101
|
Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2020; 269:120467. [PMID: 33189359 DOI: 10.1016/j.biomaterials.2020.120467] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have unique structural, compositional, and morphological characteristics as well as predominant physiochemical stability and biocompatibility properties. They play a crucial role in pathophysiological regulation, and also have broad prospects for clinical application in the diagnosis, prognosis, and therapy of disease, and tissue regeneration and repair. Herein, the biosynthesis and physiological functions and current methods for separation and identification of EVs are summarized. Specifically, engineered EVs may be used to enhance targeted therapy in cancer and repair damaged tissues, and they may be developed as an individualized imaging diagnostic reagent, among other potential applications. We will focus on reviewing recent studies on engineered EVs in which alterations enhanced their therapeutic capability or diagnostic imaging potential via physical, chemical, and biological modification approaches. This review will clarify the superior biological functions and powerful therapeutic potential of EVs, particularly with regard to new designs based on EVs and their utilization in a new generation of nanomedicine diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Dickson Kofi Wiredu Ocansey
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| |
Collapse
|
102
|
Pai SI, Faquin WC, Sadow PM, Pittet MJ, Weissleder R. New technology on the horizon: Fast analytical screening technique FNA (FAST-FNA) enables rapid, multiplex biomarker analysis in head and neck cancers. Cancer Cytopathol 2020; 128:782-791. [PMID: 32841527 PMCID: PMC8276888 DOI: 10.1002/cncy.22305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 01/26/2023]
Abstract
PD-L1 profiling was recently approved by the US Food and Drug Administration as a companion diagnostic for anti-PD1 treatment in patients with head and neck cancer, ushering in a new era for precision medicine. However, the routine development and implementation of such testing is still limited by current clinical workflows and the lack of better and more comprehensive alternatives. In this review, the authors discuss the real-world challenges of clinically based biomarker testing and highlight the advantages of developing fine-needle aspiration (FNA)-based biomarker testing that would enable frequent and serial tumor sampling. A conceptual and technological innovation is introduced, fast analytical screening technique (FAST)-FNA (FAST chemistry-enabled FNA), which is being developed to inform immunotherapy treatment options in patients with head and neck cancer and to assist with the development of the next generation of predictive biomarkers.
Collapse
Affiliation(s)
- Sara I. Pai
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - William C. Faquin
- Division of Head and Neck Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Sadow
- Division of Head and Neck Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
103
|
SYLARAS: A Platform for the Statistical Analysis and Visual Display of Systemic Immunoprofiling Data and Its Application to Glioblastoma. Cell Syst 2020; 11:272-285.e9. [PMID: 32898474 PMCID: PMC7565356 DOI: 10.1016/j.cels.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/08/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022]
Abstract
Accurately profiling systemic immune responses to cancer initiation and progression is necessary for understanding tumor surveillance and, ultimately, improving therapy. Here, we describe the SYLARAS software tool (systemic lymphoid architecture response assessment) and a dataset collected with SYLARAS that describes the frequencies of immune cells in primary and secondary lymphoid organs and in the tumor microenvironment of mice engrafted with a standard syngeneic glioblastoma (GBM) model. The data resource involves profiles of 5 lymphoid tissues in 48 mice and shows that GBM causes wide-spread changes in the local and systemic immune architecture. We use SYLARAS to identify a subset of CD45R/B220+ CD8+ T cells that is depleted from circulation but accumulates in the tumor mass and confirm this finding using multiplexed immunofluorescence microscopy. SYLARAS is freely available for download at (https://github.com/gjbaker/sylaras). A record of this paper’s transparent peer review process is included in the Supplemental Information. Localized tumors such as glioblastoma alter the composition of the immune system in peripheral organs including the spleen, lymph nodes, bone marrow, and thymus. SYLARAS enables efficient, systematic analysis of immune system architecture across many organs and samples to reveal subtle, recurrent changes on a background of between-sample biological variability.
Collapse
|
104
|
Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter J, McIlwain DR, Kinoshita S, Samusik N, Goltsev Y, Nolan GP. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front. Cell 2020; 182:1341-1359.e19. [PMID: 32763154 PMCID: PMC7479520 DOI: 10.1016/j.cell.2020.07.005] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/22/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)-a collection of components characteristic of the CRC iTME. Enrichment of PD-1+CD4+ T cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of T cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains.
Collapse
Affiliation(s)
- Christian M Schürch
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Salil S Bhate
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Graham L Barlow
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darci J Phillips
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luca Noti
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Pauline Chu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Black
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David R McIlwain
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shigemi Kinoshita
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikolay Samusik
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yury Goltsev
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
105
|
Brandt S, Ballhause TM, Bernhardt A, Becker A, Salaru D, Le-Deffge HM, Fehr A, Fu Y, Philipsen L, Djudjaj S, Müller AJ, Kramann R, Ibrahim M, Geffers R, Siebel C, Isermann B, Heidel FH, Lindquist JA, Mertens PR. Fibrosis and Immune Cell Infiltration Are Separate Events Regulated by Cell-Specific Receptor Notch3 Expression. J Am Soc Nephrol 2020; 31:2589-2608. [PMID: 32859670 DOI: 10.1681/asn.2019121289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kidney injuries that result in chronic inflammation initiate crosstalk between stressed resident cells and infiltrating immune cells. In animal models, whole-body receptor Notch3 deficiency protects from leukocyte infiltration and organ fibrosis. However, the relative contribution of Notch3 expression in tissue versus infiltrating immune cells is unknown. METHODS Chimeric mice deficient for Notch3 in hematopoietic cells and/or resident tissue cells were generated, and kidney fibrosis and inflammation after unilateral ureteral obstruction (UUO) were analyzed. Adoptive transfer of labeled bone marrow-derived cells validated the results in a murine Leishmania ear infection model. In vitro adhesion assays, integrin activation, and extracellular matrix production were analyzed. RESULTS Fibrosis follows UUO, but inflammatory cell infiltration mostly depends upon Notch3 expression in hematopoietic cells, which coincides with an enhanced proinflammatory milieu (e.g., CCL2 and CCL5 upregulation). Notch3 expression on CD45+ leukocytes plays a prominent role in efficient cell transmigration. Functionally, leukocyte adhesion and integrin activation are abrogated in the absence of receptor Notch3. Chimeric animal models also reveal that tubulointerstitial fibrosis develops, even in the absence of prominent leukocyte infiltrates after ureteral obstruction. Deleting Notch3 receptors on resident cells blunts kidney fibrosis, ablates NF-κB signaling, and lessens matrix deposition. CONCLUSIONS Cell-specific receptor Notch3 signaling independently orchestrates leukocyte infiltration and organ fibrosis. Interference with Notch3 signaling may present a novel therapeutic approach in inflammatory as well as fibrotic diseases.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Tobias M Ballhause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Annika Becker
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Delia Salaru
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hien Minh Le-Deffge
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Fehr
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Yan Fu
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonja Djudjaj
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas J Müller
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mahmoud Ibrahim
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Chris Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Berend Isermann
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Internal Medicine II, Hematology and Oncology, Friedrich Schiller University Medical Center, Jena, Germany.,Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
106
|
Kromp F, Bozsaky E, Rifatbegovic F, Fischer L, Ambros M, Berneder M, Weiss T, Lazic D, Dörr W, Hanbury A, Beiske K, Ambros PF, Ambros IM, Taschner-Mandl S. An annotated fluorescence image dataset for training nuclear segmentation methods. Sci Data 2020; 7:262. [PMID: 32782410 PMCID: PMC7419523 DOI: 10.1038/s41597-020-00608-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/14/2020] [Indexed: 11/15/2022] Open
Abstract
Fully-automated nuclear image segmentation is the prerequisite to ensure statistically significant, quantitative analyses of tissue preparations,applied in digital pathology or quantitative microscopy. The design of segmentation methods that work independently of the tissue type or preparation is complex, due to variations in nuclear morphology, staining intensity, cell density and nuclei aggregations. Machine learning-based segmentation methods can overcome these challenges, however high quality expert-annotated images are required for training. Currently, the limited number of annotated fluorescence image datasets publicly available do not cover a broad range of tissues and preparations. We present a comprehensive, annotated dataset including tightly aggregated nuclei of multiple tissues for the training of machine learning-based nuclear segmentation algorithms. The proposed dataset covers sample preparation methods frequently used in quantitative immunofluorescence microscopy. We demonstrate the heterogeneity of the dataset with respect to multiple parameters such as magnification, modality, signal-to-noise ratio and diagnosis. Based on a suggested split into training and test sets and additional single-nuclei expert annotations, machine learning-based image segmentation methods can be trained and evaluated.
