101
|
Polak U, Li Y, Butler JS, Napierala M. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming. Stem Cells Dev 2016; 25:1788-1800. [PMID: 27615158 PMCID: PMC5155629 DOI: 10.1089/scd.2016.0147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Urszula Polak
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
102
|
Xie Y, Ge J, Lei H, Peng B, Zhang H, Wang D, Pan S, Chen G, Chen L, Wang Y, Hao Q, Yao SQ, Sun H. Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. J Am Chem Soc 2016; 138:15596-15604. [DOI: 10.1021/jacs.6b07334] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yusheng Xie
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Jingyan Ge
- College
of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Haipeng Lei
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Bo Peng
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Huatang Zhang
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Danyang Wang
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Sijun Pan
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Ganchao Chen
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Lanfang Chen
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Yi Wang
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Quan Hao
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Hongyan Sun
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| |
Collapse
|
103
|
Codazzi F, Hu A, Rai M, Donatello S, Salerno Scarzella F, Mangiameli E, Pelizzoni I, Grohovaz F, Pandolfo M. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum Mol Genet 2016; 25:4847-4855. [PMID: 28175303 DOI: 10.1093/hmg/ddw308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/07/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023] Open
Abstract
We employed induced pluripotent stem cell (iPSC)-derived neurons obtained from Friedreich ataxia (FRDA) patients and healthy subjects, FRDA neurons and CT neurons, respectively, to unveil phenotypic alterations related to frataxin (FXN) deficiency and investigate if they can be reversed by treatments that upregulate FXN. FRDA and control iPSCs were equally capable of differentiating into a neuronal or astrocytic phenotype. FRDA neurons showed lower levels of iron–sulfur (Fe–S) and lipoic acid-containing proteins, higher labile iron pool (LIP), higher expression of mitochondrial superoxide dismutase (SOD2), increased reactive oxygen species (ROS) and lower reduced glutathione (GSH) levels, and enhanced sensitivity to oxidants compared with CT neurons, indicating deficient Fe–S cluster biogenesis, altered iron metabolism, and oxidative stress. Treatment with the benzamide HDAC inhibitor 109 significantly upregulated FXN expression and increased Fe–S and lipoic acid-containing protein levels, downregulated SOD2 levels, normalized LIP and ROS levels, and almost fully protected FRDA neurons from oxidative stress-mediated cell death. Our findings suggest that correction of FXN deficiency may not only stop disease progression, but also lead to clinical improvement by rescuing still surviving, but dysfunctional neurons.
Collapse
Affiliation(s)
- Franca Codazzi
- IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Amelié Hu
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Myriam Rai
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Simona Donatello
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | | | | | | | - Fabio Grohovaz
- IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Pandolfo
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
104
|
Bergquist H, Rocha CSJ, Álvarez-Asencio R, Nguyen CH, Rutland MW, Smith CIE, Good L, Nielsen PE, Zain R. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting. PLoS One 2016; 11:e0165788. [PMID: 27846236 PMCID: PMC5112992 DOI: 10.1371/journal.pone.0165788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023] Open
Abstract
Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression.
Collapse
Affiliation(s)
- Helen Bergquist
- Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Cristina S. J. Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Rubén Álvarez-Asencio
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Stockholm, Sweden
| | - Chi-Hung Nguyen
- Laboratoire de Pharmacochimie, Institut Curie, PSL Research University, UMR 9187 – U 1196 CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Mark. W. Rutland
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Liam Good
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, United Kingdom
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
105
|
Aranca TV, Jones TM, Shaw JD, Staffetti JS, Ashizawa T, Kuo SH, Fogel BL, Wilmot GR, Perlman SL, Onyike CU, Ying SH, Zesiewicz TA. Emerging therapies in Friedreich's ataxia. Neurodegener Dis Manag 2016; 6:49-65. [PMID: 26782317 DOI: 10.2217/nmt.15.73] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, progressive neurodegenerative disease that typically affects teenagers and young adults. Therapeutic strategies and disease insight have expanded rapidly over recent years, leading to hope for the FRDA population. There is currently no US FDA-approved treatment for FRDA, but advances in research of its pathogenesis have led to clinical trials of potential treatments. This article reviews emerging therapies and discusses future perspectives, including the need for more precise measures for detecting changes in neurologic symptoms as well as a disease-modifying agent.
Collapse
Affiliation(s)
- Tanya V Aranca
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Tracy M Jones
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Jessica D Shaw
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Joseph S Staffetti
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida Department of Neurology, FL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, NY, USA
| | - Brent L Fogel
- Department of Neurology, Neurogenetics Program, David Geffen School of Medicine, University of California, CA, USA
| | | | - Susan L Perlman
- Ataxia and Huntington Disease Center of Excellence, University of California, CA, US
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University school of Medicine MD, USA
| | - Sarah H Ying
- Department of Neurology, Johns Hopkins University School of Medicine, MD, USA.,Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, MD, USA
| | - Theresa A Zesiewicz
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA.,James A. Haley Veterans' Hospital, FL, USA
| |
Collapse
|
106
|
Lukovic D, Moreno-Manzano V, Rodriguez-Jimenez FJ, Vilches A, Sykova E, Jendelova P, Stojkovic M, Erceg S. hiPSC Disease Modeling of Rare Hereditary Cerebellar Ataxias: Opportunities and Future Challenges. Neuroscientist 2016; 23:554-566. [DOI: 10.1177/1073858416672652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebellar ataxias are clinically and genetically heterogeneous diseases affecting primary cerebellar cells. The lack of availability of affected tissue from cerebellar ataxias patients is the main obstacle in investigating the pathogenicity of these diseases. The landmark discovery of human-induced pluripotent stem cells (hiPSC) has permitted the derivation of patient-specific cells with an unlimited self-renewing capacity. Additionally, their potential to differentiate into virtually any cell type of the human organism allows for large amounts of affected cells to be generated in culture, converting this hiPSC technology into a revolutionary tool in the study of the mechanisms of disease, drug discovery, and gene correction. In this review, we will summarize the current studies in which hiPSC were utilized to study cerebellar ataxias. Describing the currently available 2D and 3D hiPSC-based cellular models, and due to the fact that extracerebellar cells were used to model these diseases, we will discuss whether or not they represent a faithful cellular model and whether they have contributed to a better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Dunja Lukovic
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
- National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, Research Center “Principe Felipe,” Valencia, Spain
| | | | | | - Angel Vilches
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
| | - Eva Sykova
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Miodrag Stojkovic
- Spebo Medical, Leskovac, Serbia
- Human Genetics Department, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center “Principe Felipe,” Valencia, Spain
- National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, Research Center “Principe Felipe,” Valencia, Spain
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
107
|
Guaraldo M, Santambrogio P, Rovelli E, Di Savino A, Saglio G, Cittaro D, Roetto A, Levi S. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control. Sci Rep 2016; 6:33432. [PMID: 27625068 PMCID: PMC5022048 DOI: 10.1038/srep33432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5' flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.
