101
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
102
|
Xia Y, Cao Y, Ren Y, Ling A, Du K, Li Y, Yang J, Kang X. Effect of a suitable treatment period on the genetic transformation efficiency of the plant leaf disc method. PLANT METHODS 2023; 19:15. [PMID: 36793134 PMCID: PMC9930321 DOI: 10.1186/s13007-023-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Agrobacterium tumefaciens-mediated leaf disc genetic transformation is an important way to achieve transgenics or gene editing. Ensuring stable and efficient genetic transformation is still an important problem in modern biology. It is assumed that the difference in the development status of genetic transformation cells of receptor materials is the main reason for the difference and instability of genetic transformation efficiency; the stable and efficient genetic transformation rate can be obtained by defining the appropriate treatment period of the receptor material and applying genetic transformation in a timely manner. RESULTS Based on these assumptions, we studied and established an efficient and stable Agrobacterium-mediated plant transformation system with hybrid poplar (Populus alba × Populus glandulosa, 84 K) leaves, stem segments and tobacco leaves as the research objects. There were differences in the development process of leaf bud primordial cells from different explants, and the genetic transformation efficiency was significantly related to the cell development stage of the in vitro cultured materials. Among them, the genetic transformation rate of poplar and tobacco leaves was the highest on the 3rd and 2nd day of culture, reaching 86.6% and 57.3%, respectively. The genetic transformation rate of poplar stem segments was the highest on the 4th day of culture, reaching 77.8%. The best treatment period was from the development of leaf bud primordial cells to the S phase of the cell cycle. The number of cells detected using flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) staining, the expression of cell cycle-related protein CDKB1; 2, CDKD1; 1, CYCA3; 4, CYCD1; 1, CYCD3; 2, CYCD6; 1, and CYCH; 1 of explants, and morphological changes of explants can be used as indicators to determine the appropriate treatment period for genetic transformation. CONCLUSIONS Our study provides a new and universal set of methods and characteristics to identify the S phase of the cell cycle and apply genetic transformation treatments at the appropriate time. Our results are of great significance for improving the efficiency and stability of plant leaf disc genetic transformation.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 China
| | - Yongyu Ren
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Yun Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 China
| |
Collapse
|
103
|
Wang F, Li C, Zhang R, Liu Y, Lin H, Nan L, Khan MA, Xiao Y, Shum HC, Deng H. A composition-tunable cold atmospheric plasma chip for multiplex-treatment of cells. LAB ON A CHIP 2023; 23:580-590. [PMID: 36644992 DOI: 10.1039/d2lc00951j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cold atmospheric plasma treatment promises a targeted cancer therapy due to its selectivity and specificity in killing tumor cells. However, the current plasma exposure devices produce diverse and coupled reactive species, impeding the investigation of the underlying plasma-anticancer mechanisms. Also, the limited mono-sample and mono-dosage treatment modality result in tedious and manual experimental tasks. Here, we propose a cold atmospheric plasma chip producing targeted species, delivering multiple dosages, and treating multiple cell lines in a single treatment. Three modules are integrated into the chip. The environment control module and multi-inlet gas-feed module coordinately ignite component-tunable and uniformly distributed plasma. The multi-sample holding module enables multiplex treatment: multi-sample and -dosage treatment with single radiation. By exposing the HepG2 cell line to nitrogen-feed plasmas, we prove the crucial role of nitrogen-based species in inhibiting cell growth and stimulating apoptosis. By loading four-type cell lines on our chip, we can identify the most vulnerable cell line for plasma oncotherapy. Simultaneously, three-level treatment dosages are imposed on the cells with single radiation to optimize the applicable treatment dosage for plasma oncotherapy. Our chip will broaden the design principles of plasma exposure devices, potentially help clarify plasma-induced anticancer mechanisms, and guide the clinical application of plasma-based oncotherapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Muhammad Ajmal Khan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| |
Collapse
|
104
|
Liu J, Wu Y, Yang G, Liu Z, Liu X. Mitochondrial targeting half-sandwich iridium(III) and ruthenium(II) dppf complexes and in vitro anticancer assay. J Inorg Biochem 2023; 239:112069. [PMID: 36423395 DOI: 10.1016/j.jinorgbio.2022.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Considering the potential application of half-sandwich and ferrocenyl-containing organometallic complexes in the area of anticancer, four half-sandwich iridium(III) (IrIII) and ruthenium(II) (RuII) diphenylphosphino ferrocene (dppf) complexes were prepared in this study. Complexes showed favorable anti-proliferation activity towards A549 cell lines compared to cisplatin, meanwhile, which could effectively inhibit cell migration. These complexes followed an energy dependence uptake mechanism, effectively accumulated in mitochondria with a Pearson's Colocalization Coefficient (PCC) of 0.77, decreased the mitochondrial membrane potential, induced a surge of reactive oxygen species, disturbed cell cycle, and eventually led to apoptosis. Western blot assay further confirmed that these complexes induced apoptosis following a mitochondrial pathway. Above all, half-sandwich IrIII and RuII dppf complexes show the prospect of becoming a new multifunctional therapeutic platform for mitochondrial targeted imaging and anticancer drugs.
