101
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
102
|
Brusilovsky M, Rochman M, Shoda T, Kotliar M, Caldwell JM, Mack LE, Besse JA, Chen X, Weirauch MT, Barski A, Rothenberg ME. Vitamin D receptor and STAT6 interactome governs oesophageal epithelial barrier responses to IL-13 signalling. Gut 2023; 72:834-845. [PMID: 35918104 PMCID: PMC9892355 DOI: 10.1136/gutjnl-2022-327276] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The contribution of vitamin D (VD) deficiency to the pathogenesis of allergic diseases remains elusive. We aimed to define the impact of VD on oesophageal allergic inflammation. DESIGN We assessed the genomic distribution and function of VD receptor (VDR) and STAT6 using histology, molecular imaging, motif discovery and metagenomic analysis. We examined the role of VD supplementation in oesophageal epithelial cells, in a preclinical model of IL-13-induced oesophageal allergic inflammation and in human subjects with eosinophilic oesophagitis (EoE). RESULTS VDR response elements were enriched in oesophageal epithelium, suggesting enhanced VDR binding to functional gene enhancer and promoter regions. Metagenomic analysis showed that VD supplementation reversed dysregulation of up to 70% of the transcriptome and epigenetic modifications (H3K27Ac) induced by IL-13 in VD-deficient cells, including genes encoding the transcription factors HIF1A and SMAD3, endopeptidases (SERPINB3) and epithelial-mesenchymal transition mediators (TGFBR1, TIAM1, SRC, ROBO1, CDH1). Molecular imaging and chromatin immunoprecipitation showed VDR and STAT6 colocalisation within the regulatory regions of the affected genes, suggesting that VDR and STAT6 interactome governs epithelial tissue responses to IL-13 signalling. Indeed, VD supplementation reversed IL-13-induced epithelial hyperproliferation, reduced dilated intercellular spaces and barrier permeability, and improved differentiation marker expression (filaggrin, involucrin). In a preclinical model of IL-13-mediated oesophageal allergic inflammation and in human EoE, VD levels inversely associated with severity of oesophageal eosinophilia and epithelial histopathology. CONCLUSIONS Collectively, these findings identify VD as a natural IL-13 antagonist with capacity to regulate the oesophageal epithelial barrier functions, providing a novel therapeutic entry point for type 2 immunity-related diseases.
Collapse
Affiliation(s)
- Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lydia E Mack
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
103
|
Wei W, Zhao Y, Chai Y, Shou S, Jin H. A novel role of DOT1L in kidney diseases. Mol Biol Rep 2023; 50:5415-5423. [PMID: 37085741 DOI: 10.1007/s11033-023-08415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We systematically summarized the structure and biological function of DOT1L in detail, and further discussed the role of DOT1L in kidney diseases through different mechanisms. METHODS AND RESULTS We first described the role of DOT1L in various kidney diseases including AKI, CKD, DN and kidney tumor diseases. CONCLUSIONS A better understanding of DOT1L as a histone methylase based on characteristics of regulating telomere silencing, transcriptional extension, DNA damage repair and cell cycle could lead to the development of new therapeutic targets for various kidney diseases, thereby improving the prognosis of kidney disease patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
104
|
Werner MS, Loschko T, King T, Reich S, Theska T, Franz-Wachtel M, Macek B, Sommer RJ. Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form. Nat Commun 2023; 14:2095. [PMID: 37055396 PMCID: PMC10102330 DOI: 10.1038/s41467-023-37734-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Development can be altered to match phenotypes with the environment, and the genetic mechanisms that direct such alternative phenotypes are beginning to be elucidated. Yet, the rules that govern environmental sensitivity vs. invariant development, and potential epigenetic memory, remain unknown. Here, we show that plasticity of nematode mouth forms is determined by histone 4 lysine 5 and 12 acetylation (H4K5/12ac). Acetylation in early larval stages provides a permissive chromatin state, which is susceptible to induction during the critical window of environmental sensitivity. As development proceeds deacetylation shuts off switch gene expression to end the critical period. Inhibiting deacetylase enzymes leads to fixation of prior developmental trajectories, demonstrating that histone modifications in juveniles can carry environmental information to adults. Finally, we provide evidence that this regulation was derived from an ancient mechanism of licensing developmental speed. Altogether, our results show that H4K5/12ac enables epigenetic regulation of developmental plasticity that can be stored and erased by acetylation and deacetylation, respectively.
Collapse
Affiliation(s)
- Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Thomas King
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Shelley Reich
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
105
|
Tsusaka T, Oses-Prieto JA, Lee C, DeFelice BC, Burlingame AL, Goldberg E. Non-specific recognition of histone modifications by H3K9bhb antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536655. [PMID: 37090555 PMCID: PMC10120668 DOI: 10.1101/2023.04.12.536655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Ketone bodies are short chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative source of energy for the brain, heart, and skeletal muscle. Beyond this classical metabolic role, β-hydroxybutyrate (BHB), is gaining recognition as a pleiotropic signaling molecule. Lysine β-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This novel protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments, including the mitochondria and nucleus. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against the β-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s), which are increased by deacetylation inhibition and include likely acetylations. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christina Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | | | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emily Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
106
|
Huang C, Helin K. Catching active enhancers via H2B N-terminal acetylation. Nat Genet 2023; 55:525-526. [PMID: 37024580 DOI: 10.1038/s41588-023-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Chang Huang
- The Institute of Cancer Research, London, UK
| | | |
Collapse
|
107
|
Narita T, Higashijima Y, Kilic S, Liebner T, Walter J, Choudhary C. Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes. Nat Genet 2023; 55:679-692. [PMID: 37024579 PMCID: PMC10101849 DOI: 10.1038/s41588-023-01348-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Chromatin features are widely used for genome-scale mapping of enhancers. However, discriminating active enhancers from other cis-regulatory elements, predicting enhancer strength and identifying their target genes is challenging. Here we establish histone H2B N-terminus multisite lysine acetylation (H2BNTac) as a signature of active enhancers. H2BNTac prominently marks candidate active enhancers and a subset of promoters and discriminates them from ubiquitously active promoters. Two mechanisms underlie the distinct H2BNTac specificity: (1) unlike H3K27ac, H2BNTac is specifically catalyzed by CBP/p300; (2) H2A-H2B, but not H3-H4, are rapidly exchanged through transcription-induced nucleosome remodeling. H2BNTac-positive candidate enhancers show a high validation rate in orthogonal enhancer activity assays and a vast majority of endogenously active enhancers are marked by H2BNTac and H3K27ac. Notably, H2BNTac intensity predicts enhancer strength and outperforms current state-of-the-art models in predicting CBP/p300 target genes. These findings have broad implications for generating fine-grained enhancer maps and modeling CBP/p300-dependent gene regulation.
Collapse
Affiliation(s)
- Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Higashijima
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sinan Kilic
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Liebner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Walter
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
108
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
109
|
Thieme E, Bruss N, Sun D, Dominguez EC, Coleman D, Liu T, Roleder C, Martinez M, Garcia-Mansfield K, Ball B, Pirrotte P, Wang L, Xia Z, Danilov AV. CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Mol Cancer 2023; 22:64. [PMID: 36998071 PMCID: PMC10061728 DOI: 10.1186/s12943-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.
