101
|
Abstract
Membrane proteins are involved in a large variety of functions. Most of these protein functions are regulated by ligand binding with diverse modes of action: agonists, partial agonists, antagonists, and allosteric modulators, potentiators and inhibitors. From the pharmacological point of view, membrane proteins are one if not the major target for drug development. However, experimental structure determination of membrane proteins in complex or in free form still represents a great challenge. Molecular dynamics (MD) simulations commonly reach the microsecond scale on membrane systems. This numerical tool is mature enough to predict and add molecular details on the different ligand-binding modes. In the present chapter, I will present the different steps to design, simulate, and analyze a MD simulation system containing a protein embedded in a membrane and surrounded by water and ligand. As an illustration, the simulation of the ligand-gated ion channel γ-aminobutyric acid type A receptor (GABAAR) surrounded by one of its allosteric potentiators, bromoform, will be presented and discussed.
Collapse
Affiliation(s)
- Samuel Murail
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, F-75005, Paris, France.
- Air Liquide, Centre de Recherches Paris-Saclay, Boite Postale 126, Les Loges-en-Josas, Jouy-en-Josas, 78354, France.
| |
Collapse
|
102
|
Li R, Sakir HG, Li J, Shin HD, Du G, Chen J, Liu L. Rational molecular engineering of l-amino acid deaminase for production of α-ketoisovaleric acid from l-valine by Escherichia coli. RSC Adv 2017. [DOI: 10.1039/c6ra26972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The targeted modification of enzymatic efficiency can drive an increased production of desired metabolites.
Collapse
Affiliation(s)
- Ruoxi Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Hossain Gazi Sakir
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Long Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
103
|
Errasti-Murugarren E, Rodríguez-Banqueri A, Vázquez-Ibar JL. Split GFP Complementation as Reporter of Membrane Protein Expression and Stability in E. coli: A Tool to Engineer Stability in a LAT Transporter. Methods Mol Biol 2017; 1586:181-195. [PMID: 28470605 DOI: 10.1007/978-1-4939-6887-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Obtaining enough quantity of recombinant membrane transport proteins with optimal purity and stability for structural studies is a remarkable challenge. In this chapter, we describe a protocol to engineer SteT, the amino acid transporter of Bacillus subtilis, in order to improve its heterologous expression in Escherichia coli and its stability in detergent micelles. We built a library of 70 SteT mutants, combining a random mutagenesis protocol with a split GFP assay as reporter of protein folding and membrane insertion. Mutagenesis was restricted to residues situated in the transmembrane domains. Improved versions of SteT were successfully identified after analyzing the expression yield and monodispersity in detergent micelles of the library's members.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Unitat de Proteòmica Aplicada i Enginyeria de Proteïnes, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institute for Integrative Biology of the Cell (I2BC), iBiTec-S/SB2SM, CEA Saclay CNRS UMR 9198, University Paris-Sud, University Paris-Saclay, Bâtiment 21, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
104
|
Bakari S, Lembrouk M, Sourd L, Ousalem F, André F, Orlowski S, Delaforge M, Frelet-Barrand A. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Mol Biotechnol 2016; 58:299-310. [PMID: 26961909 DOI: 10.1007/s12033-016-9928-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.
Collapse
Affiliation(s)
- Sana Bakari
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Mehdi Lembrouk
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Laura Sourd
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Fares Ousalem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - François André
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphane Orlowski
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Marcel Delaforge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Annie Frelet-Barrand
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France. .,Institute FEMTO-ST, UMR6174 CNRS-Université de Franche-Comté, 25044, Besançon Cedex, France.
| |
Collapse
|
105
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
106
|
Hildebrandt E, Khazanov N, Kappes JC, Dai Q, Senderowitz H, Urbatsch IL. Specific stabilization of CFTR by phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:289-293. [PMID: 27913277 DOI: 10.1016/j.bbamem.2016.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Medical Center, Research Service, Birmingham, AL 35233, USA.
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA.
