101
|
Xiao R, Zhao W, Lin W, Xiao Y, Ren J, Zhou Y, Meng W, Bi E, Jiang L. Bendamustine-rituximab elicits dual tumoricidal and immunomodulatory responses via cGAS-STING activation in diffuse large B-cell lymphoma. J Immunother Cancer 2024; 12:e009212. [PMID: 39521616 PMCID: PMC11551994 DOI: 10.1136/jitc-2024-009212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bendamustine-rituximab (BR) therapy stands out as a promising alternative for elderly patients with diffuse large B-cell lymphoma (DLBCL), demonstrating notable efficacy when conventional regimens pose challenges. Despite its clinical success, the intricate mechanisms underlying BR therapy have remained elusive. METHODS DLBCL cell lines were used to investigate the mechanism of BR therapy in vitro. RNA-seq and Western blot were used to explore the target pathways of BR therapy. STING was knocked out using Crispr-cas9 and inhibited using H-151 to investigate its role in BR therapy. Bulk RNA-seq and single-cell RNA-seq data from patients were analyzed to investigate the association between STING and pyroptosis pathways, validated using STING downregulated cells. Flow cytometry, transwell experiments and co-culture experiments were performed to investigate the inflammatory phenotype of DLBCL cells after BR treatment and its effect on T-cell recruitment and activation. RESULTS This study elucidates that BR elicits direct tumoricidal effects by promoting apoptosis and inducing cell cycle arrest. The synergistic impact with rituximab is further potentiated by complement addition, demonstrating the pivotal role of in vivo antibody-dependent cellular cytotoxicity. Moreover, our investigation reveals that, through a cGAS-STING-dependent pathway, prolonged exposure to BR induces pyroptosis in DLBCL cells. Activation of the cGAS-STING pathway by BR therapy triggers the release of inflammatory factors and upregulates major histocompatibility complex molecules, shaping an immunologically hot tumor microenvironment. CONCLUSIONS This unique dual influence not only directly targets DLBCL cells but also engages the patient's immune system, paving the way for innovative combination therapies. The study provides comprehensive insights into the multifaceted actions of BR in DLBCL, offering a foundation for refined and personalized treatment strategies in elderly patients.
Collapse
Affiliation(s)
- Ruipei Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenli Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Yudian Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Enguang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
102
|
Liao Y, Fu J, Lu X, Qian Z, Yu Y, Zhu L, Pan J, Li P, Zhu Q, Li X, Sun W, Wang X, Cao W. High chromosomal instability is associated with higher 10-year risks of recurrence for hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer patients: clinical evidence from a large-scale, multiple-site, retrospective study. J Pathol Clin Res 2024; 10:e70011. [PMID: 39545625 PMCID: PMC11565440 DOI: 10.1002/2056-4538.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Long-term survival varies among hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer patients and is seriously impaired by metastasis. Chromosomal instability (CIN) was one of the key drivers of breast cancer metastasis. Here we evaluate CIN and 10-year invasive disease-free survival (iDFS) and overall survival (OS) in HR+/HER2-- breast cancer. In this large-scale, multiple-site, retrospective study, 354 HR+/HER2- breast cancer patients were recruited. Of these, 204 patients were used for internal training, 70 for external validation, and 80 for cross-validation. All medical records were carefully reviewed to obtain the disease recurrence information. Formalin-fixed paraffin-embedded tissue samples were collected, followed by low-pass whole-genome sequencing with a median genome coverage of 1.86X using minimal 1 ng DNA input. CIN was then assessed using a customized bioinformatics workflow. Three or more instances of CIN per sample was defined as high CIN and the frequency was 42.2% (86/204) in the internal cohort. High CIN correlated significantly with increased lymph node metastasis, vascular invasion, progesterone receptor negative status, HER2 low, worse pathological type, and performed as an independent prognostic factor for HR+/- breast cancer. Patients with high CIN had shorter iDFS and OS than those with low CIN [10-year iDFS 11.1% versus 82.2%, hazard ratio (HR) = 11.12, p < 0.01; 10-year OS 45.7% versus 94.3%, HR = 14.17, p < 0.01]. These findings were validated in two external cohorts with 70 breast cancer patients. Moreover, high CIN could predict the prognosis more accurately than Adjuvant! Online score (10-year iDFS 11.1% versus 48.6%, HR = 2.71, p < 0.01). Cross-validation analysis found that high consistency (83.8%) was observed between CIN and MammaPrint score, while only 45% between CIN and Adjuvant! Online score. In conclusion, high CIN is an independent prognostic indicator for HR+/HER2- breast cancer with shorter iDFS and OS and holds promise for predicting recurrence and metastasis.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Female
- Retrospective Studies
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/analysis
- Middle Aged
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Chromosomal Instability
- Adult
- Aged
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/analysis
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Disease-Free Survival
- Risk Factors
Collapse
Affiliation(s)
- Yu‐Yang Liao
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- Postgraduate Training Base Alliance of Wenzhou Medical UniversityZhejiang Cancer HospitalHangzhouPR China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua HospitalZhejiang University School of Medicine (Jinhua Municipal Central Hospital)JinhuaPR China
| | - Xiang Lu
- Department of Breast DiseaseAffiliated Hospital of Jiaxing University (First Hospital of Jiaxing)JiaxingPR China
| | | | - Yang Yu
- Department of Breast SurgeryZhejiang Cancer HospitalHangzhouPR China
| | - Liang Zhu
- Department of PathologyZhejiang Cancer HospitalHangzhouPR China
| | - Jia‐Ni Pan
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Pu‐Chun Li
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- Postgraduate Training Base Alliance of Wenzhou Medical UniversityZhejiang Cancer HospitalHangzhouPR China
| | - Qiao‐Yan Zhu
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouPR China
| | - Xiaolin Li
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Wenyong Sun