Collapse
Affiliation(s)
- Elana Thieme
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Nur Bruss
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Duanchen Sun
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA
- grid.27255.370000 0004 1761 1174Present address: School of Mathematics, Shandong University, Jinan, 250100 Shandong China
| | - Edward C. Dominguez
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Daniel Coleman
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Tingting Liu
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Carly Roleder
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Melissa Martinez
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Krystine Garcia-Mansfield
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Brian Ball
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Patrick Pirrotte
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Lili Wang
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Zheng Xia
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Biomedical Engineering Department, Oregon Health & Science University, Portland, OR USA
| | - Alexey V. Danilov
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| |
Collapse
|
110
|
Weng Z, Ruan F, Chen W, Chen Z, Xie Y, Luo M, Xie Z, Zhang C, Wang J, Sun Y, Fang Y, Guo M, Tan C, Chen W, Tong Y, Li Y, Wang H, Tang C. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol 2023; 24:61. [PMID: 36991510 PMCID: PMC10052867 DOI: 10.1186/s13059-023-02896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Epigenetic modifications of histones are associated with development and pathogenesis of disease. Existing approaches cannot provide insights into long-range interactions and represent the average chromatin state. Here we describe BIND&MODIFY, a method using long-read sequencing for profiling histone modifications and transcription factors on individual DNA fibers. We use recombinant fused protein A-M.EcoGII to tether methyltransferase M.EcoGII to protein binding sites to label neighboring regions by methylation. Aggregated BIND&MODIFY signal matches bulk ChIP-seq and CUT&TAG. BIND&MODIFY can simultaneously measure histone modification status, transcription factor binding, and CpG 5mC methylation at single-molecule resolution and also quantifies correlation between local and distal elements.
Collapse
Affiliation(s)
- Zhe Weng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Weitian Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhichao Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yeming Xie
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Meng Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhe Xie
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, Cell Biology and Physiology, University of Copenhagen 13, 2100, Copenhagen, Denmark
| | - Chen Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Juan Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuxin Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yitong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mei Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chen Tan
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenfang Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yiqin Tong
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yaning Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongqi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chong Tang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
111
|
Choi EY, Franco D, Stapf CA, Gordin M, Chow A, Cover KK, Chandra R, Lobo MK. Inducible CRISPR Epigenome Systems Mimic Cocaine Induced Bidirectional Regulation of Nab2 and Egr3. J Neurosci 2023; 43:2242-2259. [PMID: 36849419 PMCID: PMC10072301 DOI: 10.1523/jneurosci.1802-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023] Open
Abstract
Substance use disorder is a chronic disease and a leading cause of disability around the world. The NAc is a major brain hub mediating reward behavior. Studies demonstrate exposure to cocaine is associated with molecular and functional imbalance in NAc medium spiny neuron subtypes (MSNs), dopamine receptor 1 and 2 enriched D1-MSNs and D2-MSNs. We previously reported repeated cocaine exposure induced transcription factor early growth response 3 (Egr3) mRNA in NAc D1-MSNs, and reduced it in D2-MSNs. Here, we report our findings of repeated cocaine exposure in male mice inducing MSN subtype-specific bidirectional expression of the Egr3 corepressor NGFI-A-binding protein 2 (Nab2). Using CRISPR activation and interference (CRISPRa and CRISPRi) tools combined with Nab2 or Egr3-targeted sgRNAs, we mimicked these bidirectional changes in Neuro2a cells. Furthermore, we investigated D1-MSN- and D2-MSN-specific expressional changes of histone lysine demethylases Kdm1a, Kdm6a, and Kdm5c in NAc after repeated cocaine exposure in male mice. Since Kdm1a showed bidirectional expression patterns in D1-MSNs and D2-MSNs, like Egr3, we developed a light-inducible Opto-CRISPR-KDM1a system. We were able to downregulate Egr3 and Nab2 transcripts in Neuro2A cells and cause similar bidirectional expression changes we observed in D1-MSNs and D2-MSNs of mouse repeated cocaine exposure model. Contrastingly, our Opto-CRISPR-p300 activation system induced the Egr3 and Nab2 transcripts and caused opposite bidirectional transcription regulations. Our study sheds light on the expression patterns of Nab2 and Egr3 in specific NAc MSNs in cocaine action and uses CRISPR tools to further mimic these expression patterns.SIGNIFICANCE STATEMENT Substance use disorder is a major societal issue. The lack of medication to treat cocaine addiction desperately calls for a treatment development based on precise understanding of molecular mechanisms underlying cocaine addiction. In this study, we show that Egr3 and Nab2 are bidirectionally regulated in mouse NAc D1-MSNs and D2-MSNs after repeated exposure to cocaine. Furthermore, histone lysine demethylations enzymes with putative EGR3 binding sites showed bidirectional regulation in D1- and D2-MSNs after repeated exposure to cocaine. Using Cre- and light-inducible CRISPR tools, we show that we can mimic this bidirectional regulation of Egr3 and Nab2 in Neuro2a cells.
Collapse
Affiliation(s)
- Eric Y Choi
- Department of Anatomy and Neurobiology
- Graduate Program in Life Sciences, Biochemistry and Molecular Biology
| | - Daniela Franco
- Department of Anatomy and Neurobiology
- Program in Neuroscience, Graduate Program in Life Sciences
| | - Catherine A Stapf
- Department of Anatomy and Neurobiology
- Program in Neuroscience, Graduate Program in Life Sciences
| | | | | | - Kara K Cover
- Department of Anatomy and Neurobiology
- Program in Neuroscience, Graduate Program in Life Sciences
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology
- Center for Innovative Biomedical Resources, Virus Vector Core, University of Maryland School of Medicine Baltimore, Maryland, 21201
| | | |
Collapse
|
112
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. Effects of Histone H2B Ubiquitylations and H3K79me 3 on Transcription Elongation. ACS Chem Biol 2023; 18:537-548. [PMID: 36857155 PMCID: PMC10023449 DOI: 10.1021/acschembio.2c00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semisynthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
Affiliation(s)
- Mai T. Huynh
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Bhaswati Sengupta
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Wladyslaw A. Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
113
|
de Vos J, Crooijmans RP, Derks MF, Kloet SL, Dibbits B, Groenen MA, Madsen O. Detailed molecular and epigenetic characterization of the pig IPEC-J2 and chicken SL-29 cell lines. iScience 2023; 26:106252. [PMID: 36936794 PMCID: PMC10018572 DOI: 10.1016/j.isci.2023.106252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The pig IPEC-J2 and chicken SL-29 cell lines are of interest because of their untransformed nature and wide use in functional studies. Molecular characterization of these cell lines is important to gain insight into possible molecular aberrations. The aim of this paper is to provide a molecular and epigenetic characterization of the IPEC-J2 and SL-29 cell lines, a cell-line reference for the FAANG community, and future biomedical research. Whole genome sequencing, gene expression, DNA methylation, chromatin accessibility, and ChIP-seq of four histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3) and an insulator (CTCF) are used to achieve these aims. Heteroploidy (aneuploidy) of various chromosomes was observed from whole genome sequencing analysis in both cell lines. Furthermore, higher gene expression for genes located on chromosomes with aneuploidy in comparison to diploid chromosomes was observed. Regulatory complexity of gene expression, DNA methylation, and chromatin accessibility was investigated through an integrative approach.
