101
|
Zhou H, Feng W, Yu J, Shafiq TA, Paulo JA, Zhang J, Luo Z, Gygi SP, Moazed D. SENP3 and USP7 regulate Polycomb-rixosome interactions and silencing functions. Cell Rep 2023; 42:112339. [PMID: 37014752 PMCID: PMC10777863 DOI: 10.1016/j.celrep.2023.112339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenzhi Feng
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
102
|
Song Y, Wang S, Zhao M, Yu B. Development of a robust HTRF assay with USP7 full length protein expressed in E. coli prokaryotic system for the identification of USP7 inhibitors. J Pharm Biomed Anal 2023; 227:115305. [PMID: 36812797 DOI: 10.1016/j.jpba.2023.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) is a promising therapeutic target. Several USP7 inhibitors accommodated in the catalytic triad of USP7 have been reported with the aid of high-throughput screening (HTS) methods using USP7 catalytic domain truncation. However, the drawbacks of previously reported biochemical cleavage assays, including poor stability, fluorescence interference, time-consuming, expensive, more importantly the selectivity issue, have challenged the USP7-targeted drug discovery. In this work, we demonstrated the functional heterogeneity and essential role of different structural elements in the USP7 full activation, highlighting the necessity of USP7 full length in drug discovery. Apart from reported two pockets in the catalytic triad, five additional ligandable pockets were predicted based on the proposed USP7 full length models by AlphaFold and homology modelling. A reliable homogeneous time-resolved fluorescence (HTRF) HTS method was established based on the cleavage mechanism of USP7 towards the ubiquitin precursor UBA10. The USP7 full length protein was successfully expressed in the relatively cost-effective E. coli prokaryotic system and used to simulate the auto-activated USP7 in nature. Via screening our in-house library (∼ 1500 compounds), 19 hit compounds with >20% of inhibition rate were identified for further optimization. This assay will enrich the toolbox for the identification of highly potent and selective USP7 inhibitors for clinical use.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
103
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
104
|
Göricke F, Vu V, Smith L, Scheib U, Böhm R, Akkilic N, Wohlfahrt G, Weiske J, Bömer U, Brzezinka K, Lindner N, Lienau P, Gradl S, Beck H, Brown PJ, Santhakumar V, Vedadi M, Barsyte-Lovejoy D, Arrowsmith CH, Schmees N, Petersen K. Discovery and Characterization of BAY-805, a Potent and Selective Inhibitor of Ubiquitin-Specific Protease USP21. J Med Chem 2023; 66:3431-3447. [PMID: 36802665 PMCID: PMC10009755 DOI: 10.1021/acs.jmedchem.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.
Collapse
Affiliation(s)
- Fabian Göricke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Leanna Smith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ulrike Scheib
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Raphael Böhm
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Namik Akkilic
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Gerd Wohlfahrt
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jörg Weiske
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Ulf Bömer
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | | | - Niels Lindner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Philip Lienau
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Stefan Gradl
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Kirstin Petersen
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
105
|
Peng Y, Tang R, Ding L, Zheng R, Liu Y, Yin L, Fu Y, Deng T, Li X. Diosgenin inhibits prostate cancer progression by inducing UHRF1 protein degradation. Eur J Pharmacol 2023; 942:175522. [PMID: 36681316 DOI: 10.1016/j.ejphar.2023.175522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/25/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Prostate cancer (PCa) represents the second cause of cancer death in adult men. Aberrant overexpression of UHRF1 has been reported in several cancer types, and is regarded as a novel drug target for cancer therapy. Nevertheless, no UHRF1-targeted small molecule inhibitor has been testing in clinical trials. Traditional Chinese medicine (TCM) prescriptions have a long history for the treatment of PCa in China, and Chinese herbal extracts are important resources for new drug discovery. In the present study, we first screened the potentially effective components from the commonly used TCMs for PCa treatment in clinic by using network pharmacology together with molecular docking. We identified diosgenin (DSG) as a small molecule natural compound specifically targeting UHRF1 protein. Furthermore, we validated the results by using the wet lab experiments. DSG, by directly binding UHRF1 protein, induced UHRF1 protein degradation through the ubiquitin-proteasome pathway. Importantly, DSG induced UHRF1 protein degradation by reducing the protein interaction with a deubiquitinase USP7. DSG reduced the level of genomic DNA methylation, and elevated the expression of such tumor suppressor genes as p21, p16 and LXN, thereby resulting in cell cycle arrest, cellular senescence and the inhibition of xenograft tumor growth. We here presented the first report that DSG specifically induced UHRF1 protein degradation, thereby revealing a novel anticancer mechanism of DSG. Altogether, this present study provided a promising strategy to discover new molecule-targeted drugs from small-molecule natural products.
Collapse
Affiliation(s)
- Yuchong Peng
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Rong Tang
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Liuyang Ding
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Rirong Zheng
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Youhong Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linglong Yin
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Tanggang Deng
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
106
|
Gao H, Dai R, Su R. Computer-aided drug design for the pain-like protease (PL pro) inhibitors against SARS-CoV-2. Biomed Pharmacother 2023; 159:114247. [PMID: 36689835 PMCID: PMC9841087 DOI: 10.1016/j.biopha.2023.114247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A new coronavirus, known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a highly contagious virus and has caused a massive worldwide health crisis. While large-scale vaccination efforts are underway, the management of population health, economic impact and asof-yet unknown long-term effects on physical and mental health will be a key challenge for the next decade. The papain-like protease (PLpro) of SARS-CoV-2 is a promising target for antiviral drugs. This report used pharmacophore-based drug design technology to identify potential compounds as PLpro inhibitors against SARS-CoV-2. The optimal pharmacophore model was fully validated using different strategies and then was employed to virtually screen out 10 compounds with inhibitory. Molecular docking and non-bonding interactions between the targeted protein PLpro and compounds showed that UKR1129266 was the best compound. These results provided a theoretical foundation for future studies of PLpro inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | | | | |
Collapse
|
107
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Liu L, Wang Z, Zheng J, Ke Y, Liu H, Zhang Q. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
108
|
Novellasdemunt L, Kucharska A, Baulies A, Hutton C, Vlachogiannis G, Repana D, Rowan A, Suárez-Bonnet A, Ciccarelli F, Valeri N, Li VSW. USP7 inactivation suppresses APC-mutant intestinal hyperproliferation and tumor development. Stem Cell Reports 2023; 18:570-584. [PMID: 36669491 PMCID: PMC9968985 DOI: 10.1016/j.stemcr.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023] Open
Abstract
Adenomatous polyposis coli (APC) mutation is the hallmark of colorectal cancer (CRC), resulting in constitutive WNT activation. Despite decades of research, targeting WNT signaling in cancer remains challenging due to its on-target toxicity. We have previously shown that the deubiquitinating enzyme USP7 is a tumor-specific WNT activator in APC-truncated cells by deubiquitinating and stabilizing β-catenin, but its role in gut tumorigenesis is unknown. Here, we show in vivo that deletion of Usp7 in Apc-truncated mice inhibits crypt hyperproliferation and intestinal tumor development. Loss of Usp7 prolongs the survival of the sporadic intestinal tumor model. Genetic deletion, but not pharmacological inhibition, of Usp7 in Apc+/- intestine induces colitis and enteritis. USP7 inhibitor treatment suppresses growth of patient-derived cancer organoids carrying APC truncations in vitro and in xenografts. Our findings provide direct evidence that USP7 inhibition may offer a safe and efficacious tumor-specific therapy for both sporadic and germline APC-mutated CRC.
