101
|
Purushottam L, Adusumalli SR, Singh U, Unnikrishnan VB, Rawale DG, Gujrati M, Mishra RK, Rai V. Single-site glycine-specific labeling of proteins. Nat Commun 2019; 10:2539. [PMID: 31182711 PMCID: PMC6557831 DOI: 10.1038/s41467-019-10503-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/16/2019] [Indexed: 11/09/2022] Open
Abstract
Labeling of native proteins invites interest from diverse segments of science. However, there remains the significant unmet challenge in precise labeling at a single site of a protein. Here, we report the site-specific labeling of natural or easy-to-engineer N-terminus Gly in proteins with remarkable efficiency and selectivity. The method generates a latent nucleophile from N-terminus imine that reacts with an aldehyde to deliver an aminoalcohol under physiological conditions. It differentiates N-Gly as a unique target amongst other proteinogenic amino acids. The method allows single-site labeling of proteins in isolated form and extends to lysed cells. It administers an orthogonal aldehyde group primed for late-stage tagging with an affinity tag, 19F NMR probe, and a fluorophore. A user-friendly protocol delivers analytically pure tagged proteins. The mild reaction conditions do not alter the structure and function of the protein. The cellular uptake of fluorophore-tagged insulin and its ability to activate the insulin-receptor mediated signaling remains unperturbed. Single-site labelling of proteins is desirable, e.g., for analytical purposes. Here, the authors developed a method in which they use an aldol-type reaction to modify proteins at N-terminal glycine residues in an efficient and selective manner, which is also applicable to cell lysates.
Collapse
Affiliation(s)
- Landa Purushottam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Usha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - V B Unnikrishnan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Mansi Gujrati
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Ram Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India.
| |
Collapse
|
102
|
Kim H, Song H, Park JG, Lee DS, Park SB. Development of α-GalCer Analogues with an α-Fluorocarbonyl Moiety as Th2-Selective Ligands of CD1d. ACS Med Chem Lett 2019; 10:773-779. [PMID: 31097998 DOI: 10.1021/acsmedchemlett.9b00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
A series of α-GalCer analogues containing an α-fluorocarbonyl moiety at the terminal position of the acyl chain were designed for targeting polar residues in the hydrophobic cavity of CD1d using a structure-based approach. The acyl chain length was efficiently adjusted by an asymmetric alkyne-alkyne cross coupling strategy, and the newly synthesized α-GalCer analogues showed the high Th2-selective activity of iNKT cells. The biased activity of ligands could be caused by the hydrogen-bonding interaction between ligands and CD1d according to the Th2-selective cytokine secretion and molecular docking studies.
Collapse
Affiliation(s)
- Hyunsoo Kim
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Heebum Song
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jun-Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
103
|
Kasper MA, Glanz M, Stengl A, Penkert M, Klenk S, Sauer T, Schumacher D, Helma J, Krause E, Cardoso MC, Leonhardt H, Hackenberger CPR. Cysteine-Selective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angew Chem Int Ed Engl 2019; 58:11625-11630. [PMID: 30828930 DOI: 10.1002/anie.201814715] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 01/23/2023]
Abstract
We describe a new technique in protein synthesis that extends the existing repertoire of methods for protein modification: A chemoselective reaction that induces reactivity for a subsequent bioconjugation. An azide-modified building block reacts first with an ethynylphosphonite through a Staudinger-phosphonite reaction (SPhR) to give an ethynylphosphonamidate. The resulting electron-deficient triple bond subsequently undergoes a cysteine-selective reaction with proteins or antibodies. We demonstrate that ethynylphosphonamidates display excellent cysteine-selective reactivity combined with superior stability of the thiol adducts, when compared to classical maleimide linkages. This turns our technique into a versatile and powerful tool for the facile construction of stable functional protein conjugates.
