101
|
Sun Z, Unruean P, Aoki H, Kitiyanan B, Nomura K. Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zelin Sun
- Department of Chemistry, Tokyo Metropolitan University, 1-1 minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Palawat Unruean
- The Petroleum and Petrochemicals College, Chulalongkorn University, Soi Chulalongkorn 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Hirotaka Aoki
- Department of Chemistry, Tokyo Metropolitan University, 1-1 minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Boonyarach Kitiyanan
- The Petroleum and Petrochemicals College, Chulalongkorn University, Soi Chulalongkorn 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo Metropolitan University, 1-1 minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
102
|
Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Hirao A, Ree M. Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics. Polymers (Basel) 2020; 12:E1894. [PMID: 32842480 PMCID: PMC7563263 DOI: 10.3390/polym12091894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022] Open
Abstract
Star-shaped polymers are very attractive because of their potential application ability in various technological areas due to their unique molecular topology. Thus, information on the molecular structure and chain characteristics of star polymers is essential for gaining insights into their properties and finding better applications. In this study, we report molecular structure details and chain characteristics of 17-armed polystyrenes in various molecular weights: 17-Arm(2k)-PS, 17-Arm(6k)-PS, 17-Arm(10k)-PS, and 17-Arm(20k)-PS. Quantitative X-ray scattering analysis using synchrotron radiation sources was conducted for this series of star polymers in two different solvents (cyclohexane and tetrahydrofuran), providing a comprehensive set of three-dimensional structure parameters, including radial density profiles and chain characteristics. Some of the structural parameters were crosschecked by qualitative scattering analysis and dynamic light scattering. They all were found to have ellipsoidal shapes consisting of a core and a fuzzy shell; such ellipse nature is originated from the dendritic core. In particular, the fraction of the fuzzy shell part enabling to store desired chemicals or agents was confirmed to be exceptionally high in cyclohexane, ranging from 74 to 81%; higher-molecular-weight star polymer gives a larger fraction of the fuzzy shell. The largest fraction (81%) of the fuzzy shell was significantly reduced to 52% in tetrahydrofuran; in contrast, the lowest fraction (19%) of core was increased to 48%. These selective shell contraction and core expansion can be useful as a key mechanism in various applications. Overall, the 17-armed polystyrenes of this study are suitable for applications in various technological fields including smart deliveries of drugs, genes, biomedical imaging agents, and other desired chemicals.
Collapse
Affiliation(s)
- Jia Chyi Wong
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Li Xiang
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Kuan Hoon Ngoi
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Akira Hirao
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Engineering, Tokyo Institute of Technology, 2-12-1-S1-13, Ohokayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Moonhor Ree
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| |
Collapse
|
103
|
Flejszar M, Chmielarz P, Wolski K, Grześ G, Zapotoczny S. Polymer Brushes via Surface-Initiated Electrochemically Mediated ATRP: Role of a Sacrificial Initiator in Polymerization of Acrylates on Silicon Substrates. MATERIALS 2020; 13:ma13163559. [PMID: 32806681 PMCID: PMC7475859 DOI: 10.3390/ma13163559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
Abstract
Silicon wafers as semiconductors are essential components of integrated circuits in electronic devices. For this reason, modification of the silicon surface is an important factor in the manufacturing of new hybrid materials applied in micro- and nanoelectronics. Herein, copolymer brushes of hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) and hydrophobic poly(tert-butyl acrylate) (PtBA) were grafted from silicon wafers via simplified electrochemically mediated atom transfer radical polymerization (seATRP) according to a surface-initiated approach. The syntheses of PHEA-b-PtBA copolymers were carried out with diminished catalytic complex concentration (successively 25 and 6 ppm of Cu). In order to optimize the reaction condition, the effect of the addition of a supporting electrolyte was investigated. A controlled increase in PHEA brush thickness was confirmed by atomic force microscopy (AFM). Various other parameters including contact angles and free surface energy (FSE) for the modified silicon wafer were presented. Furthermore, the effect of the presence of a sacrificial initiator in solution on the thickness of the grafted brushes was reported. Successfully fabricated inorganic–organic hybrid nanomaterials show potential application in biomedicine and microelectronics devices, e.g., biosensors.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| |