Collapse
Affiliation(s)
- Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Kucharska
- Stem Cell and Cancer Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Baulies
- Stem Cell and Cancer Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Colin Hutton
- Stem Cell and Cancer Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Georgios Vlachogiannis
- Centre for Molecular Pathology, the Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Dimitra Repana
- Cancer Systems Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Suárez-Bonnet
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; Experimental Histopathology, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Francesca Ciccarelli
- Cancer Systems Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicola Valeri
- Centre for Molecular Pathology, the Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
109
|
Chan WC, Liu X, Magin RS, Girardi NM, Ficarro SB, Hu W, Tarazona Guzman MI, Starnbach CA, Felix A, Adelmant G, Varca AC, Hu B, Bratt AS, DaSilva E, Schauer NJ, Jaen Maisonet I, Dolen EK, Ayala AX, Marto JA, Buhrlage SJ. Accelerating inhibitor discovery for deubiquitinating enzymes. Nat Commun 2023; 14:686. [PMID: 36754960 PMCID: PMC9908924 DOI: 10.1038/s41467-023-36246-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are an emerging drug target class of ~100 proteases that cleave ubiquitin from protein substrates to regulate many cellular processes. A lack of selective chemical probes impedes pharmacologic interrogation of this important gene family. DUBs engage their cognate ligands through a myriad of interactions. We embrace this structural complexity to tailor a chemical diversification strategy for a DUB-focused covalent library. Pairing our library with activity-based protein profiling as a high-density primary screen, we identify selective hits against 23 endogenous DUBs spanning four subfamilies. Optimization of an azetidine hit yields a probe for the understudied DUB VCPIP1 with nanomolar potency and in-family selectivity. Our success in identifying good chemical starting points as well as structure-activity relationships across the gene family from a modest but purpose-build library challenges current paradigms that emphasize ultrahigh throughput in vitro or virtual screens against an ever-increasing scope of chemical space.
Collapse
Affiliation(s)
- Wai Cheung Chan
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert S Magin
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas M Girardi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wanyi Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maria I Tarazona Guzman
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Cara A Starnbach
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alejandra Felix
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony C Varca
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bin Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ariana S Bratt
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ethan DaSilva
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Schauer
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Isabella Jaen Maisonet
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emma K Dolen
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anthony X Ayala
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
110
|
Sakamoto T, Kuboki S, Furukawa K, Takayashiki T, Takano S, Yoshizumi A, Ohtsuka M. TRIM27-USP7 complex promotes tumour progression via STAT3 activation in human hepatocellular carcinoma. Liver Int 2023; 43:194-207. [PMID: 35753056 DOI: 10.1111/liv.15346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS TRIM27 is stabilized by binding to USP7 and mediates tumour progression in several cancers; however, the roles of TRIM27-USP7 complex on STAT3 activation in HCC are unknown. METHODS Regulations and functions of TRIM27 for activating STAT3 in HCC were assessed using 207 HCC samples or HCC cells. RESULTS TRIM27 expression was increased in some cases of HCC. High TRIM27 expression was an independent predictor for poor prognosis in HCC after surgery. It was correlated with the expression of EpCAM, vimentin, MMP-9, and activation of STAT3 in HCC. TRIM27 expression was correlated with USP7 expression, and HCC with high TRIM27 expression together with high USP7 expression showed enhanced STAT3 activation, resulting in poorer prognosis. p-JAK1 expression was correlated with STAT3 activation in HCC with high TRIM27 expression. In vitro, USP7 knockdown decreased TRIM27 expression, suggesting that USP7 was essential for TRIM27 stabilization. Knocking down of TRIM27 or USP7 suppressed STAT3 activation and overexpression of TRIM27 accelerated STAT3 activation; therefore, the formation of TRIM27-USP7 complex was needed for STAT3 activation, which led to aggressive tumour proliferation and invasion by enhancing EMT and CSC-like property. Binding of JAK1 to TRIM27-USP7 complex was confirmed in vitro. Deletion of TRIM27-USP7 complex by USP7 inhibitor significantly inhibited tumour cell invasion by suppressing STAT3 activation. CONCLUSIONS TRIM27 is stabilized by binding to USP7 and is related to aggressive tumour progression in HCC via STAT3 activation, resulting in poor prognosis after operation. Therefore, TRIM27-USP7 complex is a useful prognostic predictor and a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Toshiya Sakamoto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arihito Yoshizumi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | |
Collapse
|
111
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
Li X, Yang S, Zhang H, Liu X, Gao Y, Chen Y, Liu L, Wang D, Liang Z, Liu S, Dai L, Xu Q, Yuan H, Chen C, Sun H, Wen X. Discovery of Orally Bioavailable N-Benzylpiperidinol Derivatives as Potent and Selective USP7 Inhibitors with In Vivo Antitumor Immunity Activity against Colon Cancer. J Med Chem 2022; 65:16622-16639. [PMID: 36454192 DOI: 10.1021/acs.jmedchem.2c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
USP7 emerges as a potential therapeutic target for cancers, as it plays an important role in the development of tumorigenesis by stabilizing multiple cancer-relevant proteins. Nevertheless, the discovery of drug-like USP7 inhibitors remains challenging. Herein, we report a series of N-benzylpiperidinol derivatives as potent and selective USP7 inhibitors (e.g., X20 and X26: IC50 = 7.6 and 8.2 nM), whose binding modes were revealed by crystallographic studies to be distinct from the known N-acylpiperidinol USP7 inhibitors. Among them, X36 with good oral PK profiles (rat: F = 40.8% and T1/2 = 3.5 h) exhibited significant antitumor efficacy in the MC38 colon cancer syngeneic mouse model, at least partly through upregulating the tumor infiltration of CD8+ T, NK, and NKT cells and downregulating that of Tregs and MDSCs. These findings may further pave the way for the development of USP7 inhibitors as novel cancer immunotherapy drugs.