Collapse
Affiliation(s)
- Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xicheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
105
|
Foglietta F, Macrì M, Panzanelli P, Francovich A, Durando G, Garello F, Terreno E, Serpe L, Canaparo R. Ultrasound boosts doxorubicin efficacy against sensitive and resistant ovarian cancer cells. Eur J Pharm Biopharm 2023; 183:119-131. [PMID: 36632905 DOI: 10.1016/j.ejpb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) is characterised by the highest mortality of all gynaecological malignancies, frequent relapses, and the development of resistance to drug therapy. Sonodynamic therapy (SDT) is an innovative anticancer approach that combines a chemical/drug (sonosensitizer) with low-intensity ultrasound (US), which are both harmless per sé, with the sonosensitizer being acoustically activated, thus yielding localized cytotoxicity often via reactive oxygen species (ROS) generation. Doxorubicin (Doxo) is a potent chemotherapeutic drug that has also been recommended as a first-line treatment against OC. This research work aims to investigate whether Doxo can be used at very low concentrations, in order to avoid its significant side effects, as a sonosensitiser under US exposure to promote cancer cell death in Doxo non-resistant (A2780/WT) and Doxo resistant (A2780/ADR) human OC cell lines. Moreover, since recurrence is an important issue in OC, we have also investigated whether the proposed SDT with Doxo induces immunogenic cell death (ICD) and thus hinders OC recurrence. Our results show that the sonodynamic anticancer approach with Doxo is effective in both A2780/WT and A2780/ADR cell lines, and that it proceeds via a ROS-dependent mechanism of action and immune sensitization that is based on the activation of the ICD pathway.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Manuela Macrì
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Fribourg 1770, Switzerland
| | - Gianni Durando
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| |
Collapse
|
106
|
Richardson C, Kelsh RN, J. Richardson R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech 2023; 16:dmm049874. [PMID: 36847161 PMCID: PMC10003097 DOI: 10.1242/dmm.049874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Over the past decade, CRISPR/Cas-based gene editing has become a powerful tool for generating mutations in a variety of model organisms, from Escherichia coli to zebrafish, rodents and large mammals. CRISPR/Cas-based gene editing effectively generates insertions or deletions (indels), which allow for rapid gene disruption. However, a large proportion of human genetic diseases are caused by single-base-pair substitutions, which result in more subtle alterations to protein function, and which require more complex and precise editing to recreate in model systems. Precise genome editing (PGE) methods, however, typically have efficiencies of less than a tenth of those that generate less-specific indels, and so there has been a great deal of effort to improve PGE efficiency. Such optimisations include optimal guide RNA and mutation-bearing donor DNA template design, modulation of DNA repair pathways that underpin how edits result from Cas-induced cuts, and the development of Cas9 fusion proteins that introduce edits via alternative mechanisms. In this Review, we provide an overview of the recent progress in optimising PGE methods and their potential for generating models of human genetic disease.
Collapse
Affiliation(s)
- Chris Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Rebecca J. Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
107
|
Parkinson J, Hard R, Ainsworth R, Wang W. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Proteins 2023; 91:32-46. [PMID: 35927178 PMCID: PMC9771871 DOI: 10.1002/prot.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Richard Ainsworth
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
108
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
109
|
Patterson-Fortin J, D'Andrea AD. Targeting Polymerase Theta (POLθ) for Cancer Therapy. Cancer Treat Res 2023; 186:285-298. [PMID: 37978141 DOI: 10.1007/978-3-031-30065-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Center for DNA Damage and Repair, Susan F. Smith Center for Women's Cancers (SFSCWC), The Fuller-American Cancer Society, Dana-Farber Cancer Institute, HIM 243, 450 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
110
|
Lintott LG, Nutter LMJ. Genetic and Molecular Quality Control of Genetically Engineered Mice. Methods Mol Biol 2023; 2631:53-101. [PMID: 36995664 DOI: 10.1007/978-1-0716-2990-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.
Collapse
Affiliation(s)
- Lauri G Lintott
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada.
- The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
111
|
Wang D, Fan X, Li M, Liu T, Lu P, Wang G, Li Y, Han J, Zhao J. Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR J 2022; 5:746-768. [PMID: 36512351 DOI: 10.1089/crispr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently established prime editor (PE) system is regarded as next-generation gene-editing technology. This methodology can install any base-to-base change as well as insertions and deletions without the requirement for double-stranded break formation or donor DNA templates; thus, it offers more targeting flexibility and greater editing precision than conventional CRISPR-Cas systems or base editors. In this study, we introduce the basic principles of PE and then review its most recent progress in terms of editing versatility, specificity, and efficiency in mammals. Next, we summarize key considerations regarding the selection of PE variants, prime editing guide RNA (pegRNA) design rules, and the efficiency and accuracy evaluation of PE. Finally, we highlight and discuss how PE can assist in a wide range of biological studies and how it can be applied to make precise genomic corrections in animal models, which paves the way for curing human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianbo Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JunMing Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
112
|
Kim JH, Youn Y, Hwang JH. NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability. Mol Cells 2022; 45:792-805. [PMID: 36380731 PMCID: PMC9676985 DOI: 10.14348/molcells.2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
113
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
114
|
Pei X, Mladenov E, Soni A, Li F, Stuschke M, Iliakis G. PTEN Loss Enhances Error-Prone DSB Processing and Tumor Cell Radiosensitivity by Suppressing RAD51 Expression and Homologous Recombination. Int J Mol Sci 2022; 23:12876. [PMID: 36361678 PMCID: PMC9658850 DOI: 10.3390/ijms232112876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
PTEN has been implicated in the repair of DNA double-strand breaks (DSBs), particularly through homologous recombination (HR). However, other data fail to demonstrate a direct role of PTEN in DSB repair. Therefore, here, we report experiments designed to further investigate the role of PTEN in DSB repair. We emphasize the consequences of PTEN loss in the engagement of the four DSB repair pathways-classical non-homologous end-joining (c-NHEJ), HR, alternative end-joining (alt-EJ) and single strand annealing (SSA)-and analyze the resulting dynamic changes in their utilization. We quantitate the effect of PTEN knockdown on cell radiosensitivity to killing, as well as checkpoint responses in normal and tumor cell lines. We find that disruption of PTEN sensitizes cells to ionizing radiation (IR). This radiosensitization is associated with a reduction in RAD51 expression that compromises HR and causes a marked increase in SSA engagement, an error-prone DSB repair pathway, while alt-EJ and c-NHEJ remain unchanged after PTEN knockdown. The G2-checkpoint is partially suppressed after PTEN knockdown, corroborating the associated HR suppression. Notably, PTEN deficiency radiosensitizes cells to PARP inhibitors, Olaparib and BMN673. The results show the crucial role of PTEN in DSB repair and show a molecular link between PTEN and HR through the regulation of RAD51 expression. The expected benefit from combination treatment with Olaparib or BMN673 and IR shows that PTEN status may also be useful for patient stratification in clinical treatment protocols combining IR with PARP inhibitors.