Collapse
|
104
|
Cho HY, Bielawski CW. Atom Transfer Radical Polymerization in the Solid-State. Angew Chem Int Ed Engl 2020; 59:13929-13935. [PMID: 32419353 PMCID: PMC7496184 DOI: 10.1002/anie.202005021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Poly(2-vinylnaphthalene) was synthesized in the solid-state by ball milling a mixture of the corresponding monomer, a Cu-based catalyst, and an activated haloalkane as the polymerization initiator. Various reaction conditions, including milling time, milling frequency and added reductant to accelerate the polymerization were optimized. Monomer conversion and the evolution of polymer molecular weight were monitored over time using 1 H NMR spectroscopy and size exclusion chromatography, respectively, and linear correlations were observed. While the polymer molecular weight was effectively tuned by changing the initial monomer-to-initiator ratio, the experimentally measured values were found to be lower than their theoretical values. The difference was attributed to premature mechanical decomposition and modeled to accurately account for the decrement. Random copolymers of two monomers with orthogonal solubilities, sodium styrene sulfonate and 2-vinylnaphthalene, were also synthesized in the solid-state. Inspection of the data revealed that the solid-state polymerization reaction was controlled, followed a mechanism similar to that described for solution-state atom transfer radical polymerizations, and may be used to prepare polymers that are inaccessible via solution-state methods.
Collapse
Affiliation(s)
- Hong Y. Cho
- Center for Multidimensional Carbon Materials (CMCM)Institute for Basic Science (IBS)Ulsan44919Republic of Korea
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM)Institute for Basic Science (IBS)Ulsan44919Republic of Korea
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Department of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
105
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
106
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
107
|
Ali N, Bilal M, Khan A, Ali F, Yang Y, Khan M, Adil SF, Iqbal HM. Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
108
|
Wang Y, Nguyen M, Gildersleeve AJ. Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers (Basel) 2020; 12:E1706. [PMID: 32751403 PMCID: PMC7463969 DOI: 10.3390/polym12081706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Modern polymeric material design often involves precise tailoring of molecular/supramolecular structures which is also called macromolecular engineering. The available tools for molecular structure tailoring are controlled/living polymerization methods, click chemistry, supramolecular polymerization, self-assembly, among others. When polymeric materials with complex molecular architectures are targeted, it usually takes several steps of reactions to obtain the aimed product. Concurrent polymerization methods, i.e., two or more reaction mechanisms, steps, or procedures take place simultaneously instead of sequentially, can significantly reduce the complexity of the reaction procedure or provide special molecular architectures that would be otherwise very difficult to synthesize. Atom transfer radical polymerization, ATRP, has been widely applied in concurrent polymerization reactions and resulted in improved efficiency in macromolecular engineering. This perspective summarizes reported studies employing concurrent polymerization methods with ATRP as one of the reaction components and highlights future research directions in this area.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
- Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Mary Nguyen
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| | - Amanda J. Gildersleeve
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| |
Collapse
|
109
|