Collapse
Affiliation(s)
- Michela Guaraldo
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Paolo Santambrogio
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Elisabetta Rovelli
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Augusta Di Savino
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Giuseppe Saglio
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Davide Cittaro
- San Raffaele Scientific Institute, Center for Translational Genomics and Bioinformatics, 20132 Milano, Italy
| | - Antonella Roetto
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Sonia Levi
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
- University Vita-Salute San Raffaele, 20132 Milano, Italy
| |
Collapse
|
108
|
Kawaguchi M, Ikegawa S, Ieda N, Nakagawa H. A Fluorescent Probe for Imaging Sirtuin Activity in Living Cells, Based on One-Step Cleavage of the Dabcyl Quencher. Chembiochem 2016; 17:1961-1967. [PMID: 27542094 PMCID: PMC5095863 DOI: 10.1002/cbic.201600374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 12/14/2022]
Abstract
Sirtuins (SIRTs) are a family of NAD+‐dependent histone deacetylases. In mammals, dysfunction of SIRTs is associated with age‐related metabolic diseases and cancers, so SIRT modulators are considered attractive therapeutic targets. However, current screening methodologies are problematic, and no tools for imaging endogenous SIRT activity in living cells have been available until now. In this work we present a series of simple and highly sensitive new SIRT activity probes. Fluorescence of these probes is activated by SIRT‐mediated hydrolytic release of a 4‐(4‐dimethylaminophenylazo)benzoyl (Dabcyl)‐based FRET quencher moiety from the ϵ‐amino group of lysine in a nonapeptide derived from histone H3K9 and bearing a C‐terminal fluorophore. The probe SFP3 detected activities of SIRT1, ‐2, ‐3, and ‐6, which exhibit deacylase activities towards long‐chain fatty acyl groups. We then truncated the molecular structure of SFP3 in order to improve both its stability to peptidases and its membrane permeability, and developed probe KST‐F, which showed specificity for SIRT1 over SIRT2 and SIRT3. We show that KST‐F can visualize endogenous SIRT1 activity in living cells.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Shohei Ikegawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
109
|
Kearney M, Orrell RW, Fahey M, Brassington R, Pandolfo M. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev 2016; 2016:CD007791. [PMID: 27572719 PMCID: PMC6457808 DOI: 10.1002/14651858.cd007791.pub4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Friedreich ataxia is a rare inherited autosomal recessive neurological disorder, characterised initially by unsteadiness in standing and walking, slowly progressing to wheelchair dependency usually in the late teens or early twenties. It is associated with slurred speech, scoliosis, and pes cavus. Heart abnormalities cause premature death in 60% of people with the disorder. There is no easily defined clinical or biochemical marker and no known treatment. This is the second update of a review first published in 2009 and previously updated in 2012. OBJECTIVES To assess the effects of pharmacological treatments for Friedreich ataxia. SEARCH METHODS On 29 February 2016 we searched The Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, EMBASE and CINAHL Plus. On 7 March 2016 we searched ORPHANET and TRIP. We also checked clinical trials registers for ongoing studies. SELECTION CRITERIA We considered randomised controlled trials (RCTs) or quasi-RCTs of pharmacological treatments (including vitamins) in people with genetically-confirmed Friedreich ataxia. The primary outcome was change in a validated Friedreich ataxia neurological score after 12 months. Secondary outcomes were changes in cardiac status as measured by magnetic resonance imaging or echocardiography, quality of life, mild and serious adverse events, and survival. We excluded trials of duration shorter than 12 months. DATA COLLECTION AND ANALYSIS Three review authors selected trials and two review authors extracted data. We obtained missing data from the two RCTs that met our inclusion criteria. We collected adverse event data from included studies. We used standard methodological procedures expected by Cochrane. MAIN RESULTS We identified more than 12 studies that used antioxidants in the treatment of Friedreich ataxia, but only two small RCTs, with a combined total of 72 participants, both fulfilled the selection criteria for this review and published results. One of these trials compared idebenone with placebo, the other compared high-dose versus low-dose coenzyme Q10 and vitamin E (the trialists considered the low-dose medication to be the placebo). We identified two other completed RCTs, which remain unpublished; the interventions in these trials were pioglitazone (40 participants) and idebenone (232 participants). Other RCTs were of insufficient duration for inclusion.In the included studies, the primary outcome specified for the review, change in a validated Friedreich ataxia rating score, was measured using the International Co-operative Ataxia Rating Scale (ICARS). The results did not reveal any significant difference between the antioxidant-treated and the placebo groups (mean difference 0.79 points, 95% confidence interval -1.97 to 3.55 points; low-quality evidence).The published included studies did not assess the first secondary outcome, change in cardiac status as measured by magnetic resonance imaging. Both studies reported changes in cardiac measurements assessed by echocardiogram. The ejection fraction was not measured in the larger of the included studies (44 participants). In the smaller study (28 participants), it was normal at baseline and did not change with treatment. End-diastolic interventricular septal thickness showed a small decrease in the smaller of the two included studies. In the larger included study, there was no decrease, showing significant heterogeneity in the study results; our overall assessment of the quality of evidence for this outcome was very low. Left ventricular mass (LVM) was only available for the smaller RCT, which showed a significant decrease. The relevance of this change is unclear and the quality of evidence low.There were no deaths related to the treatment with antioxidants. We considered the published included studies at low risk of bias in six of seven domains assessed. One unpublished included RCT, a year-long study using idebenone (232 participants), published an interim report in May 2010 stating that the study reached neither its primary endpoint, which was change in the ICARS score, nor a key cardiological secondary endpoint, but data were not available for verification and analysis. AUTHORS' CONCLUSIONS Low-quality evidence from two small, published, randomised controlled trials neither support nor refute an effect from antioxidants (idebenone, or a combination of coenzyme Q10 and vitamin E) on the neurological status of people with Friedreich ataxia, measured with a validated neurological rating scale. A large unpublished study of idebenone that reportedly failed to meet neurological or key cardiological endpoints, and a trial of pioglitazone remain unpublished, but on publication will very likely influence quality assessments and conclusions. A single study of idebenone provided low-quality evidence for a decrease in LVM, which is of uncertain clinical significance but of potential importance that needs to be clarified. According to low-quality evidence, serious and non-serious adverse events were rare in both antioxidant and placebo groups. No non-antioxidant agents have been investigated in RCTs of 12 months' duration.