Collapse
Affiliation(s)
- Marc-André Kasper
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Maria Glanz
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Andreas Stengl
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Martin Penkert
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Simon Klenk
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Tom Sauer
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Dominik Schumacher
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Jonas Helma
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Eberhard Krause
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Heinrich Leonhardt
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Christian P R Hackenberger
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
104
|
Kasper M, Glanz M, Stengl A, Penkert M, Klenk S, Sauer T, Schumacher D, Helma J, Krause E, Cardoso MC, Leonhardt H, Hackenberger CPR. Cysteinselektive phosphonamidatbasierte Elektrophile für modulare Biokonjugationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Marc‐André Kasper
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Maria Glanz
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Andreas Stengl
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Martin Penkert
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Simon Klenk
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Tom Sauer
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - Dominik Schumacher
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Eberhard Krause
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - M. Cristina Cardoso
- Department Biologie Technische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Deutschland
| | - Heinrich Leonhardt
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
105
|
Viricel W, Fournet G, Beaumel S, Perrial E, Papot S, Dumontet C, Joseph B. Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chem Sci 2019; 10:4048-4053. [PMID: 31015945 PMCID: PMC6457330 DOI: 10.1039/c9sc00285e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Antibody-drug conjugates (ADCs) convey highly potent anticancer drugs to antigen-expressing tumor cells, thereby sparing healthy tissues throughout the body. Pharmacokinetics and tolerability of ADCs are predominantly influenced by the drug-antibody ratio (DAR) of the conjugates, which is to-date limited to a value of 3-4 drugs per antibody in ADCs under clinical investigations. Here, we report the synthesis of monodisperse (i.e. discrete) polysarcosine compounds and their use as a hydrophobicity masking entity for the construction of highly-loaded homogeneous β-glucuronidase-responsive antibody-drug conjugates (ADCs). The highly hydrophilic drug-linker platform described herein improves drug-loading, physicochemical properties, pharmacokinetics and in vivo antitumor efficacy of the resulting conjugates.
Collapse
Affiliation(s)
- Warren Viricel
- Mablink Bioscience SA , 14 rue Waldeck Rousseau , 69006 Lyon , France .
| | - Guy Fournet
- Université de Lyon , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR CNRS 5246 , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Sabine Beaumel
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Emeline Perrial
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Sébastien Papot
- Université de Poitiers , Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP) , UMR CNRS 7285 , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel-Brunet, TSA 51106 , 86073 Poitiers , France
- Seekyo SA , 4 rue Carol Heitz , 86000 Poitiers , France
| | - Charles Dumontet
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Benoît Joseph
- Université de Lyon , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR CNRS 5246 , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| |
Collapse
|
106
|
Matos MJ, Navo CD, Hakala T, Ferhati X, Guerreiro A, Hartmann D, Bernardim B, Saar KL, Compañón I, Corzana F, Knowles TPJ, Jiménez‐Osés G, Bernardes GJL. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine‐Selective Protein Modification and Charge Modulation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maria J. Matos
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Claudio D. Navo
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
- CIC bioGUNEBizkaia Technology Park Building 801A 48170 Derio Spain
| | - Tuuli Hakala
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Xhenti Ferhati
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - David Hartmann
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Barbara Bernardim
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Kadi L. Saar
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Ismael Compañón
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Francisco Corzana
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Tuomas P. J. Knowles
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Gonzalo Jiménez‐Osés
- Departamento de QuímicaUniversidad de La RiojaCentro de Investigación en Síntesis Química 26006 Logroño Spain
- CIC bioGUNEBizkaia Technology Park Building 801A 48170 Derio Spain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
107
|
Matos MJ, Navo CD, Hakala T, Ferhati X, Guerreiro A, Hartmann D, Bernardim B, Saar KL, Compañón I, Corzana F, Knowles TPJ, Jiménez-Osés G, Bernardes GJL. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine-Selective Protein Modification and Charge Modulation. Angew Chem Int Ed Engl 2019; 58:6640-6644. [PMID: 30897271 PMCID: PMC6618083 DOI: 10.1002/anie.201901405] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Quaternized vinyl‐ and alkynyl‐pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine‐tagged proteins at near‐stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody–drug conjugate that features a precise drug‐to‐antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl‐ and alkynyl‐pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity.