Collapse
Affiliation(s)
- Xile Pei
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
115
|
Meschichi A, Zhao L, Reeck S, White C, Da Ines O, Sicard A, Pontvianne F, Rosa S. The plant-specific DDR factor SOG1 increases chromatin mobility in response to DNA damage. EMBO Rep 2022; 23:e54736. [PMID: 36278395 PMCID: PMC9724665 DOI: 10.15252/embr.202254736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Lihua Zhao
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Svenja Reeck
- John Innes Centre, Norwich Research ParkNorwichUK
| | - Charles White
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Adrien Sicard
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP)Université de Perpignan Via DomitiaPerpignanFrance
| | - Stefanie Rosa
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
116
|
Fessé P, Nyman J, Hermansson I, Book ML, Ahlgren J, Turesson I. Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress. iScience 2022; 25:105238. [PMID: 36274944 PMCID: PMC9579029 DOI: 10.1016/j.isci.2022.105238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
DNA-damage response of cutaneous interfollicular melanocytes to fractionated radiotherapy was investigated by immunostaining of tissue sections from punch biopsies collected before, during, and after the treatment of patients for breast cancer. Our clinical assay with sterilized hair follicles, excluded the migration of immature melanocytes from the bulge, and highlighted interfollicular melanocytes as an autonomous self-renewing population. About thirty percent are immature. Surrounding keratinocytes induced and maintained melanocyte differentiation as long as treatment was ongoing. Concomitant with differentiation, melanocytes were protected from apoptosis by transient upregulation of Bcl-2 and CXCR2. CXCR2 upregulation also indicated the instigation of premature senescence, preventing proliferation. The stem cell factor BMI1 was constitutively expressed exclusively in interfollicular melanocytes and further upregulated upon irradiation. BMI1 prevents apoptosis, terminal differentiation, and premature senescence, allowing dedifferentiation post-treatment, by suppressing the p53/p21-and p16-mediated response and upregulating CXCR2 to genotoxic damage. The pre-treatment immature subset of interfollicular melanocytes was restored after the exposure ended.
Collapse
Affiliation(s)
- Per Fessé
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Jan Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Hermansson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maj-Lis Book
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Johan Ahlgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro Sweden
| | - Ingela Turesson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
117
|
Bolgi O, Silva-Garcia M, Ross B, Pilla E, Kari V, Killisch M, Spitzner M, Stark N, Lenz C, Weiss K, Donzelli L, Gorrell MD, Grade M, Riemer J, Urlaub H, Dobbelstein M, Huber R, Geiss-Friedlander R. Dipeptidyl peptidase 9 triggers BRCA2 degradation and promotes DNA damage repair. EMBO Rep 2022; 23:e54136. [PMID: 35912982 PMCID: PMC9535758 DOI: 10.15252/embr.202154136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022] Open
Abstract
N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.
Collapse
Affiliation(s)
- Oguz Bolgi
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Silva-Garcia
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Breyan Ross
- Max Planck Institut für Biochemie, Martinsried, Germany.,Proteros Biostructures GmbH, Martinsried, Germany
| | - Esther Pilla
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Killisch
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Stark
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Konstantin Weiss
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Donzelli
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Robert Huber
- Max Planck Institut für Biochemie, Martinsried, Germany.,Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, Essen, Germany.,Fakultät für Chemie, Technische Universität München, Garching, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
118
|
Jo DH, Bae S, Kim HH, Kim JS, Kim JH. In vivo application of base and prime editing to treat inherited retinal diseases. Prog Retin Eye Res 2022; 94:101132. [PMID: 36241547 DOI: 10.1016/j.preteyeres.2022.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses in patients with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to nutritional supplements regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. Genome editing, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and chromosomal translocations. Instead, using attached deaminases and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent in vivo application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.
Collapse
|
119
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
120
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
121
|
Promoting Immortalized Adipose-Derived Stem Cell Transdifferentiation and Proliferation into Neuronal-Like Cells through Consecutive 525 nm and 825 nm Photobiomodulation. Stem Cells Int 2022; 2022:2744789. [PMID: 36106176 PMCID: PMC9467736 DOI: 10.1155/2022/2744789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal cells can be generated from adipose-derived stem cells (ADSCs) through biological or chemical inducers. Research has shown that this process may be optimized by the introduction of laser irradiation in the form of photobiomodulation (PBM) to cells. This in vitro study is aimed at generating neuronal-like cells with inducers, chemical or biological, and at furthermore treating these transdifferentiating cells with consecutive PBM of a 525 nm green (G) laser and 825 nm near-infrared (NIR) laser light with a fluence of 10 J/cm2. Cells were exposed to induction type 1 (IT1): 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM)+indomethacin (200 μM)+insulin (5 μg/ml) for 14 days, preinduced with β-mercaptoethanol (BME) (1 mM) for two days, and then incubated with IT2: β-hydroxyanisole (BHA) (100 μM)+retinoic acid (RA) (10-6 M)+epidermal growth factor (EGF) (10 ng/ml)+basic fibroblast growth factor (bFGF) (10 ng/ml) for 14 days and preinduced with β-mercaptoethanol (BME) (1 mM) for two days and then incubated with indomethacin (200 μM)+RA (1 μM)+forskolin (10 μM) for 14 days. The results were evaluated through morphological observations, viability, proliferation, and migration studies, 24 h, 48 h, and 7 days post-PBM. The protein detection of an early neuronal marker, neuron-specific enolase (NSE), and late, ciliary neurotrophic factor (CNTF), was determined with enzyme-linked immunosorbent assays (ELISAs). The genetic expression was also explored through real-time PCR. Results indicated differentiation in all experimental groups; however, cells that were preinduced showed higher proliferation and a higher differentiation rate than the group that was not preinduced. Within the preinduced groups, results indicated that cells treated with IT2 and consecutive PBM upregulated differentiation the most morphologically and physiologically.
Collapse
|
122
|
Vergara X, Schep R, Medema RH, van Steensel B. From fluorescent foci to sequence: Illuminating DNA double strand break repair by high-throughput sequencing technologies. DNA Repair (Amst) 2022; 118:103388. [PMID: 36037787 DOI: 10.1016/j.dnarep.2022.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Technologies to study DNA double-strand break (DSB) repair have traditionally mostly relied on fluorescence read-outs, either by microscopy or flow cytometry. The advent of high throughput sequencing (HTS) has created fundamentally new opportunities to study the mechanisms underlying DSB repair. Here, we review the suite of HTS-based assays that are used to study three different aspects of DNA repair: detection of broken ends, protein recruitment and pathway usage. We highlight new opportunities that HTS technology offers towards a better understanding of the DSB repair process.
Collapse
Affiliation(s)
- Xabier Vergara
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Ruben Schep
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands.
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Department of Cell Biology, Erasmus University Medical Centre, the Netherlands.
| |
Collapse
|
123
|
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2516653. [PMID: 36004205 PMCID: PMC9393965 DOI: 10.1155/2022/2516653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022]
Abstract
The cell cycle is composed of a series of ordered, highly regulated processes through which a cell grows and duplicates its genome and eventually divides into two daughter cells. According to the complex changes in cell structure and biosynthesis, the cell cycle is divided into four phases: gap 1 (G1), DNA synthesis (S), gap 2 (G2), and mitosis (M). Determining which cell cycle phases a cell is in is critical to the research of cancer development and pharmacy for targeting cell cycle. However, current detection methods have the following problems: (1) they are complicated and time consuming to perform, and (2) they cannot detect the cell cycle on a large scale. Rapid developments in single-cell technology have made dissecting cells on a large scale possible with unprecedented resolution. In the present research, we construct efficient classifiers and identify essential gene biomarkers based on single-cell RNA sequencing data through Boruta and three feature ranking algorithms (e.g., mRMR, MCFS, and SHAP by LightGBM) by utilizing four advanced classification algorithms. Meanwhile, we mine a series of classification rules that can distinguish different cell cycle phases. Collectively, we have provided a novel method for determining the cell cycle and identified new potential cell cycle-related genes, thereby contributing to the understanding of the processes that regulate the cell cycle.