Collapse
Affiliation(s)
- Mary Kearney
- Irish College of General PractitionersGeneral PracticeDunlavinCounty WicklowIreland
| | - Richard W Orrell
- University College London Institute of NeurologyDepartment of Clinical NeurosciencesRoyal Free CampusRowland Hill StreetLondonUKNW2 3PF
| | - Michael Fahey
- Monash UniversityDepartment of PaediatricsClaytonVictoriaAustralia3168
| | - Ruth Brassington
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114LondonUKWC1N 3BG
| | - Massimo Pandolfo
- Hopital Erasme, Université Libre de BruxellesNeurology DepartmentRoute de Lennik 808BrusselsBelgium1070
| | | |
Collapse
|
110
|
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. AREAS COVERED We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. EXPERT OPINION 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
111
|
Chutake YK, Lam CC, Costello WN, Anderson MP, Bidichandani SI. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res 2016; 44:5095-104. [PMID: 26896803 PMCID: PMC4914082 DOI: 10.1093/nar/gkw107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
Friedreich ataxia, the most prevalent inherited ataxia, is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. Repressive chromatin spreads from the expanded GAA triplet-repeat sequence to cause epigenetic silencing of the FXN promoter via altered nucleosomal positioning and reduced chromatin accessibility. Indeed, deficient transcriptional initiation is the predominant cause of transcriptional deficiency in Friedreich ataxia. Treatment with 109, a class I histone deacetylase (HDAC) inhibitor, resulted in increased level of FXN transcript both upstream and downstream of the expanded GAA triplet-repeat sequence, without any change in transcript stability, suggesting that it acts via improvement of transcriptional initiation. Quantitative analysis of transcriptional initiation via metabolic labeling of nascent transcripts in patient-derived cells revealed a >3-fold increase (P < 0.05) in FXN promoter function. A concomitant 3-fold improvement (P < 0.001) in FXN promoter structure and chromatin accessibility was observed via Nucleosome Occupancy and Methylome Sequencing, a high-resolution in vivo footprint assay for detecting nucleosome occupancy in individual chromatin fibers. No such improvement in FXN promoter function or structure was observed upon treatment with a chemically-related inactive compound (966). Thus epigenetic promoter silencing in Friedreich ataxia is reversible, and the results implicate class I HDACs in repeat-mediated promoter silencing.
Collapse
Affiliation(s)
- Yogesh K Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Christina C Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Whitney N Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Michael P Anderson
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA Department of Biostatistics & Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
112
|
Dantham S, Srivastava AK, Gulati S, Rajeswari MR. Plasma circulating cell-free mitochondrial DNA in the assessment of Friedreich's ataxia. J Neurol Sci 2016; 365:82-8. [PMID: 27206881 DOI: 10.1016/j.jns.2016.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/14/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
Abstract
Friedreich's ataxia (FRDA) is one of the most devastating childhood onset neurodegenerative disease affecting multiple organs in the course of progression. FRDA is associated with mitochondrial dysfunction due to deficit in a nuclear encoded mitochondrial protein, frataxin. Identification of disease-specific biomarker for monitoring the severity remains to be a challenging topic. This study was aimed to identify whether circulating cell-free nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in blood plasma can be a potential biomarker for FRDA. Clinical information was assessed using International Cooperative Ataxia Rating Scale and the disease was confirmed using Long-range PCR for GAA repeat expansion within the gene encoding frataxin. The frataxin expression was measured using Western blot. Plasma nDNA and mtDNA levels were quantified by Multiplex real-time PCR. The major observation is that the levels of nDNA found to be increased, whereas mtDNA levels were reduced significantly in the plasma of FRDA patients (n=21) as compared to healthy controls (n=21). Further, plasma mtDNA levels showed high sensitivity (90%) and specificity (76%) in distinguishing from healthy controls with optimal cutoff indicated at 4.1×10(5)GE/mL. Interestingly, a small group of follow-up patients (n=9) on intervention with, a nutrient supplement, omega-3 fatty acid (a known enhancer of mitochondrial metabolism) displayed a significant improvement in the levels of plasma mtDNA, supporting our hypothesis that plasma mtDNA can be a potential monitoring or prognosis biomarker for FRDA.
Collapse
Affiliation(s)
- Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sheffali Gulati
- Paediatrics Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
113
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
114
|
Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat Commun 2016; 7:11262. [PMID: 27109927 PMCID: PMC4848466 DOI: 10.1038/ncomms11262] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation.
Collapse
|
115
|
Watson LM, Wong MMK, Becker EBE. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol 2016; 5:150056. [PMID: 26136256 PMCID: PMC4632502 DOI: 10.1098/rsob.150056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research.