- Department of PathologyZhejiang Cancer HospitalHangzhouPR China
| | - Xiao‐Jia Wang
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Wen‐Ming Cao
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| |
Collapse
|
103
|
Fang X, Yu WY, Zhu CM, Zhao N, Zhao W, Xie TT, Wei LJ, Sun XR, Xie J, Zhao Y. Chromosome instability functions as a potential therapeutic reference by enhancing chemosensitivity to BCL-XL inhibitors in colorectal carcinoma. Acta Pharmacol Sin 2024; 45:2420-2431. [PMID: 39187678 PMCID: PMC11489767 DOI: 10.1038/s41401-024-01372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Chromosome instability (CIN) and subsequent aneuploidy are prevalent in various human malignancies, influencing tumor progression such as metastases and relapses. Extensive studies demonstrate the development of chemoresistance in high-CIN tumors, which poses significant therapeutic challenges. Given the association of CIN with poorer prognosis and suppressed immune microenvironment observed in colorectal carcinoma (CRC), here we aimed to discover chemotherapeutic drugs exhibiting increased inhibition against high-CIN CRC cells. By using machine learning methods, we screened out two BCL-XL inhibitors Navitoclax and WEHI-539 as CIN-sensitive reagents in CRC. Subsequent analyses using a CIN-aneuploidy cell model confirmed the vulnerability of high-CIN CRC cells to these drugs. We further revealed the critical role of BCL-XL in the viability of high-CIN CRC cells. In addition, to ease the evaluation of CIN levels in clinic, we developed a three-gene signature as a CIN surrogate to predict prognosis, chemotherapeutic and immune responses in CRC samples. Our results demonstrate the potential value of CIN as a therapeutic target in CRC treatment and the importance of BCL-XL in regulating survival of high-CIN CRC cells, therefore representing a valuable attempt to translate a common trait of heterogeneous tumor cells into an effective therapeutic target.
Collapse
Affiliation(s)
- Xiao Fang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Wen-Ying Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Chun-Miao Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Nan Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Wei Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Ting-Ting Xie
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Li-Jie Wei
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Xi-Ran Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Juan Xie
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China
| | - Ya Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, China.
| |
Collapse
|
104
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
105
|
Zhou R, Wang M, Li X, Liu Y, Yao Y, Wang A, Chen C, Zhang Q, Wu Q, Zhang Q, Neculai D, Xia B, Shao JZ, Feng XH, Liang T, Zou J, Wang X, Xu P. TBK1-Zyxin signaling controls tumor-associated macrophage recruitment to mitigate antitumor immunity. EMBO J 2024; 43:4984-5017. [PMID: 39304793 PMCID: PMC11535546 DOI: 10.1038/s44318-024-00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanical control is fundamental for cellular localization within a tissue, including for tumor-associated macrophages (TAMs). While the innate immune sensing pathways cGAS-STING and RLR-MAVS impact the pathogenesis and therapeutics of malignant diseases, their effects on cell residency and motility remain incompletely understood. Here, we uncovered that TBK1 kinase, activated by cGAS-STING or RLR-MAVS signaling in macrophages, directly phosphorylates and mobilizes Zyxin, a key regulator of actin dynamics. Under pathological conditions and in STING or MAVS signalosomes, TBK1-mediated Zyxin phosphorylation at S143 facilitates rapid recruitment of phospho-Zyxin to focal adhesions, leading to subsequent F-actin reorganization and reduced macrophage migration. Intratumoral STING-TBK1-Zyxin signaling was evident in TAMs and critical in antitumor immunity. Furthermore, myeloid-specific or global disruption of this signaling decreased the population of CD11b+ F4/80+ TAMs and promoted PD-1-mediated antitumor immunotherapy. Thus, our findings identify a new biological function of innate immune sensing pathways by regulating macrophage tissue localization, thus providing insights into context-dependent mitigation of antitumor immunity.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengqiu Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Li
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ailian Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhang
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, Westlake University, Hangzhou, 310030, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Tingbo Liang
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China.
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
106
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
107
|
Tambekar A, Guhe V, Singh S. The cGAS-STING mediated crosstalk between innate immunity and autophagy in leishmaniasis using mathematical modeling: Uncovering new therapeutic avenues. Arch Biochem Biophys 2024; 762:110201. [PMID: 39486567 DOI: 10.1016/j.abb.2024.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The present paper deals with the investigation into the cGAS-STING pathway, focusing on the signaling of interferons through mathematical modeling and identifying a significant positive feedback loop regulated by STING for activation of type 1 interferons (IFN-1). Cyclic GMP-AMP synthase (cGAS) is responsible for detecting cytosolic DNA and initiating the STING (stimulator of interferon genes) pathway, which in turn causes the synthesis of pro-inflammatory cytokines and type I interferons. In addition to being crucial for pathogen identification, this route interacts with autophagy, a cellular mechanism that is necessary for immunological homeostasis and pathogen removal. In the context of Leishmania infection, the cGAS-STING signaling axis has come to light as a critical mediator of the crosstalk between innate immunity and autophagy. Further, the protein-protein interaction studies underscored the significance of two distinct domains in mediating interactions with IRF3 and LC3. Importantly, our findings suggest the possibility of manipulating STING concomitantly to regulate IRF3 and LC3 independently. This study remarkably advances our understanding of STING's multifaceted roles, particularly in regulating IFN-1 and autophagy, highlighting its pivotal role as a cross-talk point in leishmaniasis.