Collapse
Affiliation(s)
- Jani de Vos
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | | | - Martijn F.L. Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | - Susan L. Kloet
- Human Genetics, Leids Universitair Medisch Centrum, Leiden 2333ZC, the Netherlands
| | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| |
Collapse
|
114
|
García-Crespo C, Francisco-Recuero I, Gallego I, Camblor-Murube M, Soria ME, López-López A, de Ávila AI, Madejón A, García-Samaniego J, Domingo E, Sánchez-Pacheco A, Perales C. Hepatitis C virus fitness can influence the extent of infection-mediated epigenetic modifications in the host cells. Front Cell Infect Microbiol 2023; 13:1057082. [PMID: 36992689 PMCID: PMC10040758 DOI: 10.3389/fcimb.2023.1057082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionCellular epigenetic modifications occur in the course of viral infections. We previously documented that hepatitis C virus (HCV) infection of human hepatoma Huh-7.5 cells results in a core protein-mediated decrease of Aurora kinase B (AURKB) activity and phosphorylation of Serine 10 in histone H3 (H3Ser10ph) levels, with an affectation of inflammatory pathways. The possible role of HCV fitness in infection-derived cellular epigenetic modifications is not known.MethodsHere we approach this question using HCV populations that display a 2.3-fold increase in general fitness (infectious progeny production), and up to 45-fold increase of the exponential phase of intracellular viral growth rate, relative to the parental HCV population.ResultsWe show that infection resulted in a HCV fitness-dependent, average decrease of the levels of H3Ser10ph, AURKB, and histone H4 tri-methylated at Lysine 20 (H4K20m3) in the infected cell population. Remarkably, the decrease of H4K20m3, which is a hallmark of cellular transformation, was significant upon infection with high fitness HCV but not upon infection with basal fitness virus.DiscussionHere we propose two mechanisms ─which are not mutually exclusive─ to explain the effect of high viral fitness: an early advance in the number of infected cells, or larger number of replicating RNA molecules per cell. The implications of introducing HCV fitness as an influence in virus-host interactions, and for the course of liver disease, are warranted. Emphasis is made in the possibility that HCV-mediated hepatocellular carcinoma may be favoured by prolonged HCV infection of a human liver, a situation in which viral fitness is likely to increase.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Francisco-Recuero
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Isabel Gallego
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Camblor-Murube
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María Eugenia Soria
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Ana López-López
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Ana Isabel de Ávila
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Madejón
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria “La Paz”, Madrid, Spain
| | - Javier García-Samaniego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria “La Paz”, Madrid, Spain
| | - Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| | - Aurora Sánchez-Pacheco
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| |
Collapse
|
115
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
116
|
Ge X, Zheng M, Hu M, Fang X, Geng D, Liu S, Wang L, Zhang J, Guan L, Zheng P, Xie Y, Pan W, Zhou M, Zhou L, Tang R, Zheng K, Yu Y, Huang XF. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models. J Clin Invest 2023; 133:154612. [PMID: 36787221 PMCID: PMC9927952 DOI: 10.1172/jci154612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Li Guan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| |
Collapse
|
117
|
Stem cell plasticity, acetylation of H3K14, and de novo gene activation rely on KAT7. Cell Rep 2023; 42:111980. [PMID: 36641753 DOI: 10.1016/j.celrep.2022.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/30/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation.
Collapse
|
118
|
Kim J, Nguyen T, Cifello J, Ahmad R, Zhang Y, Yang Q, Lee JE, Li X, Kai Y, De S, Peng W, Ge K, Weng NP. Lysine methyltransferase Kmt2d regulates naive CD8 + T cell activation-induced survival. Front Immunol 2023; 13:1095140. [PMID: 36741385 PMCID: PMC9892454 DOI: 10.3389/fimmu.2022.1095140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Lysine specific methyltransferase 2D (Kmt2d) catalyzes the mono-methylation of histone 3 lysine 4 (H3K4me1) and plays a critical role in regulatory T cell generation via modulating Foxp3 gene expression. Here we report a role of Kmt2d in naïve CD8+ T cell generation and survival. In the absence of Kmt2d, the number of CD8+ T cells, particularly naïve CD8+ T cells (CD62Lhi/CD44lo), in spleen was greatly decreased and in vitro activation-related death significantly increased from Kmt2d fl/flCD4cre+ (KO) compared to Kmt2d fl/flCD4cre- (WT) mice. Furthermore, analyses by ChIPseq, RNAseq, and scRNAseq showed reduced H3K4me1 levels in enhancers and reduced expression of apoptosis-related genes in activated naïve CD8+ T cells in the absence of Kmt2d. Finally, we confirmed the activation-induced death of antigen-specific naïve CD8+ T cells in vivo in Kmt2d KO mice upon challenge with Listeria monocytogenes infection. These findings reveal that Kmt2d regulates activation-induced naïve CD8+ T cell survival via modulating H3K4me1 levels in enhancer regions of apoptosis and immune function-related genes.
Collapse
Affiliation(s)
- Jaekwan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Thomas Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey Cifello
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Raheel Ahmad
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiang Li
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Yan Kai
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington DC, WA, United States
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States,*Correspondence: Nan-ping Weng,
| |
Collapse
|
119
|
Nanni AV, Martinez N, Graze R, Morse A, Newman JRB, Jain V, Vlaho S, Signor S, Nuzhdin SV, Renne R, McIntyre LM. Sex-biased expression is associated with chromatin state in D. melanogaster and D. simulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523946. [PMID: 36711631 PMCID: PMC9882225 DOI: 10.1101/2023.01.13.523946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We propose a new model for the association of chromatin state and sex-bias in expression. We hypothesize enrichment of open chromatin in the sex where we see expression bias (OS) and closed chromatin in the opposite sex (CO). In this study of D. melanogaster and D. simulans head tissue, sex-bias in expression is associated with H3K4me3 (open mark) in males for male-biased genes and in females for female-biased genes in both species. Sex-bias in expression is also largely conserved in direction and magnitude between the two species on the X and autosomes. In male-biased orthologs, the sex-bias ratio is more divergent between species if both species have H3K27me2me3 marks in females compared to when either or neither species has H3K27me2me3 in females. H3K27me2me3 marks in females are associated with male-bias in expression on the autosomes in both species, but on the X only in D. melanogaster . In female-biased orthologs the relationship between the species for the sex-bias ratio is similar regardless of the H3K27me2me3 marks in males. Female-biased orthologs are more similar in the ratio of sex-bias than male-biased orthologs and there is an excess of male-bias in expression in orthologs that gain/lose sex-bias. There is an excess of male-bias in sex-limited expression in both species suggesting excess male-bias is due to rapid evolution between the species. The X chromosome has an enrichment in male-limited H3K4me3 in both species and an enrichment of sex-bias in expression compared to the autosomes.