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|
107
|
Lee S, Mao A, Bhattacharya S, Robertson N, Grisshammer R, Tate CG, Vaidehi N. How Do Short Chain Nonionic Detergents Destabilize G-Protein-Coupled Receptors? J Am Chem Soc 2016; 138:15425-15433. [PMID: 27792324 PMCID: PMC5148649 DOI: 10.1021/jacs.6b08742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stability of detergent-solubilized G-protein-coupled receptors (GPCRs) is crucial for their purification in a biologically relevant state, and it is well-known that short chain detergents such as octylglucoside are more denaturing than long chain detergents such as dodecylmaltoside. However, the molecular basis for this phenomenon is poorly understood. To gain insights into the mechanism of detergent destabilization of GPCRs, we used atomistic molecular dynamics simulations of thermostabilized adenosine receptor (A2AR) mutants embedded in either a lipid bilayer or detergent micelles of alkylmaltosides and alkylglucosides. A2AR mutants in dodecylmaltoside or phospholipid showed low flexibility and good interhelical packing. In contrast, A2AR mutants in either octylglucoside or nonylglucoside showed decreased α-helicity in transmembrane regions, decreased α-helical packing, and the interpenetration of detergent molecules between transmembrane α-helices. This was not observed in octylglucoside containing phospholipid. Cholesteryl hemisuccinate in dodecylmaltoside increased the energetic stability of the receptor by wedging into crevices on the hydrophobic surface of A2AR, increasing packing interactions within the receptor and stiffening the detergent micelle. The data suggest a three-stage process for the initial events in the destabilization of GPCRs by octylglucoside: (i) highly mobile detergent molecules form small micelles around the receptor; (ii) loss of α-helicity and decreased interhelical packing interactions in transmembrane regions are promoted by increased receptor thermal motion; (iii) transient separation of transmembrane helices allowed penetration of detergent molecules into the core of the receptor. The relative hydration of the headgroup and alkyl chain correlates with detergent harshness and suggests new avenues to develop milder versions of octylglucoside for receptor crystallization.
Collapse
Affiliation(s)
- Sangbae Lee
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Allen Mao
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Supriyo Bhattacharya
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Nathan Robertson
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, USA
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nagarajan Vaidehi
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| |
Collapse
|
108
|
Zhang X. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Proteomics 2016; 17. [PMID: 27633951 DOI: 10.1002/pmic.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
109
|
Ohta N, Kato Y, Watanabe H, Mori H, Matsuura T. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes. Sci Rep 2016; 6:36466. [PMID: 27808179 PMCID: PMC5093552 DOI: 10.1038/srep36466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach.
Collapse
Affiliation(s)
- Naoki Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-tyou, Ikoma, Nara, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
110
|
Sjöhamn J, Båth P, Neutze R, Hedfalk K. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes. Protein Sci 2016; 25:2196-2208. [PMID: 27643892 PMCID: PMC5119558 DOI: 10.1002/pro.3046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.
Collapse
Affiliation(s)
- Jennie Sjöhamn
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| |
Collapse
|
111
|
Ezzine A, Souabni H, Machillot P, Bizouarn T, Baciou L. Relationship between p22 phox expression, tag position and oxidase activity of the heterologous NADPH oxidase expressed in Pichia pastoris. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
112
|
Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2016; 43:773-86. [PMID: 26517882 DOI: 10.1042/bst20150065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).
Collapse
|
113
|
Shelar A, Bansal M. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2804-2817. [PMID: 27521749 DOI: 10.1016/j.bbamem.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Abstract
Transmembrane (TM) helices in integral membrane proteins are primarily α-helical in structure. Here we analyze 1134 TM helices in 90 high resolution membrane proteins and find that apart from the widely prevalent α-helices, TM regions also contain stretches of 310 (3 to 8 residues) and π-helices (5 to 19 residues) with distinct sequence signatures. The various helix perturbations in TM regions comprise of helices with kinked geometry, as well as those with an interspersed 310/π-helical fragment and show high occurrence in a few membrane proteins. Proline is frequently present at sites of these perturbations, but it is neither a necessary nor a sufficient requirement. Helix perturbations are also conserved within a family of membrane proteins despite low sequence identity in the perturbed region. Furthermore, a perturbation influences the geometry of the TM helix, mediates inter-helical interactions within and across protein chains and avoids hydrophobic mismatch of the helix termini with the bilayer. An analysis of π-helices in the TM regions of the heme copper oxidase superfamily shows that interspersed π-helices can vary in length from 6 to 19 amino acids or be entirely absent, depending upon the protein function. The results presented here would be helpful for prediction of 310 and π-helices in TM regions and can assist the computational design of membrane proteins.
Collapse
Affiliation(s)
- Ashish Shelar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
114
|
Boggavarapu R, Hirschi S, Harder D, Meury M, Ucurum Z, Bergeron MJ, Fotiadis D. Purification of Human and Mammalian Membrane Proteins Expressed in Xenopus laevis Frog Oocytes for Structural Studies. Methods Mol Biol 2016; 1432:223-42. [PMID: 27485339 DOI: 10.1007/978-1-4939-3637-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This protocol describes the isolation of recombinant human and mammalian membrane proteins expressed in Xenopus laevis frog oocytes for structural studies. The cDNA-derived cRNA of the desired genes is injected into several hundreds of oocytes, which are incubated for several days to allow protein expression. Recombinant proteins are then purified via affinity chromatography. The novelty of this method comes from the design of a plasmid that produces multi-tagged proteins and, most importantly, the development of a protocol for efficiently discarding lipids, phospholipids, and lipoproteins from the oocyte egg yolk, which represent the major contaminants in protein purifications. Thus, the high protein purity and good yield obtained from this method allows protein structure determination by transmission electron microscopy of single detergent-solubilized protein particles and of 2D crystals of membrane protein embedded in lipid bilayers. Additionally, a radiotracer assay for functional analysis of the expressed target proteins in oocytes is described. Overall, this method is a valuable option for structural studies of mammalian and particularly human proteins, for which other expression systems often fail.