Collapse
Affiliation(s)
- Anil Tambekar
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Vrushali Guhe
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
108
|
Zhou P, Wang P, Li B. TMEM173 is a biomarker of predicting prognosis, immune responses and therapeutic effect in human lung adenocarcinoma. Discov Oncol 2024; 15:604. [PMID: 39476162 PMCID: PMC11525360 DOI: 10.1007/s12672-024-01482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The concerns on the function of Transmembrane protein 173 (TMEM173)-dependent innate immunity in prevention and management of cancers has recently been increased. The role of TMEM173 in predicting the prognosis and response to treatment in lung adenocarcinoma (LUAD) remain unclear. Our study revealed that TMEM173 expression was significantly differential in various tumors and the related prognosis was heterogeneous. Further investigation discovered that the expression level of TMEM173 in LUAD tissues was significantly decreased and high TMEM173 expression is associated with better overall survival in LUAD patients. TMEM173 was mainly enriched in immune response-regulating signaling pathway, T cell activation and cell cycle G2/M phase. Furthermore, it was found that TMEM173 expression was positively related to markers and infiltration levels of tumor-infiltrating immune cells. TMEM173 could predict response to targeted therapy, chemotherapy and immunotherapy in LUAD patients. In vitro TMEM173 knockdown decreased the percentage of G2 phase cells, contributing to the increased growth of lung cancer cells. These results implied that TMEM173 might be a prognostic biomarker and a potential target of precision therapy for LUAD patients.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
109
|
Patel RK, Parappilly M, Farley HC, Latour EJ, Wang LG, Nair AM, Lu ES, Sims Z, Park B, Nelson K, Mayo SC, Mills GB, Sheppard BC, Chang YH, Gibbs SL, Kardosh A, Lopez CD, Wong MH. Circulating Neoplastic-Immune Hybrid Cells Are Biomarkers of Occult Metastasis and Treatment Response in Pancreatic Cancer. Cancers (Basel) 2024; 16:3650. [PMID: 39518088 PMCID: PMC11545756 DOI: 10.3390/cancers16213650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) presents significant diagnostic and prognostic challenges, as current biomarkers frequently fail to accurately stage disease, predict rapid metastatic recurrence (rPDAC), or assess response to neoadjuvant therapy (NAT). We investigated the potential for circulating neoplastic-immune hybrid cells (CHCs) as a non-invasive, multifunctional biomarker for PDAC. METHODS Peripheral blood specimens were obtained from patients diagnosed with PDAC. CHCs were detected by co-expression of pan-cytokeratin and CD45, normalized to 50,000 peripheral blood mononuclear cells. rPDAC was defined as metastatic recurrence within six months of margin-negative pancreatectomy. Cyclic immunofluorescence (CyCIF) analyses compared hybrid phenotypes in blood and tumors. RESULTS Blood samples were collected from 42 patients with PDAC prior to resection. Those with radiographically occult metastatic disease and rPDAC had higher preoperative CHC numbers compared to patients who did not (65.0 and 74.4, vs. 11.52 CHCs; p < 0.001). Patients with complete or near-complete pathologic responses to NAT had lower preoperative CHC numbers than partial and/or non-responders (1.7 vs. 13.1 CHCs; p = 0.008). When assessed longitudinally, those with partial pathologic response saw CHC levels become undetectable while on treatment but increase in the interval between NAT completion and resection. In contrast, patients with poor responses or development of metastatic disease experienced persistent CHC detection during therapy or rising levels prior to radiographic evidence of metastases. Further, in metastatic PDAC patients, treatment-induced phenotypic changes in hybrid cells mirrored those in paired metastatic tumor samples. CONCLUSIONS CHC enumeration and phenotyping display promise as a real-time indicator of disease burden, recurrence risk, and treatment response in PDAC. CHCs have great potential as tumor-derived biomarkers to optimize therapeutic strategies and improve survival in patients with PDAC.
Collapse
Affiliation(s)
- Ranish K. Patel
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Hannah C. Farley
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Emile J. Latour
- Biostatistics Shared Resource, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Lei G. Wang
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
| | - Ashvin M. Nair
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Ethan S. Lu
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Katherine Nelson
- Gastrointestinal Clinical Trials, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Skye C. Mayo
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Gordon B. Mills
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Surgery, Division of General Surgery, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Summer L. Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Adel Kardosh
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, OHSU, Portland, OR 97239, USA
| | - Charles D. Lopez
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, OHSU, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| |
Collapse
|
110
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
111
|
Kumari L, Sreedharanunni S, Dahiya D, Dey P, Bhatia A. High prevalence of chromosome 17 in breast cancer micronuclei: a means to get rid of tumor suppressors? Hum Cell 2024; 38:5. [PMID: 39438374 DOI: 10.1007/s13577-024-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Micronuclei (MN), defined as small extra-nuclear chromatin bodies enclosed by a nuclear envelope, serve as noticeable markers of chromosomal instability (CIN). The MN have been used for breast cancer (BC) screening, diagnosis, and prognosis. However, more recently they have gained attention as seats for active chromosomal rearrangements. BC subtypes exhibit differential CIN levels and aggressiveness. This study aimed to investigate MN chromosomal contents across BC subtypes, exploring its potential role in aggressiveness and pathogenesis. Immunostaining of BC cells was performed with anti-centromeric antibody followed by confocal microscopy. Further, fluorescence in situ hybridization (FISH) was done to check the presence of specific chromosomes in the MN. The real time PCR was also done from the RNA isolated from MN to check the expression of TP53 gene. BC cell lines (CLs) showed the presence of both centromere-positive ( +) and -negative ( -) MN, with significant variation in frequency among hormone and human epidermal growth factor receptor positive and triple-negative (TN) BC cells. FISH targeting chromosomes 1, 3, 8, 11, and 17 detected centromeric signals for all the above chromosomes in MN with a relatively higher prevalence of chromosome 17 in all the CLs. Out of all the CLs, TNBC cells demonstrated the highest frequency of centromere + and chromosome 17 + MN. TP53 expression could also be demonstrated inside the MN by FISH and real time PCR. Patient sample imprints also confirmed the presence of chromosome 17 in MN with polysomy of the same in corresponding nuclei. The high prevalence of chromosome 17 in BC MN may connote the importance of its rearrangements in the pathogenesis of BC. Further, the higher prevalence of chromosome 17 and 1 signals in TNBC MN point towards the significance of pathogenetic events involving the genes located in these chromosomes in evolution of this more aggressive phenotype.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
112
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
113
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
114
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
115