Collapse
Affiliation(s)
- Xing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanlin Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honghan Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xipeng Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuchen Gao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dalin Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zijiang Liang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
113
|
Herpesvirus ubiquitin deconjugases. Semin Cell Dev Biol 2022; 132:185-192. [PMID: 34776333 DOI: 10.1016/j.semcdb.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The covalent attachment of ubiquitin and ubiquitin-like polypeptides to cellular and viral proteins regulates numerous processes that enable virus infection, viral genome replication, and the spread of viruses to new hosts. The importance of these protein modifications in the regulation of the life cycle of herpesviruses is underscored by the discovery that all known members of this virus family encode at least one protease that specifically recognizes and disassembles ubiquitin conjugates. The structural and functional characterization of the viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infection and increasing evidence suggests that the viral deconjugases may also play a role in malignant transformation.
Collapse
|
114
|
Gorka M, Magnussen HM, Kulathu Y. Chemical biology tools to study Deubiquitinases and Ubl proteases. Semin Cell Dev Biol 2022; 132:86-96. [PMID: 35216867 DOI: 10.1016/j.semcdb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.
Collapse
Affiliation(s)
- Magdalena Gorka
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helge Magnus Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
115
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
116
|
Huppelschoten Y, van der Heden van Noort GJ. State of the art in (semi-)synthesis of Ubiquitin- and Ubiquitin-like tools. Semin Cell Dev Biol 2022; 132:74-85. [PMID: 34961664 DOI: 10.1016/j.semcdb.2021.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
Protein ubiquitination is a key post-translational modification in regulating many fundamental cellular processes and dysregulation of these processes can give rise to a vast array of diseases. Unravelling the molecular mechanisms of ubiquitination hence is an important area in current ubiquitin research with as aim to understand this enigmatic process. The complexity of ubiquitin (Ub) signaling arises from the large variety of Ub conjugates, where Ub is attached to other Ub proteins, Ub-like proteins, and protein substrates. The chemical preparation of such Ub conjugates in high homogeneity and in adequate amounts contributes greatly to the deciphering of Ub signaling. The strength of these chemically synthesized conjugates lies in the chemo-selectivity in which they can be created that are sometimes difficult to obtain using biochemical methodology. In this review, we will discuss the progress in the chemical protein synthesis of state-of-the-art Ub and Ub-like chemical probes, their unique concepts and related discoveries in the ubiquitin field.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Oncode Institute and Dept. Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; Global Research Technologies, Novo Nordisk Research Park, Måløv, Denmark
| | | |
Collapse
|
117
|
Site-specific proteomic strategies to identify ubiquitin and SUMO modifications: Challenges and opportunities. Semin Cell Dev Biol 2022; 132:97-108. [PMID: 34802913 DOI: 10.1016/j.semcdb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitin and SUMO modify thousands of substrates to regulate most cellular processes. System-wide identification of ubiquitin and SUMO substrates provides global understanding of their cellular functions. In this review, we discuss the biological importance of site-specific modifications by ubiquitin and SUMO regulating the DNA damage response, protein quality control and cell cycle progression. Furthermore we discuss the machinery responsible for these modifications and methods to purify and identify ubiquitin and SUMO modified sites by mass spectrometry. We provide a framework to aid in the selection of appropriate purification, digestion and acquisition strategies suited to answer different biological questions. We highlight opportunities in the field for employing innovative technologies, as well as discuss challenges and long-standing questions in the field that are difficult to address with the currently available tools, emphasizing the need for further innovation.
Collapse
|
118
|
Extended Applications of Small-Molecule Covalent Inhibitors toward Novel Therapeutic Targets. Pharmaceuticals (Basel) 2022; 15:ph15121478. [PMID: 36558928 PMCID: PMC9786830 DOI: 10.3390/ph15121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, small-molecule covalent inhibitors have been accepted as a practical tool for targeting previously "undruggable" proteins. The high target selectivity of modern covalent inhibitors is now alleviating toxicity concerns regarding the covalent modifications of proteins. However, despite the tremendous clinical success of current covalent inhibitors, there are still unmet medical needs that covalent inhibitors have not yet addressed. This review categorized representative covalent inhibitors based on their mechanism of covalent inhibition: conventional covalent inhibitors, targeted covalent inhibitors (TCIs), and expanded TCIs. By reviewing both Food and Drug Administration (FDA)-approved drugs and drug candidates from recent literature, we provide insight into the future direction of covalent inhibitor development.
Collapse
|
119
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
120
|
Targeting PTEN Regulation by Post Translational Modifications. Cancers (Basel) 2022; 14:cancers14225613. [PMID: 36428706 PMCID: PMC9688753 DOI: 10.3390/cancers14225613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PIP3) is a lipidic second messenger present at very low concentrations in resting normal cells. PIP3 levels, though, increase quickly and transiently after growth factor addition, upon activation of phosphatidylinositol 3-kinase (PI3-kinase). PIP3 is required for the activation of intracellular signaling pathways that induce cell proliferation, cell migration, and survival. Given the critical role of this second messenger for cellular responses, PIP3 levels must be tightly regulated. The lipid phosphatase PTEN (phosphatase and tensin-homolog in chromosome 10) is the phosphatase responsible for PIP3 dephosphorylation to PIP2. PTEN tumor suppressor is frequently inactivated in endometrium and prostate carcinomas, and also in glioblastoma, illustrating the contribution of elevated PIP3 levels for cancer development. PTEN biological activity can be modulated by heterozygous gene loss, gene mutation, and epigenetic or transcriptional alterations. In addition, PTEN can also be regulated by post-translational modifications. Acetylation, oxidation, phosphorylation, sumoylation, and ubiquitination can alter PTEN stability, cellular localization, or activity, highlighting the complexity of PTEN regulation. While current strategies to treat tumors exhibiting a deregulated PI3-kinase/PTEN axis have focused on PI3-kinase inhibition, a better understanding of PTEN post-translational modifications could provide new therapeutic strategies to restore PTEN action in PIP3-dependent tumors.