Collapse
Affiliation(s)
- Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Natalie Martinez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Rita Graze
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Alison Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremy R B Newman
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Sergey V Nuzhdin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
120
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. The Effects of Histone H2B ubiquitylations and H3K79me 3 on Transcription Elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522859. [PMID: 36712011 PMCID: PMC9881898 DOI: 10.1101/2023.01.05.522859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semi-synthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3 K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA Polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
|
121
|
Nguyen HT, Martin LJ. The transcription factors Junb and Fosl2 cooperate to regulate Cdh3 expression in 15P-1 Sertoli cells. Mol Reprod Dev 2023; 90:27-41. [PMID: 36468795 DOI: 10.1002/mrd.23656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
In Sertoli cells of the testis, cadherins (Cdh) are important cell-to-cell interaction proteins and contribute to the formation of the blood-testis barrier being essential for germ cells' protection. P-cadherin or Cdh3 is only expressed in Sertoli cells from embryonic to prepubertal development. Interestingly, the expression profile of Cdh3 correlates with that of activating protein-1 (AP-1) transcription factors during Sertoli cells development. To assess their potential implications in the regulation of Cdh3, different AP-1 transcription factors were overexpressed in 15P-1 Sertoli cells. We found that the overexpressions of Junb and Fosl2 activated Cdh3 promoter. ChIP-qPCR assay and luciferase reporter assay with 5' promoter deletions and site-directed mutagenesis confirmed the recruitment of Junb and Fosl2 to an AP-1 regulatory element at -47 bp in the proximal region of Cdh3 promoter in 15P-1 cells. These findings were further supported by histone modification markers and chromatin accessibility surrounding Cdh3 promoter in mouse testis. Moreover, the knockdowns of Junb and/or Fosl2 by siRNA decreased Cdh3 protein levels. Taken together, these data suggest that in 15P-1 Sertoli cells, the AP-1 family members Junb and Fosl2 are responsible for the regulation of Cdh3 expression, which requires the recruitment of both factors to the proximal region of the Cdh3 promoter.
Collapse
Affiliation(s)
- Ha T Nguyen
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Luc J Martin
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
122
|
Saha G, Ghosh S, Dubey VK, Saudagar P. Gene Alterations Induced by Glutamine (Q) Encoding CAG Repeats Associated with Neurodegeneration. Methods Mol Biol 2023; 2575:3-23. [PMID: 36301468 DOI: 10.1007/978-1-0716-2716-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Several studies have been reported linking the role of polyglutamine (polyQ) disease-associated proteins with altered gene regulation induced by an unstable trinucleotide (CAG) repeat. Owing to their dynamic nature of expansion, these DNA repeats form secondary structures interfering with the normal cellular mechanisms like replication and transcription and, thereby, have become the underlying cause of numerous neurodegenerative disorders involving mental retardation and/or muscular or neuronal degeneration. Despite the widespread expression of the disease-causing protein, specific subsets of neurons are susceptible to specific patterns of inheritance and clinical symptoms. Although this cell-type selectivity is still elusive and less understood, it has been found that aberrant transcriptional regulation is one of the primary causes of polyQ diseases where the functions of histone-modifying complexes are disrupted. Besides, epigenetic modifications play a critical role in the pathogenesis of these diseases. In this chapter, we will be delving into how these polyQ repeats induce the self-assembly and aggregation of altered carrier proteins based on gene alterations, causing neuronal toxicity and cellular deaths. Besides, genomic instability in CAG repeats due to altered chromatin-related enzymes will be highlighted, along with epigenetic changes present in many polyQ disorders. Understanding the underlying molecular mechanisms in the root cause of these disorders will culminate in identifying therapeutic approaches for the treatment of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Gundappa Saha
- Department of Basic & Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
123
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
124
|
Early epigenetic markers for precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:153-164. [DOI: 10.1016/bs.pmbts.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
125
|
Guo Z, Wang L, Liu H, Xie Y. Innate Immune Memory in Monocytes and Macrophages: The Potential Therapeutic Strategies for Atherosclerosis. Cells 2022; 11:4072. [PMID: 36552836 PMCID: PMC9776628 DOI: 10.3390/cells11244072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a complex metabolic disease characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel. As the most abundant innate immune cells, monocyte-derived macrophages play a pivotal role in the inflammatory response, cholesterol metabolism, and foam cell formation. In recent decades, it has been demonstrated that monocytes and macrophages can establish innate immune memory (also termed trained immunity) via endogenous and exogenous atherogenic stimuli and exhibit a long-lasting proinflammatory phenotype. The important cellular metabolism processes, including glycolysis, oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fatty acid synthesis, and cholesterol synthesis, are reprogrammed. Trained monocytes/macrophages with innate immune memory can be persistently hyperactivated and can undergo extensive epigenetic rewiring, which contributes to the pathophysiological development of atherosclerosis via increased proinflammatory cytokine production and lipid accumulation. Here, we provide an overview of the regulation of cellular metabolic processes and epigenetic modifications of innate immune memory in monocytes/macrophages as well as the potential endogenous and exogenous stimulations involved in the progression of atherosclerosis that have been reported recently. These elucidations might be beneficial for further understanding innate immune memory and the development of therapeutic strategies for inflammatory diseases and atherosclerosis.
Collapse
Affiliation(s)
- Zhigang Guo
- Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Hongjian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, China
| | - Yuhuai Xie
- Huanghe Science and Technology College, Zhengzhou 450006, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
126
|
Li Y, Khilji S, Mach YZ, Chen J, Li Q. Chromatin state distribution of residue-specific histone acetylation in early myoblast differentiation. JOURNAL OF BIG DATA 2022; 9:116. [PMID: 36514349 PMCID: PMC9734207 DOI: 10.1186/s40537-022-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Dynamic changes in epigenetic landscape reflect a critical command of lineage-specific gene expression. In an effort to discern the epigenetic regulatory networks of myogenic differentiation, we have used systematic and integrative approaches to explore multi-omics datasets on global myogenic gene expression, histone acetylation and acetyltransferase occupancy in view of distinct chromatin states. In this brief report, we discuss experimental design and provide a comprehensive assessment regarding data quality control, filtering and processing. We also define a gene-level overlap between RNA-seq and ChIP-seq datasets through integrative analyses to offer strategies for future use of the data. Furthermore, our analyses generate a blueprint on chromatin state distribution of residue-specific histone acetylation and concomitant association with histone acetyltransferase p300 in committed skeletal myoblasts and differential histone acetylation signatures at the onset of myoblast differentiation. These datasets can be further utilized to delineate the function of muscle-specific regulatory elements governed by other muscle myogenic regulators or signaling molecules.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Yan Z. Mach
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
127
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
128
|
Fukuda Y, Akematsu T, Bando H, Kato K. Snf2 Proteins Are Required to Generate Gamete Pronuclei in Tetrahymena thermophila. Microorganisms 2022; 10:microorganisms10122426. [PMID: 36557679 PMCID: PMC9786623 DOI: 10.3390/microorganisms10122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
During sexual reproduction/conjugation of the ciliate Tetrahymena thermophila, the germinal micronucleus undergoes meiosis resulting in four haploid micronuclei (hMICs). All hMICs undergo post-meiotic DNA double-strand break (PM-DSB) formation, cleaving their genome. DNA lesions are subsequently repaired in only one ‘selected’ hMIC, which eventually produces gametic pronuclei. DNA repair in the selected hMIC involves chromatin remodeling by switching from the heterochromatic to the euchromatic state of its genome. Here, we demonstrate that, among the 15 Tetrahymena Snf2 family proteins, a core of the ATP-dependent chromatin remodeling complex in Tetrahymena, the germline nucleus specific Iswi in Tetrahymena IswiGTt and Rad5Tt is crucial for the generation of gametic pronuclei. In either gene knockout, the selected hMIC which shows euchromatin markers such as lysine-acetylated histone H3 does not appear, but all hMICs in which markers for DNA lesions persist are degraded, indicating that both IswiGTt and Rad5Tt have important roles in repairing PM-DSB DNA lesions and remodeling chromatin for the euchromatic state in the selected hMIC.