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
116
|
Zheng J, Xu F, Li G, Lin M, Hao H. The value of chromosome instability detected by low-pass whole-genome sequencing in preoperative prediction of sentinel lymph node metastasis in breast cancer. Front Oncol 2024; 14:1434526. [PMID: 39429474 PMCID: PMC11486760 DOI: 10.3389/fonc.2024.1434526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Background Breast cancer is a malignancy characterized by chromosomal instability (CIN). This study aimed to examine the potential diagnostic value of chromosomal instability, detected by low-pass whole-genome sequencing (LPWGS), in the preoperative evaluation of sentinel lymph node metastasis (SLNM) in breast cancer. Methods A retrospective investigation of clinical records from 29 patients with breast cancer revealed two distinct groups based on sentinel lymph node biopsy (SLNB) results: the SLN metastasis group (24 cases) and the SLN non-metastasis group (five cases). CIN and CIN scores were evaluated using LPWGS. An analysis of univariate data and binary logistic regression was employed to identify factors influencing SLNM, and a curve with receiver operating characteristics (ROC) was constructed to assess the diagnostic utility of CIN in predicting SLNM. Results A significant association between the SLNM and CIN high groups was observed in breast cancer (P=0.011). The CIN score in the metastasis group (17,665.055 ± 8,630.691) was higher than that in the non-metastasis group (9,247.973 ± 3,692.873), demonstrating a significant difference (P=0.044). Univariate binary logistic regression analysis indicated that CIN was a significant predictor for SLNM (odds ratio: 4.036, 95% CI: 1.015-16.047, P=0.048). The AUC of CIN for preoperative diagnosis of SLNM was 0.808 (95%CI: 0.635-0.982, P=0.033), with a sensitivity value of 67.0% and specificity of 100.0% at a threshold of 13,563. Conclusion Detecting CIN through LPWGS demonstrates diagnostic potential in predicting SLNM in patients with breast cancer before surgery. This approach offers a novel method for assessing axillary lymph node status in clinical practice.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fen Xu
- Department of General Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangying Li
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
117
|
Lascaux P, Hoslett G, Tribble S, Trugenberger C, Antičević I, Otten C, Torrecilla I, Koukouravas S, Zhao Y, Yang H, Aljarbou F, Ruggiano A, Song W, Peron C, Deangeli G, Domingo E, Bancroft J, Carrique L, Johnson E, Vendrell I, Fischer R, Ng AWT, Ngeow J, D'Angiolella V, Raimundo N, Maughan T, Popović M, Milošević I, Ramadan K. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 2024; 187:5698-5718.e26. [PMID: 39265577 DOI: 10.1016/j.cell.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024]
Abstract
DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.
Collapse
Affiliation(s)
- Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sara Tribble
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Camilla Trugenberger
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ivan Antičević
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Cecile Otten
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Stelios Koukouravas
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Yichen Zhao
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hongbin Yang
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Cristiano Peron
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Giulio Deangeli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Errin Johnson
- Dunn School Bioimaging Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Alvin Wei Tian Ng
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Vincenzo D'Angiolella
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Nuno Raimundo
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Tim Maughan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Marta Popović
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ira Milošević
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
118
|
Wang B, Yu W, Jiang H, Meng X, Tang D, Liu D. Clinical applications of STING agonists in cancer immunotherapy: current progress and future prospects. Front Immunol 2024; 15:1485546. [PMID: 39421752 PMCID: PMC11483357 DOI: 10.3389/fimmu.2024.1485546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The STING (Stimulator of Interferon Genes) pathway is pivotal in activating innate immunity, making it a promising target for cancer immunotherapy. STING agonists have shown potential in enhancing immune responses, particularly in tumors resistant to traditional therapies. This scholarly review examines the diverse categories of STING agonists, encompassing CDN analogues, non-CDN chemotypes, CDN-infused exosomes, engineered bacterial vectors, and hybrid structures of small molecules-nucleic acids. We highlight their mechanisms, clinical trial progress, and therapeutic outcomes. While these agents offer significant promise, challenges such as toxicity, tumor heterogeneity, and delivery methods remain obstacles to their broader clinical use. Ongoing research and innovation are essential to overcoming these hurdles. STING agonists could play a transformative role in cancer treatment, particularly for patients with hard-to-treat malignancies, by harnessing the body's immune system to target and eliminate cancer cells.
Collapse
Affiliation(s)
- Bin Wang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| | - Xiangwei Meng
- Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, China
| | - Dongmei Tang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Liu
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| |
Collapse
|
119
|
Luo Y, Chang L, Ji Y, Liang T. ER: a critical hub for STING signaling regulation. Trends Cell Biol 2024; 34:865-881. [PMID: 38423853 DOI: 10.1016/j.tcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yewei Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
120
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
121
|
Sun Y, Wu Y, Pang G, Huang J, Sheng M, Xie J, Chen P, Wang Y, Yin D, Zhao G, Bohlander SK, Huang J, Xu GL, Gao H, Zhou D, Shi Y. STING is crucial for the survival of RUNX1::RUNX1T1 leukemia cells. Leukemia 2024; 38:2102-2114. [PMID: 39179670 DOI: 10.1038/s41375-024-02383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Even though acute myeloid leukemia (AML) patients with a RUNX1::RUNX1T1 (AE) fusion have a relatively favorable prognosis, approximately 50% relapse within 2.5 years and develop resistance to subsequent chemotherapy [1]. It is therefore imperative to identify novel therapeutic targets for AE leukemia to improve outcomes. In this study, we unveil that targeting STING effectively suppresses the growth of AE leukemia cells. Both genetic and pharmacological inhibition of STING lead to the diminish of AE leukemia cells. Importantly, in a mouse primary AE leukemia model, STING deletion significantly attenuates leukemogenesis and prolongs the animals' lifespan. Blocking the downstream inflammatory pathway of STING yields similar effects to STING inhibition in AE leukemia cells, highlighting the pivotal role of STING-dependent inflammatory responses in sustaining the survival of AE leukemia cells. Moreover, through a genome-wide CRISPR screen, we identified fatty acid desaturase 2 (FADS2) as a non-canonical factor downstream of STING inhibition that mediates cell death. Inhibition of STING releases FADS2 activity, consequently inducing the synthesis of polyunsaturated fatty acids (PUFAs) and triggering lipid peroxidation-associated cell death [2]. Taken together, these findings reveal a critical function of STING in the survival of AE-positive AML cells and suggest STING to be a potential therapeutic target for clinical intervention in these patients.