Collapse
Affiliation(s)
- Florian Kromp
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria.
| | - Eva Bozsaky
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Fikret Rifatbegovic
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Fischer
- Software Competence Center Hagenberg GmbH (SCCH), Softwarepark 21, 4232, Hagenberg, Austria
| | - Magdalena Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Maria Berneder
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
| | - Tamara Weiss
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Daria Lazic
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Wolfgang Dörr
- ATRAB-Applied and Translational Radiobiology, Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Allan Hanbury
- Institute of Information Systems Engineering, TU Wien, Favoritenstrasse 9-11/194, 1040, Vienna, Austria
- Complexity Science Hub, Josefstädter Straße 39, 1080, Vienna, Austria
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Ullernchausséen 64, N-0379, Oslo, Norway
| | - Peter F Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Inge M Ambros
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- Tumor biology group, Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
- Labdia Labordiagnostik GmbH, Zimmermannplatz 8, 1090, Vienna, Austria.
| |
Collapse
|
107
|
Pham T, Tyagi A, Wang YS, Guo J. Single-cell proteomic analysis. WIREs Mech Dis 2020; 13:e1503. [PMID: 32748522 DOI: 10.1002/wsbm.1503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
The ability to comprehensively profile proteins in every individual cell of complex biological systems is crucial to advance our understanding of normal physiology and disease pathogenesis. Conventional bulk cell experiments mask the cell heterogeneity in the population, while the single-cell imaging methods suffer from the limited multiplexing capacities. Recent advances in microchip-, mass spectrometry-, and reiterative staining-based technologies have enabled comprehensive protein profiling in single cells. These approaches will bring new insights into a variety of biological and biomedical fields, such as signaling network regulation, cell heterogeneity, tissue architecture, disease diagnosis, and treatment monitoring. In this article, we will review the recent advances in the development of single-cell proteomic technologies, describe their advantages, discuss the current limitations and challenges, and propose potential solutions. We will also highlight the wide applications of these technologies in biology and medicine. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Ankush Tyagi
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Sheng Wang
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
108
|
Uttam S, Stern AM, Sevinsky CJ, Furman S, Pullara F, Spagnolo D, Nguyen L, Gough A, Ginty F, Lansing Taylor D, Chakra Chennubhotla S. Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks. Nat Commun 2020; 11:3515. [PMID: 32665557 PMCID: PMC7360741 DOI: 10.1038/s41467-020-17083-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
An unmet clinical need in solid tumor cancers is the ability to harness the intrinsic spatial information in primary tumors that can be exploited to optimize prognostics, diagnostics and therapeutic strategies for precision medicine. Here, we develop a transformational spatial analytics computational and systems biology platform (SpAn) that predicts clinical outcomes and captures emergent spatial biology that can potentially inform therapeutic strategies. We apply SpAn to primary tumor tissue samples from a cohort of 432 chemo-naïve colorectal cancer (CRC) patients iteratively labeled with a highly multiplexed (hyperplexed) panel of 55 fluorescently tagged antibodies. We show that SpAn predicts the 5-year risk of CRC recurrence with a mean AUROC of 88.5% (SE of 0.1%), significantly better than current state-of-the-art methods. Additionally, SpAn infers the emergent network biology of tumor microenvironment spatial domains revealing a spatially-mediated role of CRC consensus molecular subtype features with the potential to inform precision medicine.
Collapse
Affiliation(s)
- Shikhar Uttam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Andrew M Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Samantha Furman
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Filippo Pullara
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel Spagnolo
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Luong Nguyen
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Albert Gough
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fiona Ginty
- Biology and Applied Physics, GE Global Research Center, Niskayuna, NY, 12309, USA
| | - D Lansing Taylor
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
109
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
110
|
Yang L, George J, Wang J. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies. Proteomics 2020; 20:e1900226. [PMID: 31729152 PMCID: PMC7225074 DOI: 10.1002/pmic.201900226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single-cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well-established methods for single-cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining-based techniques for single-cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single-cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single-cell proteomic technologies in cell biology and medical research are discussed.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Justin George
- Department of Chemistry, State University of New York, University at Albany, Albany, NY 12222
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
111
|
Schubert W. Life-Saving Microscopy Method for Amyotrophic Lateral Sclerosis Patients. Cytometry A 2020; 97:866-868. [PMID: 32510815 DOI: 10.1002/cyto.a.24039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 11/06/2022]
Abstract
The submission describes in the form of a communication recent experiences with a promising new therapeutic approach for amyotrophic lateral sclerosis (ALS). This approach is based on imaging cycler microscopy that led to the discovery of ALS specific cells in the blood, which invade the pyramidal system (lateral corticospinal tract) of ALS patients, where they compress motor axons. The depletion of these cells leads to remission of clinical symptoms and demonstrates the important role of these cells in ALS. The therapy will be offered to ALS patients in licensed and certified centers (in progress). © 2020 International Society for Advancement of Cytometry.
Collapse
|
112
|
Yamashita N, Morita M, Yokota H, Mimori-Kiyosue Y. Digital Spindle: A New Way to Explore Mitotic Functions by Whole Cell Data Collection and a Computational Approach. Cells 2020; 9:E1255. [PMID: 32438637 PMCID: PMC7291015 DOI: 10.3390/cells9051255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
From cells to organisms, every living system is three-dimensional (3D), but the performance of fluorescence microscopy has been largely limited when attempting to obtain an overview of systems' dynamic processes in three dimensions. Recently, advanced light-sheet illumination technologies, allowing drastic improvement in spatial discrimination, volumetric imaging times, and phototoxicity/photobleaching, have been making live imaging to collect precise and reliable 3D information increasingly feasible. In particular, lattice light-sheet microscopy (LLSM), using an ultrathin light-sheet, enables whole-cell 3D live imaging of cellular processes, including mitosis, at unprecedented spatiotemporal resolution for extended periods of time. This technology produces immense and complex data, including a significant amount of information, raising new challenges for big image data analysis and new possibilities for data utilization. Once the data are digitally archived in a computer, the data can be reused for various purposes by anyone at any time. Such an information science approach has the potential to revolutionize the use of bioimage data, and provides an alternative method for cell biology research in a data-driven manner. In this article, we introduce examples of analyzing digital mitotic spindles and discuss future perspectives in cell biology.