Cho HY, Bielawski CW. Atom Transfer Radical Polymerization in the Solid‐State. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Y. Cho
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
110
|
Activation and Deactivation of Chain-transfer Agent in Controlled Radical Polymerization by Oxygen Initiation and Regulation. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2441-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
111
|
The Molecular and Macromolecular Level of Carbon Nanotube Modification Via Diazonium Chemistry: Emphasis on the 2010s Years. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00144-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
112
|
|
113
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020; 59:13597-13601. [DOI: 10.1002/anie.202005366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
114
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
115
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000776. [PMID: 33071711 PMCID: PMC7567402 DOI: 10.1002/adfm.202000776] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
116
|
Cruz TR, Silva EA, Oliveira DP, Martins DM, Gois PD, Machado AE, Maia PIS, Goi BE, Lima‐Neto BS, Carvalho‐Jr VP. Dual catalytic performance of arene‐ruthenium amine complexes for norbornene ring‐opening metathesis and methyl methacrylate atom‐transfer radical polymerizations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thais R. Cruz
- Faculdade de Ciências e TecnologiaUNESP – Univ. Estadual Paulista CEP 19060‐900 Presidente Prudente SP Brazil
| | - Eliada A. Silva
- Instituto de Química de São CarlosUniversidade de São Paulo CEP 13560‐970 São Carlos SP Brazil
| | - Douglas P. Oliveira
- Faculdade de Ciências e TecnologiaUNESP – Univ. Estadual Paulista CEP 19060‐900 Presidente Prudente SP Brazil
| | - Daniele M. Martins
- Instituto de Química de São CarlosUniversidade de São Paulo CEP 13560‐970 São Carlos SP Brazil
| | - Patrik D.S. Gois
- Faculdade de Ciências e TecnologiaUNESP – Univ. Estadual Paulista CEP 19060‐900 Presidente Prudente SP Brazil
| | - Antonio E.H. Machado
- Instituto de QuímicaUniversidade Federal de Uberlândia P.O. Box 593 Uberlândia 38400‐089 Minas Gerais Brazil
| | - Pedro Ivo S. Maia
- Departamento de QuímicaUniversidade Federal do Triangulo Mineiro CEP 38025‐440 Uberaba MG Brazil
| | - Beatriz E. Goi
- Faculdade de Ciências e TecnologiaUNESP – Univ. Estadual Paulista CEP 19060‐900 Presidente Prudente SP Brazil
| | - Benedito S. Lima‐Neto
- Instituto de Química de São CarlosUniversidade de São Paulo CEP 13560‐970 São Carlos SP Brazil
| | - Valdemiro P. Carvalho‐Jr
- Faculdade de Ciências e TecnologiaUNESP – Univ. Estadual Paulista CEP 19060‐900 Presidente Prudente SP Brazil
| |
Collapse
|
117
|
Bhadauriya S, Zhang J, Lee J, Bockstaller MR, Karim A, Sheridan RJ, Stafford CM. Nanoscale Pattern Decay Monitored Line by Line via In Situ Heated Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15943-15950. [PMID: 32160455 PMCID: PMC7654702 DOI: 10.1021/acsami.0c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We combine in situ heated atomic force microscopy (AFM) with automated line-by-line spectral analysis to quantify the relaxation or decay phenomenon of nanopatterned composite polymer films above the glass-transition temperature of the composite material. This approach enables assessment of pattern fidelity with a temporal resolution of ≈1 s, providing the necessary data density to confidently capture the short-time relaxation processes inaccessible to conventional ex situ measurements. Specifically, we studied the thermal decay of nanopatterned poly(methyl methacrylate) (PMMA) and PMMA nanocomposite films containing unmodified and PMMA-grafted silica nanoparticles (SiO2 NP) of varying concentrations and film thicknesses using this new approach. Features imprinted on neat PMMA films were seen to relax at least an order of magnitude faster than the NP-filled films at decay temperatures above the glass transition of the PMMA matrix. It was also seen that patterned films with the lowest residual thickness (34 nm) filled with unmodified SiO2 NP decayed the slowest. The effect of nanoparticle additive was almost negligible in reinforcing the patterned features for films with the highest residual thickness (257 nm). Our in situ pattern decay measurement and the subsequent line-by-line spectral analysis enabled the investigation of various parameters affecting the pattern decay such as the underlying residual thickness, type of additive system, and temperature in a timely and efficient manner.