Collapse
|
121
|
USP7 Inhibitors in Cancer Immunotherapy: Current Status and Perspective. Cancers (Basel) 2022; 14:cancers14225539. [PMID: 36428632 PMCID: PMC9688046 DOI: 10.3390/cancers14225539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular proteins involved in the suppression of anti-tumor immune responses and its overexpression is associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach, though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the therapeutic potential of targeting USP7 functions.
Collapse
|
122
|
Sharma SS, Pledger J, Kondaiah P. The deubiquitylase USP7 is a novel cyclin F-interacting protein and regulates cyclin F protein stability. Aging (Albany NY) 2022; 14:8645-8660. [DOI: 10.18632/aging.204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Savitha S. Sharma
- , Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
- , Sri Shankara Cancer Hospital and Research Centre, Bengaluru, 560004, India
| | - Jack Pledger
- Department of Surgery, University of Utah Health, Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Paturu Kondaiah
- , Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, 560012, India
- , Sri Shankara Cancer Hospital and Research Centre, Bengaluru, 560004, India
| |
Collapse
|
123
|
Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun 2022; 13:5950. [PMID: 36216817 PMCID: PMC9549030 DOI: 10.1038/s41467-022-33559-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1. The deubiquitinase UCHL1 has been linked to cancer invasiveness and neurodegeneration yet its molecular roles have remained poorly defined. Here the authors reveal the structural basis for how UCHL1 can be specifically inhibited and how chemogenomic probes can be used to dissect its functions in living cells.
Collapse
Affiliation(s)
- Christian Grethe
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Mirko Schmidt
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Gian-Marvin Kipka
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Rachel O'Dea
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Kai Gallant
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, Dortmund, Germany
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany. .,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany.
| |
Collapse
|
124
|
Huang B, Deng W, Chen P, Mao Q, Chen H, Zhuo Z, Huang Z, Chen K, Huang J, Luo Y. Development and validation of a novel ubiquitination-related gene prognostic signature based on tumor microenvironment for colon cancer. Transl Cancer Res 2022; 11:3724-3740. [PMID: 36388031 PMCID: PMC9641125 DOI: 10.21037/tcr-22-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2024]
Abstract
BACKGROUND Colon cancer (CC) is one of the most common cancers with high morbidity globally. Ubiquitination is involved in the characterization of multiple biological processes, and some ubiquitinated enzymes are associated with the prognosis of CC. However, the prognostic model associated with ubiquitination-related genes (URGs) for CC is unavailable. METHODS Gene expression data, somatic mutations, transcriptome profiles, microsatellite instability status (MSI) status, and clinical information for CC were obtained from The Cancer Genome Atlas (TCGA) dataset. Seven URGs were used for establishing a prognostic prediction model, which was constructed and validated in GSE17538. Besides, genomic variance analysis (GSVA) was used to explore further the differences in biological pathway activation status between the high-risk and low-risk groups. Finally, the single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithm analysis were used to characterize the cellular infiltration in the microenvironment. RESULTS A seven-URG prognostic signature was established, based on which patients in the training and test groups could be divided into high-risk and low-risk groups. The results demonstrated that the model has a solid ability to predict the prognosis of CC patients. CONCLUSIONS We established a prognostic prediction model for CC based on ubiquitination. Then we analyzed the genetic characteristics associated with ubiquitination and the tumor microenvironment (TME) cell infiltration in CC. These results are worthy of exploring new clinical treatment strategies for CC.
Collapse
Affiliation(s)
- Baoyi Huang
- Department of Clinical Medicine, The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Weiping Deng
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuxian Mao
- Prenatal Diagnostic Department, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zena Huang
- Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Huizhou Municipal Central People’s Hospital, Huizhou, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
125
|
Valles G, Pozhidaeva A, Korzhnev DM, Bezsonova I. Backbone and ILV side-chain NMR resonance assignments of the catalytic domain of human deubiquitinating enzyme USP7. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:197-203. [PMID: 35536398 PMCID: PMC9529858 DOI: 10.1007/s12104-022-10079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme, which removes ubiquitin tag from numerous protein substrates involved in diverse cellular processes such as cell cycle regulation, apoptosis and DNA damage response. USP7 affects stability, interaction network and cellular localization of its cellular and viral substrates by controlling their ubiquitination status. The large 41 kDa catalytic domain of USP7 harbors the active site of the enzyme. Here we present a nearly complete (93%) NMR resonance assignment of isoleucine, leucine and valine (ILV) side-chains of the USP7 catalytic domain along with a refined nearly complete (93%) assignment of its backbone resonances. The reported ILV methyl group assignment will facilitate further NMR investigations of structure, interactions and conformational dynamics of the USP7 enzyme.
Collapse
Affiliation(s)
- Gabrielle Valles
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alexandra Pozhidaeva
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| |
Collapse
|
126
|
Targeting the USP7/RRM2 axis drives senescence and sensitizes melanoma cells to HDAC/LSD1 inhibitors. Cell Rep 2022; 40:111396. [PMID: 36130505 DOI: 10.1016/j.celrep.2022.111396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Deubiquitinating enzymes are key regulators of the ubiquitin-proteasome system and cell cycle, and their dysfunction leads to tumorigenesis. Our in vivo drop-out screens in patient-derived xenograft models identify USP7 as a regulator of melanoma. We show that USP7 downregulation induces cellular senescence, arresting melanoma growth in vivo and proliferation in vitro in BRAF- and NRAS-mutant melanoma. We provide a comprehensive understanding of targets and networks affected by USP7 depletion by performing a global transcriptomic and proteomics analysis. We show that RRM2 is a USP7 target and is regulated by USP7 during S phase of the cell cycle. Ectopic expression of RRM2 in USP7-depleted cells rescues the senescent phenotype. Pharmacological inhibition of USP7 by P5091 phenocopies the shUSP7-induced senescent phenotype. We show that the bifunctional histone deacetylase (HDAC)/LSD1 inhibitor domatinostat has an additive antitumor effect, eliminating P5091-induced senescent cells, paving the way to a therapeutic combination for individuals with melanoma.