Collapse
Affiliation(s)
- Norio Yamashita
- Image Processing Research Team, RIKEN Center for Advanced Photonics, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan; (N.Y.); (M.M.); (H.Y.)
| | - Masahiko Morita
- Image Processing Research Team, RIKEN Center for Advanced Photonics, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan; (N.Y.); (M.M.); (H.Y.)
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan; (N.Y.); (M.M.); (H.Y.)
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
113
|
Lun XK, Bodenmiller B. Profiling Cell Signaling Networks at Single-cell Resolution. Mol Cell Proteomics 2020; 19:744-756. [PMID: 32132232 PMCID: PMC7196580 DOI: 10.1074/mcp.r119.001790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
114
|
Ko J, Oh J, Ahmed MS, Carlson JCT, Weissleder R. Ultra-fast cycling for multiplexed cellular fluorescence imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:6906-6913. [PMID: 34366494 PMCID: PMC8340598 DOI: 10.1002/ange.201915153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/11/2022]
Abstract
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Here we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz) / trans-cyclooctene (TCO) mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 < 1 sec) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Maaz S. Ahmed
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Jonathan C. T. Carlson
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
115
|
Ko J, Oh J, Ahmed MS, Carlson JCT, Weissleder R. Ultra-fast Cycling for Multiplexed Cellular Fluorescence Imaging. Angew Chem Int Ed Engl 2020; 59:6839-6846. [PMID: 32004403 DOI: 10.1002/anie.201915153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans-cyclooctene (TCO)-mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Maaz S Ahmed
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
116
|
Yaghoobi V, Martinez-Morilla S, Liu Y, Charette L, Rimm DL, Harigopal M. Advances in quantitative immunohistochemistry and their contribution to breast cancer. Expert Rev Mol Diagn 2020; 20:509-522. [PMID: 32178550 DOI: 10.1080/14737159.2020.1743178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Automated image analysis provides an objective, quantitative, and reproducible method of measurement of biomarkers. Image quantification is particularly well suited for the analysis of tissue microarrays which has played a major pivotal role in the rapid assessment of molecular biomarkers. Data acquired from grinding up bulk tissue samples miss spatial information regarding cellular localization; therefore, methods that allow for spatial cell phenotyping at high resolution have proven to be valuable in many biomarker discovery assays. Here, we focus our attention on breast cancer as an example of a tumor type that has benefited from quantitative biomarker studies using tissue microarray format.Areas covered: The history of immunofluorescence and immunohistochemistry and the current status of these techniques, including multiplexing technologies (spectral and non-spectral) and image analysis software will be addressed. Finally, we will turn our attention to studies that have provided proof-of-principle evidence that have been impacted from the use of these techniques.Expert opinion: Assessment of prognostic and predictive biomarkers on tissue sections and TMA using Quantitative immunohistochemistry is an important advancement in the investigation of biologic markers. The challenges in standardization of quantitative technologies for accurate assessment are required for adoption into routine clinical practice.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yuting Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lori Charette
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
117
|
Knop L, Deiser K, Bank U, Witte A, Mohr J, Philipsen L, Fehling HJ, Müller AJ, Kalinke U, Schüler T. IL-7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival. Eur J Immunol 2020; 50:846-857. [PMID: 32043573 DOI: 10.1002/eji.201948368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023]
Abstract
The survival of peripheral T cells is dependent on their access to peripheral LNs (pLNs) and stimulation by IL-7. In pLNs fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) produce IL-7 suggesting their contribution to the IL-7-dependent survival of T cells. However, IL-7 production is detectable in multiple organs and is not restricted to pLNs. This raises the question whether pLN-derived IL-7 is required for the maintenance of peripheral T cell homeostasis. Here, we show that numbers of naive T cells (TN ) remain unaffected in pLNs and spleen of mice lacking Il7 gene activity in pLN FRCs, LECs, or both. In contrast, frequencies of central memory T cells (TCM ) are reduced in FRC-specific IL-7 KO mice. Thus, steady state IL-7 production by pLN FRCs is critical for the maintenance of TCM , but not TN , indicating that both T cell subsets colonize different ecological niches in vivo.
Collapse
Affiliation(s)
- Laura Knop
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Katrin Deiser
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans J Fehling
- Institute of Immunology, University Clinics Ulm, Ulm, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Intravital Microscopy in Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Medical School Hannover, Institute for Experimental Infection Research, Hannover, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
118
|
RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging. Commun Biol 2020; 3:111. [PMID: 32152447 PMCID: PMC7062831 DOI: 10.1038/s42003-020-0828-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/12/2020] [Indexed: 12/29/2022] Open
Abstract
Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information between samples is complicated by variations in staining intensity and background fluorescence that obscure biological variations. Failure to remove these unwanted artifacts will complicate downstream analysis and diminish the value of multiplexed imaging for clinical applications. Here, to compensate for unwanted variations, we automatically identify negative control cells for each marker within the same tissue and use their expression levels to infer background signal level. The intensity profile is normalized by the inferred level of the negative control cells to remove between-sample variation. Using a tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the proposed approach can remove unwanted variations effectively and shows robust performance. Chang et al. develop an analytical method called RESTORE to control for variations due to technical artifacts in multiplexed imaging. They test their method on a CycIF stained tissue microarray dataset and biopsies processed at different times. Their method can improve the applicability of imaging techniques in diagnostics and inference using unbiased clustering methods.
Collapse
|
119
|
Vetma V, Guttà C, Peters N, Praetorius C, Hutt M, Seifert O, Meier F, Kontermann R, Kulms D, Rehm M. Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death Differ 2020; 27:2417-2432. [PMID: 32081986 PMCID: PMC7370234 DOI: 10.1038/s41418-020-0512-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Second generation TRAIL-based therapeutics, combined with sensitising co-treatments, have recently entered clinical trials. However, reliable response predictors for optimal patient selection are not yet available. Here, we demonstrate that a novel and translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination with Birinapant, a clinically tested IAP antagonist, efficiently induces cell death in various melanoma models, and that responsiveness can be predicted by combining pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 melanoma cell lines, responsiveness to IZI1551/Birinapant was heterogeneous, with complete resistance and pronounced synergies observed. Expression patterns of TRAIL pathway regulators allowed us to develop a combinatorial marker that predicts potent cell killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted not only for cell lines, but also for 3D tumour cell spheroids and for cells directly isolated from patient melanoma metastases (80–100% prediction accuracies). Mathematical parameter reduction identified 11 proteins crucial to ensure prediction accuracy, with x-linked inhibitor of apoptosis protein (XIAP) and procaspase-3 scoring highest, and Bcl-2 family members strongly represented. Applied to expression data of a cohort of n = 365 metastatic melanoma patients in a proof of concept in silico trial, the predictor suggested that IZI1551/Birinapant responsiveness could be expected for up to 30% of patient tumours. Overall, response frequencies in melanoma models were very encouraging, and the capability to predict melanoma sensitivity to combinations of latest generation TRAIL-based therapeutics and IAP antagonists can address the need for patient selection strategies in clinical trials based on these novel drugs.