Collapse
|
124
|
Singh JK, Noordermeer SM, Jimenez-Sainz J, Maranon DG, Altmeyer M. Editorial: Protecting the code: DNA double-strand break repair pathway choice. Front Genet 2022; 13:993889. [PMID: 36035119 PMCID: PMC9413145 DOI: 10.3389/fgene.2022.993889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jenny Kaur Singh
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Institut Curie, PSL University, CNRS, Orsay, France
| | - Sylvie M. Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| | - David G. Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- *Correspondence: Matthias Altmeyer,
| |
Collapse
|
125
|
Cyclometalated iridium(III) dithioformic acid complexes as mitochondria-targeted imaging and anticancer agents. J Inorg Biochem 2022; 233:111855. [DOI: 10.1016/j.jinorgbio.2022.111855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
126
|
Yao Y, Chen C, Cai Z, Liu G, Ding C, Lim D, Chao D, Feng Z. Screen identifies fasudil as a radioprotector on human fibroblasts. Toxicol Res (Camb) 2022; 11:662-672. [PMID: 36051660 PMCID: PMC9424713 DOI: 10.1093/toxres/tfac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 07/24/2023] Open
Abstract
Background Radioprotectors safeguard biological system exposed to ionizing radiation (IR) by protecting normal cells from radiation damage during radiotherapy. Due to the toxicity and limited clinical utility of the present radioprotectors, it prompts us to identify novel radioprotectors that could alleviate IR-induced cytotoxicity of normal tissues. Aims and Methods To identify new radioprotectors, we screened a chemical molecular library comprising 253 compounds in normal human fibroblasts (HFs) or 16HBE cells upon IR by CCK-8 assays and clonogenic survival assays. Fasudil was identified as a potential effective radioprotector. Results The results indicated that Fasudil exerts radioprotective effects on HFs against IR-induced DNA double-strand breaks (DSBs) through the regulation of DSB repair. Fasudil increased homologous recombination (HR) repair by 45.24% and decreased non-homologous end-joining (NHEJ) by 63.88% compared with untreated cells, without affecting changes to cell cycle profile. We further found that fasudil significantly facilitated the expression and foci formation of HR core proteins such as Rad51 and BRCA1 upon IR, and decreased the expression of NHEJ-associated proteins such as DNA-PKcs at 24 h post-IR. Conclusion Our study identified fasudil as a novel radioprotector that exert radioprotective effects on normal cells through regulation of DSB repair by promoting HR repair.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chenxia Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- Health services Management, School of Science and Health, Translational Health Research Institute, Western Sydney University, Campbelltown 1797, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia
| | - Dong Chao
- Corresponding author: Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China. ;
| | - Zhihui Feng
- Corresponding author: Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China. ;
| |
Collapse
|
127
|
Finney M, Romanowski J, Adelman ZN. Strategies to improve homology-based repair outcomes following CRISPR-based gene editing in mosquitoes: lessons in how to keep any repair disruptions local. Virol J 2022; 19:128. [PMID: 35908059 PMCID: PMC9338592 DOI: 10.1186/s12985-022-01859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Programmable gene editing systems such as CRISPR-Cas have made mosquito genome engineering more practical and accessible, catalyzing the development of cutting-edge genetic methods of disease vector control. This progress, however, has been limited by the low efficiency of homology-directed repair (HDR)-based sequence integration at DNA double-strand breaks (DSBs) and a lack of understanding about DSB repair in mosquitoes. Innovative efforts to optimize HDR sequence integration by inhibiting non-homologous end joining or promoting HDR have been performed in mammalian systems, however many of these approaches have not been applied to mosquitoes. Here, we review some of the most relevant steps of DNA DSB repair choice and highlight promising approaches that influence this choice to enhance HDR in the context of mosquito gene editing.
Collapse
Affiliation(s)
- Micaela Finney
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Joseph Romanowski
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA.
| |
Collapse
|
128
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
129
|
Abate NG, Hendzel MJ. Heterogeneity of Organization of Subcompartments in DSB Repair Foci. Front Genet 2022; 13:887088. [PMID: 35923694 PMCID: PMC9340495 DOI: 10.3389/fgene.2022.887088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cells assemble compartments around DNA double-strand breaks (DSBs). The assembly of this compartment is dependent on the phosphorylation of histone H2AX, the binding of MDC1 to phosphorylated H2AX, and the assembly of downstream signaling and repair components. The decision on whether to use homologous recombination or nonhomologous end-joining repair depends on competition between 53BP1 and BRCA1. A major point of control appears to be DNA replication and associated changes in the epigenetic state. This includes dilution of histone H4 dimethylation and an increase in acetylation of lysine residues on H2A and H4 that impair 53BP1 binding. In this article, we examined more closely the spatial relationship between 53BP1 and BRCA1 within the cell cycle. We find that 53BP1 can associate with early S-phase replicated chromatin and that the relative concentration of BRCA1 in DSB-associated compartments correlates with increased BRCA1 nuclear abundance as cells progress into and through S phase. In most cases during S phase, both BRCA1 and 53BP1 are recruited to these compartments. This occurs for both IR-induced DSBs and breaks targeted to an integrated LacO array through a LacI-Fok1-mCherry fusion protein. Having established that the array system replicates this heterogeneity, we further examined the spatial relationship between DNA repair components. This enabled us to precisely locate the DNA containing the break and map other proteins relative to that DNA. We find evidence for at least three subcompartments. The damaged DNA, single-stranded DNA generated from end resection of the array, and nuclease CtIP all localized to the center of the compartment. BRCA1 and 53BP1 largely occupied discrete regions of the focus. One of BRCA1 or 53BP1 overlaps with the array, while the other is more peripherally located. The array-overlapping protein occupied a larger volume than the array, CtIP, or single-stranded DNA (ssDNA). Rad51 often occupied a much larger volume than the array itself and was sometimes observed to be depleted in the array volume where the ssDNA exclusively localizes. These results highlight the complexity of molecular compartmentalization within DSB repair compartments.