Collapse
|
127
|
Oliveira RI, Guedes RA, Salvador JAR. Highlights in USP7 inhibitors for cancer treatment. Front Chem 2022; 10:1005727. [PMID: 36186590 PMCID: PMC9520255 DOI: 10.3389/fchem.2022.1005727] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a member of one of the most largely studied families of deubiquitylating enzymes. It plays a key role modulating the levels of multiple proteins, including tumor suppressors, transcription factors, epigenetic modulators, DNA repair proteins, and regulators of the immune response. The abnormal expression of USP7 is found in various malignant tumors and a high expression signature generally indicates poor tumor prognosis. This suggests USP7 as a promising prognostic and druggable target for cancer therapy. Nonetheless, no approved drugs targeting USP7 have already entered clinical trials. Therefore, the development of potent and selective USP7 inhibitors still requires intensive research and development efforts before the pre-clinical benefits translate into the clinic. This mini review systematically summarizes the role of USP7 as a drug target for cancer therapeutics, as well as the scaffolds, activities, and binding modes of some of the most representative small molecule USP7 inhibitors reported in the scientific literature. To wind up, development challenges and potential combination therapies using USP7 inhibitors for less tractable tumors are also disclosed.
Collapse
Affiliation(s)
- Rita I. Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
128
|
Xu X, Wang M, Xu H, Liu N, Chen K, Luo C, Chen S, Chen H. Design, synthesis and biological evaluation of 2-aminopyridine derivatives as USP7 inhibitors. Bioorg Chem 2022; 129:106128. [PMID: 36113266 DOI: 10.1016/j.bioorg.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
A series of novel 2-aminopyridine derivatives 1-26 have been designed and synthesized by structural modifications on a lead USP7 inhibitor, GNE6640. All the compounds were evaluated for their USP7 inhibitory activities. The results showed that most of the compounds have good USP7 inhibitory activities at the concentration of 50 μM. Among them, compounds 7, 14 and 21 are the most potential ones from each category with the IC50 values of 7.6 ± 0.1 μM, 17.0 ± 0.2 μM and 11.6 ± 0.5 μM, respectively. Compounds 7 and 21 expressed significant binding interactions with USP7 by surface plasmon resonance (SPR)-based binding assay, but both of them presented moderate antiproliferative activities against HCT116 cells. They could effectively promote MDM2 degradation, p53 stabilization and p21 gene expression in the western blot analysis.
Collapse
Affiliation(s)
- Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Na Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
129
|
Nie L, Wang C, Liu X, Teng H, Li S, Huang M, Feng X, Pei G, Hang Q, Zhao Z, Gan B, Ma L, Chen J. USP7 substrates identified by proteomics analysis reveal the specificity of USP7. Genes Dev 2022; 36:1016-1030. [PMID: 36302555 PMCID: PMC9732911 DOI: 10.1101/gad.349848.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;,Human Genetics Center, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
130
|
Qin X, Wang R, Xu H, Tu L, Chen H, Li H, Liu N, Wang J, Li S, Yin F, Xu N, Li Z. Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Autophagy 2022; 18:2178-2197. [PMID: 34989313 PMCID: PMC9397470 DOI: 10.1080/15548627.2021.2022360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial-anchored deubiquitinating enzyme USP30 (ubiquitin specific peptidase 30) antagonizes PRKN/parkin-mediated mitophagy, making it a potential target for treating Parkinson disease. However, few inhibitors targeting USP30 have been reported. Here, we report a novel peptide (Q14) derived from the transmembrane (TM) domain of USP30 that can target mitochondrial-anchored USP30 directly and increase mitophagy through two intriguing and distinct mechanisms: a novel autoinhibition mechanism in USP30 and accelerated autophagosome formation via the LC3-interacting region (LIR) of the Q14 peptide. We identified the potential binding sites between the Q14 peptide and USP30 and postulated that an allosteric autoinhibition mechanism regulates USP30 activity. Furthermore, the LIR motif in the Q14 peptide offers additional binding with LC3 and accelerated autophagosome formation. The two mechanisms synergistically enhance mitophagy. Our work provides novel insight and direction to the design of inhibitors for USP30 or other deubiquitinating enzymes (DUBs).Abbreviations: 3-MA: 3-methyladenine; ATTEC: autophagosome-tethering compound; BafA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; FP: fluorescence polarization; FUNDC1: FUN14 domain containing 1; HCQ: hydroxychloroquine; LIR: LC3-interacting region; MST: microscale thermophoresis; mtDNA: mitochondrial DNA; mtPA-GFP: mitochondria-targeted photoactive fluorescence protein; OMM: outer mitochondrial membrane; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; Rap: rapamycin; SA: streptavidin; TM: transmembrane; Ub: ubiquitin; Ub-AMC: Ub-7-amido-4-methylcoumarin; UPS: ubiquitin-protease system; USP: ubiquitin specific peptidase; USP30: ubiquitin specific peptidase 30.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Heng Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,CONTACT Feng Yin Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Naihan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Naihan Xu Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,Zigang Li State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
131
|
Srivastava M, Mittal L, Kumari A, Agrahari AK, Singh M, Mathur R, Asthana S. Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Sci 2022; 31:e4398. [PMID: 36629250 PMCID: PMC9835771 DOI: 10.1002/pro.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.
Collapse
Affiliation(s)
- Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
- Delhi Pharmaceutical Sciences and Research University (DPSRU)New DelhiIndia
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | | | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Rajani Mathur
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR)New DelhiIndia
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| |
Collapse
|
132
|
UBR5 Acts as an Antiviral Host Factor against MERS-CoV via Promoting Ubiquitination and Degradation of ORF4b. J Virol 2022; 96:e0074122. [PMID: 35980206 PMCID: PMC9472757 DOI: 10.1128/jvi.00741-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.