Collapse
Affiliation(s)
- Maria J Matos
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Claudio D Navo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain.,CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Tuuli Hakala
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Xhenti Ferhati
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - David Hartmann
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Barbara Bernardim
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Kadi L Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain.,CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
108
|
Xu Y, Wang Y, Liu P, Chu GC, Xu H, Li YM, Wang J, Shi J. Catalyst free hydrazone ligation for protein labeling and modification using electron-deficient benzaldehyde reagents. Org Biomol Chem 2019; 16:7036-7040. [PMID: 30238118 DOI: 10.1039/c8ob01810c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioorthogonal reactions have emerged as valuable tools for site-specific protein labeling and modification in vitro and in vivo. Hydrazone and oxime ligation has recently attracted considerable attention for wide applications in the conjugation of biomolecules. However, this kind of reaction has suffered from slow kinetics under physiological conditions and toxicity or complications of the reaction system due to catalysts. In this work we have developed an electron-deficient benzaldehyde reagent, which can be easily equipped with various types of bio-functional molecules for catalyst-free hydrazone ligation. The reagent can be equipped with not only small molecules such as fluorescence dyes or drugs, but also macromolecules like PEG. These can be precisely ligated to the C-terminus of proteins by an efficient hydrazone reaction at neutral pH and room temperature. The new reagent based catalyst-free hydrazone ligation provides a practical approach for the site specific modification of proteins.
Collapse
Affiliation(s)
- Yang Xu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Lucchino M, Billet A, Versini A, Bavireddi H, Dasari BD, Debieu S, Colombeau L, Cañeque T, Wagner A, Masson G, Taran F, Karoyan P, Delepierre M, Gaillet C, Houdusse A, Britton S, Schmidt F, Florent JC, Belmont P, Monchaud D, Cossy J, Thomas C, Gautier A, Johannes L, Rodriguez R. 2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. Chembiochem 2019; 20:968-973. [PMID: 30803119 DOI: 10.1002/cbic.201900092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.
Collapse
Affiliation(s)
- Marco Lucchino
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Billet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Antoine Versini
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Harikrishna Bavireddi
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Bhanu-Das Dasari
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Sylvain Debieu
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Ludovic Colombeau
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Tatiana Cañeque
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Alain Wagner
- University of Strasbourg, CNRS UMR 7199, 67401, Illkirch-Graffenstaden, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université, Ecole Normale Supérieure, CNRS UMR7203, 75005, Paris, France
| | - Muriel Delepierre
- PSL Université Paris, Institut Pasteur, CNRS UMR3528, 75015, Paris, France
| | - Christine Gaillet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Houdusse
- PSL Université Paris, Institut Curie, CNRS UMR144, 75005, Paris, France
| | | | - Frédéric Schmidt
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Jean-Claude Florent
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Philippe Belmont
- Université Paris Descartes, Faculté de Pharmacie de Paris, CNRS UMR8038, 75006, Paris, France
| | - David Monchaud
- UBFC, Institut de Chimie Moléculaire, CNRS UMR6302, 21078, Dijon, France
| | - Janine Cossy
- PSL Université Paris, ESPCI Paris, CNRS UMR8271, 75231, Paris cedex 05, France
| | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Arnaud Gautier
- PSL Université Paris, Sorbonne University, Department of Chemistry, École Normale Supérieure, CNRS, 75005, Paris, France
| | - Ludger Johannes
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Raphaël Rodriguez
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| |
Collapse
|
110
|
Akkapeddi P, Fragoso R, Hixon JA, Ramalho AS, Oliveira ML, Carvalho T, Gloger A, Matasci M, Corzana F, Durum SK, Neri D, Bernardes GJL, Barata JT. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 2019; 33:2155-2168. [PMID: 30850736 PMCID: PMC6733707 DOI: 10.1038/s41375-019-0434-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer for which treatment options often result in incomplete therapeutic efficacy and long-term side-effects. Interleukin 7 (IL-7) and its receptor IL-7Rα promote T-ALL development and mutational activation of IL-7Rα associates with very high risk in relapsed disease. Using combinatorial phage-display libraries and antibody reformatting, we generated a fully human IgG1 monoclonal antibody (named B12) against both wild-type and mutant human IL-7Rα, predicted to form a stable complex with IL-7Rα at a different site from IL-7. B12 impairs IL-7/IL-7R-mediated signaling, sensitizes T-ALL cells to treatment with dexamethasone and can induce cell death per se. The antibody also promotes antibody-dependent natural killer-mediated leukemia cytotoxicity in vitro and delays T-cell leukemia development in vivo, reducing tumor burden and promoting mouse survival. B12 is rapidly internalized and traffics to the lysosome, rendering it an attractive vehicle for targeted intracellular delivery of cytotoxic cargo. Consequently, we engineered a B12–MMAE antibody–drug conjugate and provide proof-of-concept evidence that it has increased leukemia cell killing abilities as compared with the naked antibody. Our studies serve as a stepping stone for the development of novel targeted therapies in T-ALL and other diseases where IL-7Rα has a pathological role.