Collapse
Affiliation(s)
- Rajendra Boggavarapu
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Marcel Meury
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Marc J Bergeron
- Division of Cellular and Molecular Neuroscience, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada, G1J 2G3
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| |
Collapse
|
115
|
Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 2016; 11:1554-71. [PMID: 27466713 PMCID: PMC5268090 DOI: 10.1038/nprot.2016.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A. Thomas
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
116
|
Khadria AS, Senes A. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET. Biopolymers 2016; 104:247-64. [PMID: 25968159 DOI: 10.1002/bip.22667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
117
|
Shinoda T, Shinya N, Ito K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Tomita T, Ishibashi Y, Hirabayashi Y, Kimura-Someya T, Shirouzu M, Yokoyama S. Cell-free methods to produce structurally intact mammalian membrane proteins. Sci Rep 2016; 6:30442. [PMID: 27465719 PMCID: PMC4964339 DOI: 10.1038/srep30442] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/04/2016] [Indexed: 01/19/2023] Open
Abstract
The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1–1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin.
Collapse
Affiliation(s)
- Takehiro Shinoda
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Naoko Shinya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Kaori Ito
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| |
Collapse
|
118
|
van 't Hag L, Li X, Meikle TG, Hoffmann SV, Jones NC, Pedersen JS, Hawley AM, Gras SL, Conn CE, Drummond CJ. How Peptide Molecular Structure and Charge Influence the Nanostructure of Lipid Bicontinuous Cubic Mesophases: Model Synthetic WALP Peptides Provide Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6882-6894. [PMID: 27315326 DOI: 10.1021/acs.langmuir.6b01058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured bicontinuous lipidic cubic phases are used for the encapsulation of proteins in a range of applications such as in meso crystallization of transmembrane proteins and as drug delivery vehicles. The retention of the nanoscale order of the cubic phases subsequent to protein incorporation, as well as retention of the protein structure and function, is essential for all of these applications. Herein synthetic peptides (WALP21, WALPS53, and WALPS73) with a common α-helical hydrophobic domain, but varying hydrophilic loop size, were designed to systematically examine the effect of peptide structure and charge on bicontinuous cubic phases. The effect of the cubic phases on the secondary structure of the peptides was also investigated. The incorporation of the WALP peptides in cubic phases formed by a range of lipids showed that hydrophobic mismatch of the peptides with the lipid bilayers, the hydrophilic domain size, and peptide charge were all significant factors determining the response of the lipid nanomaterial to protein insertion. As charge repulsion had the most significant effect on the phase transitions observed, we suggest that buffer pH and salt concentration must be carefully considered to ensure cubic mesophase retention. Importantly, the WALP peptides were found to have a different conformation depending on the local lipid environment. Such structural changes could potentially affect membrane protein function, which is crucial for both current and prospective applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168, Australia
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
119
|
Dow XY, Dettmar CM, DeWalt EL, Newman JA, Dow AR, Roy-Chowdhury S, Coe JD, Kupitz C, Fromme P, Simpson GJ. Second harmonic generation correlation spectroscopy for characterizing translationally diffusing protein nanocrystals. Acta Crystallogr D Struct Biol 2016; 72:849-59. [PMID: 27377382 PMCID: PMC4932918 DOI: 10.1107/s205979831600841x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Second harmonic generation correlation spectroscopy (SHG-CS) is demonstrated as a new approach to protein nanocrystal characterization. A novel line-scanning approach was performed to enable autocorrelation analysis without sample damage from the intense incident beam. An analytical model for autocorrelation was developed, which includes a correction for the optical scattering forces arising when focusing intense, infrared beams. SHG-CS was applied to the analysis of BaTiO3 nanoparticles ranging from 200 to ∼500 nm and of photosystem I nanocrystals. A size distribution was recovered for each sample and compared with the size histogram measured by scanning electron microscopy (SEM). Good agreement was observed between the two independent measurements. The intrinsic selectivity of the second-order nonlinear optical process provides SHG-CS with the ability to distinguish well ordered nanocrystals from conglomerates and amorphous aggregates. Combining the recovered distribution of particle diameters with the histogram of measured SHG intensities provides the inherent hyperpolarizability per unit volume of the SHG-active nanoparticles. Simulations suggest that the SHG activity per unit volume is likely to exhibit relatively low sensitivity to the subtle distortions within the lattice that contribute to resolution loss in X-ray diffraction, but high sensitivity to the presence of multi-domain crystals.
