101
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
102
|
Abstract
The detection of gene rearrangements in pediatric leukemia is an essential component of the work-up, with implications for accurate diagnosis, proper risk stratification, and therapeutic decisions, including the use of targeted therapies. The traditional methods of karyotype and fluorescence in situ hybridization are still valuable, but many new assays are also available, with different strengths and weaknesses. These assays include next-generation sequencing-based assays that have the potential for highly multiplexed and/or unbiased detection of rearrangements.
Collapse
Affiliation(s)
- Marian H Harris
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
103
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
104
|
Bhavsar S, Liu YC, Gibson SE, Moore EM, Swerdlow SH. Mutational Landscape of TdT+ Large B-cell Lymphomas Supports Their Distinction From B-lymphoblastic Neoplasms: A Multiparameter Study of a Rare and Aggressive Entity. Am J Surg Pathol 2021; 46:71-82. [PMID: 34392269 DOI: 10.1097/pas.0000000000001750] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current World Health Organization classification, terminal deoxynucleotidyl transferase (TdT) expression in a high grade/large cell B-cell lymphoma (LBCL) indicates a B-lymphoblastic lymphoma/leukemia (B-LBL), although TdT expression in what appear to be mature LBCL or following mature B-cell neoplasms is reported. The frequency of TdT+ LBCL, how to best categorize these cases, and their clinicopathologic features, molecular landscape, and relationship to classic B-LBL remain to be better defined. TdT expression was therefore assessed in 258 LBCL and the results correlated with the cytologic, phenotypic, and cytogenetic findings. Targeted mutational analysis, review of prior biopsies, and assessment of clinical associations was performed in the 6 cases with >10% TdT+ cells. All 6 TdT+ LBCL were blastoid-appearing, CD34-, MYC+, BCL2+, and had MYC rearrangements (R) (5/6 with BCL2 and/or BCL6-R). 5/6 had a prior TdT- LBCL and/or follicular lymphoma and all had an aggressive course. Fifteen nonsynonymous variants in 11 genes were seen in the 4/5 tested cases with mutations. TdT+ and TdT- areas in 1 case showed identical mutations. The mutational profiles were more like those reported in germinal center B-cell type-diffuse LBCL rather than B-LBL. Evolution from preceding TdT- lymphomas was nondivergent in 1/3 tested cases and partially divergent in 2. The clinicopathologic and cytogenetic features of these 6 cases were similar to those found in a meta-analysis that included additional cases of TdT+ LBCL or B-LBL following follicular lymphoma. Thus, TdT+, CD34- large B-cell neoplasms with MYC rearrangements and often a "double hit" are rare, frequently a transformational event and aggressive but are distinct from classic B-LBL.
Collapse
Affiliation(s)
- Shweta Bhavsar
- Department of Pathology, UPMC Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
105
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
106
|
Ni Chin WH, Li Z, Jiang N, Lim EH, Suang Lim JY, Lu Y, Chiew KH, Yin Kham SK, Zhi Oh BL, Tan AM, Ariffin H, Yang JJ, Eng-Juh Yeoh A. Practical Considerations for Using RNA Sequencing in Management of B-Cell Acute Lymphoblastic Leukemia: Malaysia-Singapore Acute Lymphoblastic Leukemia-Sequencing 2020 Implementation Strategy. J Mol Diagn 2021; 23:1359-1372. [PMID: 34365011 DOI: 10.1016/j.jmoldx.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the immense genetic heterogeneity of B-cell acute lymphoblastic leukemia (ALL), RNA sequencing (RNA-Seq) could comprehensively interrogate its genetic drivers, assigning a specific molecular subtype in >90% of patients. However, study groups have only started to use RNA-Seq. For broader clinical use, technical, quality control, and appropriate performance validation are needed. We describe the development and validation of an RNA-Seq workflow for subtype classification, TPMT/NUDT15/TP53 variant discovery, and IGH disease clone identification for Malaysia-Singapore ALL sequencing (ALL-Seq) 2020. We validated this workflow in 377 patients in our preceding Malaysia-Singapore ALL-Seq 2003/Malaysia-Singapore ALL-Seq 2010 studies and proposed the quality control measures for RNA quality, library size, sequencing, and data analysis using the International Organization for Standardization 15189 quality and competence standard for medical laboratories. Compared with conventional methods, we achieved >95% accuracy in oncogene fusion identification, digital karyotyping, and TPMT and NUDT15 variant discovery. We found seven pathogenic TP53 mutations, confirmed with Sanger sequencing, which conferred a poorer outcome. Applying this workflow prospectively to the first 21 patients in Malaysia-Singapore ALL-Seq 2020, we identified the genetic drivers and IGH disease clones in >90% of patients with concordant TPMT, NUDT15, and TP53 variants using PCR-based methods. The median turnaround time was 12 days, which was clinically actionable. In conclusion, RNA-Seq workflow could be used clinically in management of B-cell ALL patients.
Collapse
Affiliation(s)
- Winnie H Ni Chin
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhenhua Li
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nan Jiang
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Evelyn H Lim
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua Y Suang Lim
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Lu
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kean H Chiew
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shirley K Yin Kham
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bernice L Zhi Oh
- Viva-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Ah M Tan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hany Ariffin
- University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Allen Eng-Juh Yeoh
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Viva-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
107
|
Novakova M, Zaliova M, Fiser K, Vakrmanova B, Slamova L, Musilova A, Brüggemann M, Ritgen M, Fronkova E, Kalina T, Stary J, Winkowska L, Svec P, Kolenova A, Stuchly J, Zuna J, Trka J, Hrusak O, Mejstrikova E. DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch. Haematologica 2021; 106:2066-2075. [PMID: 32646889 PMCID: PMC8327733 DOI: 10.3324/haematol.2020.250423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we described B-cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype with an early switch to the monocytic lineage and the loss of the B-cell immunophenotype, including CD19 expression. Thus far, the genetic background has remained unknown. Among 726 children consecutively diagnosed with BCP-ALL, 8% patients experienced a switch detectable by flow cytometry (FC). Using exome and RNA sequencing, the switch was found to positively correlate with three different genetic subtypes: PAX5-P80R mutation (five cases with switch of five), rearranged (DUX4r) (30 cases of 41) and rearranged (ZNF384r) (four cases of ten). Expression profiles or phenotypic patterns correlated with genotypes, but within each genotype no cases who subsequently switched could be indentified. If switching was not taken into account, the B-cell-oriented FC assessment underestimated the minimal residual disease level. For patients with PAX5-P80R, a discordance between FC-determined and polymerase chain reactiondetermined minimal residual disease was found on day 15, resulting from a rapid loss of the B-cell phenotype. Discordance on day 33 was observed in all the DUX4r, PAX5-P80R and ZNF384r subtypes. Importantly, despite the substantial phenotypic changes, possibly even challenging the appropriateness of BCP-ALL therapy, the monocytic switch was not associated with a higher incidence of relapse and poorer prognosis in patients undergoing standard ALL treatment.