Collapse
Affiliation(s)
- Sonal Bhadauriya
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Jianan Zhang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaejun Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alamgir Karim
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Richard J. Sheridan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M. Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
118
|
Barsbay M, Güven O. Nanostructuring of polymers by controlling of ionizing radiation-induced free radical polymerization, copolymerization, grafting and crosslinking by RAFT mechanism. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
119
|
Gao Y, Zhou D, Lyu J, A S, Xu Q, Newland B, Matyjaszewski K, Tai H, Wang W. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nat Rev Chem 2020; 4:194-212. [PMID: 37128047 DOI: 10.1038/s41570-020-0170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
The construction of complex polymer architectures with well-defined topology, composition and functionality has been extensively explored as the molecular basis for the development of modern polymer materials. The unique reaction kinetics of free-radical polymerization leads to the concurrent formation of crosslinks between polymer chains and rings within an individual chain and, thus, free-radical (co)polymerization of multivinyl monomers provides a facile method to manipulate chain topology and functionality. Regulating the relative contribution of these intermolecular and intramolecular chain-propagation reactions is the key to the construction of architecturally complex polymers. This can be achieved through the design of new monomers or by spatially or kinetically controlling crosslinking reactions. These mechanisms enable the synthesis of various polymer architectures, including linear, cyclized, branched and star polymer chains, as well as crosslinked networks. In this Review, we highlight some of the contemporary experimental strategies to prepare complex polymer architectures using radical polymerization of multivinyl monomers. We also examine the recent development of characterization techniques for sub-chain connections in such complex macromolecules. Finally, we discuss how these crosslinking reactions have been engineered to generate advanced polymer materials for use in a variety of biomedical applications.
Collapse
|
120
|
Carbonell C, Valles D, Wong AM, Carlini AS, Touve MA, Korpanty J, Gianneschi NC, Braunschweig AB. Polymer brush hypersurface photolithography. Nat Commun 2020; 11:1244. [PMID: 32144265 PMCID: PMC7060193 DOI: 10.1038/s41467-020-14990-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
Polymer brush patterns have a central role in established and emerging research disciplines, from microarrays and smart surfaces to tissue engineering. The properties of these patterned surfaces are dependent on monomer composition, polymer height, and brush distribution across the surface. No current lithographic method, however, is capable of adjusting each of these variables independently and with micrometer-scale resolution. Here we report a technique termed Polymer Brush Hypersurface Photolithography, which produces polymeric pixels by combining a digital micromirror device (DMD), an air-free reaction chamber, and microfluidics to independently control monomer composition and polymer height of each pixel. The printer capabilities are demonstrated by preparing patterns from combinatorial polymer and block copolymer brushes. Images from polymeric pixels are created using the light reflected from a DMD to photochemically initiate atom-transfer radical polymerization from initiators immobilized on Si/SiO2 wafers. Patterning is combined with high-throughput analysis of grafted-from polymerization kinetics, accelerating reaction discovery, and optimization of polymer coatings.
Collapse
Affiliation(s)
- Carlos Carbonell
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Daniel Valles
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Alexa M Wong
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Andrea S Carlini
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Mollie A Touve
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam B Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA.
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.
| |
Collapse
|
121
|
Park C, Heo J, Lee J, Kim T, Kim SY. Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO 2MA and OEGMA. Polymers (Basel) 2020; 12:polym12020284. [PMID: 32024115 PMCID: PMC7077463 DOI: 10.3390/polym12020284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Here we report the dual light- and thermo-responsive behavior of well-defined rod-coil block copolymers composed of an azobenzene unit, 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA). Azobenzene-containing rigid rod blocks prepared by chain growth condensation polymerization of the azobenzene containing monomer were used as a macroinitiator of atom transfer radical polymerization (ATRP) after attaching an α-bromoisobutyryl group as an end group. Synthesis of well-defined rod-coil block copolymers with different coil block lengths was achieved by copolymerization of MEO2MA and OEGMA monomers. The synthesized polymers exhibited amphiphilic properties and polymeric micelles were formed in aqueous solution. The light-responsive behaviors of azobenzene moieties, photoisomerization by irradiation of light, and thermo-responsive behaviors of P(MEO2MA-co-OEGMA) coil blocks, aggregation by increment of temperature over lower critical solution temperature, were investigated. A dual stimuli-responsive behavior of the rod-coil block copolymers was observed when exposed to light and heat.