Collapse
Affiliation(s)
- Yasuhiro Fukuda
- Graduate School of Agricultural Science, Tohoku University, Osaki 989-6711, Miyagi, Japan
- Correspondence: ; Tel.: +81-229-84-7387
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Hironori Bando
- Graduate School of Agricultural Science, Tohoku University, Osaki 989-6711, Miyagi, Japan
| | - Kentaro Kato
- Graduate School of Agricultural Science, Tohoku University, Osaki 989-6711, Miyagi, Japan
| |
Collapse
|
129
|
Therapeutic Efficacy of Novel HDAC Inhibitors SPA3052 and SPA3074 against Intestinal Inflammation in a Murine Model of Colitis. Pharmaceuticals (Basel) 2022; 15:ph15121515. [PMID: 36558966 PMCID: PMC9785328 DOI: 10.3390/ph15121515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are digestive tract disorders that involve chronic inflammation with frequent recurrences. This study aimed to evaluate the efficacy of two novel histone deacetylase 8 (HDAC8) inhibitors, namely, SPA3052 and SPA3074, against dextran sulfate sodium (DSS)-induced experimental colitis. Male C57BL/6N mice were subjected to two cycles of 1.5% DSS followed by treatment with suberoylanilide hydroxamic acid (SAHA), SPA3052, or SPA3074 for 14 days. Our results showed that SPA3074 administration increased (>50%) the expression of occludin, a tight junction protein, which was significantly decreased (>100%) after DSS treatment. Moreover, SPA3074 upregulated suppressor of cytokine signaling 1 (SOCS1) protein expression, which is known to be a key suppressor of T-helper cell differentiation and pro-inflammatory cytokines expression. Furthermore, we observed a decrease in SOCS1-associated Akt phosphorylation and an increase in lower extracellular signal-regulated kinase 1 and 2 phosphorylation, which contributed to lower nuclear factor-kappa B activation. Th2 effector cytokines, especially interleukin-13, were also downregulated by SPA3074 treatment. This study suggests that HDAC8 might be a promising novel target for the development of IBD treatments and that the novel HDAC8 inhibitor SPA3074 is a new candidate for IBD therapeutics.
Collapse
|
130
|
DiNatale A, Worrede A, Iqbal W, Marchioli M, Toth A, Sjöström M, Zhu X, Corey E, Feng FY, Zhou W, Fatatis A. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1545-1557. [PMID: 36561929 PMCID: PMC9770512 DOI: 10.1158/2767-9764.crc-22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1β) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1β gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1β in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1β promoter. Notably, patients' data suggest that DNA methylation prevents IL-1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1β gene unmethylated, IL-1β could condition the metastatic microenvironment to sustain disease progression.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Janssen Oncology, Spring House, Pennsylvania
| | - Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- AstraZeneca, Baltimore, Maryland
| | - Waleed Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Allison Toth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Xiaolin Zhu
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Felix Y. Feng
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
131
|
Afonso CF, Marques MC, António JPM, Cordeiro C, Gois PMP, Cal PMSD, Bernardes GJL. Cysteine-Assisted Click-Chemistry for Proximity-Driven, Site-Specific Acetylation of Histones. Angew Chem Int Ed Engl 2022; 61:e202208543. [PMID: 36124857 PMCID: PMC9828500 DOI: 10.1002/anie.202208543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications of histones are essential in the regulation of chromatin structure and function. Among these modifications, lysine acetylation is one of the most established. Earlier studies relied on the use of chromatin containing heterogeneous mixtures of histones acetylated at multiple sites. Differentiating the individual contribution of single acetylation events towards chromatin regulation is thus of great relevance. However, it is difficult to access homogeneous samples of histones, with a single acetylation, in sufficient quantities for such studies. By engineering histone H3 with a cysteine in proximity of the lysine of interest, we demonstrate that conjugation with maleimide-DBCO followed by a strain-promoted alkyne-azide cycloaddition reaction results in the acetylation of a single lysine in a controlled, site-specific manner. The chemical precision offered by our click-to-acetylate approach will facilitate access to and the study of acetylated histones.
Collapse
Affiliation(s)
- Cláudia F. Afonso
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Marta C. Marques
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - João P. M. António
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa EstruturalFaculdade de CiênciasUniversidade de LisboaCampo Grande1749-016LisboaPortugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal,Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| |
Collapse
|
132
|
Farina FM, Serio S, Hall IF, Zani S, Cassanmagnago GA, Climent M, Civilini E, Condorelli G, Quintavalle M, Elia L. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur Heart J 2022; 43:4562-4576. [PMID: 35292818 DOI: 10.1093/eurheartj/ehac097] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Histone H3 dimethylation at lysine 79 is a key epigenetic mark uniquely induced by methyltransferase disruptor of telomeric silencing 1-like (DOT1L). We aimed to determine whether DOT1L modulates vascular smooth muscle cell (VSMC) phenotype and how it might affect atherosclerosis in vitro and in vivo, unravelling the related mechanism. METHODS AND RESULTS Gene expression screening of VSMCs stimulated with the BB isoform of platelet-derived growth factor led us to identify Dot1l as an early up-regulated epigenetic factor. Mouse and human atherosclerotic lesions were assessed for Dot1l expression, which resulted specifically localized in the VSMC compartment. The relevance of Dot1l to atherosclerosis pathogenesis was assessed through deletion of its gene in the VSMCs via an inducible, tissue-specific knock-out mouse model crossed with the ApoE-/- high-fat diet model of atherosclerosis. We found that the inactivation of Dot1l significantly reduced the progression of the disease. By combining RNA- and H3K79me2-chromatin immunoprecipitation-sequencing, we found that DOT1L and its induced H3K79me2 mark directly regulate the transcription of Nf-κB-1 and -2, master modulators of inflammation, which in turn induce the expression of CCL5 and CXCL10, cytokines fundamentally involved in atherosclerosis development. Finally, a correlation between coronary artery disease and genetic variations in the DOT1L gene was found because specific polymorphisms are associated with increased mRNA expression. CONCLUSION DOT1L plays a key role in the epigenetic control of VSMC gene expression, leading to atherosclerosis development. Results identify DOT1L as a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Floriana Maria Farina
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Simone Serio
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | | | - Stefania Zani
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Giada Andrea Cassanmagnago
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Montserrat Climent
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy
| | - Efrem Civilini
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Manuela Quintavalle
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Astrazeneca, V.le Decumano, 39, 20157 Milano (MI), Italy
| | - Leonardo Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
133
|
Zhuo Z, Lin L, Miao L, Li M, He J. Advances in liquid biopsy in neuroblastoma. FUNDAMENTAL RESEARCH 2022; 2:903-917. [PMID: 38933377 PMCID: PMC11197818 DOI: 10.1016/j.fmre.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Even with intensive treatment of high-risk neuroblastoma (NB) patients, half of high-risk NB patients still relapse. New therapies targeting the biological characteristics of NB have important clinical value for the personalized treatment of NB. However, the current biological markers for NB are mainly analyzed by tissue biopsy. In recent years, circulating biomarkers of NB based on liquid biopsy have attracted more and more attention. This review summarizes the analytes and methods for liquid biopsy of NB. We focus on the application of liquid biopsy in the diagnosis, prognosis assessment, and monitoring of NB. Finally, we discuss the prospects and challenges of liquid biopsy in NB.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
134
|
Fu Y, Liu Y, Wen T, Fang J, Chen Y, Zhou Z, Gu X, Wu H, Sheng J, Xu Z, Zou W, Chen B. Real-time imaging of RNA polymerase I activity in living human cells. J Biophys Biochem Cytol 2022; 222:213608. [PMID: 36282216 PMCID: PMC9606689 DOI: 10.1083/jcb.202202110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time. Here, we develop LiveArt (live imaging-based analysis of rDNA transcription) to visualize and quantify the spatiotemporal dynamics of endogenous ribosomal RNA (rRNA) synthesis. LiveArt reveals mitotic silencing and reactivation of rDNA transcription, as well as the transcriptional kinetics of interphase rDNA. Using LiveArt, we identify SRFBP1 as a potential regulator of rRNA synthesis. We show that rDNA transcription occurs in bursts and can be altered by modulating burst duration and amplitude. Importantly, LiveArt is highly effective in the screening application for anticancer drugs targeting Pol I transcription. These approaches pave the way for a deeper understanding of the mechanisms underlying nucleolar functions.