Collapse
Affiliation(s)
- Ximeng Y. Dow
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | | | - Emma L. DeWalt
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Justin A. Newman
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander R. Dow
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Jesse D. Coe
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Christopher Kupitz
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Garth J. Simpson
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
120
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
121
|
Shah MB, Jang HH, Wilderman PR, Lee D, Li S, Zhang Q, Stout CD, Halpert JR. Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Biophys Chem 2016; 216:1-8. [PMID: 27280734 DOI: 10.1016/j.bpc.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022]
Abstract
Multiple crystal structures of CYP2B4 have demonstrated the binding of the detergent 5-cyclohexyl-1-pentyl-β-D-maltoside (CYMAL-5) in a peripheral pocket located adjacent to the active site. To explore the consequences of detergent binding, X-ray crystal structures of the peripheral pocket mutant CYP2B4 F202W were solved in the presence of hexaethylene glycol monooctyl ether (C8E6) and CYMAL-5. The structure in the presence of CYMAL-5 illustrated a closed conformation indistinguishable from the previously solved wild-type. In contrast, the F202W structure in the presence of C8E6 revealed a detergent molecule that coordinated the heme-iron and extended to the protein surface through the substrate access channel 2f. Despite the overall structural similarity of these detergent complexes, remarkable differences were observed in the A, A', and H helices, the F-G cassette, the C-D and β4 loop region. Hydrogen-deuterium exchange mass spectrometry (DXMS) was employed to probe these differences and to test the effect of detergents in solution. The presence of either detergent increased the H/D exchange rate across the plastic regions, and the results obtained by DXMS in solution were consistent in general with the relevant structural snapshots. The study provides insight into effect of detergent binding and the interpretation of associated conformational dynamics of CYP2B4.
Collapse
Affiliation(s)
- Manish B Shah
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States.
| | - Hyun-Hee Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - P Ross Wilderman
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - David Lee
- The Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sheng Li
- The Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Qinghai Zhang
- The Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - C David Stout
- The Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
122
|
Parker JL, Newstead S. Membrane Protein Crystallisation: Current Trends and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:61-72. [PMID: 27553235 PMCID: PMC5033070 DOI: 10.1007/978-3-319-35072-1_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alpha helical membrane proteins are the targets for many pharmaceutical drugs and play important roles in physiology and disease processes. In recent years, substantial progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck still remains; the identification of conditions that give crystals that are suitable for structure determination. Over the past 10 years we have been analysing the crystallisation conditions reported for alpha helical membrane proteins with the aim to facilitate a rational approach to the design and implementation of successful crystallisation screens. The result has been the development of MemGold, MemGold2 and the additive screen MemAdvantage. The associated analysis, summarised and updated in this chapter, has revealed a number of surprisingly successfully strategies for crystallisation and detergent selection.
Collapse
Affiliation(s)
- Joanne L. Parker
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Simon Newstead
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
123
|
Yuan S, Filipek S, Vogel H. A Gating Mechanism of the Serotonin 5-HT3 Receptor. Structure 2016; 24:816-825. [PMID: 27112600 DOI: 10.1016/j.str.2016.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/27/2016] [Accepted: 03/06/2016] [Indexed: 11/29/2022]
Abstract
Our recently solved high-resolution structure of the serotonin 5-HT3 receptor (5-HT3R) delivered the first detailed structural insights for a mammalian pentameric ligand-gated ion channel. Based on this structure, we here performed a total of 2.8-μs all-atom molecular dynamics simulations to unravel at atomic detail how neurotransmitter binding on the extracellular domain induces sequential conformational transitions in the receptor, opening an ion channel and translating a chemical signal into electrical impulses across the membrane. We found that serotonin binding first induces distinct conformational fluctuations at the side chain of W156 in the highly conserved ligand-binding cage, followed by tilting-twisting movements of the extracellular domain which couple to the transmembrane TM2 helices, opening the hydrophobic gate at L260 and forming a continuous transmembrane water pathway. The structural transitions in the receptor's transmembrane part finally couple to the intracellular MA helix bundle, opening lateral ports for ion passage.
Collapse
Affiliation(s)
- Shuguang Yuan
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Slawomir Filipek
- Laboratory of Biomodeling, Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
124
|
Rodríguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, Kowalczyk L, Perálvarez-Marín A, Palacín M, Vázquez-Ibar JL. Stabilization of a prokaryotic LAT transporter by random mutagenesis. ACTA ACUST UNITED AC 2016; 147:353-68. [PMID: 26976827 PMCID: PMC4810068 DOI: 10.1085/jgp.201511510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.