Collapse
|
133
|
Pei Y, Fu J, Shi Y, Zhang M, Luo G, Luo X, Song N, Mi T, Yang Y, Li J, Zhou Y, Zhou B. Discovery of a Potent and Selective Degrader for USP7. Angew Chem Int Ed Engl 2022; 61:e202204395. [PMID: 35691827 DOI: 10.1002/anie.202204395] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 01/31/2023]
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancer and more than half of cancers contain p53 mutations. The development of novel and effective therapeutic strategies for p53 mutant cancer therapy is a big challenge and highly desirable. Ubiquitin-specific protease 7 (USP7), also known as HAUSP, is a deubiquitinating enzyme and proposed to stabilize the oncogenic E3 ubiquitin ligase MDM2 that promotes the proteosomal degradation of p53. Herein, we report the design and characterization of U7D-1 as the first selective USP7-degrading Proteolysis Targeting Chimera (PROTAC). U7D-1 showed selective and effective USP7 degradation, and maintained potent cell growth inhibition in p53 mutant cancer cells, with USP7 inhibitor showing no activity. These data clearly demonstrated the practicality and importance of PROTAC as a preliminary chemical tool for investigating USP7 protein functions and a promising method for potential p53 mutant cancer therapy.
Collapse
Affiliation(s)
- Yuan Pei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jingfeng Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yunkai Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Guanghao Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, P.R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, P.R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
134
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|
135
|
The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis 2022; 13:677. [PMID: 35931679 PMCID: PMC9356134 DOI: 10.1038/s41419-022-05113-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Dysregulated abundance, location and transcriptional output of Hippo signaling effector TAZ have been increasingly linked to human cancers including head neck squamous cell carcinoma (HNSCC). TAZ is subjected to ubiquitination and degradation mediated by E3 ligase β-TRCP. However, the deubiquitinating enzymes and mechanisms responsible for its protein stability remain underexplored. Here, we exploited customized deubiquitinases siRNA and cDNA library screen strategies and identified USP7 as a bona fide TAZ deubiquitinase in HNSCC. USP7 promoted cell proliferation, migration, invasion in vitro and tumor growth by stabilizing TAZ. Mechanistically, USP7 interacted with, deubiquitinated and stabilized TAZ by selectively removing its K48-linked ubiquitination chain independent of canonical Hippo kinase cascade. USP7 potently antagonized β-TRCP-mediated ubiquitin-proteasomal degradation of TAZ and enhanced its nuclear retention and transcriptional output. Importantly, overexpression of USP7 correlated with TAZ upregulation, tumor aggressiveness and unfavorable prognosis in HNSCC patients. Pharmacological inhibition of USP7 significantly suppressed tumor growth in both xenograft and PDX models. Collectively, these findings identify USP7 as an essential regulator of TAZ and define USP7-TAZ signaling axis as a novel biomarker and potential therapeutic target for HNSCC.
Collapse
|
136
|
Deubiquitinating Enzyme USP7 Is Required for Self-Renewal and Multipotency of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158674. [PMID: 35955807 PMCID: PMC9369338 DOI: 10.3390/ijms23158674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is highly expressed in a variety of malignant tumors. However, the role of USP7 in regulating self-renewal and differentiation of human bone marrow derived mesenchymal stromal cells (hBMSCs) remains unknown. Herein, we report that USP7 regulates self-renewal of hBMSCs and is required during the early stages of osteogenic, adipogenic, and chondrogenic differentiation of hBMSCs. USP7, a deubiquitinating enzyme (DUB), was found to be downregulated during hBMSC differentiation. Furthermore, USP7 is an upstream regulator of the self-renewal regulating proteins SOX2 and NANOG in hBMSCs. Moreover, we observed that SOX2 and NANOG are poly-ubiquitinated and their expression is downregulated in USP7-deficient hBMSCs. Overall, this study showed that USP7 is required for maintaining self-renewal and multipotency in cultured hBMSCs. Targeting USP7 might be a novel strategy to preserve the self-renewal capacity of hBMSCs intended for stem cell therapy.
Collapse
|
137
|
Liang RP, Zhang XX, Zhao J, Lu QW, Zhu RT, Wang WJ, Li J, Bo K, Zhang CX, Sun YL. RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3435-3454. [PMID: 36158256 PMCID: PMC9346462 DOI: 10.3748/wjg.v28.i27.3435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers.
AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways.
METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC.
RESULTS Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.
CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Xue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jie Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qin-Wei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kai Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
138
|
Murgai A, Sosič I, Gobec M, Lemnitzer P, Proj M, Wittenburg S, Voget R, Gütschow M, Krönke J, Steinebach C. Targeting the deubiquitinase USP7 for degradation with PROTACs. Chem Commun (Camb) 2022; 58:8858-8861. [PMID: 35852517 PMCID: PMC9710854 DOI: 10.1039/d2cc02094g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting deubiquitinating enzymes (DUBs) has emerged as a promising therapeutic approach in several human cancers and other diseases. DUB inhibitors are exciting pharmacological tools but often exhibit limited cellular potency. Here we report PROTACs based on a ubiquitin-specific protease 7 (USP7) inhibitor scaffold to degrade USP7. By investigating several linker and E3 ligand types, including novel cereblon recruiters, we discovered a highly selective USP7 degrader tool compound that induced apoptosis of USP7-dependent cancer cells. This work represents one of the first DUB degraders and unlocks a new drug target class for protein degradation.