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Julie A Hixon
- Cytokines and Immunity Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ana Sofia Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Andreas Gloger
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | | | | | - Scott K Durum
- Cytokines and Immunity Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal. .,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
111
|
|
112
|
Hansen BK, Loveridge CJ, Thyssen S, Wørmer GJ, Nielsen AD, Palmfeldt J, Johannsen M, Poulsen TB. STEFs: Activated Vinylogous Protein-Reactive Electrophiles. Angew Chem Int Ed Engl 2019; 58:3533-3537. [DOI: 10.1002/anie.201814073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Bente K. Hansen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Stine Thyssen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Gustav J. Wørmer
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Andreas D. Nielsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine-Research Unit for Molecular Medicine; Aarhus University hospital; Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
113
|
Hansen BK, Loveridge CJ, Thyssen S, Wørmer GJ, Nielsen AD, Palmfeldt J, Johannsen M, Poulsen TB. STEFs: Activated Vinylogous Protein-Reactive Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bente K. Hansen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Stine Thyssen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Gustav J. Wørmer
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Andreas D. Nielsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine-Research Unit for Molecular Medicine; Aarhus University hospital; Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine; Aarhus University; Palle Juul-Jensens Boulevard 99 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
114
|
Robertson NS, Walsh SJ, Fowler E, Yoshida M, Rowe SM, Wu Y, Sore HF, Parker JS, Spring DR. Macrocyclisation and functionalisation of unprotected peptides via divinyltriazine cysteine stapling. Chem Commun (Camb) 2019; 55:9499-9502. [PMID: 31328756 DOI: 10.1039/c9cc05042f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a novel divinyltriazine linker for the stapling of two cysteine residues to form macrocyclic peptides from their unprotected linear counterparts. The stapling reaction occurred rapidly under mild conditions on a range of unprotected peptide sequences. The resulting constrained peptides displayed greater stability in a serum stability assay when compared to their linear counterparts.
Collapse
Affiliation(s)
- Naomi S Robertson
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Matos MJ, Jiménez-Osés G, Bernardes GJL. Lysine Bioconjugation on Native Albumin with a Sulfonyl Acrylate Reagent. Methods Mol Biol 2019; 2033:25-37. [PMID: 31332745 DOI: 10.1007/978-1-4939-9654-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This protocol details a novel bioconjugation strategy that uses a methanesulfonyl acrylate reagent that is directed to the most reactive lysine on human serum albumin, which enables the construction of chemically defined and stable bioconjugates. The reaction proceeds rapidly and a regioselective modification is achieved using a single molar equivalent of the reagent under biocompatible conditions (37 °C, pH 8.0). Importantly, the bioconjugate retains both the secondary structural content and function of the unmodified protein. During the reaction of the amino group of lysine and the sulfonyl acrylate reagent, methanesulfinic acid is released after the conjugate addition, which then generates an electrophilic acrylate moiety on the protein. This acrylate can be further used for site-specific protein labeling using a synthetic molecule bearing a reactive amine under biocompatible conditions (21 °C, pH 8.0).
Collapse
Affiliation(s)
- Maria J Matos
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Logroño, Spain
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
116
|
Tamura T, Hamachi I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J Am Chem Soc 2018; 141:2782-2799. [DOI: 10.1021/jacs.8b11747] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
117
|
Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nat Protoc 2018; 14:86-99. [DOI: 10.1038/s41596-018-0083-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
118
|
Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2018; 25:43-59. [PMID: 30095185 DOI: 10.1002/chem.201803174] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.