Collapse
Affiliation(s)
- Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Lukasz Kowalczyk
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, French National Centre for Scientific Research (CNRS) UMR 9198, University Paris-Sud, University Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
125
|
Rawson S, Davies S, Lippiat JD, Muench SP. The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 2016; 33:12-22. [PMID: 27608730 PMCID: PMC5206964 DOI: 10.1080/09687688.2016.1221533] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Abstract
Membrane proteins are ubiquitous in biology and are key targets for therapeutic development. Despite this, our structural understanding has lagged behind that of their soluble counterparts. This review provides an overview of this important field, focusing in particular on the recent resurgence of electron microscopy (EM) and the increasing role it has to play in the structural studies of membrane proteins, and illustrating this through several case studies. In addition, we examine some of the challenges remaining in structural determination, and what steps are underway to enhance our knowledge of these enigmatic proteins.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Simon Davies
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Jonathan D. Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| |
Collapse
|
126
|
A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 2016; 6:21294. [PMID: 26887595 PMCID: PMC4758055 DOI: 10.1038/srep21294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/21/2016] [Indexed: 11/09/2022] Open
Abstract
Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis.
Collapse
|
127
|
A topological and conformational stability alphabet for multipass membrane proteins. Nat Chem Biol 2016; 12:167-73. [PMID: 26780406 DOI: 10.1038/nchembio.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Multipass membrane proteins perform critical signal transduction and transport across membranes. How transmembrane helix (TMH) sequences encode the topology and conformational flexibility regulating these functions remains poorly understood. Here we describe a comprehensive analysis of the sequence-structure relationships at multiple interacting TMHs from all membrane proteins with structures in the Protein Data Bank (PDB). We found that membrane proteins can be deconstructed in interacting TMH trimer units, which mostly fold into six distinct structural classes of topologies and conformations. Each class is enriched in recurrent sequence motifs from functionally unrelated proteins, revealing unforeseen consensus and evolutionary conserved networks of stabilizing interhelical contacts. Interacting TMHs' topology and local protein conformational flexibility were remarkably well predicted in a blinded fashion from the identified binding-hotspot motifs. Our results reveal universal sequence-structure principles governing the complex anatomy and plasticity of multipass membrane proteins that may guide de novo structure prediction, design, and studies of folding and dynamics.
Collapse
|
128
|
Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 2016; 570:389-420. [PMID: 26921956 DOI: 10.1016/bs.mie.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Lauren G Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ling Qin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tracy M Handel
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
129
|
Bird LE, Nettleship JE, Järvinen V, Rada H, Verma A, Owens RJ. Expression Screening of Integral Membrane Proteins by Fusion to Fluorescent Reporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:1-11. [DOI: 10.1007/978-3-319-35072-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
130
|
Molecular Modeling and Its Applications in Protein Engineering. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
131
|
Detergents in Membrane Protein Purification and Crystallisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:13-28. [PMID: 27553232 DOI: 10.1007/978-3-319-35072-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.
Collapse
|
132
|
Kudryashev M, Castaño-Díez D, Deluz C, Hassaine G, Grasso L, Graf-Meyer A, Vogel H, Stahlberg H. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles. Structure 2015; 24:165-170. [PMID: 26724993 DOI: 10.1016/j.str.2015.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland; Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | - Daniel Castaño-Díez
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland; Scientific Computing Unit, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany
| | - Cédric Deluz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Gherici Hassaine
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Luigino Grasso
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Alexandra Graf-Meyer
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Horst Vogel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland.
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
133
|
Postic G, Ghouzam Y, Guiraud V, Gelly JC. Membrane positioning for high- and low-resolution protein structures through a binary classification approach. Protein Eng Des Sel 2015; 29:87-91. [PMID: 26685702 DOI: 10.1093/protein/gzv063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/08/2015] [Indexed: 11/13/2022] Open
Abstract
The critical importance of algorithms for orienting proteins in the lipid bilayer stems from the extreme difficulty in obtaining experimental data about the membrane boundaries. Here, we present a computational method for positioning protein structures in the membrane, based on the sole alpha carbon coordinates and, therefore, compatible with both high and low structural resolutions. Our algorithm follows a new and simple approach, by treating the membrane assignment problem as a binary classification. Compared with the state-of-the-art algorithms, our method achieves similar accuracy, while being faster. Finally, our open-source software is also capable of processing coarse-grained models of protein structures.
