90-2.29; P = 0.128). CONCLUSIONS Vemurafenib plus cetuximab plus 5-FU/LV warrants further investigation as first-line maintenance treatment for BRAFmut mCRC. MAPK-pathway emergent genomic alterations may offer novel therapeutic opportunities in BRAFmut mCRC. Cobimetinib plus atezolizumab had an unfavourable benefit:risk ratio in HER2‒/MSS/BRAFwt mCRC. New strategies are required to increase the susceptibility of MSS mCRC to immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov: NCT02291289.
Collapse
Affiliation(s)
- Michel Ducreux
- Université Paris-Saclay, Gustave Roussy, Villejuif, France.
| | - Josep Tabernero
- Vall D'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain.
| | | | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany.
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | - Hen Prizant
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
143
|
Ros J, Balconi F, Baraibar I, Saoudi Gonzalez N, Salva F, Tabernero J, Elez E. Advances in immune checkpoint inhibitor combination strategies for microsatellite stable colorectal cancer. Front Oncol 2023; 13:1112276. [PMID: 36816981 PMCID: PMC9932591 DOI: 10.3389/fonc.2023.1112276] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have reshaped the prognostic of several tumor types, including metastatic colorectal tumors with microsatellite instability (MSI). However, 90-95% of metastatic colorectal tumors are microsatellite stable (MSS) in which immunotherapy has failed to demonstrate meaningful clinical results. MSS colorectal tumors are considered immune-cold tumors. Several factors have been proposed to account for this lack of response to immune checkpoint blockade including low levels of tumor infiltrating lymphocytes, low tumor mutational burden, a high rate of WNT/β-catenin pathway mutations, and liver metastases which have been associated with immunosuppression. However, studies with novel combinations based on immune checkpoint inhibitors are showing promising activity in MSS colorectal cancer. Here, we review the underlying biological facts that preclude immunotherapy activity, and detail the different immune checkpoint inhibitor combinations evaluated, along with novel immune-based therapies, to overcome innate mechanisms of resistance in MSS colorectal cancer.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Balconi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Iosune Baraibar
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Francesc Salva
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,*Correspondence: Elena Elez,
| |
Collapse
|
144
|
Alver TN, Heintz K, Hovig E, Bøe SL. Cooperative induction of receptor tyrosine kinases contributes to adaptive MAPK drug resistance in melanoma through the PI3K pathway. Cancer Rep (Hoboken) 2023; 6:e1736. [PMID: 36251678 PMCID: PMC9940011 DOI: 10.1002/cnr2.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 02/22/2023] Open
Abstract
Vemurafenib-induced drug resistance in melanoma has been linked to receptor tyrosine kinase (RTK) upregulation. The MITF and SOX10 genes play roles as master regulators of melanocyte and melanoma development. Here, we aimed to explore the complex mechanisms behind the MITF/SOX10-controlled RTK-induced drug resistance in melanoma. To achieve this, we used a number of molecular techniques, including melanoma patient data from TCGA, vemurafenib-resistant melanoma cell lines, and knock-down studies. The melanoma cell lines were classified as proliferative or invasive based upon their MITF/AXL expression activity. We measured the change of expression activity for MITF/SOX10 and their receptor (AXL/ERBB3) and ligand (NRG1/GAS6) targets known to be involved in RTK-induced drug resistance after vemurafenib treatment. We find that melanoma cell lines characterized as proliferative (high MITF low AXL), transform into an invasive (low MITF, high AXL) cell state after vemurafenib resistance, indicating novel feedback loops and advanced compensatory regulation mechanisms between the master regulators, receptors, and ligands involved in vemurafenib-induced resistance. Together, our data disclose fine-tuned mechanisms involved in RTK-facilitated vemurafenib resistance that will be challenging to overcome by using single drug targeting strategies against melanoma.