Collapse
Affiliation(s)
- Lauren M Watson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maggie M K Wong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
116
|
Crombie DE, Pera MF, Delatycki MB, Pébay A. Using human pluripotent stem cells to study Friedreich ataxia cardiomyopathy. Int J Cardiol 2016; 212:37-43. [PMID: 27019046 DOI: 10.1016/j.ijcard.2016.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 12/16/2022]
Abstract
Friedreich ataxia (FRDA) is the most common of the inherited ataxias. It is an autosomal recessive disease characterised by degeneration of peripheral sensory neurons, regions of the central nervous system and cardiomyopathy. FRDA is usually due to homozygosity for trinucleotide GAA repeat expansions found within first intron of the FRATAXIN (FXN) gene, which results in reduced levels of the mitochondrial protein FXN. Reduced FXN protein results in mitochondrial dysfunction and iron accumulation leading to increased oxidative stress and cell death in the nervous system and heart. Yet the precise functions of FXN and the underlying mechanisms leading to disease pathology remain elusive. This is particularly true of the cardiac aspect of FRDA, which remains largely uncharacterized at the cellular level. Here, we summarise current knowledge on experimental models in which to study FRDA cardiomyopathy, with a particular focus on the use of human pluripotent stem cells as a disease model.
Collapse
Affiliation(s)
- Duncan E Crombie
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Australia
| | - Martin F Pera
- Department of Anatomy and Neurosciences, The University of Melbourne, Florey Neuroscience & Mental Health Institute, Walter and Eliza Hall Institute of Medical Research, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, Australia; School of Psychology and Psychiatry, Monash University, Australia; Clinical Genetics, Austin Health, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Australia.
| |
Collapse
|
117
|
Essebier A, Vera Wolf P, Cao MD, Carroll BJ, Balasubramanian S, Bodén M. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions. Front Neurosci 2016; 10:92. [PMID: 27013954 PMCID: PMC4782033 DOI: 10.3389/fnins.2016.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions.
Collapse
Affiliation(s)
- Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Patricia Vera Wolf
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
118
|
Sinha S, Tyagi C, Goyal S, Jamal S, Somvanshi P, Grover A. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia. J Biomol Struct Dyn 2016; 34:2281-95. [PMID: 26510381 DOI: 10.1080/07391102.2015.1113386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia.
Collapse
Affiliation(s)
- Siddharth Sinha
- a Department of Biotechnology , TERI University , 10 Institutional Area, Vasant Kunj, New Delhi 110070 , India
| | - Chetna Tyagi
- b Indian Agricultural Research Institute , PUSA Road, New Delhi 110012 , India
| | - Sukriti Goyal
- c Department of Bioscience and Biotechnology , Banasthali University , Tonk , Rajasthan 304022 , India
| | - Salma Jamal
- c Department of Bioscience and Biotechnology , Banasthali University , Tonk , Rajasthan 304022 , India
| | - Pallavi Somvanshi
- a Department of Biotechnology , TERI University , 10 Institutional Area, Vasant Kunj, New Delhi 110070 , India
| | - Abhinav Grover
- d School of Biotechnology , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
119
|
Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun 2016; 7:10606. [PMID: 26842135 PMCID: PMC4742999 DOI: 10.1038/ncomms10606] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression.
Collapse
Affiliation(s)
- Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| |
Collapse
|
120
|
Lee YK, Lau YM, Ng KM, Lai WH, Ho SL, Tse HF, Siu CW, Ho PWL. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA. Int J Cardiol 2016; 203:964-71. [PMID: 26625322 DOI: 10.1016/j.ijcard.2015.11.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. RESULTS DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 μM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 μM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction.
Collapse
Affiliation(s)
- Yee-Ki Lee
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shu-Leong Ho
- Neurology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; Hong Kong - Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, China
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Philip Wing-Lok Ho
- Neurology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
121
|
Merienne K, Boutillier AL. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?]. Biol Aujourdhui 2016; 210:297-309. [PMID: 28327286 DOI: 10.1051/jbio/2017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/15/2022]
Abstract
Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases.
Collapse
|
122
|
Liang P, Li Q, Wu Z, Jiang JH, Yu RQ. Graphene oxide–peptide nanoassembly as a general approach for monitoring the activity of histone deacetylases. Analyst 2016; 141:3989-92. [DOI: 10.1039/c6an00902f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel fluorescent sensor using graphene oxide (GO)–peptide nanoassembly is developed for histone deacetylases (HDACs) based on deacetylation mediated cleavage of substrate peptides, which provides a simple, cost-effective platform for monitoring the activity of HDACs.
Collapse
Affiliation(s)
- Ping Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zhan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
123
|
Nageshwaran S, Festenstein R. Epigenetics and Triplet-Repeat Neurological Diseases. Front Neurol 2015; 6:262. [PMID: 26733936 PMCID: PMC4685448 DOI: 10.3389/fneur.2015.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 11/30/2015] [Indexed: 01/15/2023] Open
Abstract
The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.