Collapse
Affiliation(s)
- Michaela Novakova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Karel Fiser
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Barbora Vakrmanova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Lucie Slamova
- Dpt.of Paediatric Haematology/Oncology, University Hospital Motol, Charles University, Czech Rep
| | - Alena Musilova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Monika Brüggemann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Ritgen
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eva Fronkova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Tomas Kalina
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Jan Stary
- Dpt.of Paediatric Haematology/Oncology, University Hospital Motol, Charles University, Czech Rep
| | - Lucie Winkowska
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Peter Svec
- Comenius University, National Institute of Children Diseases, Bratislava, Slovakia
| | - Alexandra Kolenova
- Comenius University, National Institute of Children Diseases, Bratislava, Slovakia
| | - Jan Stuchly
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Jan Zuna
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Jan Trka
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Ondrej Hrusak
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP-Dpt.of Paediatric Haematology/Oncology, Charles University, Prague, Czech Republic
| |
Collapse
|
108
|
Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, Ma X, Chen Y, Fang H, Li X, Kolekar P, Pathak O, Cai J, Ding L, Wang T, von Stackelberg A, Shen S, Eckert C, Klco JM, Chen H, Duan C, Liu Y, Li H, Li B, Kirschner-Schwabe R, Zhang J, Zhou BBS. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. NATURE CANCER 2021; 2:819-834. [PMID: 35122027 DOI: 10.1038/s43018-021-00230-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Du
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Malwine J Barz
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiwen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
109
|
Fang Y, Chen G, Chen F, Hu E, Dong X, Li Z, He L, Sun Y, Qiu L, Xu H, Cai Z, Liu X. Accurate transcriptome assembly by Nanopore RNA sequencing reveals novel functional transcripts in hepatocellular carcinoma. Cancer Sci 2021; 112:3555-3568. [PMID: 34255396 PMCID: PMC8409408 DOI: 10.1111/cas.15058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/13/2023] Open
Abstract
The long reads of Nanopore sequencing permit accurate transcript assembly and ease in discovering novel transcripts with potentially important functions in cancers. The wide adoption of Nanopore sequencing for transcript quantification, however, is largely limited by high costs. To address this issue, we developed a bioinformatics software, NovelQuant, that can specifically quantify long-read-assembled novel transcripts with short-read sequencing data. Nanopore Direct RNA Sequencing was carried out on three hepatocellular carcinoma (HCC) patients' tumor, matched portal vein tumor thrombus, and peritumor to reconstruct the HCC transcriptome. Then, based on the reconstructed transcriptome, NovelQuant was applied on Illumina RNA sequencing data of 59 HCC patients' tumor and paired peritumor to quantify novel transcripts. Our further analysis revealed 361 novel transcripts dysregulated in HCC and that 101 of them were significantly associated with prognosis. There were 19 novel prognostic transcripts predicted to be long noncoding RNAs (lncRNAs), and some of them had regulatory targets that were reported to be associated with HCC. Additionally, 42 novel prognostic transcripts were predicted to be protein-coding mRNAs, and many of them could be involved in xenobiotic metabolism. Moreover, the tumor-suppressive roles of two representative novel prognostic transcripts, CDO1-novel (lncRNA) and CYP2A6-novel (protein-coding mRNA), were further functionally validated during HCC progression. Overall, the current study shows a possibility of combining long- and short-read sequencing to explore functionally important novel transcripts in HCC with accuracy and cost-efficiency, which expands the pool of molecular biomarkers that could enhance our understanding of the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Yuanchang Fang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Feng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - En Hu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Lei He
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| |
Collapse
|
110
|
Ding YY, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, Zhang R, Xu J, Chen CH, Hu Y, Tasian SK, Tan K. Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:5109-5122. [PMID: 34210682 DOI: 10.1158/1078-0432.ccr-21-0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Systems biology approaches can identify critical targets in complex cancer signaling networks to inform new therapy combinations that may overcome conventional treatment resistance. EXPERIMENTAL DESIGN We performed integrated analysis of 1,046 childhood B-ALL cases and developed a data-driven network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a common high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. RESULTS We identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Genetic cotargeting of the synergistic key regulator pair STAT5B and BCL2-associated athanogene 1 (BAG1) significantly reduced leukemia cell viability in vitro. Pharmacologic inhibition with dual small molecule inhibitor therapy targeting this pair of key nodes further demonstrated enhanced antileukemia efficacy of combining the BCL-2 inhibitor venetoclax with the tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple childhood Ph-like ALL patient-derived xenograft models. Consistent with network controllability theory, co-inhibitor treatment also shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically favorable childhood B-ALL subtypes. CONCLUSIONS Our study represents a powerful conceptual framework for combinatorial drug discovery based on systematic interrogation of synergistic vulnerability pathways with pharmacologic inhibitor validation in preclinical human leukemia models.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Kim
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kellyn Madden
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P Loftus
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Hottman Allen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruitao Zhang
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Sarah K Tasian
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
111
|
Cytarabine and EIP co-administration synergistically reduces viability of acute lymphoblastic leukemia cells with high ERG expression. Leuk Res 2021; 109:106649. [PMID: 34271301 DOI: 10.1016/j.leukres.2021.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
The E26 transformation sequence-related gene ERG encodes a transcription factor involved in normal hematopoiesis, and its expression is abnormal in leukemia. Especially in a type of acute lymphoblastic leukemia (ALL) that is refractory and easy to relapse, the expression of ERG protein is abnormally increased. Chemotherapy can alleviate the condition of ALL, but the location and survival mechanism of the remaining ALL cells after chemotherapy are still not fully understood. It is becoming increasingly clear that the interaction between leukemia cells and their microenvironment plays an important role in the acquisition of drug resistance mutations and disease recurrence. We selected an acute lymphocytic leukemia cell line with high ERG expression, and studied the synergistic effect of chemotherapeutics and small molecule peptides through cell proliferation, apoptosis, and cell cycle experiments; At the same time, we inoculated acute lymphocytic leukemia cells with high ERG expression into mice with severe immunodeficiency to simulate human ALL and investigated (i) the effects of co-administration on the nesting and invasion of leukemia cells and (ii) the effects of the small molecule peptide drug EIP, which targets ERG, on the sensitivity of ALL chemotherapy and the underlying mechanisms.Ara-c and EIP synergistically reduces viability of ALL cells with high ERG expression may be achieved by promoting their apoptosis and inhibiting their nesting.