Collapse
Affiliation(s)
- Yujuan Fu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tanye Wen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yalong Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziying Zhou
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Gu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China,Insititute of Translational Medicine, Zhejiang University, Hangzhou, China,Wei Zou:
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China,Correspondence to Baohui Chen:
| |
Collapse
|
135
|
Marano N, Holaska JM. Emerin interacts with histone methyltransferases to regulate repressive chromatin at the nuclear periphery. Front Cell Dev Biol 2022; 10:1007120. [PMID: 36274837 PMCID: PMC9583931 DOI: 10.3389/fcell.2022.1007120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
X-Linked Emery-Dreifuss muscular dystrophy is caused by mutations in the gene encoding emerin. Emerin is an inner nuclear membrane protein important for repressive chromatin organization at the nuclear periphery. Myogenic differentiation is a tightly regulated process characterized by genomic reorganization leading to coordinated temporal expression of key transcription factors, including MyoD, Pax7, and Myf5. Emerin was shown to interact with repressive histone modification machinery, including HDAC3 and EZH2. Using emerin-null myogenic progenitor cells we established several EDMD-causing emerin mutant lines in the effort to understand how the functional interaction of emerin with HDAC3 regulates histone methyltransferase localization or function to organize repressive chromatin at the nuclear periphery. We found that, in addition to its interaction with HDAC3, emerin interacts with the histone methyltransferases EZH2 and G9a in myogenic progenitor cells. Further, we show enhanced binding of emerin HDAC3-binding mutants S54F and Q133H to EZH2 and G9a. Treatment with small molecule inhibitors of EZH2 and G9a reduced H3K9me2 or H3K27me3 throughout differentiation. EZH2 and G9a inhibitors impaired cell cycle withdrawal, differentiation commitment, and myotube formation in wildtype progenitors, while they had no effect on emerin-null progenitors. Interestingly, these inhibitors exacerbated the impaired differentiation of emerin S54F and Q133H mutant progenitors. Collectively, these results suggest the functional interaction between emerin and HDAC3, EZH2, and G9a are important for myogenic differentiation.
Collapse
Affiliation(s)
| | - James M. Holaska
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
136
|
Galle E, Wong CW, Ghosh A, Desgeorges T, Melrose K, Hinte LC, Castellano-Castillo D, Engl M, de Sousa JA, Ruiz-Ojeda FJ, De Bock K, Ruiz JR, von Meyenn F. H3K18 lactylation marks tissue-specific active enhancers. Genome Biol 2022; 23:207. [PMID: 36192798 PMCID: PMC9531456 DOI: 10.1186/s13059-022-02775-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation. Results Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue. Conclusions Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02775-y.
Collapse
Affiliation(s)
- Eva Galle
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chee-Wai Wong
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich and University Zurich, Zurich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Kate Melrose
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel Castellano-Castillo
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Magdalena Engl
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Joao Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Francisco Javier Ruiz-Ojeda
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764, Munich, Germany.,Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
137
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
138
|
Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol 2022; 110:108893. [DOI: 10.1016/j.intimp.2022.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
139
|
Crews FT, Vetreno RP. Cholinergic REST-G9a gene repression through HMGB1-TLR4 neuroimmune signaling regulates basal forebrain cholinergic neuron phenotype. Front Mol Neurosci 2022; 15:992627. [PMID: 36072299 PMCID: PMC9441808 DOI: 10.3389/fnmol.2022.992627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1) are Toll-like receptor (TLR4) agonists that activate proinflammatory neuroimmune signaling linked to loss of basal forebrain cholinergic neurons (BFCNs) and cognitive deficits. Loss of choline acetyltransferase immunoreactive (ChAT + IR) BFCNs is generally interpreted as cell death, but recent in vivo studies find anti-inflammatory interventions restore adolescent ethanol exposure-induced persistent loss of adult ChAT + IR neurons and cognitive deficits, suggesting proinflammatory signaling-induced reversible gene repression of ChAT in BFCNs. Using an ex vivo Wistar rat basal forebrain slice culture (FSC) model to investigate TLR4 involvement in repression of the BFCN phenotype, we report that direct TLR4 activation with LPS decreases expression of multiple BFCN markers in the absence of observable neuronal loss or cell death. Inhibition of HMGB1 blunts while inhibition of TLR4 blocks the LPS-induced loss of ChAT + IR neurons. TLR4 activation induces the transcriptional repressor RE1-silencing transcription factor (REST) and the methyltransferase G9a while increasing repressive histone 3 lysine 9 dimethylation and REST occupancy at cholinergic gene promoters. G9a inhibitors both prevent and reverse the LPS-induced loss of ChAT + IR whereas siRNA inhibition of REST blocks the LPS-induced loss of ChAT + IR BFCNs. These data suggest in vivo HMGB1-TLR4 signaling in BFCNs leads to a reversible loss of the cholinergic neuron phenotype through epigenetic gene repressive mechanisms.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
140
|
Wang K, Escobar M, Li J, Mahata B, Goell J, Shah S, Cluck M, Hilton I. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer-promoter interactions. Nucleic Acids Res 2022; 50:7842-7855. [PMID: 35849129 PMCID: PMC9371918 DOI: 10.1093/nar/gkac582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022] Open
Abstract
Nuclease-inactivated CRISPR/Cas-based (dCas-based) systems have emerged as powerful technologies to synthetically reshape the human epigenome and gene expression. Despite the increasing adoption of these platforms, their relative potencies and mechanistic differences are incompletely characterized, particularly at human enhancer-promoter pairs. Here, we systematically compared the most widely adopted dCas9-based transcriptional activators, as well as an activator consisting of dCas9 fused to the catalytic core of the human CBP protein, at human enhancer-promoter pairs. We find that these platforms display variable relative expression levels in different human cell types and that their transactivation efficacies vary based upon the effector domain, effector recruitment architecture, targeted locus and cell type. We also show that each dCas9-based activator can induce the production of enhancer RNAs (eRNAs) and that this eRNA induction is positively correlated with downstream mRNA expression from a cognate promoter. Additionally, we use dCas9-based activators to demonstrate that an intrinsic transcriptional and epigenetic reciprocity can exist between human enhancers and promoters and that enhancer-mediated tracking and engagement of a downstream promoter can be synthetically driven by targeting dCas9-based transcriptional activators to an enhancer. Collectively, our study provides new insights into the enhancer-mediated control of human gene expression and the use of dCas9-based activators.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Spencer Shah
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Madeleine Cluck
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
141
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
142
|