Collapse
|
122
|
Wang Y, Clay A, Nguyen M. ATRP by continuous feeding of activators: Limiting the end-group loss in the polymerizations of methyl methacrylate and styrene. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
123
|
Kim J, Jung HY, Park MJ. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02293] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jihoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Ha Young Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
124
|
Zaborniak I, Chmielarz P, Matyjaszewski K. Synthesis of Riboflavin‐Based Macromolecules through Low ppm ATRP in Aqueous Media. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Paweł Chmielarz
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
125
|
Zhang X, Hu S, Ma Q, Liao S. Visible light-mediated ring-opening polymerization of lactones based on the excited state acidity of ESPT molecules. Polym Chem 2020. [DOI: 10.1039/d0py00369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A visible light-regulated ring-opening polymerization of lactones has been developed based on the excited state acidity of ESPT molecules.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Siping Hu
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
126
|
Tsutsuba T, Sogawa H, Takata T. Polyester nitrile N-oxides for click reactions synthesized with nitroalkane precursors as the initiator. Polym Chem 2020. [DOI: 10.1039/d0py00278j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyesters that have a nitrile N-oxide function at the initiation end were prepared and applied to a catalyst-free click reaction for star polymer synthesis.
Collapse
Affiliation(s)
- Toyokazu Tsutsuba
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology 4259 Nagatsuta
- Yokohama 226-8503
- Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology 4259 Nagatsuta
- Yokohama 226-8503
- Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology 4259 Nagatsuta
- Yokohama 226-8503
- Japan
- JST-CREST
| |
Collapse
|
127
|
Ramu A, Rajendrakumar K. Natural catalyst mediated ARGET and SARA ATRP of N-isopropylacrylamide and methyl acrylate. Polym Chem 2020. [DOI: 10.1039/c9py01770d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An extract prepared from inexpensive, drumstick leaves having natural transition metals in ppm levels was exploited as a catalyst for a well-controlled synthesis of poly(N-isopropylacrylamide) and poly(methyl acrylate).
Collapse
Affiliation(s)
- Arumugam Ramu
- Chemistry Division
- School of Advanced Sciences
- VIT Chennai
- India
| | | |
Collapse
|
128
|
Sakakibara K, Wakiuchi A, Murata Y, Tsujii Y. Precise synthesis of double-armed polymers with fullerene C 60 at the junction for controlled architecture. Polym Chem 2020. [DOI: 10.1039/d0py00458h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first successful synthesis of the polymer-attached 1,2-hydrofullerene and the double-armed 1,4-bisadducts in a regioselective manner via controlled radical reactions.
Collapse
Affiliation(s)
- Keita Sakakibara
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Araki Wakiuchi
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Yasujiro Murata
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Yoshinobu Tsujii
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| |
Collapse
|
129
|
Noble BB, Coote ML. Isotactic Regulation in the Radical Polymerization of Calcium Methacrylate: Is Multiple Chelation the Key to Stereocontrol? JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pola.29324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Benjamin B. Noble
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
130
|
Szczepaniak G, Piątkowski J, Nogaś W, Lorandi F, Yerneni SS, Fantin M, Ruszczyńska A, Enciso AE, Bulska E, Grela K, Matyjaszewski K. An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chem Sci 2020. [DOI: 10.1039/d0sc00623h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three for the price of one: 1,4-bis(3-isocyanopropyl)piperazine allows for the removal of Cu impurities, can quench Cu-catalyzed reactions, and can prevent undesirable Glaser coupling.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Jakub Piątkowski
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Wojciech Nogaś
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | | | | | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Anna Ruszczyńska
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Alan E. Enciso
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - Ewa Bulska
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Karol Grela
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | | |
Collapse
|
131
|
Hoffman AS, Stayton PS. Applications of “Smart Polymers” as Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
132
|
Simonova YA, Topchiy MA, Filatova MP, Yevlampieva NP, Slyusarenko MA, Bondarenko GN, Asachenko AF, Nechaev MS, Timofeeva LM. Impact of the RAFT/MADIX agent on protonated diallylammonium monomer cyclopolymerization with efficient chain transfer to monomer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
133
|
Li R, Li X, Zhang Y, Delawder AO, Colley ND, Whiting EA, Barnes JC. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery. Polym Chem 2020. [DOI: 10.1039/c9py01146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-soluble diblock brush-arm star copolymers using γ-CD-based core-first ring-opening metathesis polymerization, allowing for anticancer drug delivery via host–guest interaction.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Xuesong Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Yipei Zhang