Collapse
|
130
|
De Marco Zompit M, Esteban MT, Mooser C, Adam S, Rossi SE, Jeanrenaud A, Leimbacher PA, Fink D, Shorrocks AMK, Blackford AN, Durocher D, Stucki M. The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nat Commun 2022; 13:4143. [PMID: 35842428 PMCID: PMC9288427 DOI: 10.1038/s41467-022-31865-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.
Collapse
Affiliation(s)
- Mara De Marco Zompit
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Mònica Torres Esteban
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Clémence Mooser
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Silvia Emma Rossi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alain Jeanrenaud
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Pia-Amata Leimbacher
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Daniel Fink
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland
| | - Ann-Marie K Shorrocks
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Manuel Stucki
- Department of Gynecology, University of Zurich and University Hospital Zurich, Schlieren, Switzerland.
| |
Collapse
|
131
|
Mekawy AS, Alaswad Z, Ibrahim AA, Mohamed AA, AlOkda A, Elserafy M. The consequences of viral infection on host DNA damage response: a focus on SARS-CoVs. J Genet Eng Biotechnol 2022; 20:104. [PMID: 35829826 PMCID: PMC9277982 DOI: 10.1186/s43141-022-00388-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022]
Abstract
DNA damage and genome instability in host cells are introduced by many viruses during their life cycles. Severe acute respiratory syndrome coronaviruses (SARS-CoVs) manipulation of DNA damage response (DDR) is an important area of research that is still understudied. Elucidation of the direct and indirect interactions between SARS-CoVs and DDR not only provides important insights into how the viruses exploit DDR pathways in host cells but also contributes to our understanding of their pathogenicity. Here, we present the known interactions of both SARS-CoV and SARS-CoV-2 with DDR pathways of the host cells, to further understand the consequences of infection on genome integrity. Since this area of research is in its early stages, we try to connect the unlinked dots to speculate and propose different consequences on DDR mechanisms. This review provides new research scopes that can be further investigated in vitro and in vivo, opening new avenues for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Zina Alaswad
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Aya A. Ibrahim
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Ahmed A. Mohamed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec Canada
- Metabolic Disorders and Complications Program and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec Canada
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578 Egypt
| |
Collapse
|
132
|
Ortiz M, Wabel E, Mitchell K, Horibata S. Mechanisms of chemotherapy resistance in ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:304-316. [PMID: 35800369 PMCID: PMC9255249 DOI: 10.20517/cdr.2021.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is one of the most lethal gynecologic cancers. The standard therapy for ovarian cancer has been the same for the past two decades, a combination treatment of platinum with paclitaxel. Recently, the FDA approved three new therapeutic drugs, two poly (ADP-ribose) polymerase inhibitors (olaparib and niraparib) and one vascular endothelial growth factor inhibitor (bevacizumab) as maintenance therapies for ovarian cancer. In this review, we summarize the resistance mechanisms for conventional platinum-based chemotherapy and for the newly FDA-approved drugs.
Collapse
Affiliation(s)
- Mylena Ortiz
- Precision Health Program, Michigan State University,766 Service Road, East Lansing, MI 48824, USA.,Authors contributed equally
| | - Emma Wabel
- Precision Health Program, Michigan State University,766 Service Road, East Lansing, MI 48824, USA.,Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.,Authors contributed equally
| | - Kerry Mitchell
- Precision Health Program, Michigan State University,766 Service Road, East Lansing, MI 48824, USA.,Authors contributed equally
| | - Sachi Horibata
- Precision Health Program, Michigan State University,766 Service Road, East Lansing, MI 48824, USA.,Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
133
|
Discovery of New 3,3-Diethylazetidine-2,4-dione Based Thiazoles as Nanomolar Human Neutrophil Elastase Inhibitors with Broad-Spectrum Antiproliferative Activity. Int J Mol Sci 2022; 23:ijms23147566. [PMID: 35886913 PMCID: PMC9321231 DOI: 10.3390/ijms23147566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023] Open
Abstract
A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a–3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02–44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59–9.86 μM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.
Collapse
|
134
|
Wang Y, Oda S, Suzuki MG, Mitani H, Aoki F. Cell cycle-dependent radiosensitivity in mouse zygotes. DNA Repair (Amst) 2022; 117:103370. [PMID: 35863142 DOI: 10.1016/j.dnarep.2022.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Mammalian zygotes are hypersensitive to radiation exposure compared with later-stage embryos and somatic cells, which may be due to an unusual DNA damage response (DDR). DNA damage checkpoints are an essential part of the DDR, allowing for faithful replication of cells. Although the DDR and radiosensitivity of somatic cells are dependent on the cell cycle phase, it remains largely unclear how the irradiation of zygotes at different phases affects cell cycle progression and preimplantation development. Here, mouse zygotes were irradiated with 10 Gy γ-rays at all four cell cycle phases. DNA damage checkpoints were activated by γ-irradiation at the G2 phase, but not at the G1, S, and M phases. The absence of DNA damage checkpoints at the G1 and M phases seems to be due to the low abundance of phosphorylated CHK2, which plays a key role in checkpoint activation in response to ionizing radiation. The cause of the inoperative S phase checkpoint may lie downstream of CHK2 activation. The inactive DNA damage checkpoints at the G1 and S phases contributed to micronucleus formation in the subsequent 2-cell stage, whereas irradiation at the M phase led to the highest incidence of chromatin bridges. The low developmental rates of embryos irradiated at the G1, S, and M phases suggest that embryos with these two types of chromatin abnormalities are prone to developmental failure. Taken together, these results suggest that the radiosensitivity of zygotes can be ascribed to a defective DDR at the G1, S, and M phases.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
135
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
136
|
Monga J, Suthar SK, Rohila D, Joseph A, Chauhan CS, Sharma M. (+)-Cyanidan-3-ol inhibits epidermoid squamous cell carcinoma growth via inhibiting AKT/mTOR signaling through modulating CIP2A-PP2A axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154116. [PMID: 35525235 DOI: 10.1016/j.phymed.2022.154116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Despite recent advances in the treatment of squamous cell skin cancer (SCSC), the disease persists, and treatment resistance develops. Thus, identifying new targets and developing new therapeutic approaches showing low vulnerability to drug resistance is highly needed. PURPOSE This study aimed to reveal a novel targeted phytotherapeutic strategy for SCSC treatment alone or in combination with standard targeted anticancer molecules. STUDY DESIGN A library of natural products was utilized to identify molecules that inhibit the growth of skin cancer cells. The anticancer potential of the selected compound was evaluated in human skin squamous carcinoma models, in vitro and in vivo. A comprehensive ingenuity pathway analysis (IPA) strategy and molecular biology technology was adopted to investigate the therapeutic mechanisms in human SCSC. METHODS The Matrigel invasion chamber, foci formation and soft agar colony formation assays were employed to study the cells invasion and migration potential in vitro. In vivo antitumor effects were evaluated in DMBA/TPA-induced skin papilloma and A431 human skin squamous carcinoma xenograft tumor models. An integrative IPA was employed to identify mechanisms and protein targets in human SCSC.Compounds synergies were determined by the bliss model and evaluated using human SCSC cell lines and xenograft tumors. Histological staining, immunofluorescence imaging, real-time PCR, Western blots, and flow cytometric analyses were employed to analyze apoptosis and cell signaling mechanisms. RESULTS We identified (+)-cyanidan-3-ol (CD-3) as a selective compound for inhibiting the growth of SCSC cell lines. CD-3 inhibited tumor growth and burden without apparent toxicity and prolonged the survival of tumor-bearing mice. CD-3 inhibitory effects on SCSC growth are mediated via cell cycle arrest and caspase-dependent apoptosis induction. Mechanistic studies showed that CD-3 activates PP2A via inhibiting CIP2A and produces tumor growth inhibitory effects via promoting dephosphorylation of oncogenic AKT/mTOR signaling proteins in SCSC cells and xenograft tumors in a PP2A dependent manner. Furthermore, the combination of CD-3 and mTOR inhibitors (mTORi) synergistically reduced oncogenic phenotypes. CONCLUSIONS Our study suggests that PP2A activation is an effective strategy for SCSC treatment and the CD-3 and mTORi combination may serve as a promising treatment for SCSC.