Li J, Cao Y, Niu K, Qiu J, Wang H, You Y, Li D, Luo Y, Zhu Z, Zhang Y, Liu N. Quantitative acetylomics reveals dynamics of protein lysine acetylation in mouse livers during aging and upon the treatment of nicotinamide mononucleotide. Mol Cell Proteomics 2022; 21:100276. [PMID: 35931320 PMCID: PMC9436820 DOI: 10.1016/j.mcpro.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 10/24/2022] Open
Abstract
Lysine acetylation is a reversible and dynamic post-translational modification that play vital roles in regulating multiple cellular processes including aging. However, acetylome-wide analysis in the aging process remains poorly studied in mammalian tissues. Nicotinamide adenine dinucleotide (NAD+), a hub metabolite, benefits healthspan at least in part due to the activation of Sirtuins, a family of NAD+-consuming deacetylases, indicating changes in acetylome. Here, we combine two antibodies for the enrichment of acetylated peptides and perform label-free quantitative acetylomic analysis of mouse livers during natural aging and upon the treatment of beta-nicotinamide mononucleotide (NMN), a NAD+ booster. Our study describes previously unknown acetylation sites and reveals the acetylome-wide dynamics with age as well as upon the treatment of NMN. We discover protein acetylation events as potential aging biomarkers. We demonstrate that the life-beneficial effect of NMN could be partially reflected by the changes in age-related protein acetylation. Our quantitative assessment indicates that NMN has mild effects on acetylation sites previously reported as substrates of Sirtuins. Collectively, our data analyzes protein acetylation with age, laying critical foundation for the functional study of protein post-translational modification essential for healthy aging and perhaps disease conditions.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingnan You
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dean Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Luo
- Abiochem Biotechnology, 1299 Zi Yue Rd., Shanghai, 200241, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
143
|
The shaping of cancer genomes with the regional impact of mutation processes. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1049-1060. [PMID: 35902761 PMCID: PMC9355972 DOI: 10.1038/s12276-022-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/03/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Mutation signature analysis has been used to infer the contributions of various DNA mutagenic-repair events in individual cancer genomes. Here, we build a statistical framework using a multinomial distribution to assign individual mutations to their cognate mutation signatures. We applied it to 47 million somatic mutations in 1925 publicly available cancer genomes to obtain a mutation signature map at the resolution of individual somatic mutations. Based on mutation signature-level genetic-epigenetic correlative analyses, mutations with transcriptional and replicative strand asymmetries show different enrichment patterns across genomes, and “transcribed” chromatin states and gene boundaries are particularly vulnerable to transcription-coupled repair activities. While causative processes of cancer-driving mutations can be diverse, as shown for converging effects of multiple mutational processes on TP53 mutations, the substantial fraction of recurrently mutated amino acids points to specific mutational processes, e.g., age-related C-to-T transition for KRAS p.G12 mutations. Our investigation of evolutionary trajectories with respect to mutation signatures further revealed that candidate pairs of early- vs. late-operative mutation processes in cancer genomes represent evolutionary dynamics of multiple mutational processes in the shaping of cancer genomes. We also observed that the local mutation clusters of kataegis often include mutations arising from multiple mutational processes, suggestive of a locally synchronous impact of multiple mutational processes on cancer genomes. Taken together, our examination of the genome-wide landscape of mutation signatures at the resolution of individual somatic mutations shows the spatially and temporally distinct mutagenesis-repair-replication histories of various mutational processes and their effects on shaping cancer genomes. A statistical model that assigns non-hereditary DNA alterations known as somatic mutations to mutation “signatures” (groups of mutations arising from a specific biological process) on cancer genomes provides novel insights into disease evolution. Somatic mutations result from exposure to factors often linked to cancer development, such as tobacco or ultraviolet radiation. However, assigning a somatic mutation to a particular mutation “signature” remains challenging. The model created by Ruibin Xi (Peking University, China) and Tae-Min Kim (Catholic University of Korea, Seoul, South Korea) and co-workers grouped 47 million somatic mutations in 1925 cancer genomes into localized clusters before connecting them with mutation signatures. This strategy highlights the spatial and temporal patterns related to the origins of mutations, how the DNA strands are repaired and replicated, and how this influences the emerging cancer genome.
Collapse
|
144
|
Levidou G, Palamaris K, Sykaras AG, Andreadakis G, Masaoutis C, Theochari I, Korkolopoulou P, Rontogianni D, Theocharis S. Unraveling the Role of Histone Variant CENP-A and Chaperone HJURP Expression in Thymic Epithelial Neoplasms. Int J Mol Sci 2022; 23:ijms23158339. [PMID: 35955489 PMCID: PMC9368969 DOI: 10.3390/ijms23158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Recent advances demonstrate the role of chromatin regulators, including histone variants and histone chaperones, in cancer initiation and progression. Methods: Histone H3K4me3, histone variant centromere protein (CENP-A) and histone chaperones Holliday junction recognition protein (HJURP) as well as DAXX expression were examined immunohistochemically in 95 thymic epithelial tumor (TET) specimens. Our results were compared with the expression profile of DAXX, HJURP and CENP-A in gene expression profiling interactive analysis (GEPIA2). Results: The lymphocyte-poor B3- and C-type TETs were more frequently DAXX negative (p = 0.043). B3 and C-Type TETs showed higher cytoplasmic and nuclear CENP-A (p = 0.007 and p = 0.002) and higher cytoplasmic HJURP H-score (p < 0.001). Higher nuclear CENP-A and cytoplasmic HJURP expression was associated with advanced Masaoka−Koga stage (p = 0.048 and p < 0.001). A positive correlation between HJURP and CENP-A was also observed. The presence of cytoplasmic CENP-A expression was correlated with a favorable overall survival (p = 0.03). CENP-A overexpression in survival analysis of TCGA TETs showed similar results. H3K4me3 expression was not associated with any clinicopathological parameters. Conclusions: Our results suggest a significant interaction between CENP-A and HJURP in TETs. Moreover, we confirmed the presence of a cytoplasmic CENP-A immunolocalization, suggesting also a possible favorable prognostic value of this specific immunostaining pattern.
Collapse
Affiliation(s)
- Georgia Levidou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Konstantinos Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Alexandros G. Sykaras
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Georgios Andreadakis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Irene Theochari
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Dimitra Rontogianni
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Correspondence:
| |
Collapse
|
145
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
146
|
Wichmann J, Pitt C, Eccles S, Garnham AL, Li-Wai-Suen CSN, May R, Allan E, Wilcox S, Herold MJ, Smyth GK, Monahan BJ, Thomas T, Voss AK. Loss of TIP60 (KAT5) abolishes H2AZ lysine 7 acetylation and causes p53, INK4A, and ARF-independent cell cycle arrest. Cell Death Dis 2022; 13:627. [PMID: 35853868 PMCID: PMC9296491 DOI: 10.1038/s41419-022-05055-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.