Collapse
Affiliation(s)
- João M J M Ravasco
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Hélio Faustino
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Alexandre Trindade
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro M P Gois
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
119
|
Imada T, Moriya K, Uchiyama M, Inukai N, Hitotsuyanagi M, Masuda A, Suzuki T, Ayukawa S, Tagawa YI, Dohmae N, Kohara M, Yamamura M, Kiga D. A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-α2b. ACS Synth Biol 2018; 7:2537-2546. [PMID: 30277749 DOI: 10.1021/acssynbio.8b00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although conjugation with polyethylene glycol (PEGylation) improves the pharmacokinetics of therapeutic proteins, it drastically decreases their bioactivity. Site-specific PEGylation counters the reduction in bioactivity, but developing PEGylated proteins with equivalent bioactivity to that of their unmodified counterparts remains challenging. This study aimed to generate PEGylated proteins with equivalent bioactivity to that of unmodified counterparts. Using interferon (IFN) as a model protein, a highly bioactive Lys-deficient protein variant generated using our unique directed evolution methods enables the design of a site-specific di-PEGylated protein. Antiviral activity of our di-PEGylated IFN was similar to that of unmodified IFN-α2b. The di-PEGylated IFN exhibited 3.0-fold greater antiviral activity than that of a commercial PEGylated IFN. Moreover, our di-PEGylated IFN showed higher in vitro and in vivo stability than those of unmodified IFN-α2b. Hence, we propose that highly bioactive Lys-deficient proteins solve the limitation of conventional PEGylation with respect to the reduction in bioactivity of PEGylated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Akiko Masuda
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Shotaro Ayukawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| | | | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | - Daisuke Kiga
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| |
Collapse
|
120
|
Morais M, Ma MT. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:91-104. [PMID: 30553525 PMCID: PMC6291455 DOI: 10.1016/j.ddtec.2018.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Antibodies and their derivatives radiolabelled with positron- and gamma-emitting radiometals enable sensitive and quantitative molecular Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) imaging of antibody distribution in vivo. Chelators that are covalently attached to antibodies allow radiolabelling with metallic PET and SPECT radioisotopes. Conventional strategies for chelator-protein conjugation generate heterogeneous mixtures of bioconjugates that can exhibit reduced affinity for their receptor targets, and undesirable biodistribution and pharmacokinetics. Recent advances in bioconjugation technology enable site-specific modification to generate well-defined constructs with superior properties. Herein we survey existing site-specific chelator-protein conjugation methods. These include chelator attachment to cysteines/disulfide bonds or the glycan region of the antibody, enzyme-mediated chelator conjugation, and incorporation of sequences of amino acids that chelate the radiometal. Such technology will allow better use of PET and SPECT imaging in the development of antibody-based therapies.