Collapse
Affiliation(s)
- Jitender Monga
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Sharad Kumar Suthar
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Deepak Rohila
- Department of Immunology, Zhejiang University, Hangzhou 310058, China
| | - Alex Joseph
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Chetan Singh Chauhan
- Bhupal Nobles' Institue of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur 313001, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India; College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana 133203, India.
| |
Collapse
|
137
|
Chen Z, Tyler JK. The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Front Cell Dev Biol 2022; 10:909696. [PMID: 35757003 PMCID: PMC9213757 DOI: 10.3389/fcell.2022.909696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs), the most deleterious DNA lesions, are primarily repaired by two pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ), the choice of which is largely dependent on cell cycle phase and the local chromatin landscape. Recent studies have revealed that post-translational modifications on histones play pivotal roles in regulating DSB repair pathways including repair pathway choice. In this review, we present our current understanding of how these DSB repair pathways are employed in various chromatin landscapes to safeguard genomic integrity. We place an emphasis on the impact of different histone post-translational modifications, characteristic of euchromatin or heterochromatin regions, on DSB repair pathway choice. We discuss the potential roles of damage-induced chromatin modifications in the maintenance of genome and epigenome integrity. Finally, we discuss how RNA transcripts from the vicinity of DSBs at actively transcribed regions also regulate DSB repair pathway choice.
Collapse
Affiliation(s)
- Zulong Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| |
Collapse
|
138
|
Lainšček D, Forstnerič V, Mikolič V, Malenšek Š, Pečan P, Benčina M, Sever M, Podgornik H, Jerala R. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat Commun 2022; 13:3604. [PMID: 35739111 PMCID: PMC9226073 DOI: 10.1038/s41467-022-31386-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The CRISPR/Cas system has emerged as a powerful and versatile genome engineering tool, revolutionizing biological and biomedical sciences, where an improvement of efficiency could have a strong impact. Here we present a strategy to enhance gene editing based on the concerted action of Cas9 and an exonuclease. Non-covalent recruitment of exonuclease to Cas9/gRNA complex via genetically encoded coiled-coil based domains, termed CCExo, recruited the exonuclease to the cleavage site and robustly increased gene knock-out due to progressive DNA strand recession at the cleavage site, causing decreased re-ligation of the nonedited DNA. CCExo exhibited increased deletion size and enhanced gene inactivation efficiency in the context of several DNA targets, gRNA selection, Cas variants, tested cell lines and type of delivery. Targeting a sequence-specific oncogenic chromosomal translocation using CCExo in cells of chronic myelogenous leukemia patients and in an animal model led to the reduction or elimination of cancer, establishing it as a highly specific tool for treating CML and potentially other appropriate diseases with genetic etiology.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
| | - Veronika Mikolič
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Matjaž Sever
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, 1000, Slovenia
| | - Helena Podgornik
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, 1000, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia.