Collapse
Affiliation(s)
- Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Christian Praetorius
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Dagmar Kulms
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany. .,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Centre for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
120
|
Abstract
The existence of cellular heterogeneity and its central relevance to biological phenomena provides a strong rationale for a need for analytical methods that enable analysis at the single-cell level. Analysis of the genome and transcriptome is possible at the single-cell level, but the comprehensive interrogation of the proteome with this level of resolution remains challenging. Single-cell protein analysis tools are advancing rapidly, however, and providing insights into collections of proteins with great relevance to cell and disease biology. Here, we review single-cell protein analysis technologies and assess their advantages and limitations. The emerging technologies presented have the potential to reveal new insights into tumour heterogeneity and therapeutic resistance, elucidate mechanisms of immune response and immunotherapy, and accelerate drug discovery.
Collapse
|
121
|
Phelps DS, Chinchilli VM, Weisz J, Shearer D, Zhang X, Floros J. Using toponomics to characterize phenotypic diversity in alveolar macrophages from male mice treated with exogenous SP-A1. Biomark Res 2020; 8:5. [PMID: 32082572 PMCID: PMC7020580 DOI: 10.1186/s40364-019-0181-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background We used the Toponome Imaging System (TIS) to identify “patterns of marker expression”, referred to here as combinatorial molecular phenotypes (CMPs) in alveolar macrophages (AM) in response to the innate immune molecule, SP-A1. Methods We compared 114 AM from male SP-A deficient mice. One group (n = 3) was treated with exogenous human surfactant protein A1 (hSP-A1) and the other with vehicle (n = 3). AM obtained by bronchoalveolar lavage were plated onto slides and analyzed using TIS to study the AM toponome, the spatial network of proteins within intact cells. With TIS, each slide is sequentially immunostained with multiple FITC-conjugated antibodies. Images are analyzed pixel-by-pixel identifying all of the proteins within each pixel, which are then designated as CMPs. CMPs represent organized protein clusters postulated to contribute to specific functions. Results 1) We compared identical CMPs in KO and SP-A1 cells and found them to differ significantly (p = 0.0007). Similarities between pairs of markers in the two populations also differed significantly (p < 0.0001). 2) Focusing on the 20 most abundant CMPs for each cell, we developed a method to generate CMP “signatures” that characterized various groups of cells. Phenotypes were defined as cells exhibiting similar signatures of CMPs. i) AM were extremely diverse and each group contained cells with multiple phenotypes. ii) Among the 114 AM analyzed, no two cells were identical. iii) However, CMP signatures could distinguish among cell subpopulations within and between groups. iv) Some cell populations were enriched with SP-A1 treatment, some were more common without SP-A1, and some seemed not to be influenced by the presence of SP-A1. v) We also found that AM were more diverse in mice treated with SP-A1 compared to those treated with vehicle. Conclusions AM diversity is far more extensive than originally thought. The increased diversity of SP-A1-treated mice points to the possibility that SP-A1 enhances or activates several pathways in the AM to better prepare it for its innate immune functions and other functions shown previously to be affected by SP-A treatment. Future studies may identify key protein(s) responsible for CMP integrity and consequently for a given function, and target it for therapeutic purposes.
Collapse
Affiliation(s)
- David S Phelps
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M Chinchilli
- 2Public Health Sciences; and Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA.,3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
122
|
Abstract
Multiplexed imaging platforms to simultaneously detect multiple epitopes in the same tissue section emerged in the last years as very powerful tools to study tumor immune contexture. These revolutionary technologies are providing a deep methodology for tumor evaluation in formalin-fixed and paraffin-embedded (FFPE) to improve the understanding of tumor microenvironment, new targets for treatment, prognostic and predictive biomarkers, and translational studies. Multiplexed imaging platforms allow for the identification of several antigens simultaneously from a single tissue section, core needle biopsies, and tissue microarrays. In recent years, multiplexed imaging has improved the abilities to characterize the different types of cell populations in malignant and non-malignant tissues, and their spatial distribution in relationship to clinical outcomes. Multiplexed technologies associated with digital image analysis software offer a high-quality throughput assay to study cancer specimens at multiple time points before, during and after treatment. The aim of this chapter is to provide a review of multiplexed imaging covering its fundamentals, advantages, disadvantages, and material and methods for staining applied to FFPE tumor tissues and focusing on the use of multiplex immunofluorescence with tyramine signal amplification staining for immune profiling and translational research.
Collapse
|
123
|
Abstract
The premise of this book is the importance of the tumor microenvironment (TME). Until recently, most research on and clinical attention to cancer biology, diagnosis, and prognosis were focused on the malignant (or premalignant) cellular compartment that could be readily appreciated using standard morphology-based imaging.
Collapse
|
124
|
Rashid R, Gaglia G, Chen YA, Lin JR, Du Z, Maliga Z, Schapiro D, Yapp C, Muhlich J, Sokolov A, Sorger P, Santagata S. Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer. Sci Data 2019; 6:323. [PMID: 31848351 PMCID: PMC6917801 DOI: 10.1038/s41597-019-0332-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
In this data descriptor, we document a dataset of multiplexed immunofluorescence images and derived single-cell measurements of immune lineage and other markers in formaldehyde-fixed and paraffin-embedded (FFPE) human tonsil and lung cancer tissue. We used tissue cyclic immunofluorescence (t-CyCIF) to generate fluorescence images which we artifact corrected using the BaSiC tool, stitched and registered using the ASHLAR algorithm, and segmented using ilastik software and MATLAB. We extracted single-cell features from these images using HistoCAT software. The resulting dataset can be visualized using image browsers and analyzed using high-dimensional, single-cell methods. This dataset is a valuable resource for biological discovery of the immune system in normal and diseased states as well as for the development of multiplexed image analysis and viewing tools.
Collapse
Affiliation(s)
- Rumana Rashid
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | - Giorgio Gaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Yu-An Chen
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Jia-Ren Lin
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Zoltan Maliga
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Denis Schapiro
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Clarence Yapp
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Jeremy Muhlich
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Artem Sokolov
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | - Peter Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States.
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States.
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, United States.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States.