Collapse
Affiliation(s)
- Yue Sun
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yushuang Wu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guozheng Pang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jingru Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jiaying Xie
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Pingyue Chen
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Dongrui Yin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guangjie Zhao
- Huashan Hospital, Fudan University, Shanghai, 200024, China
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai, 201399, China.
| | - Yuheng Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
122
|
Lu X, Li X, Li L, Han C, Li S. Advances in the prerequisite and consequence of STING downstream signalosomes. MEDICAL REVIEW (2021) 2024; 4:435-451. [PMID: 39444795 PMCID: PMC11495525 DOI: 10.1515/mr-2024-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 10/25/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an evolving DNA-sensing mechanism involved in innate immunity and pathogen defense that has been optimized while remaining conserved. Aside from recognizing pathogens through conserved motifs, these receptors also detect aberrant or misplaced self-molecules as possible signs of perturbed homeostasis. Upon binding external or self-derived DNA, a mobile secondary messenger 2'3'-cyclic GMP-AMP (cGAMP) is produced by cGAS and in turn activates its adapter STING in the endoplasmic reticulum (ER). Resting-state or activated STING protein is finely restricted by multiple degradation machineries. The post-translational changes of the STING protein, along with the regulatory machinery of the secret routes, limit the onset, strength and sustention of STING signal. STING experiences a conformational shift and relocates with TBK1 from the ER to perinuclear vesicles containing transcription factors, provoking the transcription activity of IRF3/IFN-I and NF-κB pathways, as well as to initiate a number of cellular processes that have been shown to alter the immune landscape in cancer, such as autophagy, NLRP3 inflammasome, ER stress, and cell death. STING signal thus serves as a potent activator for immune mobilization yet also triggers immune-mediated pathology in tissues. Recent advances have established the vital role of STING in immune surveillance as well as tumorigenic process. This review provides an overview of the disparate outcomes of cancer attributed to the actions of pleiotropic and coordinated STING downstream signalosomes, along with the underlying mechanisms of STING function in pathologies, providing therapeutic implications for new approaches in hunt for the next generation of cancer immunotherapy base on STING.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Li
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Hong Kong, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
123
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
124
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
125
|
Cui L, Xu X, Fan H, Wan X, Chen Q, Zhang J, Tao C, Du Z, Wang Y, Zhang J, Zeng J, Zhang Y, Zhang C, Li L, Bu Y, Lei Y. Reuterin promotes pyroptosis in hepatocellular cancer cells through mtDNA-mediated STING activation and caspase 8 expression. Cancer Lett 2024; 601:217183. [PMID: 39153728 DOI: 10.1016/j.canlet.2024.217183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.
Collapse
Affiliation(s)
- Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohui Xu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Du
- Department of Urology, The Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zeng
- College of Life Sciences and Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
126
|
Huang C, Tong T, Ren L, Wang H. STING-Activating Small Molecular Therapeutics for Cancer Immunotherapy. Chembiochem 2024; 25:e202400255. [PMID: 38980259 DOI: 10.1002/cbic.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor (CAR) T cells have received clinical approval for monotherapy and combination treatment in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate a durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs), have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here, we review the current development of STING-activating therapeutics in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Chuhan Huang
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tianrui Tong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China
| |
Collapse
|
127
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
128
|
Wang MM, Zhao Y, Liu J, Fan RR, Tang YQ, Guo ZY, Li T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 2024; 45:1997-2010. [PMID: 38822084 PMCID: PMC11420349 DOI: 10.1038/s41401-023-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/18/2023] [Indexed: 06/02/2024]
Abstract
Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Ming-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Rong-Rong Fan
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden
| | - Yan-Qing Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Zheng-Yang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
129
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
130
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
131
|
Zhou H, Zhang M, Zhang X, Du X, Cao H, Bi X. Analysis of the role of POC1A in the development and progression of hepatocellular carcinoma. Transl Cancer Res 2024; 13:5003-5020. [PMID: 39430849 PMCID: PMC11483421 DOI: 10.21037/tcr-23-2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/05/2024] [Indexed: 10/22/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. POC1 centriolar protein A (POC1A) is a gene encoding a protein that plays a key role in the centrosome, and is one of the two isoforms of POC1. To date, the expression of POC1A in HCC and its potential as a biomarker and tumor therapeutic target have not been examined. This study aimed to explore the effect of POC1A on patients with HCC and its potential mechanism. Methods This study investigated the role of POC1A in the occurrence and development of HCC. It analyzed the expression of POC1A in various types of HCC patients and its effect on survival using HCC patient information from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the Human Protein Atlas (HPA), and the Hepatocellular Carcinoma Cell DataBase (HCCDB). It then explored the major enrichment pathways and gene functions of POC1A in HCC using the gene set enrichment analysis (GSEA) method and examined its protein-protein interactions (PPIs). Finally, it predicted the potential transcription factors (TFs) and target microRNAs (miRNAs) of POC1A, and analyzed the single nucleotide variation (SNV) and copy number variation (CNV) mutations of POC1A and the related genes in HCC, as well as their effects on immune cells. Results The results showed that POC1A was significantly overexpressed in HCC and was significantly associated with a poor prognosis. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that POC1A was mainly involved in the regulation of cell-cycle pathways and chromosome segregation functions. POC1A showed significant interactions with NUDC and PPARG, and they both had different numbers of SNV and CNV mutations in the HCC samples. In relation to immunity, the high expression of POC1A and its reciprocal genes may play an important role in B cells and macrophages. Conclusions In general, our findings suggest that POC1A overexpression could have an important effect on the development of HCC by regulating cell-cycle pathways, and that it could serve as a novel prognostic biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang, China