| |
Collapse
|
139
|
Zhang Q, Gao L, Huang S, Liang Y, Hu J, Zhang Y, Wei S, Hu X. Cocktail of Astragalus Membranaceus and Radix Trichosanthis Suppresses Melanoma Tumor Growth and Cell Migration Through Regulation of Akt-Related Signaling Pathway. Front Pharmacol 2022; 13:880215. [PMID: 35721145 PMCID: PMC9198299 DOI: 10.3389/fphar.2022.880215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Malignant melanoma has high morbidity and mortality and limited treatment options. Traditional Chinese medicine has great potential in the clinical therapy of cancer, and the theory of compatibility is one core content of Chinese medical theory. Astragalus Membranaceus and Radix Trichosanthis are clinically effective for the treatment of various cancers. Methods: We verified the effects of AMD, RTD, and their “cocktail” on melanoma model in vitro and in vivo and the mechanism of its effect on the Akt-related signaling pathway by network pharmacology, MTT, flow cytometry, LDH, SOD, MDA assay, and Western blot. Results: The network pharmacology analysis indicated that the PI3K-Akt pathway plays a crucial role in the treatment of malignant melanoma with these two herbs. In addition, AMD, RTD, and their “cocktail” could inhibit the proliferation of A375 cells by reducing the survival rate in a concentration-dependent manner and by regulating the cell cycle, and the compatibility of two herbs also could inhibit melanoma growth. They could, respectively, induce apoptosis and inhibit migration by affecting the expression of Bcl-2, Bax, p53, snail, E-cadherin, and N-cadherin. Furthermore, LDH activity was decreased, while SOD increased and MDA reduced. The factors of the Akt-related signaling pathway, Akt and p-Akt, were decreased. Conclusion: This study showed that AMD, RTD, and their “cocktail” could regulate cell proliferation, apoptosis, and metastasis in A375 cells through the suppression of the Akt-related signaling pathway, and the “cocktail” groups had detoxification and additive effects. The best compatibility of the two herbs also can inhibit tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Qiuyan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Songli Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxi Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyan Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
140
|
Kath J, Du W, Pruene A, Braun T, Thommandru B, Turk R, Sturgeon ML, Kurgan GL, Amini L, Stein M, Zittel T, Martini S, Ostendorf L, Wilhelm A, Akyüz L, Rehm A, Höpken UE, Pruß A, Künkele A, Jacobi AM, Volk HD, Schmueck-Henneresse M, Stripecke R, Reinke P, Wagner DL. Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol Ther Methods Clin Dev 2022; 25:311-330. [PMID: 35573047 PMCID: PMC9062427 DOI: 10.1016/j.omtm.2022.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor (CAR) redirected T cells are potent therapeutic options against hematological malignancies. The current dominant manufacturing approach for CAR T cells depends on retroviral transduction. With the advent of gene editing, insertion of a CD19-CAR into the T cell receptor (TCR) alpha constant (TRAC) locus using adeno-associated viruses for gene transfer was demonstrated, and these CD19-CAR T cells showed improved functionality over their retrovirally transduced counterparts. However, clinical-grade production of viruses is complex and associated with extensive costs. Here, we optimized a virus-free genome-editing method for efficient CAR insertion into the TRAC locus of primary human T cells via nuclease-assisted homology-directed repair (HDR) using CRISPR-Cas and double-stranded template DNA (dsDNA). We evaluated DNA-sensor inhibition and HDR enhancement as two pharmacological interventions to improve cell viability and relative CAR knockin rates, respectively. While the toxicity of transfected dsDNA was not fully prevented, the combination of both interventions significantly increased CAR knockin rates and CAR T cell yield. Resulting TRAC-replaced CD19-CAR T cells showed antigen-specific cytotoxicity and cytokine production in vitro and slowed leukemia progression in a xenograft mouse model. Amplicon sequencing did not reveal significant indel formation at potential off-target sites with or without exposure to DNA-repair-modulating small molecules. With TRAC-integrated CAR+ T cell frequencies exceeding 50%, this study opens new perspectives to exploit pharmacological interventions to improve non-viral gene editing in T cells.
Collapse
Affiliation(s)
- Jonas Kath
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alina Pruene
- Regenerative Immune Therapies Applied, Clinics of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Region, Germany
| | - Tobias Braun
- Regenerative Immune Therapies Applied, Clinics of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Region, Germany
| | | | - Rolf Turk
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | | | - Gavin L. Kurgan
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tatiana Zittel
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefania Martini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lennard Ostendorf
- Department of Nephrology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | | | | | - Armin Rehm
- Department of Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Uta E. Höpken
- Department of Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
| | | | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Renata Stripecke
- Regenerative Immune Therapies Applied, Clinics of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Region, Germany
- Clinic I for Internal Medicine, Cancer Center Cologne Essen, University Hospital Cologne, Cologne, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dimitrios L. Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Corresponding author Dimitrios Laurin Wagner, MD, PhD, Berlin Center for Advanced Therapies (BeCAT) BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
141
|
Sprenger H, Kreuzer K, Alarcan J, Herrmann K, Buchmüller J, Marx-Stoelting P, Braeuning A. Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin. Food Chem Toxicol 2022; 166:113212. [PMID: 35690182 PMCID: PMC9339662 DOI: 10.1016/j.fct.2022.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
Toxicological risk assessment is essential in the evaluation and authorization of different classes of chemical substances. Genotoxicity and mutagenicity testing are of highest priority and rely on established in vitro systems with bacterial and mammalian cells, sometimes followed by in vivo testing using rodent animal models. Transcriptomic approaches have recently also shown their value to determine transcript signatures specific for genotoxicity. Here, we studied how transcriptomic data, in combination with in vitro tests with human cells, can be used for the identification of genotoxic properties of test compounds. To this end, we used liver samples from a 28-day oral toxicity study in rats with the pesticidal active substances imazalil, thiacloprid, and clothianidin, a neonicotinoid-type insecticide with, amongst others, known hepatotoxic properties. Transcriptomic results were bioinformatically evaluated and pointed towards a genotoxic potential of clothianidin. In vitro Comet and γH2AX assays in human HepaRG hepatoma cells, complemented by in silico analyses of mutagenicity, were conducted as follow-up experiments to check if the genotoxicity alert from the transcriptomic study is in line with results from a battery of guideline genotoxicity studies. Our results illustrate the combined use of toxicogenomics, classic toxicological data and new approach methods in risk assessment. By means of a weight-of-evidence decision, we conclude that clothianidin does most likely not pose genotoxic risks to humans. Analysis of clothianidin genotoxicity in silico, in vitro and in vivo. Application of a toxicogenomics approach to analyze genotoxicity. Weight-of-evidence decision supports classification as “non-genotoxic”.
Collapse
Affiliation(s)
- Heike Sprenger
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Katrin Kreuzer
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Kristin Herrmann
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Julia Buchmüller
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany.
| |
Collapse
|
142
|
Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Cancers (Basel) 2022; 14:cancers14112804. [PMID: 35681784 PMCID: PMC9179506 DOI: 10.3390/cancers14112804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increasingly wide use of PARP inhibitors in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2 has highlighted the problem of resistance to therapy. This review summarises the complex interactions between PARP1, cell cycle regulation, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers that could explain the development of primary or secondary resistance to PARP inhibitors. Abstract PARP1 enzyme plays an important role in DNA damage recognition and signalling. PARP inhibitors are approved in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2, where PARP1 inhibition results mainly in synthetic lethality in cells with impaired homologous recombination. However, the increasingly wide use of PARP inhibitors in clinical practice has highlighted the problem of resistance to therapy. Several different mechanisms of resistance have been proposed, although only the acquisition of secondary mutations in BRCA1/2 has been clinically proved. The aim of this review is to outline the key molecular findings that could explain the development of primary or secondary resistance to PARP inhibitors, analysing the complex interactions between PARP1, cell cycle regulation, PI3K/AKT signalling, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers.