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, United States.
| |
Collapse
|
125
|
Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger G, Scholich K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019. [DOI: 10.1016/j.cyto.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
126
|
Guo SM, Veneziano R, Gordonov S, Li L, Danielson E, Perez de Arce K, Park D, Kulesa AB, Wamhoff EC, Blainey PC, Boyden ES, Cottrell JR, Bathe M. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun 2019; 10:4377. [PMID: 31558769 PMCID: PMC6763432 DOI: 10.1038/s41467-019-12372-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Remi Veneziano
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Simon Gordonov
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Danielson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Karen Perez de Arce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anthony B Kulesa
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paul C Blainey
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Media Lab, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mark Bathe
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
127
|
Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat Protoc 2019; 14:2900-2930. [PMID: 31534232 DOI: 10.1038/s41596-019-0206-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
Multiplexed tissue imaging enables precise, spatially resolved enumeration and characterization of cell types and states in human resection specimens. A growing number of methods applicable to formalin-fixed, paraffin-embedded (FFPE) tissue sections have been described, the majority of which rely on antibodies for antigen detection and mapping. This protocol provides step-by-step procedures for confirming the selectivity and specificity of antibodies used in fluorescence-based tissue imaging and for the construction and validation of antibody panels. Although the protocol is implemented using tissue-based cyclic immunofluorescence (t-CyCIF) as an imaging platform, these antibody-testing methods are broadly applicable. We demonstrate assembly of a 16-antibody panel for enumerating and localizing T cells and B cells, macrophages, and cells expressing immune checkpoint regulators. The protocol is accessible to individuals with experience in microscopy and immunofluorescence; some experience in computation is required for data analysis. A typical 30-antibody dataset for 20 FFPE slides can be generated within 2 weeks.
Collapse
|
128
|
Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet 2019; 20:724-746. [PMID: 31515541 DOI: 10.1038/s41576-019-0166-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2019] [Indexed: 12/17/2022]
Abstract
The remarkable success of cancer therapies with immune checkpoint blockers is revolutionizing oncology and has sparked intensive basic and translational research into the mechanisms of cancer-immune cell interactions. In parallel, numerous novel cutting-edge technologies for comprehensive molecular and cellular characterization of cancer immunity have been developed, including single-cell sequencing, mass cytometry and multiplexed spatial cellular phenotyping. In order to process, analyse and visualize multidimensional data sets generated by these technologies, computational methods and software tools are required. Here, we review computational tools for interrogating cancer immunity, discuss advantages and limitations of the various methods and provide guidelines to assist in method selection.
Collapse
Affiliation(s)
- Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
129
|
Hériché JK, Alexander S, Ellenberg J. Integrating Imaging and Omics: Computational Methods and Challenges. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-080917-013328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence microscopy imaging has long been complementary to DNA sequencing- and mass spectrometry–based omics in biomedical research, but these approaches are now converging. On the one hand, omics methods are moving from in vitro methods that average across large cell populations to in situ molecular characterization tools with single-cell sensitivity. On the other hand, fluorescence microscopy imaging has moved from a morphological description of tissues and cells to quantitative molecular profiling with single-molecule resolution. Recent technological developments underpinned by computational methods have started to blur the lines between imaging and omics and have made their direct correlation and seamless integration an exciting possibility. As this trend continues rapidly, it will allow us to create comprehensive molecular profiles of living systems with spatial and temporal context and subcellular resolution. Key to achieving this ambitious goal will be novel computational methods and successfully dealing with the challenges of data integration and sharing as well as cloud-enabled big data analysis.
Collapse
Affiliation(s)
- Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stephanie Alexander
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
130
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
131
|
Smit JH, Li Y, Warszawik EM, Herrmann A, Cordes T. ColiCoords: A Python package for the analysis of bacterial fluorescence microscopy data. PLoS One 2019; 14:e0217524. [PMID: 31216308 PMCID: PMC6583990 DOI: 10.1371/journal.pone.0217524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
Single-molecule fluorescence microscopy studies of bacteria provide unique insights into the mechanisms of cellular processes and protein machineries in ways that are unrivalled by any other technique. With the cost of microscopes dropping and the availability of fully automated microscopes, the volume of microscopy data produced has increased tremendously. These developments have moved the bottleneck of throughput from image acquisition and sample preparation to data analysis. Furthermore, requirements for analysis procedures have become more stringent given the demand of various journals to make data and analysis procedures available. To address these issues we have developed a new data analysis package for analysis of fluorescence microscopy data from rod-like cells. Our software ColiCoords structures microscopy data at the single-cell level and implements a coordinate system describing each cell. This allows for the transformation of Cartesian coordinates from transmission light and fluorescence images and single-molecule localization microscopy (SMLM) data to cellular coordinates. Using this transformation, many cells can be combined to increase the statistical power of fluorescence microscopy datasets of any kind. ColiCoords is open source, implemented in the programming language Python, and is extensively documented. This allows for modifications for specific needs or to inspect and publish data analysis procedures. By providing a format that allows for easy sharing of code and associated data, we intend to promote open and reproducible research. The source code and documentation can be found via the project's GitHub page.
Collapse
Affiliation(s)
- Jochem H. Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yichen Li
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eliza M. Warszawik
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
132
|
Stojanović I, Ruivo CF, van der Velden TJG, Schasfoort RBM, Terstappen LWMM. Multiplex Label Free Characterization of Cancer Cell Lines Using Surface Plasmon Resonance Imaging. BIOSENSORS-BASEL 2019; 9:bios9020070. [PMID: 31137820 PMCID: PMC6628007 DOI: 10.3390/bios9020070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
Rapid multiplex cell surface marker analysis can expedite investigations in which large number of antigens need to be analyzed. Simultaneous analysis of multiple surface antigens at the same level of sensitivity is however limited in the current golden standard analysis method, flow cytometry. In this paper we introduce a surface plasmon resonance imaging (SPRi)-based technique for 44-plex parameter analysis using a single sample, in less than 20 min. We analyzed the expression on cells from five different cancer cell lines by SPRi on a 44-plex antibody array including 4 negative controls and compared the output with flow cytometry. The combined correlation of the markers that showed expression by flow cytometry was 0.76. The results demonstrate as a proof of principle that SPRi can be applied for rapid semi-quantitative multiplex cell surface marker analysis.
Collapse
Affiliation(s)
- Ivan Stojanović
- Medical Cell BioPhysics Group, MIRA institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | - Carolina F Ruivo
- Medical Cell BioPhysics Group, MIRA institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | | | - Richard B M Schasfoort
- Medical Cell BioPhysics Group, MIRA institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | - Leon W M M Terstappen
- Medical Cell BioPhysics Group, MIRA institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| |
Collapse
|
133
|
Koelzer VH, Sirinukunwattana K, Rittscher J, Mertz KD. Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch 2019; 474:511-522. [PMID: 30470933 PMCID: PMC6447694 DOI: 10.1007/s00428-018-2485-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Clinical success of immunotherapy is driving the need for new prognostic and predictive assays to inform patient selection and stratification. This requirement can be met by a combination of computational pathology and artificial intelligence. Here, we critically assess computational approaches supporting the development of a standardized methodology in the assessment of immune-oncology biomarkers, such as PD-L1 and immune cell infiltrates. We examine immunoprofiling through spatial analysis of tumor-immune cell interactions and multiplexing technologies as a predictor of patient response to cancer treatment. Further, we discuss how integrated bioinformatics can enable the amalgamation of complex morphological phenotypes with the multiomics datasets that drive precision medicine. We provide an outline to machine learning (ML) and artificial intelligence tools and illustrate fields of application in immune-oncology, such as pattern-recognition in large and complex datasets and deep learning approaches for survival analysis. Synergies of surgical pathology and computational analyses are expected to improve patient stratification in immuno-oncology. We propose that future clinical demands will be best met by (1) dedicated research at the interface of pathology and bioinformatics, supported by professional societies, and (2) the integration of data sciences and digital image analysis in the professional education of pathologists.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Institute of Cancer and Genomic Science, University of Birmingham, 6 Mindelsohn Way, Birmingham, B15 2SY, UK.