| | - Mengxue Zhang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xin Zhang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xintong Du
- College of Life Science, Liaoning University, Shenyang, China
| | - Huihui Cao
- College of Life Science, Liaoning University, Shenyang, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, Liaoning University, Shenyang, China
| |
Collapse
|
132
|
Mays JC, Mei S, Kogenaru M, Quysbertf HM, Bosco N, Zhao X, Bianchi JJ, Goldberg A, Kidiyoor GR, Holt LJ, Fenyö D, Davoli T. KaryoTap Enables Aneuploidy Detection in Thousands of Single Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.555746. [PMID: 39386620 PMCID: PMC11463636 DOI: 10.1101/2023.09.08.555746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Investigating chromosomal instability and aneuploidy within tumors is essential for understanding tumorigenesis and developing diagnostic and therapeutic strategies. Single-cell DNA sequencing technologies have enabled such analyses, revealing aneuploidies specific to individual cells within the same tumor. However, it has been difficult to scale the throughput of these methods to detect rare aneuploidies while maintaining high sensitivity. To overcome this deficit, we developed KaryoTap, a method combining custom targeted DNA sequencing panels for the Tapestri platform with a computational framework to enable detection of chromosome- and chromosome arm-scale aneuploidy (gains or losses) and copy number neutral loss of heterozygosity in all human chromosomes across thousands of single cells simultaneously. KaryoTap allows detecting gains and losses with an average accuracy of 83% for arm events and 91% for chromosome events. Importantly, together with chromosomal copy number, our system allows us to detect barcodes and gRNAs integrated into the cells' genome, thus enabling pooled CRISPR- or ORF-based functional screens in single cells. As a proof of principle, we performed a small screen to expand the chromosomes that can be targeted by our recently described CRISPR-based KaryoCreate system for engineering aneuploidy in human cells. KaryoTap will prove a powerful and flexible approach for the study of aneuploidy and chromosomal instability in both tumors and normal tissues.
Collapse
Affiliation(s)
- Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Helberth M Quysbertf
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. Current Address: Volastra Therapeutics, New York, NY 10027, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gururaj Rao Kidiyoor
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
133
|
Zheng C, Chen Y, He T, Xiu Y, Dong X, Wang X, Wen X, Li C, Yao Q, Chen S, Zhan X, Gao L, Bai Z. Pentagalloylglucose alleviates acetaminophen-induced acute liver injury by modulating inflammation via cGAS-STING pathway. Mol Med 2024; 30:160. [PMID: 39333876 PMCID: PMC11428449 DOI: 10.1186/s10020-024-00924-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The cGAS-STING pathway is an important component of the innate immune system and plays significant role in acetaminophen-induced liver injury (AILI). Pentagalloylglucose (PGG) is a natural polyphenolic compound with various beneficial effects, including anti-cancer, antioxidant, anti-inflammatory, and liver-protective properties; however, whether it can be used for the treatment of AILI and the specific mechanism remain unclear. MATERIALS AND METHODS A cell culture model was created to study the effect of PGG on cGAS-STING pathway activation using various techniques including western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence (IF), and immunoprecipitation (IP). The effect of PGG was investigated in vivo by establishing a dimethylxanthenone acetic acid (DMXAA)-mediated activation model. An AILI model was used to evaluate the hepatoprotective and therapeutic effects of PGG by detecting liver function indicators, liver histopathology, and cGAS-STING pathway-related indicators in mice with AILI. RESULTS PGG blocked cGAS-STING pathway activation in bone marrow-derived macrophages (BMDMs), THP-1 cells, and peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, PGG inhibited the generation of type I interferons (IFN-I) and the secretion of inflammatory factors in DMXAA-induced in vivo experiments. In addition, PGG also reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), improved liver tissue damage and apoptosis, and inhibited the cGAS-STING pathway activation caused by acetaminophen. In terms of the mechanism, PGG disrupted the connection between STING and TBK1. CONCLUSIONS PGG exerts a protective effect against AILI by blocking the cGAS-STING pathway, offering a promising treatment strategy.
Collapse
Affiliation(s)
- Congyang Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinru Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Qing Yao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Zhan
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Lili Gao
- Medical School of Chinese PLA, Beijing, China.
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhaofang Bai
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
134
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
135
|
Sudaryo V, Carvalho DR, Lee JM, Carozza JA, Cao X, Cordova AF, Li L. Toxicity of extracellular cGAMP and its analogs to T cells is due to SLC7A1-mediated import. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614248. [PMID: 39386698 PMCID: PMC11463533 DOI: 10.1101/2024.09.21.614248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
STING agonists are promising innate immune therapies and can synergize with adaptive immune checkpoint blockade therapies for cancer treatment, but their effectiveness is limited by the toxicity to activated T cells. An important class of STING agonists are analogs of the endogenous STING agonist, cGAMP, and while transporters for these small molecules are known in some cell types, how they enter and kill T cells remains unknown. Here, we identify the cationic amino acid transporter SLC7A1 as the dominant transporter of cGAMP and its analogs in activated primary mouse and human T cells. T cells upregulate this transporter upon activation and rapid proliferation to meet their high metabolic demand, but this comes at the cost of enabling increased transport and toxicity of cGAMP. To circumvent the essentiality of SLC7A1 to proliferating T cells, we found that the residues responsible for cGAMP transport are separate from the arginine binding pocket allowing us to perturb cGAMP transport and STING-activation mediated killing without impacting arginine transport. These results suggest that SLC7A1 is a potential target for alleviating T cell toxicity associated with cGAMP and its analogs.