Collapse
Affiliation(s)
- Guillaume Postic
- Inserm U1134, Paris, France Univ. Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France Institut National de la Transfusion Sanguine, Paris, France Laboratory of Excellence GR-Ex, Paris, France
| | - Yassine Ghouzam
- Inserm U1134, Paris, France Univ. Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France Institut National de la Transfusion Sanguine, Paris, France Laboratory of Excellence GR-Ex, Paris, France
| | - Vincent Guiraud
- Inserm U1134, Paris, France Univ. Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France Institut National de la Transfusion Sanguine, Paris, France Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Christophe Gelly
- Inserm U1134, Paris, France Univ. Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France Institut National de la Transfusion Sanguine, Paris, France Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
134
|
Ma C, Hao Z, Huysmans G, Lesiuk A, Bullough P, Wang Y, Bartlam M, Phillips SE, Young JD, Goldman A, Baldwin SA, Postis VLG. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters. PLoS One 2015; 10:e0143010. [PMID: 26606682 PMCID: PMC4659628 DOI: 10.1371/journal.pone.0143010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a correctly folded, functional state and can be purified in amounts suitable for structural investigations.
Collapse
Affiliation(s)
- Cheng Ma
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Zhenyu Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Gerard Huysmans
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amelia Lesiuk
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Per Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Simon E. Phillips
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - James D. Young
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- College of Life Sciences, Nankai University, Tianjin, China
- Division of Biochemistry, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Vincent L. G. Postis
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
- * E-mail:
| |
Collapse
|
135
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
136
|
Heinze S, Putnam DK, Fischer AW, Kohlmann T, Weiner BE, Meiler J. CASP10-BCL::Fold efficiently samples topologies of large proteins. Proteins 2015; 83:547-63. [PMID: 25581562 DOI: 10.1002/prot.24733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022]
Abstract
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein.
Collapse
Affiliation(s)
- Sten Heinze
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37240
| | | | | | | | | | | |
Collapse
|
137
|
Fischer AW, Alexander NS, Woetzel N, Karakas M, Weiner BE, Meiler J. BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints. Proteins 2015; 83:1947-62. [PMID: 25820805 PMCID: PMC5064833 DOI: 10.1002/prot.24801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 11/05/2022]
Abstract
For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data.
Collapse
Affiliation(s)
- Axel W Fischer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Nathan S Alexander
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Nils Woetzel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Mert Karakas
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Brian E Weiner
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
138
|
Bugge K, Steinocher H, Brooks AJ, Lindorff-Larsen K, Kragelund BB. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy. Anal Chem 2015; 87:9126-31. [PMID: 26309151 DOI: 10.1021/acs.analchem.5b02365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the biological and pharmaceutical significance of membrane proteins, their tertiary structures constitute less than 3% of known structures. One of the major obstacles for initiating structural studies of membrane proteins by NMR spectroscopy is the generation of high amounts of isotope-labeled protein. In this work, we have exploited the hydrophobic nature of membrane proteins to develop a simple and efficient production scheme for isotope-labeled single-pass transmembrane domains (TMDs) with or without intrinsically disordered regions. We have evaluated the applicability and limitations of the strategy using seven membrane protein variants that differ in their overall hydrophobicity and length and show a recovery for suitable variants of >70%. The developed production scheme is cost-efficient and easy to implement and has the potential to facilitate an increase in the number of structures of single-pass TMDs, which are difficult to solve by other means.
Collapse
Affiliation(s)
- Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Helena Steinocher
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland 4072, Australia.,The University of Queensland , Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
139
|
Perea M, Lugtenburg I, Mayol E, Cordomí A, Deupí X, Pardo L, Olivella M. TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins. BMC Bioinformatics 2015; 16:266. [PMID: 26289158 PMCID: PMC4546024 DOI: 10.1186/s12859-015-0699-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022] Open
Abstract
Background Membrane proteins represent over 25 % of human protein genes and account for more than 60 % of drug targets due to their accessibility from the extracellular environment. The increasing number of available crystal structures of these proteins in the Protein Data Bank permits an initial estimation of their structural properties. Description We have developed two web servers—TMalphaDB for α-helix bundles and TMbetaDB for β-barrels—to analyse the growing repertoire of available crystal structures of membrane proteins. TMalphaDB and TMbetaDB permit to search for these specific sequence motifs in a non-redundant structure database of transmembrane segments and quantify structural parameters such as ϕ and ψ backbone dihedral angles, χ1 side chain torsion angle, unit bend and unit twist. Conclusions The structural information offered by TMalphaDB and TMbetaDB permits to quantify structural distortions induced by specific sequence motifs, and to elucidate their role in the 3D structure. This specific structural information has direct implications in homology modeling of the growing sequences of membrane proteins lacking experimental structure. TMalphaDB and TMbetaDB are freely available at http://lmc.uab.cat/TMalphaDB and http://lmc.uab.cat/TMbetaDB.