- Molecular and Population Genetics Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Headington, OX3 7FZ, UK
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Mühlemattstrasse 11, CH-4410, Liestal, Switzerland
| |
Collapse
|
134
|
Lee JH, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, Gross S, Blume K, Bruns H, Wild S, Schuler G, Vera J, Baur AS. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance 2019; 2:2/2/e201800205. [PMID: 30846484 PMCID: PMC6406044 DOI: 10.26508/lsa.201800205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Upon tumor development, new extracellular vesicles appear in circulation. Our knowledge of their relative abundance, function, and overall impact on cancer development is still preliminary. Here, we demonstrate that plasma extracellular vesicles (pEVs) of non-tumor origin are persistently increased in untreated and post-excision melanoma patients, exhibiting strong suppressive effects on the proliferation of tumor cells. Plasma vesicle numbers, miRNAs, and protein levels were elevated two- to tenfold and detected many years after tumor resection. The vesicles revealed individual and clinical stage-specific miRNA profiles as well as active ADAM10. However, whereas pEV from patients preventing tumor relapse down-regulated β-catenin and blocked tumor cell proliferation in an miR-34a-dependent manner, pEV from metastatic patients lost this ability and stimulated β-catenin-mediated transcription. Cancer-induced pEV may constitute an innate immune mechanism suppressing tumor cell activity including that of residual cancer cells present after primary surgery.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Jochen Dindorf
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | - Nina Koliha
- Miltenyi Biotech GmbH, Bergisch Gladbach, Germany
| | - Stefani Gross
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Katja Blume
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine V, Haematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wild
- Miltenyi Biotech GmbH, Bergisch Gladbach, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas S Baur
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
135
|
Damond N, Engler S, Zanotelli VRT, Schapiro D, Wasserfall CH, Kusmartseva I, Nick HS, Thorel F, Herrera PL, Atkinson MA, Bodenmiller B. A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry. Cell Metab 2019; 29:755-768.e5. [PMID: 30713109 PMCID: PMC6821395 DOI: 10.1016/j.cmet.2018.11.014] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/13/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β cells. A comprehensive picture of the changes during T1D development is lacking due to limited sample availability, inability to sample longitudinally, and the paucity of technologies enabling comprehensive tissue profiling. Here, we analyzed 1,581 islets from 12 human donors, including eight with T1D, using imaging mass cytometry (IMC). IMC enabled simultaneous measurement of 35 biomarkers with single-cell and spatial resolution. We performed pseudotime analysis of islets through T1D progression from snapshot data to reconstruct the evolution of β cell loss and insulitis. Our analyses revealed that β cell destruction is preceded by a β cell marker loss and by recruitment of cytotoxic and helper T cells. The approaches described herein demonstrate the value of IMC for improving our understanding of T1D pathogenesis, and our data lay the foundation for hypothesis generation and follow-on experiments.
Collapse
Affiliation(s)
- Nicolas Damond
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Stefanie Engler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vito R T Zanotelli
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; Systems Biology PhD Program, Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Denis Schapiro
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Harry S Nick
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
136
|
State-of-the-Art of Profiling Immune Contexture in the Era of Multiplexed Staining and Digital Analysis to Study Paraffin Tumor Tissues. Cancers (Basel) 2019; 11:cancers11020247. [PMID: 30791580 PMCID: PMC6406364 DOI: 10.3390/cancers11020247] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
Multiplexed platforms for multiple epitope detection have emerged in the last years as very powerful tools to study tumor tissues. These revolutionary technologies provide important visual techniques for tumor examination in formalin-fixed paraffin-embedded specimens to improve the understanding of the tumor microenvironment, promote new treatment discoveries, aid in cancer prevention, as well as allowing translational studies to be carried out. The aim of this review is to highlight the more recent methodologies that use multiplexed staining to study simultaneous protein identification in formalin-fixed paraffin-embedded tumor tissues for immune profiling, clinical research, and potential translational analysis. New multiplexed methodologies, which permit the identification of several proteins at the same time in one single tissue section, have been developed in recent years with the ability to study different cell populations, cells by cells, and their spatial distribution in different tumor specimens including whole sections, core needle biopsies, and tissue microarrays. Multiplexed technologies associated with image analysis software can be performed with a high-quality throughput assay to study cancer specimens and are important tools for new discoveries. The different multiplexed technologies described in this review have shown their utility in the study of cancer tissues and their advantages for translational research studies and application in cancer prevention and treatments.
Collapse
|
137
|
Micro-Net: A unified model for segmentation of various objects in microscopy images. Med Image Anal 2019; 52:160-173. [DOI: 10.1016/j.media.2018.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
|
138
|
Shapshak P, Balaji S, Kangueane P, Chiappelli F, Somboonwit C, Menezes LJ, Sinnott JT. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7122670 DOI: 10.1007/978-3-030-29022-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul Shapshak
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka India
| | | | - Francesco Chiappelli
- Oral Biology and Medicine, CHS 63-090, UCLA School of Dentistry Oral Biology and Medicine, CHS 63-090, Los Angeles, CA USA
| | | | - Lynette J. Menezes
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - John T. Sinnott
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| |
Collapse
|
139
|
Schierer S, Ostalecki C, Zinser E, Lamprecht R, Plosnita B, Stich L, Dörrie J, Lutz MB, Schuler G, Baur AS. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci Alliance 2018; 1:e201800093. [PMID: 30519676 PMCID: PMC6277684 DOI: 10.26508/lsa.201800093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
Mature dendritic cells (DC) secrete substantial amounts of vesicles that are primarily ingested by monocytes, leading to differentiation processes in these target cells towards monocyte-derived DC. During inflammation, murine and human monocytes can develop into dendritic cells (DC), but this process is not entirely understood. Here, we demonstrate that extracellular vesicles (EV) secreted by mature human DC (maDC) differentiate peripheral monocytes into immature DC, expressing a unique marker pattern, including 6-sulfo LacNAc (slan), Zbtb46, CD64, and CD14. While EV from both maDC and immature DC differentiated monocytes similar to GM-CSF/IL-4 stimulation, only maDC-EV produced precursors, which upon maturation stimulus developed into T-cell–activating and IL-12p70–secreting maDC. Mechanistically, maDC-EV induced cell signaling through GM-CSF, which was abundant in EV as were IL-4 and other cytokines and chemokines. When injected into the mouse skin, murine maDC-EV attracted immune cells including monocytes that developed activation markers typical for inflammatory cells. Skin-injected EV also reached lymph nodes, causing a similar immune cell infiltration. We conclude that DC-derived EV likely serve to perpetuate an immune reaction and may contribute to chronic inflammation.