Collapse
|
143
|
Kuwayama R, Suzuki K, Nakamura J, Aizawa E, Yoshioka Y, Ikawa M, Nabatame S, Inoue KI, Shimmyo Y, Ozono K, Kinoshita T, Murakami Y. Establishment of mouse model of inherited PIGO deficiency and therapeutic potential of AAV-based gene therapy. Nat Commun 2022; 13:3107. [PMID: 35661110 PMCID: PMC9166810 DOI: 10.1038/s41467-022-30847-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited glycosylphosphatidylinositol (GPI) deficiency (IGD) is caused by mutations in GPI biosynthesis genes. The mechanisms of its systemic, especially neurological, symptoms are not clarified and fundamental therapy has not been established. Here, we report establishment of mouse models of IGD caused by PIGO mutations as well as development of effective gene therapy. As the clinical manifestations of IGD are systemic and lifelong lasting, we treated the mice with adeno-associated virus for homology-independent knock-in as well as extra-chromosomal expression of Pigo cDNA. Significant amelioration of neuronal phenotypes and growth defect was achieved, opening a new avenue for curing IGDs.
Collapse
Affiliation(s)
- Ryoko Kuwayama
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichiro Suzuki
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Graduate School of Engineering Science, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Jun Nakamura
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT) and Osaka University, Osaka, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Kyoto, Japan
| | | | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taroh Kinoshita
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
144
|
Luo L, Keyomarsi K. PARP inhibitors as single agents and in combination therapy: the most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers. Expert Opin Investig Drugs 2022; 31:607-631. [PMID: 35435784 PMCID: PMC9296104 DOI: 10.1080/13543784.2022.2067527] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase inhibitors (PARPis) are an exciting class of agents that have shown efficacy, particularly for BRCA-mutant triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC). However, most patients who receive PARPi as their standard of care therapy inevitably develop resistance and this underscores the need to identify additional targets that can circumvent such resistance. Combination treatment strategies have been developed in preclinical and clinical studies to address the challenges of efficacy and resistance. AREAS COVERED This review examines completed or ongoing clinical trials of PARPi mono- and combination therapies. PARPi monotherapy in HER2 negative breast (HR+ and TNBC subtypes) and ovarian cancer is a focal point. The authors propose potential strategies that might overcome resistance to PARPi and discuss key questions and future directions. EXPERT OPINION While the advent of PARPis has significantly improved the treatment of tumors with defects in DNA damage and repair pathways, careful patient selection will be essential to enhance these treatments. The identification of molecular biomarkers to predict disease response and progression is an endeavor.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
145
|
Symbiosis with Dinoflagellates Alters Cnidarian Cell-Cycle Gene Expression. Cell Microbiol 2022. [DOI: 10.1155/2022/3330160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the cnidarian-dinoflagellate symbiosis, hosts show altered expression of genes involved in growth and proliferation when in the symbiotic state, but little is known about the molecular mechanisms that underlie the host’s altered growth rate. Using tissue-specific transcriptomics, we determined how symbiosis affects expression of cell cycle-associated genes, in the model symbiotic cnidarian Exaiptasia diaphana (Aiptasia). The presence of symbionts within the gastrodermis elicited cell-cycle arrest in the G1 phase in a larger proportion of host cells compared with the aposymbiotic gastrodermis. The symbiotic gastrodermis also showed a reduction in the amount of cells synthesizing their DNA and progressing through mitosis when compared with the aposymbiotic gastrodermis. Host apoptotic inhibitors (Mdm2) were elevated, while host apoptotic sensitizers (c-Myc) were depressed, in the symbiotic gastrodermis when compared with the aposymbiotic gastrodermis and epidermis of symbiotic anemones, respectively. This indicates that the presence of symbionts negatively regulates host apoptosis, possibly contributing to their persistence within the host. Transcripts (ATM/ATR) associated with DNA damage were also downregulated in symbiotic gastrodermal tissues. In epidermal cells, a single gene (Mob1) required for mitotic completion was upregulated in symbiotic compared with aposymbiotic anemones, suggesting that the presence of symbionts in the gastrodermis stimulates host cell division in the epidermis. To further corroborate this hypothesis, we performed microscopic analysis using an S-phase indicator (EdU), allowing us to evaluate cell cycling in host cells. Our results confirmed that there were significantly more proliferating host cells in both the gastrodermis and epidermis in the symbiotic state compared with the aposymbiotic state. Furthermore, when comparing between tissue layers in the presence of symbionts, the epidermis had significantly more proliferating host cells than the symbiont-containing gastrodermis. These results contribute to our understanding of the influence of symbionts on the mechanisms of cnidarian cell proliferation and mechanisms associated with symbiont maintenance.
Collapse
|
146
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
147
|
MRNIP condensates promote DNA double-strand break sensing and end resection. Nat Commun 2022; 13:2638. [PMID: 35551189 PMCID: PMC9098523 DOI: 10.1038/s41467-022-30303-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
The rapid recognition of DNA double-strand breaks (DSBs) by the MRE11/RAD50/NBS1 (MRN) complex is critical for the initiation of DNA damage response and DSB end resection. Here, we show that MRN complex interacting protein (MRNIP) forms liquid-like condensates to promote homologous recombination-mediated DSB repair. The intrinsically disordered region is essential for MRNIP condensate formation. Mechanically, the MRN complex is compartmentalized and concentrated into MRNIP condensates in the nucleus. After DSB formation, MRNIP condensates move to the damaged DNA rapidly to accelerate the binding of DSB by the concentrated MRN complex, therefore inducing the autophosphorylation of ATM and subsequent activation of DNA damage response signaling. Meanwhile, MRNIP condensates-enhanced MRN complex loading further promotes DSB end resection. In addition, data from xenograft models and clinical samples confirm a correlation between MRNIP and radioresistance. Together, these results reveal an important role of MRNIP phase separation in DSB response and the MRN complex-mediated DSB end resection. The MRN complex is a critical sensor and processor of DNA double-strand breaks (DSBs). Here, the authors show that MRNIP forms liquid-like condensates to accelerate the MRN-mediated sensing and end resection of DSB, thereby promoting DSB repair.
Collapse
|
148
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
149
|
Mirman Z, Sharma K, Carroll TS, de Lange T. Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4 WDR70. DNA Repair (Amst) 2022; 113:103320. [PMID: 35316728 PMCID: PMC9474743 DOI: 10.1016/j.dnarep.2022.103320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Keshav Sharma
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
150
|
Kralemann LEM, de Pater S, Shen H, Kloet SL, van Schendel R, Hooykaas PJJ, Tijsterman M. Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants. NATURE PLANTS 2022; 8:526-534. [PMID: 35534719 DOI: 10.1038/s41477-022-01147-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA 5' end. Different from capture of the 3' end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5' attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5' end-blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5' end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3' capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant's own DNA repair machineries to transform it.
Collapse
Affiliation(s)
| | - Sylvia de Pater
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Susan L Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|