Collapse
Affiliation(s)
- Marc Perea
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ivar Lugtenburg
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduardo Mayol
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Deupí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Present address: Condensed Matter Theory Group and Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzeland
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Mireia Olivella
- Department de Biologia de Sistemes, Universitat de Vic, Vic, Barcelona, Spain.
| |
Collapse
|
140
|
Farrokhi V, Bajrami B, Nemati R, McShane AJ, Rueckert F, Wells B, Yao X. Development of Structural Marker Peptides for Cystic Fibrosis Transmembrane Conductance Regulator in Cell Plasma Membrane by Reversed-Footprinting Mass Spectrometry. Anal Chem 2015; 87:8603-7. [DOI: 10.1021/acs.analchem.5b01962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | - Franz Rueckert
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Barrett Wells
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | | |
Collapse
|
141
|
Putnam DK, Weiner BE, Woetzel N, Lowe EW, Meiler J. BCL::SAXS: GPU accelerated Debye method for computation of small angle X-ray scattering profiles. Proteins 2015; 83:1500-12. [PMID: 26018949 PMCID: PMC4797635 DOI: 10.1002/prot.24838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022]
Abstract
Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS--an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of hen egg white lysozyme. Using this protein we show how to generate SAXS profiles representing: (1) complete models, (2) models with approximated side chain coordinates, and (3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAχS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native.
Collapse
Affiliation(s)
- Daniel K. Putnam
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Brian E. Weiner
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Nils Woetzel
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward W. Lowe
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
142
|
Membrane protein structural biology using X-ray free electron lasers. Curr Opin Struct Biol 2015; 33:115-25. [DOI: 10.1016/j.sbi.2015.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 11/20/2022]
|
143
|
Song Y, Li J, Shin HD, Du G, Liu L, Chen J. One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci Rep 2015; 5:12614. [PMID: 26217895 PMCID: PMC4517468 DOI: 10.1038/srep12614] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, temperature 35 °C, pH 7.5, and reaction time 20 h. Under the above conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the α-ketoisocaproate titer. When 13.1 g/L leucine was added at 2-h intervals (from 0 to 22 h, 12 addition times), the α-ketoisocaproate titer reached 69.1 g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of α-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineeirng, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
144
|
Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli. Protein Expr Purif 2015. [PMID: 26213264 DOI: 10.1016/j.pep.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.
Collapse
|
145
|
Schönherr R, Klinge M, Rudolph JM, Fita K, Rehders D, Lübber F, Schneegans S, Majoul IV, Duszenko M, Betzel C, Brandariz-Nuñez A, Martinez-Costas J, Duden R, Redecke L. Real-time investigation of dynamic protein crystallization in living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041712. [PMID: 26798811 PMCID: PMC4711630 DOI: 10.1063/1.4921591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 05/21/2023]
Abstract
X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitro.
Collapse
Affiliation(s)
- R Schönherr
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Klinge
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - K Fita
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - D Rehders
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | | | - I V Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen , Hoppe-Seyler-Straβe 4, 72076 Tübingen, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg , c/o DESY, Notkestr. 85, 22603 Hamburg, Germany
| | - A Brandariz-Nuñez
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - J Martinez-Costas
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - R Duden
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - L Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
146
|
Wu W, Nogly P, Rheinberger J, Kick LM, Gati C, Nelson G, Deupi X, Standfuss J, Schertler G, Panneels V. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser. Acta Crystallogr F Struct Biol Commun 2015; 71:856-60. [PMID: 26144230 PMCID: PMC4498706 DOI: 10.1107/s2053230x15009966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/22/2015] [Indexed: 11/11/2022] Open
Abstract
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.
Collapse
Affiliation(s)
- Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Jan Rheinberger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Leonhard M. Kick
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Cornelius Gati
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Garrett Nelson
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Xavier Deupi
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Jörg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Valérie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| |
Collapse
|
147
|
Xiao S, Chen YC, Betenbaugh MJ, Martin SE, Shiloach J. MiRNA mimic screen for improved expression of functional neurotensin receptor from HEK293 cells. Biotechnol Bioeng 2015; 112:1632-43. [PMID: 25676429 DOI: 10.1002/bit.25567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 02/05/2015] [Indexed: 01/17/2023]
Abstract
Obtaining adequate quantities of functional mammalian membrane proteins has been a bottleneck in their structural and functional studies because the expression of these proteins from mammalian cells is relatively low. To explore the possibility of enhancing expression of these proteins using miRNA, a stable T-REx-293 cell line expressing the neurotensin receptor type 1 (NTSR1), a hard-to-express G protein-coupled receptor (GPCR), was constructed. The cell line was then subjected to human miRNA mimic library screening. In parallel, an HEK293 cell line expressing luciferase was also screened with the same human miRNA mimic library. Five microRNA mimics: hsa-miR-22-5p, hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-429, and hsa-miR-2110were identified from both screens. They led to 48% increase in the expression of functional NTSR1 and to 239% increase of luciferase expression. These miRNAs were also effective in enhancing the expression of secretedglypican-3 hFc-fusion protein from HEK293 cells.The results indicate that these molecules may have a wide role in enhancing the production of proteins with biomedical interest.