Collapse
Affiliation(s)
- Stefan Schierer
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Ricarda Lamprecht
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | | | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, Würzburg, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Andreas S Baur
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| |
Collapse
|
140
|
Giedt RJ, Pathania D, Carlson JCT, McFarland PJ, Del Castillo AF, Juric D, Weissleder R. Single-cell barcode analysis provides a rapid readout of cellular signaling pathways in clinical specimens. Nat Commun 2018; 9:4550. [PMID: 30382095 PMCID: PMC6208406 DOI: 10.1038/s41467-018-07002-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/06/2018] [Indexed: 12/23/2022] Open
Abstract
Serial tissue sampling has become essential in guiding modern targeted and personalized cancer treatments. An alternative to image guided core biopsies are fine needle aspirates (FNA) that yield cells rather than tissues but are much better tolerated and have lower complication rates. The efficient pathway analysis of such cells in the clinic has been difficult, time consuming and costly. Here we develop an antibody-DNA barcoding approach where harvested cells can be rapidly re-stained through the use of custom designed oligonucleotide-fluorophore conjugates. We show that this approach can be used to interrogate drug-relevant pathways in scant clinical samples. Using the PI3K/PTEN/CDK4/6 pathways in breast cancer as an example, we demonstrate how analysis can be performed in tandem with trial enrollment and can evaluate downstream signaling following therapeutic inhibition. This approach should allow more widespread use of scant single cell material in clinical samples.
Collapse
Affiliation(s)
- Randy J Giedt
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Divya Pathania
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
- MGH Cancer Center, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Philip J McFarland
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | | | - Dejan Juric
- MGH Cancer Center, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA.
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
141
|
Hammerl D, Rieder D, Martens JWM, Trajanoski Z, Debets R. Adoptive T Cell Therapy: New Avenues Leading to Safe Targets and Powerful Allies. Trends Immunol 2018; 39:921-936. [PMID: 30309702 DOI: 10.1016/j.it.2018.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
Abstract
Adoptive transfer of TCR-engineered T cells is a potent therapy, able to induce clinical responses in different human malignancies. Nevertheless, treatment toxicities may occur and, in particular for solid tumors, responses may be variable and often not durable. To address these challenges, it is imperative to carefully select target antigens and to immunologically interrogate the corresponding tumors when designing optimal T cell therapies. Here, we review recent advances, covering both omics- and laboratory tools that can enable the selection of optimal T cell epitopes and TCRs as well as the identification of dominant immune evasive mechanisms within tumor tissues. Furthermore, we discuss how these techniques may aid in a rational design of effective combinatorial adoptive T cell therapies.
Collapse
Affiliation(s)
- Dora Hammerl
- Laboratory of Tumor Immunology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Reno Debets
- Laboratory of Tumor Immunology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
142
|
Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis 2018; 278:156-165. [PMID: 30278358 DOI: 10.1016/j.atherosclerosis.2018.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS In dialysis patients, vascular morbidities are highly prevalent and linked to leukocyte extravasation, especially of polarized monocytes. Experimental data demonstrate that phenotypic changes in monocytes require Y-box binding protein-1 (YB-1) upregulation. METHODS We determined YB-1 expression in circulating and vessel-invading monocytes from healthy controls and dialysis patients to correlate results with intima plaque formation and systemic inflammation. RESULTS Compared to healthy subjects, dialysis patients have fewer classical and more intermediate and non-classical monocytes. Post-translationally modified YB-1 (lysine 301/304 acetylation) is detected at high levels in the nucleus of adherent and invading CD14+CD68+ monocytes from umbilical cord and atherosclerosis-prone vessels. The content of non-acetylated YB-1 is significantly decreased (p < 0.001), whereas acetylated YB-1 is correspondingly increased (p < 0.001) throughout all monocyte subpopulations, such that the overall content remains unchanged. CONCLUSIONS In dialysis patients the YB-1 acetylation status is higher with prevailing diabetes and intima plaque formation. Pro-inflammatory mediators TNFα, IL-6, uPAR, CCL2, M-CSF, progranulin, ANP, and midkine, as well as anti-inflammatory IL-10 are significantly increased in dialysis patients, emphasizing a systemic inflammatory milieu. Strong positive correlations of monocytic YB-1 content are seen with ANP, IP-10, IL-6, and IL-10 serum levels. This is the first study demonstrating an association of cold shock protein YB-1 expression with inflammation in hemodialysis patients.
Collapse
|
143
|
Gut G, Herrmann MD, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science 2018; 361:361/6401/eaar7042. [PMID: 30072512 DOI: 10.1126/science.aar7042] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Obtaining highly multiplexed protein measurements across multiple length scales has enormous potential for biomedicine. Here, we measured, by iterative indirect immunofluorescence imaging (4i), 40-plex protein readouts from biological samples at high-throughput from the millimeter to the nanometer scale. This approach simultaneously captures properties apparent at the population, cellular, and subcellular levels, including microenvironment, cell shape, and cell cycle state. It also captures the detailed morphology of organelles, cytoskeletal structures, nuclear subcompartments, and the fate of signaling receptors in thousands of single cells in situ. We used computer vision and systems biology approaches to achieve unsupervised comprehensive quantification of protein subcompartmentalization within various multicellular, cellular, and pharmacological contexts. Thus, highly multiplexed subcellular protein maps can be used to identify functionally relevant single-cell states.
Collapse
Affiliation(s)
- Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. .,Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Markus D Herrmann
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,MD-PhD and Systems Biology PhD Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
144
|
Clark DP. Ancillary studies in cytology: Secondary or necessary? Cancer Cytopathol 2018; 126 Suppl 8:584-589. [PMID: 30156778 DOI: 10.1002/cncy.22011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/06/2022]
Abstract
Ancillary studies are rapidly becoming an integral and necessary aspect of cytologic analysis. In addition to morphologic features, cytologic specimens contain an enormous amount of information content within their molecules that should be tapped to add value to these samples. Fortunately, a large number of existing and emerging technologies exist to provide access to this information. Adoption of these technologies will require continued attention to fundamental aspects of specimen procurement, handling, and processing to ensure testing accuracy. Successful implementation of ancillary studies will depend on rigorous validation of assays and the development of evidence-based guidelines for their use in patients. Cytopathologists must embrace the role of ancillary test stewardship to ensure the future clinical use of cytologic specimens.