Collapse
Affiliation(s)
- Arunima Murgai
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. .,German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Patricia Lemnitzer
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Sophie Wittenburg
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. .,German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
139
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
140
|
Li K, Wang Q, Bian H, Chen Z, He H, Zhao X, Gong P. Comprehensive Analysis Reveals USP45 as a Novel Putative Oncogene in Pan-Cancer. Front Mol Biosci 2022; 9:886904. [PMID: 35836933 PMCID: PMC9273912 DOI: 10.3389/fmolb.2022.886904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deubiquitinating enzymes specifically removes ubiquitin molecules from ubiquitin-tagged target proteins, thereby inhibiting the degradation of target proteins and playing an important role in tumor. However, the mechanism of deubiquitinating enzyme USP45 in tumors remains unclear. Methods: Based on the RNA-seq data of tissues and cell lines in The Cancer Genome Atlas (TCGA) database, GTEx and CCLE database, the pan-cancer analysis of USP45 expression and survival outcome were performed using R software and Kaplan-Meier Plotter. The structural variants, gene mutations and gene copy number alteration of USP45 were analyzed using the TCGA Pan-Cancer Atlas Studies dataset in the cBioPortal database. The relationships between USP45 and mRNA methylation, tumor heterogeneity, tumor stemness, and tumor immunity were performed by Sangerbox platform and TIMER2.0 using Pearson correlation analysis. Through the ENCORI database and string database, we constructed the ceRNA regulatory mechanism and protein-protein interaction network for USP45. Based on the RNA-seq data in TCGA and GTEx databases, we also constructed the downstream regulatory network for USP45 using the Limma and ClusterProfiler packages of R software. At last, the protein expression levels of USP45 were detected by immunohistochemistry in tumor tissue microarrays. Results: USP45 is upregulated in most types of tumors and negatively correlated with the overall survival and recurrence-free survival of patient. Furthermore, the structural variation, gene mutations and gene copy number variation of USP45 were identified in different types of tumors. The pan-cancer analysis showed that USP45 was closely related to mRNA methylation, tumor heterogeneity and tumor stemness. In most types of tumors, the expression of USP45 was positively correlated with many immune checkpoint molecules and immune regulators such as PD-L1, while negatively correlated with the infiltration levels of NK cells, Th1 cells, macrophages, and dendritic cells in the tumor microenvironment. Finally, we constructed the ceRNA regulatory network, protein-protein interaction network and downstream regulatory network for USP45 in different types of tumors. Conclusion: Our study firstly explored the putative oncogenic role of USP45 in pan-cancer, and provided insights for further investigation of USP45.
Collapse
Affiliation(s)
- Kai Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Qian Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haifa He
- Department of Pathology, Central Hospital of Nanyang City, Nanyang, China
| | - Xulin Zhao
- Department of Oncology, The First People’s Hospital of Nanyang, Nanyang, China
| | - Pengju Gong
- The University of Texas MD Anderson Cancer Center UThealth Graduate School of Biomedical Sciences, Houston, TX, United States
- *Correspondence: Pengju Gong,
| |
Collapse
|
141
|
Pei Y, Fu J, Shi Y, Zhang M, Luo G, Luo X, Song N, Mi T, Yang Y, Li J, Zhou Y, Zhou B. Discovery of a Potent and Selective Degrader for USP7. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Pei
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Jingfeng Fu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yunkai Shi
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Mengmeng Zhang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Guanghao Luo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Xiaomin Luo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Ning Song
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Tian Mi
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yaxi Yang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Jia Li
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yubo Zhou
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Bing Zhou
- Shanghai Institute of Materia Medica Department of Medicinal Chemistry 555 Road Zu Chong Zhi 201203 Shanghai CHINA
| |
Collapse
|
142
|
Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B, Vertegaal ACO. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun 2022; 13:2736. [PMID: 35585066 PMCID: PMC9117253 DOI: 10.1038/s41467-022-30376-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-proteasome axis has been extensively explored at a system-wide level, but the impact of deubiquitinating enzymes (DUBs) on the ubiquitinome remains largely unknown. Here, we compare the contributions of the proteasome and DUBs on the global ubiquitinome, using UbiSite technology, inhibitors and mass spectrometry. We uncover large dynamic ubiquitin signalling networks with substrates and sites preferentially regulated by DUBs or by the proteasome, highlighting the role of DUBs in degradation-independent ubiquitination. DUBs regulate substrates via at least 40,000 unique sites. Regulated networks of ubiquitin substrates are involved in autophagy, apoptosis, genome integrity, telomere integrity, cell cycle progression, mitochondrial function, vesicle transport, signal transduction, transcription, pre-mRNA splicing and many other cellular processes. Moreover, we show that ubiquitin conjugated to SUMO2/3 forms a strong proteasomal degradation signal. Interestingly, PARP1 is hyper-ubiquitinated in response to DUB inhibition, which increases its enzymatic activity. Our study uncovers key regulatory roles of DUBs and provides a resource of endogenous ubiquitination sites to aid the analysis of substrate specific ubiquitin signalling.
Collapse
Affiliation(s)
- Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mihaela Robu
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Nila van Overbeek
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
143
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
144
|
The emerging role of ubiquitin-specific protease 20 in tumorigenesis and cancer therapeutics. Cell Death Dis 2022; 13:434. [PMID: 35508480 PMCID: PMC9068925 DOI: 10.1038/s41419-022-04853-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
As a critical member of the ubiquitin-specific proteolytic enzyme family, ubiquitin-specific peptidase 20 (USP20) regulates the stability of proteins via multiple signaling pathways. In addition, USP20 upregulation is associated with various cellular biological processes, such as cell cycle progression, proliferation, migration, and invasion. Emerging studies have revealed the pivotal role of USP20 in the tumorigenesis of various cancer types, such as breast cancer, colon cancer, lung cancer, gastric cancer and adult T cell leukemia. In our review, we highlight the different mechanisms of USP20 in various tumor types and demonstrate that USP20 regulates the stability of multiple proteins. Therefore, regulating the activity of USP20 is a novel tumor treatment. However, the clinical significance of USP20 in cancer treatment merits more evidence. Finally, different prospects exist for the continued research focus of USP20.
Collapse
|
145
|
Fu R, Zu SJ, Liu YJ, Li JC, Dang WZ, Liao LP, Liu LP, Chen PY, Huang HM, Wu KH, Zhou B, Pan Q, Luo C, Zhang YY, Li GM. Selective bromodomain and extra-terminal bromodomain inhibitor inactivates macrophages and hepatic stellate cells to inhibit liver inflammation and fibrosis. Bioengineered 2022; 13:10914-10930. [PMID: 35499161 PMCID: PMC9278415 DOI: 10.1080/21655979.2022.2066756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis occurs following inflammation triggered by the integrated actions of activated liver-resident macrophages (Kupffer cells) and hepatic stellate cells (HSCs), and the multiplicity of these mechanisms complicates drug therapy. Here, we demonstrate that the selective bromodomain and extra-terminal (BET) bromodomain inhibitor compound38 can block both the Janus kinase-signal transducer and activator of transcription and mitogen-activated protein kinase signaling pathways in macrophages, which decreased their secretion of proinflammatory cytokines in a dose-dependent manner. The inactivation of macrophages attenuated lipopolysaccharide-induced injurious inflammation concurrent with a reduction in F4/80+ cells, proinflammatory cytokine levels, and neutrophil infiltration. Moreover, compound 38 inhibited the Wnt/β-catenin and transforming growth factor-beta/SMAD signaling pathways to abolish the activation of HSCs. In vivo, compound 38 significantly decreased the collagen deposition and fibrotic area of a CCl4-induced liver fibrosis model, and restored the deficiency of activated HSCs and the upregulation of liver inflammation. These results highlight the potential role of compound 38 in treating liver fibrosis considering its simultaneous inhibitory effects on liver inflammation and related fibrosis.