Collapse
Affiliation(s)
- Su Xiao
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.,Departments of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yu-Chi Chen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of health, Rockville, Maryland, 20850
| | - Michael J Betenbaugh
- Departments of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Scott E Martin
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of health, Rockville, Maryland, 20850.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|
148
|
Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 2015; 5:11333. [PMID: 26061673 PMCID: PMC4462149 DOI: 10.1038/srep11333] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are one of the most important drug targets, and anti-GPCR monoclonal antibody (mAb) is an essential tool for functional analysis of GPCRs. However, it is very difficult to develop GPCR-specific mAbs due to difficulties in production of recombinant GPCR antigens, and lack of efficient mAb screening method. Here we describe a novel approach for the production of mAbs against GPCR using two original methods, bilayer-dialysis method and biotinylated liposome-based interaction assay (BiLIA), both of which are developed using wheat cell-free protein synthesis system and liposome technology. Using bilayer-dialysis method, various GPCRs were successfully synthesized with quality and quantity sufficient for immunization. For selection of specific mAb, we designed BiLIA that detects interaction between antibody and membrane protein on liposome. BiLIA prevented denaturation of GPCR, and then preferably selected conformation-sensitive antibodies. Using this approach, we successfully obtained mAbs against DRD1, GHSR, PTGER1 and T1R1. With respect to DRD1 mAb, 36 mouse mAbs and 6 rabbit mAbs were obtained which specifically recognized native DRD1 with high affinity. Among them, half of the mAbs were conformation-sensitive mAb, and two mAbs recognized extracellular loop 2 of DRD1. These results indicated that this approach is useful for GPCR mAb production.
Collapse
|
149
|
Weyand S, Tate CG. Advances in membrane protein crystallography: in situ and in meso data collection. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1226-7. [PMID: 26057663 PMCID: PMC4606892 DOI: 10.1107/s1399004715008317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane protein structural biology has made tremendous advances over the last decade but there are still many challenges associated with crystallization, data collection and structure determination. Two independent groups, Axford et al. [(2015), Acta Cryst. D71 , 1228–1237] and Huang et al. [(2015), Acta Cryst. D71 , 1238–1256], have published methods that make a major contribution to addressing these challenges.
Collapse
Affiliation(s)
- Simone Weyand
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
150
|
Planesas JM, Pérez-Nueno VI, Borrell JI, Teixidó J. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J Mol Graph Model 2015; 60:1-14. [PMID: 26080355 DOI: 10.1016/j.jmgm.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/01/2022]
Abstract
Several examples of allosteric modulators of GPCRs have been reported recently in the literature, but understanding their molecular mechanism presents a new challenge for medicinal chemistry. For the specific case of the cellular receptor CXCR4, it is known that pepducins (lipidated fragments of intracellular GPCR loops) such as ATI-2341 modulate CXCR4 activity agonistically via an allosteric mechanism. Moreover, there are also examples of small organic molecules such as AMD11070 and GSK812397 which may also act as allosteric antagonists. However, incomplete knowledge of the ligand-binding sites has hampered a detailed molecular understanding of how these inhibitors work. Here, we attempt to answer this question by analysing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose two different allosteric binding sites, one located in the intracellular loops 1, 2 and 3 (ICL1, ICL2 and ICL3) which binds the pepducin agonist ATI-2341, and the other at a subsite of the main extracellular orthosteric binding pocket between extracellular loops 1 and 2 and the N-terminus, which binds the antagonists AMD11070 and GSK812397. Allosteric interactions between the CXCR4 and ATI-2341 were predicted by combining different modeling approaches. First, a rotational blind docking search was applied and the best poses were subsequently refined using flexible docking methods and molecular dynamic simulations. For the AMD11070 and GSK812397 antagonists, the entire CXCR4 protein surface was explored by blind docking in order to define the binding region. A second docking analysis by subsites was then performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 allosteric modulators.
Collapse
Affiliation(s)
- Jesús M Planesas
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Violeta I Pérez-Nueno
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain; Harmonic Pharma, Espace Transfert, 615 rue du Jardin Botanique, 54600 Villers lès Nancy, France.
| | - José I Borrell
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Jordi Teixidó
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain.
| |
Collapse
|