Collapse
Affiliation(s)
- Douglas P Clark
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
145
|
Holzwarth K, Köhler R, Philipsen L, Tokoyoda K, Ladyhina V, Wählby C, Niesner RA, Hauser AE. Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry A 2018; 93:876-888. [DOI: 10.1002/cyto.a.23526] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 06/20/2018] [Indexed: 01/07/2023]
Affiliation(s)
| | - Ralf Köhler
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty; Otto von Guericke University; Magdeburg Germany
| | - Koji Tokoyoda
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Valeriia Ladyhina
- Centre for Image Analysis, Department of Information Technology, Division of Visual Information and Interaction; Uppsala University; Uppsala Sweden
| | - Carolina Wählby
- Centre for Image Analysis, Department of Information Technology, Division of Visual Information and Interaction; Uppsala University; Uppsala Sweden
| | - Raluca A. Niesner
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Anja E. Hauser
- Immune Dynamics; Charité - Universitätsmedizin; Berlin Germany
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| |
Collapse
|
146
|
Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S, Nolan GP. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 2018; 174:968-981.e15. [PMID: 30078711 PMCID: PMC6086938 DOI: 10.1016/j.cell.2018.07.010] [Citation(s) in RCA: 787] [Impact Index Per Article: 131.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
A highly multiplexed cytometric imaging approach, termed co-detection by indexing (CODEX), is used here to create multiplexed datasets of normal and lupus (MRL/lpr) murine spleens. CODEX iteratively visualizes antibody binding events using DNA barcodes, fluorescent dNTP analogs, and an in situ polymerization-based indexing procedure. An algorithmic pipeline for single-cell antigen quantification in tightly packed tissues was developed and used to overlay well-known morphological features with de novo characterization of lymphoid tissue architecture at a single-cell and cellular neighborhood levels. We observed an unexpected, profound impact of the cellular neighborhood on the expression of protein receptors on immune cells. By comparing normal murine spleen to spleens from animals with systemic autoimmune disease (MRL/lpr), extensive and previously uncharacterized splenic cell-interaction dynamics in the healthy versus diseased state was observed. The fidelity of multiplexed spatial cytometry demonstrated here allows for quantitative systemic characterization of tissue architecture in normal and clinically aberrant samples. Autoimmunity analyzed by multiplexed DNA-tagged antibody staining (CODEX) CODEX data reveal pairwise interactions and niches changing with disease First tier of neighbors significantly impacts marker expression in the index cells Changes in splenic morphology correlate with shifts in cell frequencies
Collapse
Affiliation(s)
- Yury Goltsev
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolay Samusik
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Kennedy-Darling
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Salil Bhate
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Hale
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gustavo Vazquez
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Black
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
147
|
Roy AL, Conroy RS. Toward mapping the human body at a cellular resolution. Mol Biol Cell 2018; 29:1779-1785. [PMID: 30058989 PMCID: PMC6085824 DOI: 10.1091/mbc.e18-04-0260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
The adult human body is composed of nearly 37 trillion cells, each with potentially unique molecular characteristics. This Perspective describes some of the challenges and opportunities faced in mapping the molecular characteristics of these cells in specific regions of the body and highlights areas for international collaboration toward the broader goal of comprehensively mapping the human body with cellular resolution.
Collapse
Affiliation(s)
- Ananda L. Roy
- Office of Strategic Coordination, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Richard S. Conroy
- Office of Strategic Coordination, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
148
|
Abstract
Histopathology plays a central role in diagnosis of many diseases including solid cancers. Efforts are underway to transform this subjective art to an objective and quantitative science. Coherent Raman imaging (CRI), a label-free imaging modality with sub-cellular spatial resolution and molecule-specific contrast possesses characteristics which could support the qualitative-to-quantitative transition of histopathology. In this work we briefly survey major themes related to modernization of histopathology, review applications of CRI to histopathology and, finally, discuss potential roles for CRI in the transformation of histopathology that is already underway.
Collapse
|
149
|
Edelmann B, Gupta N, Schnoeder TM, Oelschlegel AM, Shahzad K, Goldschmidt J, Philipsen L, Weinert S, Ghosh A, Saalfeld FC, Nimmagadda SC, Müller P, Braun-Dullaeus R, Mohr J, Wolleschak D, Kliche S, Amthauer H, Heidel FH, Schraven B, Isermann B, Müller AJ, Fischer T. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest 2018; 128:4359-4371. [PMID: 30024857 DOI: 10.1172/jci90312] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
JAK2-V617F-positive chronic myeloproliferative neoplasia (CMN) commonly displays dysfunction of integrins and adhesion molecules expressed on platelets, erythrocytes, and leukocytes. However, the mechanism by which the 2 major leukocyte integrin chains, β1 and β2, may contribute to CMN pathophysiology remained unclear. β1 (α4β1; VLA-4) and β2 (αLβ2; LFA-1) integrins are essential regulators for attachment of leukocytes to endothelial cells. We here showed enhanced adhesion of granulocytes from mice with JAK2-V617F knockin (JAK2+/VF mice) to vascular cell adhesion molecule 1- (VCAM1-) and intercellular adhesion molecule 1-coated (ICAM1-coated) surfaces. Soluble VCAM1 and ICAM1 ligand binding assays revealed increased affinity of β1 and β2 integrins for their respective ligands. For β1 integrins, this correlated with a structural change from the low- to the high-affinity conformation induced by JAK2-V617F. JAK2-V617F triggered constitutive activation of the integrin inside-out signaling molecule Rap1, resulting in translocation toward the cell membrane. Employing a venous thrombosis model, we demonstrated that neutralizing anti-VLA-4 and anti-β2 integrin antibodies suppress pathologic thrombosis as observed in JAK2+/VF mice. In addition, aberrant homing of JAK2+/VF leukocytes to the spleen was inhibited by neutralizing anti-β2 antibodies and by pharmacologic inhibition of Rap1. Thus, our findings identified cross-talk between JAK2-V617F and integrin activation promoting pathologic thrombosis and abnormal trafficking of leukocytes to the spleen.
Collapse
Affiliation(s)
- Bärbel Edelmann
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Nibedita Gupta
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Tina M Schnoeder
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Internal Medicine II, Hematology and Oncology, University Hospital Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Anja M Oelschlegel
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Anatomy
| | | | | | - Lars Philipsen
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Soenke Weinert
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Department of Cardiology and Angiology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Aniket Ghosh
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Felix C Saalfeld
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Rüdiger Braun-Dullaeus
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Department of Cardiology and Angiology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Mohr
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Denise Wolleschak
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and
| | - Holger Amthauer
- Department of Radiology and Nuclear Medicine, University Hospital, Magdeburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Internal Medicine II, Hematology and Oncology, University Hospital Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and.,Helmholtz Centre for Infection Research, Department of Immune Control, Braunschweig, Germany
| | - Berend Isermann
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry
| | - Andreas J Müller
- Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, and.,Helmholtz Centre for Infection Research, Department of Immune Control, Braunschweig, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany.,Gesundheitscampus Immunologie, Infektiologie und Inflammation (GCI3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
150
|
Easy Employment and Crosstalk-Free Detection of Seven Fluorophores in a Widefield Fluorescence Microscope. Methods Protoc 2018; 1:mps1020020. [PMID: 31164563 PMCID: PMC6526416 DOI: 10.3390/mps1020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
Immunofluorescence staining has become an essential tool in pathology and biomedical sciences to identify rare cells, cell–cell interactions, and submicroscopic cellular components. Many experimental settings, however, suffer from the fact that traditional widefield fluorescence microscopy is usually restricted to imaging three or four fluorophores only. Due to a lack of morphological information and a high detection limit, even flow cytometry—which is capable of staining 20 or more fluorophores at the same time—is limited in its applicability, especially in areas such as rare cell detection. Other advanced imaging approaches, such as confocal laser scanning microscopy and imaging flow cytometry, may be addressing these shortcomings, but in turn require sophisticated downstream data processing and high capital outlay. Here, we describe a new method and filter set-up to routinely employ up to seven fluorophores on a traditional widefield fluorescence microscope equipped with a standard high-pressure mercury light source. Quantification of crosstalk between channels and actual seven-color imaging of cancer cells spiked into leukocytes demonstrate that there is no need for digital compensation correction algorithms. Our set-up thus permits a detailed analysis of rare cell populations, co-localization of antigens, and cell morphology in a standard research or routine laboratory setting.
Collapse
|