Collapse
Affiliation(s)
- Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Karen‐Marie Heintz
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Sigurd L. Bøe
- Department of Medical BiochemistryOslo University Hospital, The Norwegian Radium HospitalOsloNorway
| |
Collapse
|
145
|
Ruiz-Saenz A, Atreya CE, Wang C, Pan B, Dreyer CA, Brunen D, Prahallad A, Muñoz DP, Ramms DJ, Burghi V, Spassov DS, Fewings E, Hwang YC, Cowdrey C, Moelders C, Schwarzer C, Wolf DM, Hann B, VandenBerg SR, Shokat K, Moasser MM, Bernards R, Gutkind JS, van 't Veer LJ, Coppé JP. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAF V600E colorectal tumors. NATURE CANCER 2023; 4:240-256. [PMID: 36759733 PMCID: PMC9970872 DOI: 10.1038/s43018-022-00508-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through β-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Departments of Cell Biology & Medical Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chloe E Atreya
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Changjun Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Pan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Courtney A Dreyer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Diede Brunen
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Denise P Muñoz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dana J Ramms
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Valeria Burghi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Danislav S Spassov
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Eleanor Fewings
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Institute for Computational Biomedicine, Heidelberg, Germany
| | - Yeonjoo C Hwang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cynthia Cowdrey
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Moelders
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cecilia Schwarzer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott R VandenBerg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevan Shokat
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark M Moasser
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Silvio Gutkind
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Laura J van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
146
|
Gurbi B, Brauswetter D, Pénzes K, Varga A, Krenács T, Dános K, Birtalan E, Tamás L, Csala M. MEK Is a Potential Indirect Target in Subtypes of Head and Neck Cancers. Int J Mol Sci 2023; 24:ijms24032782. [PMID: 36769112 PMCID: PMC9917750 DOI: 10.3390/ijms24032782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The poor prognosis of head-and-neck squamous cell carcinoma (HNSCC) is partly due to the lack of reliable prognostic and predictive markers. The Ras/Raf/MEK/ERK signaling pathway is often activated by overexpressed epidermal growth factor receptor (EGFR) and stimulates the progression of HNSCCs. Our research was performed on three human papillomavirus (HPV)-negative HNSCC-cell lines: Detroit 562, FaDu and SCC25. Changes in cell viability upon EGFR and/or MEK inhibitors were measured by the MTT method. The protein-expression and phosphorylation profiles of the EGFR-initiated signaling pathways were assessed using Western-blot analysis. The EGFR expression and pY1068-EGFR levels were also studied in the patient-derived HNSCC samples. We found significant differences between the sensitivity of the tumor-cell lines used. The SCC25 line was found to be the most sensitive to the MEK inhibitors, possibly due to the lack of feedback Akt activation through EGFR. By contrast, this feedback activation had an important role in the FaDu cells. The observed insensitivity of the Detroit 562 cells to the MEK inhibitors might have been caused by their PIK3CA mutation. Among HNSCC cell lines, EGFR-initiated signaling pathways are particularly versatile. An ERK/EGFR feedback loop can lead to Akt-pathway activation upon MEK inhibition, and it is related not only to increased amounts of EGFR but also to the elevation of pY1068-EGFR levels. The presence of this mechanism may justify the combined application of EGFR and MEK inhibitors.
Collapse
Affiliation(s)
- Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Diána Brauswetter
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence: (D.B.); (M.C.)
| | - Kinga Pénzes
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Attila Varga
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - Kornél Dános
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
| | - Ede Birtalan
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
| | - László Tamás
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
- Department of Voice, Speech and Swallowing Therapy, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence: (D.B.); (M.C.)
| |
Collapse
|
147
|
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2023; 20:306-322. [PMID: 36670267 DOI: 10.1038/s41575-022-00736-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/22/2023]
Abstract
In the era of targeted therapy based on genomic alterations, the treatment strategy for metastatic colorectal cancer (mCRC) has been changing. Before systemic treatment initiation, determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is recommended. In patients with deficient MMR and BRAFV600E mCRC, randomized phase III trials have established the efficacy of pembrolizumab as first-line therapy and the combination of encorafenib and cetuximab as second-line or third-line therapy. In addition, new agents have been actively developed in other rare molecular fractions such as ERBB2 alterations and KRASG12C mutations. In March 2022, the combination of pertuzumab and trastuzumab for ERBB2-positive mCRC was approved in Japan, thereby combining real-world evidence from the SCRUM-Japan Registry. As the populations are highly fragmented owing to rare genomic alterations, various strategies in clinical development are expected. Clinical development of a tumour-agnostic approach, such as NTRK fusion and tumour mutational burden, has successfully introduced corresponding drugs to clinical practice. Considering the difficulty of randomized trials owing to cost-benefit and rarity, a promising solution could be real-world evidence utilized as an external control from the molecular-based disease registry.