Collapse
|
112
|
Hrabovsky S, Vrzalova Z, Stika J, Jelinkova H, Jarosova M, Navrkalova V, Martenek J, Folber F, Salek C, Horacek JM, Pospisilova S, Mayer J, Doubek M. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol 2021; 60:760-770. [PMID: 33750258 DOI: 10.1080/0284186x.2021.1900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Collapse
Affiliation(s)
- Stepan Hrabovsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Zuzana Vrzalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Stika
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Martenek
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Cyril Salek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan M. Horacek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Fourth Department of Internal Medicine – Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Department of Military Internal Medicine and Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| |
Collapse
|
113
|
Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. Blood Adv 2021; 4:5165-5173. [PMID: 33095873 DOI: 10.1182/bloodadvances.2019001307] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
Recent genetic studies using high-throughput sequencing have disclosed genetic alterations in B-cell precursor acute lymphoblastic leukemia (B-ALL). However, their effects on clinical outcomes have not been fully investigated. To address this, we comprehensively examined genetic alterations and their prognostic impact in a large series of pediatric B-ALL cases. We performed targeted capture sequencing in a total of 1003 pediatric patients with B-ALL from 2 Japanese cohorts. Transcriptome sequencing (n = 116) and/or array-based gene expression analysis (n = 120) were also performed in 203 (84%) of 243 patients who were not categorized into any disease subgroup by panel sequencing or routine reverse transcription polymerase chain reaction analysis for major fusions in B-ALL. Our panel sequencing identified novel recurrent mutations in 2 genes (CCND3 and CIC), and both had positive correlations with ETV6-RUNX1 and hypodiploid ALL, respectively. In addition, positive correlations were also newly reported between TCF3-PBX1 ALL with PHF6 mutations. In multivariate Cox proportional hazards regression models for overall survival, TP53 mutation/deletion, hypodiploid, and MEF2D fusions were selected in both cohorts. For TP53 mutations, the negative effect on overall survival was confirmed in an independent external cohort (n = 466). TP53 mutation was frequently found in IGH-DUX4 (5 of 57 [9%]) ALL, with 4 cases having 17p LOH and negatively affecting overall survival therein, whereas TP53 mutation was not associated with poor outcomes among NCI (National Cancer Institute) standard risk (SR) patients. A conventional treatment approach might be enough, and further treatment intensification might not be necessary, for patients with TP53 mutations if they are categorized into NCI SR.
Collapse
|
114
|
Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 2021; 137:2463-2480. [PMID: 33227818 DOI: 10.1182/blood.2019004547] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.
Collapse
|
115
|
Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:1926. [PMID: 33946897 PMCID: PMC8124693 DOI: 10.3390/jcm10091926] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
116
|
Karpukhina A, Tiukacheva E, Dib C, Vassetzky YS. Control of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Cancer. Trends Mol Med 2021; 27:588-601. [PMID: 33863674 DOI: 10.1016/j.molmed.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
DUX4, a gene encoding a transcription factor involved in early embryogenesis, is located within the D4Z4 subtelomeric repeat on chromosome 4q35. In most healthy somatic tissues, DUX4 is heavily repressed by multiple genetic and epigenetic mechanisms, and its aberrant expression is linked to facioscapulohumeral muscular dystrophy (FSHD) where it has been extensively studied. Recently, DUX4 expression has been implicated in oncogenesis, although this is much less explored. In this review, we discuss multiple levels of control of DUX4 expression, including enhancer-promoter interactions, DNA methylation, histone modifications, noncoding RNAs, and telomere positioning effect. We also connect disparate data on intrachromosomal contacts involving DUX4 and emphasize the feedback loops in DUX4 regulation. Finally, we bridge data on DUX4 in FSHD and cancer and discuss prospective approaches for future FSHD therapies and the potential outcomes of DUX4 inhibition in cancer.
Collapse
Affiliation(s)
- Anna Karpukhina
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France
| | - Carla Dib
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Stanford University School of Medicine, Stanford, CA 94305-510, USA
| | - Yegor S Vassetzky
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia.
| |
Collapse
|
117
|
Jeha S, Choi J, Roberts KG, Pei D, Coustan-Smith E, Inaba H, Rubnitz JE, Ribeiro RC, Gruber TA, Raimondi SC, Karol SE, Qu C, Brady SW, Gu Z, Yang JJ, Cheng C, Downing JR, Evans WE, Relling MV, Campana D, Mullighan CG, Pui CH. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov 2021; 2:326-337. [PMID: 34250504 DOI: 10.1158/2643-3230.bcd-20-0229] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluate clinical significance of recently identified subtypes of acute lymphoblastic leukemia (ALL) in 598 children treated with minimal residual disease (MRD)-directed therapy. Among the 16 B-ALL and 8 T-ALL subtypes identified by next generation sequencing, ETV6-RUNX1, high-hyperdiploid and DUX4-rearranged B-ALL had the best five-year event-free survival rates (95% to 98.4%); TCF3-PBX1, PAX5alt, T-cell, ETP, iAMP21, and hypodiploid ALL intermediate rates (80.0% to 88.2%); and BCR-ABL1, BCR-ABL1-like and ETV6-RUNX1-like and KMT2A-rearranged ALL the worst rates (64.1% to 76.2%). All but three of the 142 patients with day-8 blood MRD <0.01% remained in remission. Among new subtypes, intensified therapy based on day-15 MRD≥1% improved outcome of DUX4-rearranged, BCR-ABL1-like, and ZNF384-rearranged ALL, and achievement of day-42 MRD<0.01% did not preclude relapse of PAX5alt, MEF2D-rearranged and ETV6-RUNX1-like ALL. Thus, new subtypes including DUX4-rearranged, PAX5alt, BCR-ABL1-like, ETV6-RUNX1-like, MEF2D-rearranged and ZNF384-rearranged ALL have important prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Sima Jeha
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pediatric Global Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Choi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kathryn G Roberts
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deqing Pei
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elaine Coustan-Smith
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiroto Inaba
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeffrey E Rubnitz
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raul C Ribeiro
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tanja A Gruber
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Susana C Raimondi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seth E Karol
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chunxu Qu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Zhaohui Gu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James R Downing
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Williams E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, and the University of Tennessee Health Science Center, Memphis, TN
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles G Mullighan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Hon Pui
- Department of Oncology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pediatric Global Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
118
|
Koldobskiy MA, Jenkinson G, Abante J, Rodriguez DiBlasi VA, Zhou W, Pujadas E, Idrizi A, Tryggvadottir R, Callahan C, Bonifant CL, Rabin KR, Brown PA, Ji H, Goutsias J, Feinberg AP. Converging genetic and epigenetic drivers of paediatric acute lymphoblastic leukaemia identified by an information-theoretic analysis. Nat Biomed Eng 2021; 5:360-376. [PMID: 33859388 PMCID: PMC8370714 DOI: 10.1038/s41551-021-00703-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2021] [Indexed: 02/02/2023]
Abstract
In cancer, linking epigenetic alterations to drivers of transformation has been difficult, in part because DNA methylation analyses must capture epigenetic variability, which is central to tumour heterogeneity and tumour plasticity. Here, by conducting a comprehensive analysis, based on information theory, of differences in methylation stochasticity in samples from patients with paediatric acute lymphoblastic leukaemia (ALL), we show that ALL epigenomes are stochastic and marked by increased methylation entropy at specific regulatory regions and genes. By integrating DNA methylation and single-cell gene-expression data, we arrived at a relationship between methylation entropy and gene-expression variability, and found that epigenetic changes in ALL converge on a shared set of genes that overlap with genetic drivers involved in chromosomal translocations across the disease spectrum. Our findings suggest that an epigenetically driven gene-regulation network, with UHRF1 (ubiquitin-like with PHD and RING finger domains 1) as a central node, links genetic drivers and epigenetic mediators in ALL.