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | | | - Nathan D. Colley
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Emma A. Whiting
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Jonathan C. Barnes
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| |
Collapse
|
134
|
Gleede T, Markwart JC, Huber N, Rieger E, Wurm FR. Competitive Copolymerization: Access to Aziridine Copolymers with Adjustable Gradient Strengths. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Niklas Huber
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Elisabeth Rieger
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
135
|
Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110524. [PMID: 32228960 DOI: 10.1016/j.msec.2019.110524] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Multi-responsive polymer assemblies are a significant class of smart polymers with potential applications in drug-delivery and gen-delivery systems. Poly(dimethylaminoethyl methacrylate) (PDMAEMA) is among the most applicable multi-responsive polymers that changes its physical and chemical properties in response to temperature, pH, and CO2. Herein, different types of light-, temperature-, pH-, and CO2-responsive polymer assemblies were developed based on multi-responsive PDMAEMA and hydrophobic poly(methyl methacrylate) blocks. In addition, spiropyran was incorporated at the chain ends by using spiropyran-initiated atom transfer radical polymerization method. Novel smart drug-delivery systems were developed by self-assembly of these amphiphilic block copolymers to micellar morphologies in aqueous media. Dynamic light scattering results showed that size of the polymer assemblies changed in response to pH variations (from 5 to 9), temperature changes (above the lower critical solution temperature (LCST) of PDMAEMA), and also UV light irradiation (wavelength of 365 nm). The LCST of PPDMAEMA showed a shift from 53 to 60 °C after isomerization of the SP to MC form, as a result of increase of polarity and water-solubility. The PDMAEMA block results in responsivity of the prepared copolymer assemblies to CO2, which display pH variation from 8-8.6 to 5-6 after 2 min of CO2 gas bubbling. All the multi-responsive micellar polymer assemblies showed various loading capacities and release profiles, and the DOX release can be controlled by pH, temperature, and light. The release efficiency is reached to 60-85% at pH 5.3, 80-90% at temperatures higher than the LCST of PDMAEMA (60 °C), and also 90-100% under UV light irradiation after 48 h. In summary, the multi-responsive polymer assemblies based on amphiphilic block copolymers containing spiropyran chain end groups in the current study have potential applications in smart drug-delivery systems, and offer controlling over the drug-release by different triggers, such as light irradiation, pH variation, and temperature change. A very low concentration of spiropyran molecules (one per polymer chain) showed light-controlling of drug-release from the assemblies with high efficiencies.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
136
|
Yan L, Rank C, Mecking S, Winey KI. Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity. J Am Chem Soc 2019; 142:857-866. [DOI: 10.1021/jacs.9b09701] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Yan
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina Rank
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
137
|
Wang Z, Liu T, Zhao Y, Lee J, Wei Q, Yan J, Li S, Olszewski M, Yin R, Zhai Y, Bockstaller MR, Matyjaszewski K. Synthesis of Gradient Copolymer Grafted Particle Brushes by ATRP. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaejun Lee
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Qiangbing Wei
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sipei Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Zhai
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
138
|
Gois PD, Cruz TR, Martins DM, Machado AE, Bogado AL, Lima-Neto BS, Goi BE, Carvalho VP. Cyclic amines homobimetallic ruthenium pre-catalysts bearing bidentate phosphine and their dual catalytic activity for the ring-opening metathesis and atom-radical polymerizations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
139
|
Ivanov IV, Meleshko TK, Kashina AV, Yakimansky AV. Amphiphilic multicomponent molecular brushes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicomponent molecular brushes containing amphiphilic polymer moieties are promising objects of research of macromolecular chemistry. The development of stimulus-responsive systems sensitive to changes in environmental parameters, based on the molecular brushes, opens up new possibilities for their applications in medicine, biochemistry and microelectronics. The review presents the current understanding of the structures of main types of amphiphilic multicomponent brushes, depending on the chemical nature and type of coupling of the backbone and side chains. The approaches to the controlled synthesis of multicomponent molecular brushes of different architecture are analyzed. Self-assembly processes of multicomponent molecular brushes in selective solvents are considered.