Collapse
|
136
|
Cosper PF, Paracha M, Jones KM, Hrycyniak L, Henderson L, Bryan A, Eyzaguirre D, McCunn E, Boulanger E, Wan J, Nickel KP, Horner V, Hu R, Harari PM, Kimple RJ, Weaver BA. Chromosomal instability increases radiation sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612942. [PMID: 39345631 PMCID: PMC11429890 DOI: 10.1101/2024.09.13.612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Continuous chromosome missegregation over successive mitotic divisions, known as chromosomal instability (CIN), is common in cancer. Increasing CIN above a maximally tolerated threshold leads to cell death due to loss of essential chromosomes. Here, we show in two tissue contexts that otherwise isogenic cancer cells with higher levels of CIN are more sensitive to ionizing radiation, which itself induces CIN. CIN also sensitizes HPV-positive and HPV-negative head and neck cancer patient derived xenograft (PDX) tumors to radiation. Moreover, laryngeal cancers with higher CIN prior to treatment show improved response to radiation therapy. In addition, we reveal a novel mechanism of radiosensitization by docetaxel, a microtubule stabilizing drug commonly used in combination with radiation. Docetaxel causes cell death by inducing CIN due to abnormal multipolar spindles rather than causing mitotic arrest, as previously assumed. Docetaxel-induced CIN, rather than mitotic arrest, is responsible for the enhanced radiation sensitivity observed in vitro and in vivo, challenging the mechanistic dogma of the last 40 years. These results implicate CIN as a potential biomarker and inducer of radiation response, which could provide valuable cancer therapeutic opportunities. Statement of Significance Cancer cells and laryngeal tumors with higher chromosome missegregation rates are more sensitive to radiation therapy, supporting chromosomal instability as a promising biomarker of radiation response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laura Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin, Madison, WI 53705, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Diego Eyzaguirre
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth Boulanger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vanessa Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
137
|
Baba SA, Zakeri A, Desgrosellier JS. Chromosomal instability as an architect of the cancer stemness landscape. Front Cell Dev Biol 2024; 12:1450614. [PMID: 39345336 PMCID: PMC11427409 DOI: 10.3389/fcell.2024.1450614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Despite a critical role for tumor-initiating cancer stem cells (CSCs) in breast cancer progression, major questions remain about the properties and signaling pathways essential for their function. Recent discoveries highlighting mechanisms of CSC-resistance to the stress caused by chromosomal instability (CIN) may provide valuable new insight into the underlying forces driving stemness properties. While stress tolerance is a well-known attribute of CSCs, CIN-induced stress is distinctive since levels appear to increase during tumor initiation and metastasis. These dynamic changes in CIN levels may serve as a barrier constraining the effects of non-CSCs and shaping the stemness landscape during the early stages of disease progression. In contrast to most other stresses, CIN can also paradoxically activate pro-tumorigenic antiviral signaling. Though seemingly contradictory, this may indicate that mechanisms of CIN tolerance and pro-tumorigenic inflammatory signaling closely collaborate to define the CSC state. Together, these unique features may form the basis for a critical relationship between CIN and stemness properties.
Collapse
Affiliation(s)
- Shahnawaz A Baba
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Aran Zakeri
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jay S Desgrosellier
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
138
|
Tsering T, Nadeau A, Wu T, Dickinson K, Burnier JV. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. Cell Death Dis 2024; 15:668. [PMID: 39266560 PMCID: PMC11393322 DOI: 10.1038/s41419-024-07003-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade's worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
139
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
140
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
141
|
Shao C, Chen J, Qiang B, Ye J, Yan F, Zhu Y. The role of cGAS-STING signaling in the development and therapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1451305. [PMID: 39295867 PMCID: PMC11408205 DOI: 10.3389/fimmu.2024.1451305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
The cGAS-STING signaling pathway plays a critical role in innate immunity and defense against viral infections by orchestrating intracellular and adaptive immune responses to DNA. In the context of head and neck squamous cell carcinoma (HNSCC), this pathway has garnered significant attention due to its potential relevance in disease development and progression. HNSCC is strongly associated with risk factors such as smoking, heavy alcohol consumption, and human papillomavirus (HPV) infection. The presence or absence of HPV in HNSCC patients has been shown to have a profound impact on patient survival and prognosis, possibly due to the distinct biological characteristics of HPV-associated tumors. This review aims to provide a comprehensive overview of the current therapeutic approaches and challenges in HNSCC management, as well as the involvement of cGAS-STING signaling and its potential in the therapy of HNSCC. In addition, by advancing the present understanding of the mechanisms underlying this pathway, Activation of cGAS-STING-dependent inflammatory signaling downstream of chromosomal instability can exert both anti-tumoral and pro-tumoral effects in a cell-intrinsic manner, suggesting individualized therapy is of great importance. However, further exploration of the cGAS-STING signaling pathway is imperative for the effective management of HNSCC.