Collapse
Affiliation(s)
- Rong Fu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Shi-Jia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Yan-Jun Liu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Jia-Cheng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Wen-Zhen Dang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Li-Ping Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Li-Ping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Pan-Yu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - He-Ming Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Kang-Hui Wu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- Research center, Zhoupu Hospital affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, Zhouyuan District, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesCAS, Hangzhou, Zhejiang, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesCAS, Hangzhou, Zhejiang, China
| | - Guang-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
| |
Collapse
|
146
|
Calleja DJ, Lessene G, Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem 2022; 10:876212. [PMID: 35559224 PMCID: PMC9086436 DOI: 10.3389/fchem.2022.876212] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of SARS-CoV-2 causing the COVID-19 pandemic, has highlighted how a combination of urgency, collaboration and building on existing research can enable rapid vaccine development to fight disease outbreaks. However, even countries with high vaccination rates still see surges in case numbers and high numbers of hospitalized patients. The development of antiviral treatments hence remains a top priority in preventing hospitalization and death of COVID-19 patients, and eventually bringing an end to the SARS-CoV-2 pandemic. The SARS-CoV-2 proteome contains several essential enzymatic activities embedded within its non-structural proteins (nsps). We here focus on nsp3, that harbours an essential papain-like protease (PLpro) domain responsible for cleaving the viral polyprotein as part of viral processing. Moreover, nsp3/PLpro also cleaves ubiquitin and ISG15 modifications within the host cell, derailing innate immune responses. Small molecule inhibition of the PLpro protease domain significantly reduces viral loads in SARS-CoV-2 infection models, suggesting that PLpro is an excellent drug target for next generation antivirals. In this review we discuss the conserved structure and function of PLpro and the ongoing efforts to design small molecule PLpro inhibitors that exploit this knowledge. We first discuss the many drug repurposing attempts, concluding that it is unlikely that PLpro-targeting drugs already exist. We next discuss the wealth of structural information on SARS-CoV-2 PLpro inhibition, for which there are now ∼30 distinct crystal structures with small molecule inhibitors bound in a surprising number of distinct crystallographic settings. We focus on optimisation of an existing compound class, based on SARS-CoV PLpro inhibitor GRL-0617, and recapitulate how new GRL-0617 derivatives exploit different features of PLpro, to overcome some compound liabilities.
Collapse
Affiliation(s)
- Dale J. Calleja
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
147
|
Calleja DJ, Kuchel N, Lu BGC, Birkinshaw RW, Klemm T, Doerflinger M, Cooney JP, Mackiewicz L, Au AE, Yap YQ, Blackmore TR, Katneni K, Crighton E, Newman J, Jarman KE, Call MJ, Lechtenberg BC, Czabotar PE, Pellegrini M, Charman SA, Lowes KN, Mitchell JP, Nachbur U, Lessene G, Komander D. Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Front Chem 2022; 10:861209. [PMID: 35494659 PMCID: PMC9039177 DOI: 10.3389/fchem.2022.861209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.
Collapse
Affiliation(s)
- Dale J. Calleja
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Nathan Kuchel
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernadine G. C. Lu
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Richard W. Birkinshaw
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Theresa Klemm
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda E. Au
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Yu Q. Yap
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy R Blackmore
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biomedical Program, Parkville, VIC, Australia
| | - Kate E. Jarman
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J. Call
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernhard C. Lechtenberg
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Peter E. Czabotar
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kym N. Lowes
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey P. Mitchell
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Ueli Nachbur
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
148
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
149
|
Li P, Liu Y, Liu HM. A patent review of ubiquitin-specific protease 7 (USP7) inhibitors (2014-present). Expert Opin Ther Pat 2022; 32:753-767. [PMID: 35343357 DOI: 10.1080/13543776.2022.2058873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Ubiquitin-specific protease 7 (USP7) plays a critical role in multiple signaling pathways, and many recent studies have proved its association with many diseases. The USP7-murine double minute 2-p53 pathway and the relationship between USP7 and the important immune protein PD-L1 in cancer progression and metastasis have been clarified. Recently, USP7 has emerged as a promising and potent therapeutic target for cancer and has attracted both academic and industrial attention. AREAS COVERED This review focuses on the structure, activity, and applications of USP7 inhibitors in cancer therapy. It also focuses on patents reported since 2014. EXPERT OPINION Recently, USP7 has attracted considerable attention owing to its physiological and pathophysiological roles in cancer progression, and few studies have focused on the development of USP7 inhibitors. Compared with micromolar first-generation USP7 inhibitors, second-generation USP7 inhibitors exhibit higher potency (at nanomolar level for both USP7 and cell inhibitory activities), higher selectivity, and better pharmacokinetic properties, and they largely broaden the range of candidites for further clinical tests. However, there is still a need for a more precise description of compounds with receptors, the structural diversity of these compounds, and screening methods.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Advanced Drug Preparation Technologies & School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, 1 eastern Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies & School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
150
|
Tu R, Ma J, Zhang P, Kang Y, Xiong X, Zhu J, Li M, Zhang C. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Cancer Cell Int 2022; 22:130. [PMID: 35307036 PMCID: PMC8935717 DOI: 10.1186/s12935-022-02524-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer cells must rewire cellular metabolism to satisfy the unbridled proliferation, and metabolic reprogramming provides not only the advantage for cancer cell proliferation but also new targets for cancer treatment. However, the plasticity of the metabolic pathways makes them very difficult to target. Deubiquitylating enzymes (DUBs) are proteases that cleave ubiquitin from the substrate proteins and process ubiquitin precursors. While the molecular mechanisms are not fully understood, many DUBs have been shown to be involved in tumorigenesis and progression via controlling the dysregulated cancer metabolism, and consequently recognized as potential drug targets for cancer treatment. In this article, we summarized the significant progress in understanding the key roles of DUBs in cancer cell metabolic rewiring and the opportunities for the application of DUBs inhibitors in cancer treatment, intending to provide potential implications for both research purpose and clinical applications.
Collapse
|