Collapse
Affiliation(s)
- Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
148
|
Haslam A, Olivier T, Tuia J, Prasad V. Umbrella review of basket trials testing a drug in tumors with actionable genetic biomarkers. BMC Cancer 2023; 23:46. [PMID: 36639625 PMCID: PMC9840247 DOI: 10.1186/s12885-022-10421-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The utilization of basket trials in oncology has gained popularity because of the drive for precision medicine and the increasing ease of genetically profiling tumors. However, it is unknown if this has translated into patient benefit, either through higher response rates because of precision treatment or because of increasing options for less-common tumor types that are less represented in oncology drug trials. We sought to characterize basket studies for oncology drugs targeting a genetic biomarker, determine the responses for various tumor types and genetic biomarkers, and test for correlation between the number of participants in each tumor basket and the incidence of the respective tumor. METHODS We conducted a retrospective cross-sectional review of oncology basket trials on Embase or clinicaltrials.gov with published data. We included studies that reported on oncology drugs that target a genetic biomarker. We examined the response for basket trial participants, stratified by tumor type and genetic biomarker and the correlation between the number of participants in each tumor basket and the incidence of the respective tumor. RESULTS The overall response rate for all 25 included trials was 23%. The response for each genetic biomarker ranged from 0 to 69%, and for half of the genetic biomarkers, the response rate ranged from 0 to 100%, depending on tumor type. There is low correlation between the number of participants in each tumor basket and the incidence of the respective tumor (66.41 + -0.20x, R2 = 0.003, p = 0.75). CONCLUSION While there has been an increase in the number of published basket trials and individuals included in these trials, the response rate is low, but varies widely, depending on tumor type and genetic biomarker.
Collapse
Affiliation(s)
- Alyson Haslam
- University of California San Francisco, 550 16th St, 2nd Fl, CA, 94158, San Francisco, USA.
- Department of Epidemiology and Biostatistics, UCSF Mission Bay Campus | Mission Hall: Global Health & Clinical Sciences Building | 550 16th St, 2nd Fl, CA, 94158, San Francisco, USA.
| | - Timothée Olivier
- University of California San Francisco, 550 16th St, 2nd Fl, CA, 94158, San Francisco, USA
- Department of Oncology, Geneva University Hospital, 4 Gabrielle-Perret-Gentil St, 1205, Geneva, Switzerland
| | - Jordan Tuia
- University of California San Francisco, 550 16th St, 2nd Fl, CA, 94158, San Francisco, USA
| | - Vinay Prasad
- University of California San Francisco, 550 16th St, 2nd Fl, CA, 94158, San Francisco, USA
| |
Collapse
|
149
|
Tan L, Li QS, Peng D, Cheng Y. Does PD-1 blockade play a decisive role in the pathological complete remission of unresectable MSS, BRAF V600E-mutated metastatic colorectal cancer: A case report. Front Oncol 2023; 12:976622. [PMID: 36713544 PMCID: PMC9880525 DOI: 10.3389/fonc.2022.976622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Colorectal cancer (CRC) ranks third in highest incidence among human cancers. With the continuous development of anti-cancer drugs, CRC patients are treated more and more effectively. However, the treatment of patients with unresectable metastatic CRC (mCRC) remains a core point for surgeons worldwide, especially for those with microsatellite stability (MSS) and BRAF V600E mutation, who have been reported to have the worst prognosis. Case description We report a case of pathological complete remission in a patient with unresectable MSS, BRAF V600E-mutated metastatic rectal cancer after using Vemurafenib and Cetuximab in combination with Camrelizumab. Conclusions This case suggested that Vemurafenib and Cetuximab combined with Camrelizumab is effective in the treatment of MSS, BRAF V600E-mutated mCRC. To benefit more patients, further studies need to be completed.
Collapse
Affiliation(s)
- Li Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Shu Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yong Cheng, ; Dong Peng,
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yong Cheng, ; Dong Peng,
| |
Collapse
|
150
|
Chen D, Su X, Zhu L, Jia H, Han B, Chen H, Liang Q, Hu C, Yang H, Liu L, Li P, Wei W, Zhao Y. Papillary thyroid cancer organoids harboring BRAF V600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med 2023; 21:9. [PMID: 36624452 PMCID: PMC9827684 DOI: 10.1186/s12967-022-03848-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUNDS Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.
Collapse
Affiliation(s)
- Dong Chen
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Xi Su
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lizhang Zhu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Jia
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Bin Han
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Haibo Chen
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Qingzhuang Liang
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Chenchen Hu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Yang
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lisa Liu
- grid.264727.20000 0001 2248 3398Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122 USA
| | - Peng Li
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Wei Wei
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yongsheng Zhao
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China ,grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| |
Collapse
|