Collapse
Affiliation(s)
- Johannes Wichmann
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Catherine Pitt
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Samantha Eccles
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Alexandra L. Garnham
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Connie S. N. Li-Wai-Suen
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Rose May
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Elizabeth Allan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Stephen Wilcox
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Gordon K. Smyth
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSchool of Mathematics and Statistics, University of Melbourne, Parkville, VIC Australia
| | - Brendon J. Monahan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Tim Thomas
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Anne K. Voss
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
147
|
Huang D, Camacho CV, Martire S, Nagari A, Setlem R, Gong X, Edwards AD, Chiu SP, Banaszynski LA, Kraus WL. Oncohistone Mutations Occur at Functional Sites of Regulatory ADP-Ribosylation. Cancer Res 2022; 82:2361-2377. [PMID: 35472077 PMCID: PMC9256803 DOI: 10.1158/0008-5472.can-22-0742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023]
Abstract
Recent studies have identified cancer-associated mutations in histone genes that lead to the expression of mutant versions of core histones called oncohistones. Many oncohistone mutations occur at Asp and Glu residues, two amino acids known to be ADP-ribosylated (ADPRylated) by PARP1. We screened 25 Glu or Asp oncohistone mutants for their effects on cell growth in breast and ovarian cancer cells. Ectopic expression of six mutants of three different core histones (H2B, H3, and H4) altered cell growth in at least two different cell lines. Two of these sites, H2B-D51 and H4-D68, were indeed sites of ADPRylation in wild-type (unmutated) histones, and mutation of these sites inhibited ADPRylation. Mutation of H2B-D51 dramatically altered chromatin accessibility at enhancers and promoters, as well as gene expression outcomes, whereas mutation of H4-D68 did not. Additional biochemical, cellular, proteomic, and genomic analyses demonstrated that ADPRylation of H2B-D51 inhibits p300-mediated acetylation of H2B at many Lys residues. In breast cancer cell xenografts in mice, H2B-D51A promoted tumor growth, but did not confer resistance to the cytotoxic effects of PARP inhibition. Collectively, these results demonstrate that functional Asp and Glu ADPRylation sites on histones are mutated in cancers, allowing cancer cells to escape the growth-regulating effects of post-translational modifications via distinct mechanisms. SIGNIFICANCE This study identifies cancer-driving mutations in histones as sites of PARP1-mediated ADP-ribosylation in breast and ovarian cancers, providing a molecular pathway by which cancers may subvert the growth-regulating effects of PARP1.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Address correspondence to: Dan Huang: and W. Lee Kraus:
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Martire
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Laboratory of Chromatin Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuan Gong
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrea D. Edwards
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura A. Banaszynski
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Laboratory of Chromatin Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Address correspondence to: Dan Huang: and W. Lee Kraus:
| |
Collapse
|
148
|
Xu Y, Miao Y, Tian X, Wang Q, Hu Y, Luo Q. Transcriptomic and Epigenomic Assessment Reveals Epigenetic Regulation of WRKY Genes in Response to Magnaporthe oryzae Infection in Rice. Curr Genomics 2022; 23:182-194. [PMID: 36777006 PMCID: PMC9878826 DOI: 10.2174/1389202923666220510195910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Histone acetylations acting as active hallmarks for gene transcription is involved in regulating numerous developmental and stress-responsive gene expression. Methods: The data from chromatin immunoprecipitation sequencing (ChIP-seq) was performed by using histone H3 lysine 9 acetylation (H3K9ac) antibody, and RNA sequencing (RNA-seq) utilizing rice seedlings inoculated by Magnaporthe oryzae (M. oryzae) were integrated. Results: RNA-seq data revealed that 422, 460 and 466 genes were up-regulated at 12h, 24h and 48h after inoculation. ChIP-seq data showed that 60%-80% of blast up-regulated genes at different time points were marked with H3K9ac, which was prone to be enriched in both TSS and gene body region. However, the H3K9ac level at a rather small proportion of the up-regulated genes was elevated after M. oryzae inoculation. We found that seven WRKY genes induced by rice blast fungus harbor H3K9ac. For different WRKY genes, blast fungus induction led to the increase of H3K9ac in distinct regions, including promoter, TSS or gene body, indicating that histone acetylation may play diverse roles in the activation of defense-related genes. By searching DNA-binding motifs of transcription factors in the promoter of genes with increased H3K9ac after M. oryzae infection, we found that ERF family protein-binding motifs were enriched with high -log P-value (>20), including ERF1, DEAR3, DREB2C, RAP2.6, RRTF1_3ARY, all of which contain GCC-box (GCCGCC). Conclusion: In this study, we revealed that the vast majority of genes induced by fungus M. oryzae were marked with H3K9ac preferring both TSS and gene body regions. However, H3K9ac enrichment was increased, responding to M. oryzae inoculation only at a low proportion of these genes, including several WRKY genes. Besides, for different genes, the increment of H3K9ac occurred in different regions. Finally, ERF proteins that have been proved to bind GCC-box might be one of the potential transcription factors for recruiting histone acetyltransferases to deposit histone acetylation at defense-related genes in rice.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education, Key Labo-ratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China;,College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China;,These authors contributed equally to this work.
| | - Yuanxin Miao
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China;,These authors contributed equally to this work.
| | - Xuejun Tian
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China
| | - Qihai Wang
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China,Address correspondence to these authors at the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China; Tel/Fax: 13769133718; E-mail: and Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China; Tel/Fax: 13677246318; E-mail:
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education, Key Labo-ratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China;,Address correspondence to these authors at the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China; Tel/Fax: 13769133718; E-mail: and Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China; Tel/Fax: 13677246318; E-mail:
| |
Collapse
|
149
|
Yashar WM, Kong G, VanCampen J, Curtiss BM, Coleman DJ, Carbone L, Yardimci GG, Maxson JE, Braun TP. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biol 2022; 23:144. [PMID: 35788238 PMCID: PMC9252088 DOI: 10.1186/s13059-022-02707-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Genome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. We compare the performance of GoPeaks against commonly used peak calling algorithms to detect histone modifications that display a range of peak profiles and are frequently used in epigenetic studies. We find that GoPeaks robustly detects genome-wide histone modifications and, notably, identifies a substantial number of H3K27ac peaks with improved sensitivity compared to other standard algorithms.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Jake VanCampen
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | | | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Lucia Carbone
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, USA
| | - Galip Gürkan Yardimci
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Center for Early Cancer Detection, Oregon Health & Science University, Portland, USA
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, USA
| |
Collapse
|
150
|
Histone Demethylase JMJD2D: A Novel Player in Colorectal and Hepatocellular Cancers. Cancers (Basel) 2022; 14:cancers14122841. [PMID: 35740507 PMCID: PMC9221006 DOI: 10.3390/cancers14122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Histone demethylase JMJD2D is a multifunctional epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, cell cycle regulation, and inflammation modulation. JMJD2D is also a well-established epigenetic facilitator in the progression of multiple malignant tumors, especially in colorectal cancer (CRC) and hepatocellular cancer (HCC). This review aims to summarize the mechanisms of JMJD2D in promoting CRC and HCC progression, which provides novel ideas for targeting JMJD2D in oncotherapy. JMJD2D promotes gene transcription by reducing H3K9 methylation and serves as a coactivator to enhance the activities of multiple carcinogenic pathways, including Wnt/β-catenin, Hedgehog, HIF1, JAK-STAT3, and Notch signaling; or acts as an antagonist of the tumor suppressor p53. Abstract Posttranslational modifications (PTMs) of histones are well-established contributors in a variety of biological functions, especially tumorigenesis. Histone demethylase JMJD2D (also known as KDM4D), a member of the JMJD2 subfamily, promotes gene transcription by antagonizing H3K9 methylation. JMJD2D is an epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, and cell cycle regulation. Recently, the oncogenic role of JMJD2D in colorectal cancer (CRC) and hepatocellular cancer (HCC) has been recognized. JMJD2D serves as a coactivator of β-catenin, Gli1/2, HIF1α, STAT3, IRF1, TCF4, and NICD or an antagonist of p53 to promote the progression of CRC and HCC. In this review, we summarize the molecular mechanisms of JMJD2D in promoting the progression of CRC and HCC as well as the constructive role of its targeting inhibitors in suppressing tumorigenesis and synergistically enhancing the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
|