Collapse
Affiliation(s)
- Mauricio Morais
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
121
|
Huang R, Li Z, Sheng Y, Yu J, Wu Y, Zhan Y, Chen H, Jiang B. N-Methyl-N-phenylvinylsulfonamides for Cysteine-Selective Conjugation. Org Lett 2018; 20:6526-6529. [DOI: 10.1021/acs.orglett.8b02849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zhihong Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yue Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yuexiong Zhan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
122
|
Yu J, Yang X, Sun Y, Yin Z. Highly Reactive and Tracelessly Cleavable Cysteine‐Specific Modification of Proteins via 4‐Substituted Cyclopentenone. Angew Chem Int Ed Engl 2018; 57:11598-11602. [DOI: 10.1002/anie.201804801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jian Yu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Xiaoyue Yang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Yang Sun
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zheng Yin
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
123
|
Ramírez-Andersen HS, Behrens C, Buchardt J, Fels JJ, Folkesson CG, Jianhe C, Nørskov-Lauritsen L, Nielsen PF, Reslow M, Rischel C, Su J, Thygesen P, Wiberg C, Zhao X, Wenjuan X, Johansen NL. Long-Acting Human Growth Hormone Analogue by Noncovalent Albumin Binding. Bioconjug Chem 2018; 29:3129-3143. [DOI: 10.1021/acs.bioconjchem.8b00463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Jens Buchardt
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | | | - Chen Jianhe
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | | | - Per F. Nielsen
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | - Mats Reslow
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | - Jing Su
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | - Peter Thygesen
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | - Xin Zhao
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | - Xia Wenjuan
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | | |
Collapse
|
124
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
125
|
Yu J, Yang X, Sun Y, Yin Z. Highly Reactive and Tracelessly Cleavable Cysteine-Specific Modification of Proteins via 4-Substituted Cyclopentenone. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jian Yu
- Center of Basic Molecular Science (CBMS); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Xiaoyue Yang
- Center of Basic Molecular Science (CBMS); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Yang Sun
- Center of Basic Molecular Science (CBMS); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Zheng Yin
- Center of Basic Molecular Science (CBMS); Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
126
|
Site-selective installation of an electrophilic handle on proteins for bioconjugation. Bioorg Med Chem 2018; 26:3060-3064. [DOI: 10.1016/j.bmc.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 02/02/2023]
|
127
|
Abstract
Graphical Abstract [Formula: see text]
Collapse
|
128
|
Stenton BJ, Oliveira BL, Matos MJ, Sinatra L, Bernardes GJL. A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging. Chem Sci 2018; 9:4185-4189. [PMID: 29780549 PMCID: PMC5941270 DOI: 10.1039/c8sc00256h] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 01/24/2023] Open
Abstract
We describe the development of a bifunctional linker that simultaneously allows site-specific protein modification and palladium-mediated bioorthogonal decaging.
We describe the development of a bifunctional linker that simultaneously allows site-specific protein modification and palladium-mediated bioorthogonal decaging. This was enabled by a thioether binding motif in the propargyl carbamate linker and a readily available palladium complex. We demonstrate the efficiency of this reaction by controlled drug release from a PEGylated doxorubicin prodrug in cancer cells. The linker can be easily installed into cysteine bearing proteins which we demonstrated for the construction of an anti-HER2 nanobody–drug conjugate. Targeted delivery of the nanobody drug conjugate showed effective cell killing in HER2+ cells upon palladium-mediated decaging.
Collapse
Affiliation(s)
- Benjamin J Stenton
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Bruno L Oliveira
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Maria J Matos
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Laura Sinatra
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK . .,Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , 1649-028 Lisboa , Portugal .
| |
Collapse
|
129
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
130
|
Matos MJ, Oliveira BL, Martínez-Sáez N, Guerreiro A, Cal PMSD, Bertoldo J, Maneiro M, Perkins E, Howard J, Deery MJ, Chalker JM, Corzana F, Jiménez-Osés G, Bernardes GJL. Chemo- and Regioselective Lysine Modification on Native Proteins. J Am Chem Soc 2018; 140:4004-4017. [PMID: 29473744 PMCID: PMC5880509 DOI: 10.1021/jacs.7b12874] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Site-selective chemical
conjugation of synthetic molecules to proteins
expands their functional and therapeutic capacity. Current protein
modification methods, based on synthetic and biochemical technologies,
can achieve site selectivity, but these techniques often require extensive
sequence engineering or are restricted to the N-
or C-terminus. Here we show the computer-assisted
design of sulfonyl acrylate reagents for the modification of a single lysine residue on native protein sequences. This
feature of the designed sulfonyl acrylates, together with the innate
and subtle reactivity differences conferred by the unique local microenvironment
surrounding each lysine, contribute to the observed regioselectivity
of the reaction. Moreover, this site selectivity was predicted computationally,
where the lysine with the lowest pKa was
the kinetically favored residue at slightly basic pH. Chemoselectivity
was also observed as the reagent reacted preferentially at lysine,
even in those cases when other nucleophilic residues such as cysteine
were present. The reaction is fast and proceeds using a single molar
equivalent of the sulfonyl acrylate reagent under biocompatible conditions
(37 °C, pH 8.0). This technology was demonstrated by the quantitative
and irreversible modification of five different proteins including
the clinically used therapeutic antibody Trastuzumab without prior
sequence engineering. Importantly, their native secondary structure
and functionality is retained after the modification. This regioselective
lysine modification method allows for further bioconjugation through
aza-Michael addition to the acrylate electrophile that is generated
by spontaneous elimination of methanesulfinic acid upon lysine labeling.