Collapse
Affiliation(s)
- Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garrett Jenkinson
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Jordi Abante
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Varenka A Rodriguez DiBlasi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Ridgefield, CT, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elisabet Pujadas
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Challice L Bonifant
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen R Rabin
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick A Brown
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Goutsias
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
119
|
Xie B, Khoyratty TE, Abu-Shah E, F Cespedes P, MacLean AJ, Pirgova G, Hu Z, Ahmed AA, Dustin ML, Udalova IA, Arnon TI. The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1515-1527. [PMID: 33608456 PMCID: PMC7980533 DOI: 10.4049/jimmunol.2000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
The PI3K pathway plays a key role in B cell activation and is important for the differentiation of Ab producing plasma cells (PCs). Although much is known about the molecular mechanisms that modulate PI3K signaling in B cells, the transcriptional regulation of PI3K expression is poorly understood. In this study, we identify the zinc finger protein Zbtb18 as a transcriptional repressor that directly binds enhancer/promoter regions of genes encoding class I PI3K regulatory subunits, subsequently limiting their expression, dampening PI3K signaling and suppressing PC responses. Following activation, dividing B cells progressively downregulated Zbtb18, allowing gradual amplification of PI3K signals and enhanced development of PCs. Human Zbtb18 displayed similar expression patterns and function in human B cells, acting to inhibit development of PCs. Furthermore, a number of Zbtb18 mutants identified in cancer patients showed loss of suppressor activity, which was also accompanied by impaired regulation of PI3K genes. Taken together, our study identifies Zbtb18 as a repressor of PC differentiation and reveals its previously unappreciated function as a transcription modulator of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Bin Xie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tariq E Khoyratty
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Pablo F Cespedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Andrew J MacLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tal I Arnon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| |
Collapse
|
120
|
Qin YZ, Jiang Q, Xu LP, Wang Y, Jiang H, Dao FT, Chen WM, Zhao XS, Liu YR, Zhang XH, Liu KY, Huang XJ. The Prognostic Significance of ZNF384 Fusions in Adult Ph-Negative B-Cell Precursor Acute Lymphoblastic Leukemia: A Comprehensive Cohort Study From a Single Chinese Center. Front Oncol 2021; 11:632532. [PMID: 33816270 PMCID: PMC8010301 DOI: 10.3389/fonc.2021.632532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Novel recurrent fusion gene types such as zinc finger protein 384 (ZNF384) fusions have been identified in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with the application of next-generation sequencing technologies. However, the comprehensive large-scale clinical cohort study for clarifying their prognostic significance remains scarce to date. A total of 242 consecutive adult Ph-negative BCP-ALL patients treated in our institute were retrospectively screened ZNF384 fusions at diagnosis by multiplex real time quantitative PCR. ZNF384 fusions were identified in 47 patients (19.4%) and all belonged to B-other ALL (having no high hyperdiploid karyotype, BCR-ABL1, TCF3-PBX1, ETV6-RUNX1, or MLL rearrangement). In the whole cohort, patients with ZNF384 fusions had significantly higher 3-year relapse-free-survival (RFS) and tended to have a higher 3-year overall survival (OS) than those with no ZNF384 fusions (80.1% vs. 52.5%, P = 0.013; 67.6% vs. 54.0%, P = 0.10). For patients receiving chemotherapy alone and received allogeneic-hematologic stem cell transplantation (allo-HSCT) were censored at the time of transplantation, patients with ZNF384 fusions had both similar RFS and similar OS to B-other ALL patients with no ZNF384 fusions (RFS: P =0.94 and 0.30; OS: P =0.94 and 0.51). For patients receiving transplantation, those with ZNF384 fusions had significantly higher 3-year RFS than B-other ALL patients with no ZNF384 fusions and their OS were similar (P = 0.022 and 0.24). Only two of 31 patients with ZNF384 fusions and receiving allo-HSCT relapsed, individually occurred 66.8 and 69.8 months after transplantation. Therefore, ZNF384 fusion is common in adult BCP-ALL, which may define a new group from BCP-ALL containing no classical fusion transcript with better prognosis through receiving allo-HSCT.
Collapse
Affiliation(s)
- Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
121
|
Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia with kinase fusions in Taiwan. Sci Rep 2021; 11:5802. [PMID: 33707599 PMCID: PMC7952704 DOI: 10.1038/s41598-021-85213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukaemia (ALL), a high-risk subtype characterised by genomic alterations that activate cytokine receptor and kinase signalling, is associated with inferior outcomes in most childhood ALL clinical trials. Half of the patients with Ph-like ALL have kinase rearrangements or fusions. We examined the frequency and spectrum of these fusions using a retrospective cohort of 212 newly diagnosed patients with childhood B-cell ALL. Samples without known chromosomal alterations were subject to multiplex reverse transcription polymerase chain reaction to identify known Ph-like kinase fusions. Immunoglobulin heavy chain locus (IGH) capture and kinase capture were applied to samples without known kinase fusions. We detected known kinase fusions in five of 212 patients, comprising EBF1-PDGFRB, ETV6-ABL1, ZC3HAV1-ABL2, EPOR-IGH, and CNTRL-ABL1. Two patients with P2RY8-CRLF2 were identified. Patients with non-Ph kinase fusions had inferior 5-year event-free survival and overall survival compared with patients with other common genetic alterations. The prevalence of non-Ph kinase fusions in our Taiwanese cohort was lower than that reported in Caucasian populations. Future clinical trials with tyrosine kinase inhibitors may be indicated in Taiwan because of the inferior outcomes for B-cell ALL with kinase fusions.