Collapse
Affiliation(s)
- Sathiji Nageshwaran
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| | - Richard Festenstein
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| |
Collapse
|
124
|
Li Y, Lu Y, Polak U, Lin K, Shen J, Farmer J, Seyer L, Bhalla AD, Rozwadowska N, Lynch DR, Butler JS, Napierala M. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet 2015; 24:6932-43. [PMID: 26401053 PMCID: PMC4654050 DOI: 10.1093/hmg/ddv397] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN. Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Urszula Polak
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA, Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jennifer Farmer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Lauren Seyer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Institute of Human Genetics, Polish Academy of Science, Strzeszynska 32, Poznan 60-479, Poland
| | - David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA,
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland and
| |
Collapse
|
125
|
Kumari D, Hayward B, Nakamura AJ, Bonner WM, Usdin K. Evidence for chromosome fragility at the frataxin locus in Friedreich ataxia. Mutat Res 2015; 781:14-21. [PMID: 26379101 PMCID: PMC4631761 DOI: 10.1016/j.mrfmmm.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Friedreich ataxia (FRDA) is a member of the Repeat Expansion Diseases, a group of genetic conditions resulting from an increase/expansion in the size of a specific tandem array. FRDA results from expansion of a GAA/TTC-tract in the first intron of the frataxin gene (FXN). The disease-associated tandem repeats all form secondary structures that are thought to contribute to the propensity of the repeat to expand. The subset of these diseases that result from a CGG/CCG-repeat expansion, such as Fragile X syndrome, also express a folate-sensitive fragile site coincident with the repeat on the affected chromosome. This chromosome fragility involves the generation of chromosome/chromatid gaps or breaks, or the high frequency loss of one or both copies of the affected gene when cells are grown under folate stress or as we showed previously, in the presence of an inhibitor of the ATM checkpoint kinase. Whether Repeat Expansion Disease loci containing different repeats form similar fragile sites was not known. We show here that the region of chromosome 9 that contains the FXN locus is intrinsically prone to breakage in vivo even in control cells. However, like FXS alleles, FRDA alleles show significantly elevated levels of chromosome abnormalities in the presence of an ATM inhibitor, consistent with the formation of a fragile site.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asako J Nakamura
- Laboratory of Molecular Pharmacology, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William M Bonner
- Laboratory of Molecular Pharmacology, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
126
|
A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease. Neurobiol Aging 2015; 37:103-116. [PMID: 26545632 DOI: 10.1016/j.neurobiolaging.2015.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/17/2015] [Accepted: 10/02/2015] [Indexed: 11/24/2022]
Abstract
With increased histone deacetylase (HDAC) activity and histone hypoacetylation being implicated in neurodegeneration, HDAC inhibitors have been reported to have considerable therapeutic potential. Yet, existing inhibitors lack specificity and may show substantial adverse effect. In this study, we identified a novel HDAC1/2 isoform-specific inhibitor, K560, with protective effects against 1-methyl-4-phenylpyridinium (MPP(+))- and/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuronal death in both in vitro and in vivo Parkinson's disease model. K560 attenuated cell death induced by MPP(+) in differentiated SH-SY5Y cells through the sustained expression of an antiapoptotic protein, X-linked inhibitor of apoptosis (XIAP). Inhibition of XIAP expression by locked nucleic acid antisense oligonucleotides abolished the protective effect of K560. Inactivation of mitogen-activated protein kinase cascades, reduced p53 phosphorylation, and down-regulation of p53-upregulated modulator of apoptosis on K560 treatment were also observed. Furthermore, pre- and post-oral administration of K560 to mice prevented MPTP-induced loss of dopaminergic neurons in substantia nigra, suggesting that selective inhibition of HDAC1 and HDAC2 by K560 may pave the way to new strategies for Parkinson's disease treatment.
Collapse
|
127
|
Chutake YK, Costello WN, Lam CC, Parikh AC, Hughes TT, Michalopulos MG, Pook MA, Bidichandani SI. FXN Promoter Silencing in the Humanized Mouse Model of Friedreich Ataxia. PLoS One 2015; 10:e0138437. [PMID: 26393353 PMCID: PMC4579136 DOI: 10.1371/journal.pone.0138437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Friedreich ataxia is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene that results in epigenetic silencing of the FXN promoter. This silencing mechanism is seen in patient-derived lymphoblastoid cells but it remains unknown if it is a widespread phenomenon affecting multiple cell types and tissues. METHODOLOGY / PRINCIPAL FINDINGS The humanized mouse model of Friedreich ataxia (YG8sR), which carries a single transgenic insert of the human FXN gene with an expanded GAA triplet-repeat in intron 1, is deficient for FXN transcript when compared to an isogenic transgenic mouse lacking the expanded repeat (Y47R). We found that in YG8sR the deficiency of FXN transcript extended both upstream and downstream of the expanded GAA triplet-repeat, suggestive of deficient transcriptional initiation. This pattern of deficiency was seen in all tissues tested, irrespective of whether they are known to be affected or spared in disease pathogenesis, in both neuronal and non-neuronal tissues, and in cultured primary fibroblasts. FXN promoter function was directly measured via metabolic labeling of newly synthesized transcripts in fibroblasts, which revealed that the YG8sR mouse was significantly deficient in transcriptional initiation compared to the Y47R mouse. CONCLUSIONS / SIGNIFICANCE Deficient transcriptional initiation accounts for FXN transcriptional deficiency in the humanized mouse model of Friedreich ataxia, similar to patient-derived cells, and the mechanism underlying promoter silencing in Friedreich ataxia is widespread across multiple cell types and tissues.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Whitney N. Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Christina C. Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Aniruddha C. Parikh
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Tamara T. Hughes
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Michael G. Michalopulos
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Sanjay I. Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| |
Collapse
|
128
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
129
|
Abstract
Friedreich ataxia (FRDA) is caused by the expansion of a GAA triplet repeat in the first intron of the FXN gene. This disease was named after Nicholaus Friedreich, Germany, who depicted the essential finding. Among ataxias, FRDA is the most common hereditary ataxia. It has the autosomal recessive pattern of inheritance. The expansion of the GAA triplet repeat hinders the transcription, thereby reducing the level of the FXN transcript and consequently reducing the level of frataxin, a 210-amino acid protein. The disease pathogenesis is fundamentally due to a lack of frataxin, which is claimed to play a role in iron-sulfur cluster synthesis. Oxidative stress builds up as a result of Fe accumulation in the mitochondria, causing degeneration of the cells, which primarily occurs in the neurons and later in the cardiac tissues, and to some extent in the pancreas. The therapeutic interventions are at infancy; however, current treatments are targeted toward the reduction of iron overload and its effects.
Collapse
Affiliation(s)
- Srinivasan Muthuswamy
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
130
|
Abeti R, Uzun E, Renganathan I, Honda T, Pook MA, Giunti P. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia. Pharmacol Res 2015; 99:344-50. [PMID: 26141703 DOI: 10.1016/j.phrs.2015.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/04/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.