The bibliography includes 259 references.
Collapse
|
140
|
Okubo M, Kitayama Y, Taniyama T, Minami H, Liu X, Huang C. Synthesis of Block Copolymer Particles by One-Pot, Two-Step Dispersion Reversible Chain Transfer Catalyzed Polymerization ( Dispersion RTCP) in Supercritical Carbon Dioxide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masayoshi Okubo
- School of Energy Science and Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, Jiangsu China
| | - Yukiya Kitayama
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Tomoya Taniyama
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Minami
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Xiang Liu
- School of Energy Science and Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, Jiangsu China
| | - Chujuan Huang
- Institute of Advanced Materials, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, Jiangsu China
| |
Collapse
|
141
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
142
|
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Hyatt
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susannah A. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
143
|
Fu L, Simakova A, Park S, Wang Y, Fantin M, Matyjaszewski K. Axially Ligated Mesohemins as Bio-Mimicking Catalysts for Atom Transfer Radical Polymerization. Molecules 2019; 24:E3969. [PMID: 31684005 PMCID: PMC6864814 DOI: 10.3390/molecules24213969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022] Open
Abstract
Copper is the most common metal catalyst used in atom transfer radical polymerization (ATRP), but iron is an excellent alternative due to its natural abundance and low toxicity compared to copper. In this work, two new iron-porphyrin-based catalysts inspired by naturally occurring proteins, such as horseradish peroxidase, hemoglobin, and cytochrome P450, were synthesized and tested for ATRP. Natural protein structures were mimicked by attaching imidazole or thioether groups to the porphyrin, leading to increased rates of polymerization, as well as providing polymers with low dispersity, even in the presence of ppm amounts of catalysts.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Antonina Simakova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
144
|
Jiang Y, Zhang Y, Chen B, Zhu X. Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
145
|
Lin W, Xue Z, Wen L, Li Y, Liang Z, Xu J, Yang C, Gu Y, Zhang J, Zu X, Luo H, Yi G, Zhang L. Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids Surf B Biointerfaces 2019; 182:110313. [DOI: 10.1016/j.colsurfb.2019.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
|
146
|
Yang Y, Hashidzume A. A New Associative Diblock Copolymer of Poly(ethylene glycol) and Dense 1,2,3‐Triazole Blocks: Self‐Association Behavior and Thermoresponsiveness in Water. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanqiong Yang
- Department of Macromolecular ScienceGraduate School of Science Osaka University Toyonaka Osaka 560‐0043 Japan
| | - Akihito Hashidzume
- Department of Macromolecular ScienceGraduate School of Science Osaka University Toyonaka Osaka 560‐0043 Japan
| |
Collapse
|
147
|
Lv C, Du Y, Pan X. Alkylboranes in Conventional and Controlled Radical Polymerization. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunna Lv
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200438 China
| |
Collapse
|
148
|
Sakakibara K, Nishiumi K, Shimoaka T, Hasegawa T, Tsujii Y. pMAIRS Analysis on Chain-End Functionalization of Densely Grafted, Concentrated Polymer Brushes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Keita Sakakibara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kosuke Nishiumi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Tsujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
149
|
Kohsaka Y, Nagatsuka N. End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction. Polym J 2019. [DOI: 10.1038/s41428-019-0258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
150
|
Synthesis of an amphiphilic
spiro
‐multiblock copolymer via thiol‐ene click chemistry. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|