Collapse
|
122
|
Zaliova M, Potuckova E, Lukes J, Winkowska L, Starkova J, Janotova I, Sramkova L, Stary J, Zuna J, Stanulla M, Zimmermann M, Bornhauser B, Bourquin JP, Eckert C, Cario G, Trka J. Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica 2021; 106:886-890. [PMID: 32499245 PMCID: PMC7927996 DOI: 10.3324/haematol.2020.249094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marketa Zaliova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Eliska Potuckova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julius Lukes
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Lucie Sramkova
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Jan Trka
- CLIP: Childhood Leukemia Investigation Prague, Prague, Czech Republic,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
123
|
Lopez-Lopez E, Autry RJ, Smith C, Yang W, Paugh SW, Panetta JC, Crews KR, Bonten EJ, Smart B, Pei D, McCorkle JR, Diouf B, Roberts KG, Shi L, Pounds S, Cheng C, Mullighan CG, Pui CH, Relling MV, Evans WE. Pharmacogenomics of intracellular methotrexate polyglutamates in patients' leukemia cells in vivo. J Clin Invest 2021; 130:6600-6615. [PMID: 33164984 DOI: 10.1172/jci140797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDInterpatient differences in the accumulation of methotrexate's active polyglutamylated metabolites (MTXPGs) in leukemia cells influence its antileukemic effects.METHODSTo identify genomic and epigenomic and patient variables determining the intracellular accumulation of MTXPGs, we measured intracellular MTXPG levels in acute lymphoblastic leukemia (ALL) cells from 388 newly diagnosed patients after in vivo high-dose methotrexate (HDMTX) (1 g/m2) treatment, defined ALL subtypes, and assessed genomic and epigenomic variants influencing folate pathway genes (mRNA, miRNA, copy number alterations [CNAs], SNPs, single nucleotide variants [SNVs], CpG methylation).RESULTSWe documented greater than 100-fold differences in MTXPG levels, which influenced its antileukemic effects (P = 4 × 10-5). Three ALL subtypes had lower MTXPG levels (T cell ALL [T-ALL] and B cell ALL [B-ALL] with the TCF3-PBX1 or ETV6-RUNX1 fusions), and 2 subtypes had higher MTXPG levels (hyperdiploid and BCR-ABL like). The folate pathway genes SLC19A1, ABCC1, ABCC4, FPGS, and MTHFD1 significantly influenced intracellular MTXPG levels (P = 2.9 × 10-3 to 3.7 × 10-8). A multivariable model including the ALL subtype (P = 1.1 × 10-14), the SLC19A1/(ABCC1 + ABCC4) transporter ratio (P = 3.6 × 10-4), the MTX infusion time (P = 1.5 × 10-3), FPGS mRNA expression (P = 2.1 × 10-3), and MTX systemic clearance (P = 4.4 × 10-2) explained 42% of the variation in MTXPG accumulation (P = 1.1 × 10-38). Model simulations indicated that a longer infusion time (24 h vs. 4 h) was superior in achieving higher intracellular MTXPG levels across all subtypes if ALL.CONCLUSIONSThese findings provide insights into mechanisms underlying interpatient differences in intracellular accumulation of MTXPG in leukemia cells and its antileukemic effectsFUNDINGTHE National Cancer Institute (NCI) and the Institute of General Medical Sciences of the NIH, the Basque Government Programa Posdoctoral de Perfeccionamiento de Personal Investigador doctor, and the American Lebanese Syrian Associated Charities (ALSAC).
Collapse
Affiliation(s)
- Elixabet Lopez-Lopez
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert J Autry
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Colton Smith
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven W Paugh
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristine R Crews
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Erik J Bonten
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brandon Smart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - J Robert McCorkle
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Barthelemy Diouf
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kathryn G Roberts
- Hematological Malignancies Program, and.,Department of Pathology, and
| | | | | | | | | | - Ching-Hon Pui
- Hematological Malignancies Program, and.,Department of Pathology, and.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary V Relling
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - William E Evans
- Hematological Malignancies Program, and.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
124
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
125
|
Hiemenz MC, Oberley MJ, Doan A, Aye L, Ji J, Schmidt RJ, Biegel JA, Bhojwani D, Raca G. A multimodal genomics approach to diagnostic evaluation of pediatric hematologic malignancies. Cancer Genet 2021; 254-255:25-33. [PMID: 33571894 DOI: 10.1016/j.cancergen.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Detection of somatic genetic drivers is important for risk stratification and treatment selection in pediatric leukemias; however, newly recognized genetic markers may not be detected by routine karyotyping and fluorescence in situ hybridization (FISH). To identify the combination of assays that provides the highest detection rate for clinically significant molecular abnormalities, we tested 160 B- lymphoblastic leukemia (B-ALL) by karyotyping, FISH, chromosomal microarray analysis (CMA) and the custom next-generation sequencing (NGS) panel, OncoKidsⓇ. In addition, we tested 40 myeloid malignancies with karyotyping, chromosomal microarray analysis (CMA), and OncoKidsⓇ; 36/40 myeloid malignancies were also tested with FISH. In B-ALL, individual testing methods had the following diagnostic yields for the key genetic drivers: karyotype 34%; basic FISH panel 45%; FISH panel with IGH and CRLF2 probes 65%; CMA 48%; OncoKidsⓇ 39%. CMA and OncoKidsⓇ testing allowed detection of key genetic drivers in 42% of the samples that remained unknown upon testing by conventional methods. In myeloid malignancies, OncoKidsⓇ had the highest yield for detection of both primary and secondary DNA mutations and RNA fusions. Our data highlights the complementarity between CMA and NGS and conventional cytogenetics/FISH in pediatric leukemia diagnostics. Due to rapid turn-around-time, FISH may be useful as an initial screening method in B-ALL. Our data also suggests NGS testing with a comprehensive panel, despite a longer turnaround time, is a good alternative to karyotyping and FISH in pediatric AML due to its superior detection rate.
Collapse
Affiliation(s)
- Matthew C Hiemenz
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew J Oberley
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andrew Doan
- Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Le Aye
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Deepa Bhojwani
- Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
126
|
Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia. Front Med 2021; 15:347-371. [PMID: 33400146 DOI: 10.1007/s11684-020-0821-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by genetic alterations with high heterogeneity. Precise subtypes with distinct genomic and/or gene expression patterns have been recently revealed using high-throughput sequencing technology. Most of these profiles are associated with recurrent non-overlapping rearrangements or hotspot point mutations that are analogous to the established subtypes, such as DUX4 rearrangements, MEF2D rearrangements, ZNF384/ZNF362 rearrangements, NUTM1 rearrangements, BCL2/MYC and/or BCL6 rearrangements, ETV6-RUNX1-like gene expression, PAX5alt (diverse PAX5 alterations, including rearrangements, intragenic amplifications, or mutations), and hotspot mutations PAX5 (p.Pro80Arg) with biallelic PAX5 alterations, IKZF1 (p.Asn159Tyr), and ZEB2 (p.His1038Arg). These molecular subtypes could be classified by gene expression patterns with RNA-seq technology. Refined molecular classification greatly improved the treatment strategy. Multiagent therapy regimens, including target inhibitors (e.g., imatinib), immunomodulators, monoclonal antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy, are transforming the clinical practice from chemotherapy drugs to personalized medicine in the field of risk-directed disease management. We provide an update on our knowledge of emerging molecular subtypes and therapeutic targets in BCP-ALL.