Collapse
Affiliation(s)
- Rosella Abeti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Ebru Uzun
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Indhushri Renganathan
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Tadashi Honda
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
131
|
Rumbaugh G, Sillivan SE, Ozkan ED, Rojas CS, Hubbs CR, Aceti M, Kilgore M, Kudugunti S, Puthanveettil SV, Sweatt JD, Rusche J, Miller CA. Pharmacological Selectivity Within Class I Histone Deacetylases Predicts Effects on Synaptic Function and Memory Rescue. Neuropsychopharmacology 2015; 40:2307-16. [PMID: 25837283 PMCID: PMC4538358 DOI: 10.1038/npp.2015.93] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Histone deacetylases (HDACs) are promising therapeutic targets for neurological and psychiatric disorders that impact cognitive ability, but the relationship between various HDAC isoforms and cognitive improvement is poorly understood, particularly in mouse models of memory impairment. A goal shared by many is to develop HDAC inhibitors with increased isoform selectivity in order to reduce unwanted side effects, while retaining procognitive effects. However, studies addressing this tack at the molecular, cellular and behavioral level are limited. Therefore, we interrogated the biological effects of class I HDAC inhibitors with varying selectivity and assessed a subset of these compounds for their ability to regulate transcriptional activity, synaptic function and memory. The HDAC-1, -2, and -3 inhibitors, RGFP963 and RGFP968, were most effective at stimulating synaptogenesis, while the selective HDAC3 inhibitor, RGFP966, with known memory enhancing abilities, had minimal impact. Furthermore, RGFP963 increased hippocampal spine density, while HDAC3 inhibition was ineffective. Genome-wide gene expression analysis by RNA sequencing indicated that RGFP963 and RGFP966 induce largely distinct transcriptional profiles in the dorsal hippocampus of mature mice. The results of bioinformatic analyses were consistent with RGFP963 inducing a transcriptional program that enhances synaptic efficacy. Finally, RGFP963, but not RGFP966, rescued memory in a mouse model of Alzheimer's Disease. Together, these studies suggest that the specific memory promoting properties of class I HDAC inhibitors may depend on isoform selectivity and that certain pathological brain states may be more receptive to HDAC inhibitors that improve network function by enhancing synapse efficacy.
Collapse
Affiliation(s)
- Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Stephanie E Sillivan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Camilo S Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Christopher R Hubbs
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Mark Kilgore
- Department of Neurobiology, The Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - J David Sweatt
- Department of Neurobiology, The Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Courtney A Miller
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
132
|
Marson CM, Matthews CJ, Atkinson SJ, Lamadema N, Thomas NSB. Potent and Selective Inhibitors of Histone Deacetylase-3 Containing Chiral Oxazoline Capping Groups and a N-(2-Aminophenyl)-benzamide Binding Unit. J Med Chem 2015; 58:6803-18. [PMID: 26287310 DOI: 10.1021/acs.jmedchem.5b00545] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contains an oxazoline capping group and a N-(2-aminophenyl)-benzamide unit. Among several new inhibitors of this type exhibiting Class I selectivity and potent inhibition of HDAC3-NCoR2, in vitro assays for the inhibition of HDAC1, HDAC2, and HDAC3-NCoR2 by N-(2-aminophenyl)-benzamide 15k gave respective IC50 values of 80, 110, and 6 nM. Weak inhibition of all other HDAC isoforms (HDAC4, 5, 6, 7, and 9: IC50 > 100 000 nM; HDAC8: IC50 = 25 000 nM; HDAC10: IC50 > 4000 nM; HDAC11: IC50 > 2000 nM) confirmed the Class I selectivity of 15k. 2-Aminoimidazolinyl, 2-thioimidazolinyl, and 2-aminooxazolinyl units were shown to be effective replacements for the pyrimidine ring present in many other 2-(aminophenyl)-benzamides previously reported, but the 2-aminooxazolinyl unit was the most potent in inhibiting HDAC3-NCoR2. Many of the new HDAC inhibitors showed higher solubilities and lower binding to human serum albumin than that of Mocetinostat. Increases in histone H3K9 acetylation in the human cell lines U937 and PC-3 was observed for all three oxazolinyl inhibitors evaluated; those HDAC inhibitors also lowered cyclin E expression in U937 cells but not in PC-3 cells, indicating underlying differences in the mechanisms of action of the inhibitors on those two cell lines.
Collapse
Affiliation(s)
- Charles M Marson
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Christopher J Matthews
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Stephen J Atkinson
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline , Gunnels Wood Road, Stevenage, Herts SG1 2NY, U.K
| | - Nermina Lamadema
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| | - N Shaun B Thomas
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| |
Collapse
|
133
|
GAA triplet-repeats cause nucleosome depletion in the human genome. Genomics 2015; 106:88-95. [DOI: 10.1016/j.ygeno.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
134
|
Cherubini F, Serio D, Guccini I, Fortuni S, Arcuri G, Condò I, Rufini A, Moiz S, Camerini S, Crescenzi M, Testi R, Malisan F. Src inhibitors modulate frataxin protein levels. Hum Mol Genet 2015; 24:4296-305. [PMID: 25948553 DOI: 10.1093/hmg/ddv162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Defective expression of frataxin is responsible for the inherited, progressive degenerative disease Friedreich's Ataxia (FRDA). There is currently no effective approved treatment for FRDA and patients die prematurely. Defective frataxin expression causes critical metabolic changes, including redox imbalance and ATP deficiency. As these alterations are known to regulate the tyrosine kinase Src, we investigated whether Src might in turn affect frataxin expression. We found that frataxin can be phosphorylated by Src. Phosphorylation occurs primarily on Y118 and promotes frataxin ubiquitination, a signal for degradation. Accordingly, Src inhibitors induce accumulation of frataxin but are ineffective on a non-phosphorylatable frataxin-Y118F mutant. Importantly, all the Src inhibitors tested, some of them already in the clinic, increase frataxin expression and rescue the aconitase defect in frataxin-deficient cells derived from FRDA patients. Thus, Src inhibitors emerge as a new class of drugs able to promote frataxin accumulation, suggesting their possible use as therapeutics in FRDA.