Collapse
Affiliation(s)
- Chengze Shao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jiawen Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bi Qiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongbo Zhu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
142
|
Wang Z, Miao F, Gu L, Zhang R, Ma Y, Li Y, Zheng J, Lin Z, Gao Y, Huang L, Shen Y, Wu T, Luo F, Li W. Stimulator of Interferon Genes-Activated Biomimetic Dendritic Cell Nanovaccine as a Chemotherapeutic Booster to Enhance Systemic Fibrosarcoma Treatment. ACS NANO 2024; 18:24219-24235. [PMID: 39172516 DOI: 10.1021/acsnano.4c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Lingwei Gu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ying Li
- Heji Hospital Affiliated with Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yilai Gao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Liyong Huang
- Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350000, Fu Jian, China
| | - Ye Shen
- Shanghai Jiangxia Blood Technology Co., Ltd. Shanghai 200000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
143
|
Shim A, Luan X, Zhou W, Crow YJ, Maciejowski J. Mutations in the non-catalytic polyproline motif destabilize TREX1 and amplify cGAS-STING signaling. Hum Mol Genet 2024; 33:1555-1566. [PMID: 38796715 PMCID: PMC11373327 DOI: 10.1093/hmg/ddae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations-particularly those outside of the core catalytic domains-remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupts TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.
Collapse
Affiliation(s)
- Abraham Shim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, United States
| | - Xiaohan Luan
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, GD 518055, China
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, GD 518055, China
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road South, Edinburgh, United Kingdom
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, University Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, United States
| |
Collapse
|
144
|
Murayama T, Mahadevan NR, Meador CB, Ivanova EV, Pan Y, Knelson EH, Tani T, Nakayama J, Ma X, Thai TC, Hung YP, Kim W, Watanabe H, Cai KQ, Hata AN, Paweletz CP, Barbie DA, Cañadas I. Targeting TREX1 Induces Innate Immune Response in Drug-Resistant Small-Cell Lung Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2399-2414. [PMID: 39177280 PMCID: PMC11391691 DOI: 10.1158/2767-9764.crc-24-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Paradoxically, this tumor displays an initial exquisite response to chemotherapy; however, at relapse, the tumor is highly resistant to subsequent available therapies. Here, we report that the expression of three prime repair exonuclease 1 (TREX1) is strongly induced in chemoresistant SCLCs. Assay for transposase-accessible chromatin using sequencing and chromatin immunoprecipitation sequencing revealed a significant increase in chromatin accessibility and transcriptional activity of TREX1 gene locus in chemoresistant SCLCs. Analyses of human SCLC tumors and patient-derived xenografts (PDX) also showed an increase in TREX1 expression in postchemotherapy samples. TREX1 depletion caused the activation of cyclic GMP-AMP synthase stimulator of interferon gene pathway due to cytoplasmic accumulation of damage-associated double-stranded DNA, inducing immunogenicity and enhancing the sensitivity of drug-resistant cells to chemotherapy. These findings suggest TREX1 upregulation may partially contribute to the survival of resistant cells, and its inhibition may represent a promising therapeutic strategy to enhance antitumor immunity and potentiate the efficacy of chemotherapy and/or immunotherapy in chemoresistant SCLCs. Significance: In this study, we show that targeting TREX1 induces an innate immune response and resensitizes SCLC cells to chemotherapy, representing a promising novel target for "immunologically" cold tumors, such as SCLC.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Catherine B. Meador
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| | - Elena V. Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Yuqiao Pan
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jun Nakayama
- Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, Osaka, Japan.
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Tran C. Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Yin P. Hung
- Department of Pathology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California.
- Center for Novel Therapeutics, UC San Diego, La Jolla, California.
- Department of Medicine, UC San Diego, La Jolla, California.
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Aaron N. Hata
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
145
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
146
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
147
|
Di Bona M, Chen Y, Agustinus AS, Mazzagatti A, Duran MA, Deyell M, Bronder D, Hickling J, Hong C, Scipioni L, Tedeschi G, Martin S, Li J, Ruzgaitė A, Riaz N, Shah P, D’Souza EK, Brodtman DZ, Sidoli S, Diplas B, Jalan M, Lee NY, Ordureau A, Izar B, Laughney AM, Powell S, Gratton E, Santaguida S, Maciejowski J, Ly P, Jeitner TM, Bakhoum SF. Micronuclear collapse from oxidative damage. Science 2024; 385:eadj8691. [PMID: 39208110 PMCID: PMC11610459 DOI: 10.1126/science.adj8691] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.
Collapse
Affiliation(s)
- Melody Di Bona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyang Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albert S. Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mercedes A. Duran
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Deyell
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Bronder
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Hickling
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christy Hong
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenzo Scipioni
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Giulia Tedeschi
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Sara Martin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aušrinė Ruzgaitė
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parin Shah
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Edridge K. D’Souza
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - D. Zack Brodtman
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bill Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Izar
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Ashley M. Laughney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Gratton
- School of Engineering, University of California, Irvine, CA 92697, USA
| | - Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas M. Jeitner
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samuel F. Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
148
|
Martin S, Scorzoni S, Cordone S, Mazzagatti A, Beznoussenko GV, Gunn AL, Di Bona M, Eliezer Y, Leor G, Ben-Yishay T, Loffreda A, Cancila V, Rainone MC, Ippolito MR, Martis V, Bedin F, Garrè M, Vaites LP, Vasapolli P, Polo S, Parazzoli D, Tripodo C, Mironov AA, Cuomo A, Ben-David U, Bakhoum SF, Hatch EM, Ly P, Santaguida S. A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements. Science 2024; 385:eadj7446. [PMID: 39208097 PMCID: PMC11664475 DOI: 10.1126/science.adj7446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.
Collapse
Affiliation(s)
- Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Cordone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Amanda L. Gunn
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melody Di Bona
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Maria Chiara Rainone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentino Martis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Bedin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Paolo Vasapolli
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | | | - Alessandro Cuomo
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily M. Hatch
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
149
|
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J, Yu X. Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med 2024; 22:778. [PMID: 39169400 PMCID: PMC11337781 DOI: 10.1186/s12967-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and discusses key considerations that merit attention in ongoing development efforts.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - ZhiBin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Qiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - NaYiYuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
150
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|