Collapse
|
127
|
Ratti S, Lonetti A, Follo MY, Paganelli F, Martelli AM, Chiarini F, Evangelisti C. B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients? Cancers (Basel) 2020; 12:cancers12123498. [PMID: 33255367 PMCID: PMC7760974 DOI: 10.3390/cancers12123498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary B-ALL is the more frequent childhood malignancy. Even though significant improvements in patients’ survival, some pediatric B-ALL have still poor prognosis and novel strategies are needed. Recently, new genetic abnormalities and altered signaling pathways have been described, defining novel B-ALL subtypes.Innovative targeted therapeutic drugs may potentially show a great impact on the treatment of B-ALL subtypes, offering an important chance to block multiple signaling pathways and potentially improving the clinical management of B-ALL younger patients, especially for the new identified subtypes that lack efficient chemotherapeutic protocols. In this review, we shed light on the up-to-date knowledge of the novel childhood B-ALL subtypes and the altered signaling pathways that could become new druggable targets. Abstract B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients’ outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Annalisa Lonetti
- Giorgio Prodi Cancer Research Center, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 11, 40138 Bologna, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| |
Collapse
|
128
|
Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, López-Arribillaga E, Gonzalez J, Fernandez-Ibarrondo L, Mularoni L, Espinosa L, Bellosillo B, Ribera JM, Bigas A, Gonzalez-Perez A, Lopez-Bigas N. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol 2020; 21:284. [PMID: 33225950 PMCID: PMC7682094 DOI: 10.1186/s13059-020-02192-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adult T cell acute lymphoblastic leukemia (T-ALL) is a rare disease that affects less than 10 individuals in one million. It has been less studied than its cognate pediatric malignancy, which is more prevalent. A higher percentage of the adult patients relapse, compared to children. It is thus essential to study the mechanisms of relapse of adult T-ALL cases. RESULTS We profile whole-genome somatic mutations of 19 primary T-ALLs from adult patients and the corresponding relapse malignancies and analyze their evolution upon treatment in comparison with 238 pediatric and young adult ALL cases. We compare the mutational processes and driver mutations active in primary and relapse adult T-ALLs with those of pediatric patients. A precise estimation of clock-like mutations in leukemic cells shows that the emergence of the relapse clone occurs several months before the diagnosis of the primary T-ALL. Specifically, through the doubling time of the leukemic population, we find that in at least 14 out of the 19 patients, the population of relapse leukemia present at the moment of diagnosis comprises more than one but fewer than 108 blasts. Using simulations, we show that in all patients the relapse appears to be driven by genetic mutations. CONCLUSIONS The early appearance of a population of leukemic cells with genetic mechanisms of resistance across adult T-ALL cases constitutes a challenge for treatment. Improving early detection of the malignancy is thus key to prevent its relapse.
Collapse
Affiliation(s)
- Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Santiago Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Eulalia Genescà
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Violeta García-Hernández
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Celia Gonzalez
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Erika López-Arribillaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jessica Gonzalez
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | | | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CMR[B] Center of Regenerative Medicine, Barcelona, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, CIBERONC, Hospital del Mar, IMIM, Barcelona, Spain
| | - Josep-Maria Ribera
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
129
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
130
|
Tran TH, Hunger SP. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin Cancer Biol 2020; 84:144-152. [PMID: 33197607 DOI: 10.1016/j.semcancer.2020.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and constitutes approximately 25 % of cancer diagnoses among children under the age of 15 (Howlader et al., 2013) [1]. Overall, about half of ALL cases occur in children and adolescents and it is the most common acute leukemia until the early 20s, after which acute myeloid leukemia predominates. ALL is the most successful treatment paradigm in pediatric cancer medicine as illustrated by the significant survival rate improvement from ∼10 % in the 1960s to >90 % today (Hunger et al., 2015) [2]. This remarkable success stems from the progressive improvement in the efficacy of risk-adapted multiagent chemotherapy regimens with effective central nervous system (CNS) prophylaxis via well-designed randomized clinical trials conducted by international collaborative consortia, enhanced supportive care measures to decrease treatment-related mortality, in-depth understanding of the genetic basis of ALL, and refinement in treatment response assessment through serial minimal residual disease (MRD) monitoring (Pui et al., 2015) [3]. These advances collectively contribute to a decline in mortality rate of 23.5% for children diagnosed with ALL in the US from 2000 to 2010 (Smith et al., 2014) [4]. Nevertheless, outcomes of older adolescents and young adults with ALL still lag behind those of their younger counterparts despite pediatric-inspired chemotherapy regimens (Stock et al., 2019) [5], relapsed/refractory childhood ALL is associated with poor outcomes (Rheingold et al., 2019) [6], and ALL still represents the leading causes of cancer-related deaths (Smith et al., 2010) [7]. The last two decades have witnessed important genomic discoveries in ALL, enabled by advances in next-generation sequencing (NGS) technologies to characterize the landscape of germline and somatic alterations in ALL, some of which have important diagnostic, prognostic and therapeutic implications. Comprehensive genomic analysis of large cohorts of children and adults with ALL has revised the taxonomy of ALL in the molecular era by identifying novel clonal, subtype-defined chromosomal alterations associated with distinct gene expression signatures, thus reducing the proportion of patients previously labelled as "Others" from 25 % to approximately 5 % (Mullighan et al., 2019) [8]. Insights into the genomics of ALL further provide compelling biologic rationale to expand the scope of precision medicine therapies for childhood ALL. Herein, we summarize a decade of genomic discoveries to highlight three different facets of precision medicine in pediatric ALL: 1) inherited predispositions of ALL; 2) relevant molecularly targeted therapies in genomically-defined ALL subtypes; and 3) treatment response monitoring via pharmacogenomics and novel MRD biomarkers.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Stephen P Hunger
- Department of Pediatrics, The Center for Childhood Cancer Research, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
131
|
Abstract
The last decade has witnessed great advances in our understanding of the genetic and biological basis of childhood acute lymphoblastic leukemia (ALL), the development of experimental models to probe mechanisms and evaluate new therapies, and the development of more efficacious treatment stratification. Genomic analyses have revolutionized our understanding of the molecular taxonomy of ALL, and these advances have led the push to implement genome and transcriptome characterization in the clinical management of ALL to facilitate more accurate risk-stratification and, in some cases, targeted therapy. Although mutation- or pathway-directed targeted therapy (e.g., using tyrosine kinase inhibitors to treat Philadelphia chromosome [Ph]-positive and Phlike B-cell-ALL) is currently available for only a minority of children with ALL, many of the newly identified molecular alterations have led to the exploration of approaches targeting deregulated cell pathways. The efficacy of cellular or humoral immunotherapy has been demonstrated with the success of chimeric antigen receptor T-cell therapy and the bispecific engager blinatumomab in treating advanced disease. This review describes key advances in our understanding of the biology of ALL and optimal approaches to risk-stratification and therapy, and it suggests key areas for basic and clinical research.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN.
| | - Charles G Mullighan
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
132
|
Søndergaard E, Rauch A, Michaut M, Rapin N, Rehn M, Wilhelmson AS, Camponeschi A, Hasemann MS, Bagger FO, Jendholm J, Knudsen KJ, Mandrup S, Mårtensson IL, Porse BT. ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Rep 2020; 29:2756-2769.e6. [PMID: 31775043 DOI: 10.1016/j.celrep.2019.10.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
B cell development depends on the coordinated expression and cooperation of several transcription factors. Here we show that the transcription factor ETS-related gene (ERG) is crucial for normal B cell development and that its deletion results in a substantial loss of bone marrow B cell progenitors and peripheral B cells, as well as a skewing of splenic B cell populations. We find that ERG-deficient B lineage cells exhibit an early developmental block at the pre-B cell stage and proliferate less. The cells fail to express the immunoglobulin heavy chain due to inefficient V-to-DJ recombination, and cells that undergo recombination display a strong bias against incorporation of distal V gene segments. Furthermore, antisense transcription at PAX5-activated intergenic repeat (PAIR) elements, located in the distal region of the Igh locus, depends on ERG. These findings show that ERG serves as a critical regulator of B cell development by ensuring efficient and balanced V-to-DJ recombination.