Collapse
Affiliation(s)
- Fabio Cherubini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Ilaria Guccini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy, Fratagene Therapeutics Ltd, 22 Northumberland Rd, Dublin, Ireland and
| | - Gaetano Arcuri
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy, Fratagene Therapeutics Ltd, 22 Northumberland Rd, Dublin, Ireland and
| | - Shadman Moiz
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Italian National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marco Crescenzi
- Department of Cell Biology and Neurosciences, Italian National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy, Fratagene Therapeutics Ltd, 22 Northumberland Rd, Dublin, Ireland and
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy,
| |
Collapse
|
135
|
Abrahão A, Pedroso JL, Braga-Neto P, Bor-Seng-Shu E, de Carvalho Aguiar P, Barsottini OGP. Milestones in Friedreich ataxia: more than a century and still learning. Neurogenetics 2015; 16:151-60. [PMID: 25662948 DOI: 10.1007/s10048-015-0439-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia worldwide. This review highlights the main clinical features, pathophysiological mechanisms, and therapeutic approaches for FRDA patients. The disease is characterized by a combination of neurological involvement (ataxia and neuropathy), cardiomyopathy, skeletal abnormalities, and glucose metabolism disturbances. FRDA is caused by expanded guanine-adenine-adenine (GAA) triplet repeats in the first intron of the frataxin gene (FXN), resulting in reduction of messenger RNA and protein levels of frataxin in different tissues. The molecular and metabolic disturbances, including iron accumulation, lead to pathological changes characterized by spinal cord and dorsal root ganglia atrophy, dentate nucleus atrophy without global cerebellar volume reduction, and hypertrophic cardiomyopathy. DNA analysis is the hallmark for the diagnosis of FRDA. There is no specific treatment to stop the disease progression in FRDA patients. However, a number of drugs are under investigation. Therapeutic approaches intend to improve mitochondrial functioning and to increase FXN expression.
Collapse
Affiliation(s)
- Agessandro Abrahão
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Rua Pedro de Toledo 650 Vila Clementino, São Paulo, 04039-002, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
136
|
Silva AM, Brown JM, Buckle VJ, Wade-Martins R, Lufino MMP. Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells. Hum Mol Genet 2015; 24:3457-71. [PMID: 25814655 PMCID: PMC4498154 DOI: 10.1093/hmg/ddv096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023] Open
Abstract
Abnormally expanded DNA repeats are associated with several neurodegenerative diseases. In Friedreich's ataxia (FRDA), expanded GAA repeats in intron 1 of the frataxin gene (FXN) reduce FXN mRNA levels in averaged cell samples through a poorly understood mechanism. By visualizing FXN expression and nuclear localization in single cells, we show that GAA-expanded repeats decrease the number of FXN mRNA molecules, slow transcription, and increase FXN localization at the nuclear lamina (NL). Restoring histone acetylation reverses NL positioning. Expanded GAA-FXN loci in FRDA patient cells show increased NL localization with increased silencing of alleles and reduced transcription from alleles positioned peripherally. We also demonstrate inefficiencies in transcription initiation and elongation from the expanded GAA-FXN locus at single-cell resolution. We suggest that repressive epigenetic modifications at the expanded GAA-FXN locus may lead to NL relocation, where further repression may occur.
Collapse
Affiliation(s)
- Ana M Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal and
| | - Jill M Brown
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Veronica J Buckle
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK,
| | - Michele M P Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK,
| |
Collapse
|
137
|
Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet 2015; 6:192. [PMID: 26089834 PMCID: PMC4452891 DOI: 10.3389/fgene.2015.00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5′ UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55–200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
138
|
Abstract
Approximately 40 human diseases are associated with expansion of repeat sequences. These expansions can reside within coding or non-coding parts of the genes, affecting the host gene function. The presence of such expansions results in the production of toxic RNA and/or protein or causes transcriptional repression and silencing of the host gene. Although the molecular mechanisms of expansion diseases are not well understood, mounting evidence suggests that transcription through expanded repeats plays an essential role in disease pathology. The presence of an expansion can affect RNA polymerase transcription, leading to dysregulation of transcription-associated processes, such as RNA splicing, formation of RNA/DNA hybrids (R-loops), production of antisense, short non-coding and bidirectional RNA transcripts. In the present review, we summarize current advances in this field and discuss possible roles of transcriptional defects in disease pathology.
Collapse
|
139
|
Butler JS, Napierala M. Friedreich's ataxia--a case of aberrant transcription termination? Transcription 2015; 6:33-6. [PMID: 25831023 PMCID: PMC4581357 DOI: 10.1080/21541264.2015.1026538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022] Open
Abstract
Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.
Collapse
Affiliation(s)
- Jill Sergesketter Butler
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
| | - Marek Napierala
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
- Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan, Poland
| |
Collapse
|
140
|
Li Y, Polak U, Bhalla AD, Rozwadowska N, Butler JS, Lynch DR, Dent SYR, Napierala M. Excision of Expanded GAA Repeats Alleviates the Molecular Phenotype of Friedreich's Ataxia. Mol Ther 2015; 23:1055-1065. [PMID: 25758173 DOI: 10.1038/mt.2015.41] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurological disease caused by expansions of guanine-adenine-adenine (GAA) repeats in intron 1 of the frataxin (FXN) gene. The expansion results in significantly decreased frataxin expression. We report that human FRDA cells can be corrected by zinc finger nuclease-mediated excision of the expanded GAA repeats. Editing of a single expanded GAA allele created heterozygous, FRDA carrier-like cells and significantly increased frataxin expression. This correction persisted during reprogramming of zinc finger nuclease-edited fibroblasts to induced pluripotent stem cells and subsequent differentiation into neurons. The expression of FRDA biomarkers was normalized in corrected patient cells and disease-associated phenotypes, such as decreases in aconitase activity and intracellular ATP levels, were reversed in zinc finger nuclease corrected neuronal cells. Genetically and phenotypically corrected patient cells represent not only a preferred disease-relevant model system to study pathogenic mechanisms, but also a critical step towards development of cell replacement therapy.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Urszula Polak
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas, USA; Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Institute of Human Genetics, Polish Academy of Science, Poznan, Poland
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
141
|
Soragni E, Chou CJ, Rusche JR, Gottesfeld JM. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich's Ataxia. Front Neurol 2015; 6:44. [PMID: 25798128 PMCID: PMC4350406 DOI: 10.3389/fneur.2015.00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we speculate their involvement in FXN gene silencing. Our results shed light on the mechanism whereby HDAC inhibitors increase FXN mRNA levels in FRDA neuronal cells.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | - C James Chou
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | | | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
142
|
Rufini A, Cavallo F, Condò I, Fortuni S, De Martino G, Incani O, Di Venere A, Benini M, Massaro DS, Arcuri G, Serio D, Malisan F, Testi R. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis 2015; 75:91-9. [PMID: 25549872 PMCID: PMC4358773 DOI: 10.1016/j.nbd.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin. Frataxin insufficiency causes mitochondrial dysfunction and ultimately cell death, particularly in peripheral sensory ganglia. There is an inverse correlation between the amount of residual frataxin and the severity of disease progression; therefore, therapeutic approaches aiming at increasing frataxin levels are expected to improve patients' conditions. We previously discovered that a significant amount of frataxin precursor is degraded by the ubiquitin/proteasome system before its functional mitochondrial maturation. We also provided evidence for the therapeutic potential of small molecules that increase frataxin levels by docking on the frataxin ubiquitination site, thus preventing frataxin ubiquitination and degradation. We called these compounds ubiquitin-competing molecules (UCM). By extending our search for effective UCM, we identified a set of new and more potent compounds that more efficiently promote frataxin accumulation. Here we show that these compounds directly interact with frataxin and prevent its ubiquitination. Interestingly, these UCM are not effective on the ubiquitin-resistant frataxin mutant, indicating their specific action on preventing frataxin ubiquitination. Most importantly, these compounds are able to promote frataxin accumulation and aconitase rescue in cells derived from patients, strongly supporting their therapeutic potential.