We showed that a protein–antibody conjugate bearing a site-specifically
installed fluorophore at lysine could be used for selective imaging
of apoptotic cells and detection of Her2+ cells, respectively. This
simple, robust method does not require genetic engineering and may
be generally used for accessing diverse, well-defined protein conjugates
for basic biology and therapeutic studies.
Collapse
Affiliation(s)
- Maria J Matos
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , U.K
| | - Bruno L Oliveira
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , U.K
| | - Nuria Martínez-Sáez
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , U.K
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz , Lisboa , Portugal
| | - Pedro M S D Cal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz , Lisboa , Portugal
| | - Jean Bertoldo
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , U.K
| | - María Maneiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , calle Jenaro de la Fuente s/n , Santiago de Compostela , Spain
| | - Elizabeth Perkins
- Albumedix Ltd, Castle Court, 59 Castle Boulevard , Nottingham , United Kingdom
| | - Julie Howard
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry , University of Cambridge , Tennis Court Road , Cambridge , U.K
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry , University of Cambridge , Tennis Court Road , Cambridge , U.K
| | - Justin M Chalker
- Centre for NanoScale Science and Technology, College of Science and Engineering , Flinders University Bedford Park , South Australia , Australia
| | - Francisco Corzana
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Logroño , Spain
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , U.K.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz , Lisboa , Portugal
| |
Collapse
|
131
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
132
|
Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142:393-415. [DOI: 10.1016/j.ejmech.2017.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
|
133
|
Wang C, Jiang YY, Qi CZ. Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study. J Org Chem 2017; 82:9765-9772. [DOI: 10.1021/acs.joc.7b02026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chen Wang
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yuan-Ye Jiang
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Chen-Ze Qi
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
134
|
Abstract
Advances in bioconjugation and native protein modification are appearing at a blistering pace, making it increasingly time consuming for practitioners to identify the best chemical method for modifying a specific amino acid residue in a complex setting. The purpose of this perspective is to provide an informative, graphically rich manual highlighting significant advances in the field over the past decade. This guide will help triage candidate methods for peptide alteration and will serve as a starting point for those seeking to solve long-standing challenges.
Collapse
Affiliation(s)
- Justine N. deGruyter
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lara R. Malins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
135
|
Albumin-based drug delivery using cysteine 34 chemical conjugates – important considerations and requirements. Ther Deliv 2017; 8:511-519. [DOI: 10.4155/tde-2017-0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The long blood circulation time of albumin has been clinically utilized as a half-life extension technology for improved drug performance. The availability of one free thiol for site-selective chemical conjugation offers an alternative approach to current genetic fusion and association-based products. This special report highlights important factors for successful conjugation that allows the reader to design and evaluate next-generation albumin conjugates. Albumin type, available conjugation chemistries, linker length, animal models and influence of conjugation on albumin pharmacokinetics and drug activity are discussed.
Collapse
|
136
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
137
|
Ariyasu S, Hayashi H, Xing B, Chiba S. Site-Specific Dual Functionalization of Cysteine Residue in Peptides and Proteins with 2-Azidoacrylates. Bioconjug Chem 2017; 28:897-902. [DOI: 10.1021/acs.bioconjchem.7b00024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shinya Ariyasu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| | - Hirohito Hayashi
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| | - Bengang Xing
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| | - Shunsuke Chiba
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
138
|
Triana V, Derda R. Tandem Wittig/Diels–Alder diversification of genetically encoded peptide libraries. Org Biomol Chem 2017; 15:7869-7877. [DOI: 10.1039/c7ob01635b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper, we developed a tandem of two carbon–carbon bond-forming reactions to chemically diversify libraries of peptides displayed on a bacteriophage.
Collapse
Affiliation(s)
- Vivian Triana
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Ratmir Derda
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|