Collapse
Affiliation(s)
- Elisabeth Søndergaard
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Magali Michaut
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matilda Rehn
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marie S Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Frederik O Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kasper J Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
133
|
Abstract
The cure rate of childhood acute lymphoblastic leukemia (ALL) has exceeded 90% in some contemporary clinical trials. However, the dose intensity of conventional chemotherapy has been pushed to its limit. Further improvement in outcome will need to rely more heavily on molecular therapeutic as well as immuno-and cellular-therapy approaches together with precise risk stratification. Children with ETV6-RUNX1 or hyperdiploid > 50 ALL who achieve negative minimal residual disease during early remission induction are suitable candidates for reduction in treatment. Patients with Philadelphia chromosome (Ph)-positive or Ph-like ALL with ABL-class fusion should be treated with dasatinib. BH3 profiling and other preclinical methods have identified several high-risk subtypes, such as hypodiplod, early T-cell precursor, immature T-cell, KMT2A-rearranged, Ph-positive and TCF-HLF-positive ALL, that may respond to BCL-2 inhibitor venetoclax. There are other fusions or mutations that may serve as putative targets, but effective targeted therapy has yet to be established. For other high-risk patients or poor early treatment responders who do not have targetable genetic lesions, current approaches that offer hope include blinatumomab, inotuzumab and CAR-T cell therapy for B-ALL, and daratumumab and nelarabine for T-ALL. With the expanding therapeutic armamentarium, we should start focus on rational combinations of targeted therapy with non-overlapping toxicities.
Collapse
Affiliation(s)
- Ching-Hon Pui
- Departments of Oncology and Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
134
|
Evaluation of blood gene expression levels in facioscapulohumeral muscular dystrophy patients. Sci Rep 2020; 10:17547. [PMID: 33067535 PMCID: PMC7567883 DOI: 10.1038/s41598-020-74687-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the expression of DUX4 in skeletal muscles. A number of therapeutic approaches are being developed to antagonize the events preceding and following DUX4 expression that leads to muscular dystrophy. Currently, the possibility to evaluate treatment response in clinical trials is hampered by the lack of objective molecular biomarkers connecting the disease cause to clinical performance. In this study we employed RNA-seq to examine gene expression in PAXgene tubes obtained from two independent cohorts of FSHD patients. Analysis of gene expression profiles did not lead to the identification of genes or pathways differentially expressed in FSHD patients, or associated with disease severity. In particular, we did not find evidence that the DUX4 and PAX7 signatures were differentially expressed. On the other hand, we were able to improve patient classification by including single genes or groups of genes in classification models. The best classifier was ROPN1L, a gene known to be expressed in testis, coincidentally the typical location of DUX4 expression. These improvements in patient classification hold the potential to enrich the FSHD clinical trial toolbox.
Collapse
|
135
|
Rehn JA, O’Connor MJ, White DL, Yeung DT. DUX Hunting-Clinical Features and Diagnostic Challenges Associated with DUX4-Rearranged Leukaemia. Cancers (Basel) 2020; 12:cancers12102815. [PMID: 33007870 PMCID: PMC7599557 DOI: 10.3390/cancers12102815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary DUX4-rearrangement (DUX4r) is a recently discovered recurrent genomic lesion reported in 4–7% of childhood B cell acute lymphoblastic leukaemia (B-ALL) cases. This subtype has favourable outcomes, especially in children and adolescents treated with intensive chemotherapy. The fusion most commonly links the hypervariable IGH gene to DUX4 a gene located within the D4Z4 macrosatellite repeat on chromosome 4. DUX4r is cryptic to most standard diagnostic techniques, and difficult to identify even with next generation sequencing assays. This review summarises the clinical features and molecular genetics of DUX4r B-ALL and proposes prospective new diagnostic methods. Abstract DUX4-rearrangement (DUX4r) is a recently discovered recurrent genomic lesion reported in 4–7% of childhood B cell acute lymphoblastic leukaemia (B-ALL) cases. This subtype has favourable outcomes, especially in children and adolescents treated with intensive chemotherapy. The fusion most commonly links the hypervariable IGH gene to DUX4 a gene located within the D4Z4 macrosatellite repeat on chromosome 4, with a homologous polymorphic repeat on chromosome 10. DUX4r is cryptic to most standard diagnostic techniques, and difficult to identify even with next generation sequencing assays. This review summarises the clinical features and molecular genetics of DUX4r B-ALL and proposes prospective new diagnostic methods.
Collapse
Affiliation(s)
- Jacqueline A. Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Matthew J. O’Connor
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Michael Rice Centre for Haematology and Oncology, Womens’s & Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Deborah L. White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Australian Genomics, The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC 3168, Australia
- Correspondence:
| | - David T. Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
136
|
NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor. Cell Rep 2020; 29:1469-1481.e9. [PMID: 31693889 DOI: 10.1016/j.celrep.2019.09.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.
Collapse
|
137
|
Liu WH, Mrozek-Gorska P, Wirth AK, Herold T, Schwarzkopf L, Pich D, Völse K, Melo-Narváez MC, Carlet M, Hammerschmidt W, Jeremias I. Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL. Biomark Res 2020; 8:46. [PMID: 32944247 PMCID: PMC7493381 DOI: 10.1186/s40364-020-00226-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4. Conclusion Genetic engineering of PDX models allows the examination of the function of dysregulated genes like KLF4 in a highly clinically relevant translational context, and it also enables the selection of therapeutic targets in individual tumors and links their functions to clinically available drugs, which will facilitate personalized treatment in the future.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Larissa Schwarzkopf
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Kerstin Völse
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - M Camila Melo-Narváez
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
138
|
MLPA and DNA index improve the molecular diagnosis of childhood B-cell acute lymphoblastic leukemia. Sci Rep 2020; 10:11501. [PMID: 32661308 PMCID: PMC7359332 DOI: 10.1038/s41598-020-68311-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aneuploidy occurs within a significant proportion of childhood B-cell acute lymphoblastic leukemia (B-ALL). Some copy number variations (CNV), associated with novel subtypes of childhood B-ALL, have prognostic significance. A total of 233 childhood B-ALL patients were enrolled into this study. Focal copy number alterations of ERG, IKZF1, PAX5, ETV6, RB1, BTG1, EBF1, CDKN2A/2B, and the Xp22.33/Yp11.31 region were assessed by Multiplex Ligation-dependent Probe Amplification (MLPA). The MLPA telomere kit was used to identify aneuploidy through detection of whole chromosome loss or gain. We carried out these procedures alongside measurement of DNA index in order to identify, aneuploidy status in our cohort. MLPA telomere data and DNA index correlated well with aneuploidy status at higher sensitivity than cytogenetic analysis. Three masked hypodiploid patients, undetected by cytogenetics, and their associated copy number neutral loss of heterozygosity (CN-LOH) were identified by STR and SNP arrays. Rearrangements of TCF3, located to 19p, were frequently associated with 19p deletions. Other genetic alterations including iAMP21, IKZF1 deletions, ERG deletions, PAX5AMP, which have clinical significance or are associated with novel subtypes of ALL, were identified. In conclusion, appropriate application of MLPA aids the identifications of CNV and aneuploidy in childhood B-ALL.