Collapse
Affiliation(s)
- Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Francesca Cavallo
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Gabriella De Martino
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ottaviano Incani
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Monica Benini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Damiano Sergio Massaro
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Gaetano Arcuri
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland.
| |
Collapse
|
143
|
Villaseñor R, Miraglia L, Romero A, Tu B, Punga T, Knuckles P, Duss S, Orth T, Bühler M. Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:760-7. [PMID: 25616511 DOI: 10.1177/1087057114568071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
Abstract
Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial protein frataxin. This deficiency results from expansion of a trinucleotide repeat in the first intron of the frataxin gene. Because this repeat expansion resides in an intron and hence does not alter the amino acid sequence of the frataxin protein, gene reactivation could be of therapeutic benefit. High-throughput screening for frataxin activators has so far met with limited success because current cellular models may not accurately assess endogenous frataxin gene regulation. Here we report the design and validation of genome-engineering tools that enable the generation of human cell lines that express the frataxin gene fused to a luciferase reporter gene from its endogenous locus. Performing a pilot high-throughput genomic screen in a newly established reporter cell line, we uncovered novel negative regulators of frataxin expression. Rational design of small-molecule inhibitors of the identified frataxin repressors and/or high-throughput screening of large siRNA or compound libraries with our system may yield treatments for Friedreich's ataxia.
Collapse
Affiliation(s)
- Rodrigo Villaseñor
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Loren Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Angelica Romero
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tanel Punga
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland Uppsala University, Department of Medical Biochemistry and Microbiology, BMC Uppsala, Sweden
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Stephan Duss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Tony Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| |
Collapse
|
144
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
145
|
Abstract
Photoaffinity labeling (PAL) using a chemical probe to covalently bind its target in response to activation by light has become a frequently used tool in drug discovery for identifying new drug targets and molecular interactions, and for probing the location and structure of binding sites. Methods to identify the specific target proteins of hit molecules from phenotypic screens are highly valuable in early drug discovery. In this review, we summarize the principles of PAL including probe design and experimental techniques for in vitro and live cell investigations. We emphasize the need to optimize and validate probes and highlight examples of the successful application of PAL across multiple disease areas.
Collapse
Affiliation(s)
- Ewan Smith
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| |
Collapse
|
146
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
147
|
MINOSHIMA M, KIKUCHI K. Chemical Tools for Probing Histone Deacetylase (HDAC) Activity. ANAL SCI 2015; 31:287-92. [DOI: 10.2116/analsci.31.287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masafumi MINOSHIMA
- Institute of Academic Initiatives, Osaka University
- Graduate School of Engineering, Osaka University
| | - Kazuya KIKUCHI
- Immunology Frontier Research Center (IFReC), Osaka University
- Graduate School of Engineering, Osaka University
| |
Collapse
|
148
|
|
149
|
Di Giorgio E, Gagliostro E, Brancolini C. Selective class IIa HDAC inhibitors: myth or reality. Cell Mol Life Sci 2015; 72:73-86. [PMID: 25189628 PMCID: PMC11113455 DOI: 10.1007/s00018-014-1727-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Enrico Gagliostro
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| |
Collapse
|
150
|
HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 2014; 112:E56-64. [PMID: 25535382 DOI: 10.1073/pnas.1415195112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence has demonstrated that epigenetic factors can profoundly influence gene expression and, in turn, influence resistance or susceptibility to disease. Epigenetic drugs, such as histone deacetylase (HDAC) inhibitors, are finding their way into clinical practice, although their exact mechanisms of action are unclear. To identify mechanisms associated with HDAC inhibition, we performed microarray analysis on brain and muscle samples treated with the HDAC1/3-targeting inhibitor, HDACi 4b. Pathways analyses of microarray datasets implicate DNA methylation as significantly associated with HDAC inhibition. Further assessment of DNA methylation changes elicited by HDACi 4b in human fibroblasts from normal controls and patients with Huntington's disease (HD) using the Infinium HumanMethylation450 BeadChip revealed a limited, but overlapping, subset of methylated CpG sites that were altered by HDAC inhibition in both normal and HD cells. Among the altered loci of Y chromosome-linked genes, KDM5D, which encodes Lys (K)-specific demethylase 5D, showed increased methylation at several CpG sites in both normal and HD cells, as well as in DNA isolated from sperm from drug-treated male mice. Further, we demonstrate that first filial generation (F1) offspring from drug-treated male HD transgenic mice show significantly improved HD disease phenotypes compared with F1 offspring from vehicle-treated male HD transgenic mice, in association with increased Kdm5d expression, and decreased histone H3 Lys4 (K4) (H3K4) methylation in the CNS of male offspring. Additionally, we show that overexpression of Kdm5d in mutant HD striatal cells significantly improves metabolic deficits. These findings indicate that HDAC inhibitors can elicit transgenerational effects, via cross-talk between different epigenetic mechanisms, to have an impact on disease phenotypes in a beneficial manner.
Collapse
|