Collapse
|
139
|
Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, Shao Y, Ma X, Hyle J, Wright S, Ju B, Rusch MC, Liu Y, Li B, Macias M, Tian L, Easton J, Qian M, Yang JJ, Hu S, Look AT, Zhang J. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet 2020; 52:811-818. [PMID: 32632335 PMCID: PMC7679232 DOI: 10.1038/s41588-020-0659-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.
Collapse
Affiliation(s)
- Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benshang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
140
|
Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, Ma X, Edmonson MN, Payne-Turner D, van de Vorst M, Jongmans MCJ, McGuire I, Zhou X, Wang J, Shi L, Pounds S, Pei D, Cheng C, Song G, Fan Y, Shao Y, Rusch M, McCastlain K, Yu J, van Boxtel R, Blokzijl F, Iacobucci I, Roberts KG, Wen J, Wu G, Ma J, Easton J, Neale G, Olsen SR, Nichols KE, Pui CH, Zhang J, Evans WE, Relling MV, Yang JJ, Thomas PG, Dick JE, Kuiper RP, Mullighan CG. Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discov 2020; 1:96-111. [PMID: 32793890 PMCID: PMC7418874 DOI: 10.1158/0008-5472.bcd-19-0041] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 01/25/2023] Open
Abstract
Relapse of acute lymphoblastic leukemia (ALL) remains a leading cause of childhood death. Prior studies have shown clonal mutations at relapse often arise from relapse-fated subclones that exist at diagnosis. However, the genomic landscape, evolutionary trajectories and mutational mechanisms driving relapse are incompletely understood. In an analysis of 92 cases of relapsed childhood ALL, incorporating multimodal DNA and RNA sequencing, deep digital mutational tracking and xenografting to formally define clonal structure, we identify 50 significant targets of mutation with distinct patterns of mutational acquisition or enrichment. CREBBP, NOTCH1, and Ras signaling mutations rose from diagnosis subclones, whereas variants in NCOR2, USH2A and NT5C2 were exclusively observed at relapse. Evolutionary modeling and xenografting demonstrated that relapse-fated clones were minor (50%), major (27%) or multiclonal (18%) at diagnosis. Putative second leukemias, including those with lineage shift, were shown to most commonly represent relapse from an ancestral clone rather than a truly independent second primary leukemia. A subset of leukemias prone to repeated relapse exhibited hypermutation driven by at least three distinct mutational processes, resulting in heightened neoepitope burden and potential vulnerability to immunotherapy. Finally, relapse-driving sequence mutations were detected prior to relapse using deep digital PCR at levels comparable to orthogonal approaches to monitor levels of measurable residual disease. These results provide a genomic framework to anticipate and circumvent relapse by earlier detection and targeting of relapse-fated clones.
Collapse
Affiliation(s)
- Esmé Waanders
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie M Dobson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irina McGuire
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kelly McCastlain
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiangyan Yu
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Francis Blokzijl
- Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- The Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R Olsen
- The Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
141
|
Abstract
Genomic analyses have revolutionized our understanding of the biology of B-progenitor acute lymphoblastic leukemia (ALL). Studies of thousands of cases across the age spectrum have revised the taxonomy of B-ALL by identifying multiple new subgroups with diverse sequence and structural initiating events that vary substantially by age at diagnosis and prognostic significance. There is a growing appreciation of the role of inherited genetic variation in predisposition to ALL and drug responsiveness and of the nature of genetic variegation and clonal evolution that may be targeted for improved diagnostic, risk stratification, disease monitoring, and therapeutic intervention. This review provides an overview of the current state of knowledge of the genetic basis of B-ALL, with an emphasis on recent discoveries that have changed our approach to diagnosis and monitoring.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
142
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
143
|
Karpukhina A, Vassetzky Y. DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
144
|
Kimura S, Mullighan CG. Molecular markers in ALL: Clinical implications. Best Pract Res Clin Haematol 2020; 33:101193. [PMID: 33038982 DOI: 10.1016/j.beha.2020.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and remains a main cause of death in children despite recent improvements in cure rates. In the past decade, development of massively parallel sequencing has enabled large scale genome profiling studies of ALL, which not only led to identification of new subtypes in both B-cell precursor ALL (BCP-ALL) and T-cell ALL (T-ALL), but has also identified potential new therapeutic approaches to target vulnerabilities of many subtypes. Several of these approaches have been validated in preclinical models and are now being formally evaluated in prospective clinical trials. In this review, we provide an overview of the recent advances in our knowledge of genomic bases of BCP-ALL, T-ALL, and relapsed ALL, and discuss their clinical implications.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA
| | - Charles G Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA.
| |
Collapse
|
145
|
Applications of probability and statistics in cancer genomics. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
146
|
Semmes EC, Vijayakrishnan J, Zhang C, Hurst JH, Houlston RS, Walsh KM. Leveraging Genome and Phenome-Wide Association Studies to Investigate Genetic Risk of Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev 2020; 29:1606-1614. [PMID: 32467347 DOI: 10.1158/1055-9965.epi-20-0113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of childhood cancers remain limited, highlighting the need for novel analytic strategies. We describe a hybrid GWAS and phenome-wide association study (PheWAS) approach to uncover genotype-phenotype relationships and candidate risk loci, applying it to acute lymphoblastic leukemia (ALL). METHODS PheWAS was performed for 12 ALL SNPs identified by prior GWAS and two control SNP-sets using UK Biobank data. PheWAS-traits significantly associated with ALL SNPs compared with control SNPs were assessed for association with ALL risk (959 cases, 2,624 controls) using polygenic score and Mendelian randomization analyses. Trait-associated SNPs were tested for association with ALL risk in single-SNP analyses, with replication in an independent case-control dataset (1,618 cases, 9,409 controls). RESULTS Platelet count was the trait most enriched for association with known ALL risk loci. A polygenic score for platelet count (223 SNPs) was not associated with ALL risk (P = 0.82) and Mendelian randomization did not suggest a causal relationship. However, twelve platelet count-associated SNPs were nominally associated with ALL risk in COG data and three were replicated in UK data (rs10058074, rs210142, rs2836441). CONCLUSIONS In our hybrid GWAS-PheWAS approach, we identify pleiotropic genetic variation contributing to ALL risk and platelet count. Three SNPs known to influence platelet count were reproducibly associated with ALL risk, implicating genomic regions containing IRF1, proapoptotic protein BAK1, and ERG in platelet production and leukemogenesis. IMPACT Incorporating PheWAS data into association studies can leverage genetic pleiotropy to identify cancer risk loci, highlighting the utility of our novel approach.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, North Carolina.,Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Jillian H Hurst
- Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Kyle M Walsh
- Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, North Carolina. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| |
Collapse
|
147
|
Itskovich SS, Gurunathan A, Clark J, Burwinkel M, Wunderlich M, Berger MR, Kulkarni A, Chetal K, Venkatasubramanian M, Salomonis N, Kumar AR, Lee LH. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nat Commun 2020; 11:2369. [PMID: 32398749 PMCID: PMC7217953 DOI: 10.1038/s41467-020-15733-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A. We finally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins.
Collapse
Affiliation(s)
- Svetlana S Itskovich
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arun Gurunathan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Clark
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Burwinkel
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mikaela R Berger
- College of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meenakshi Venkatasubramanian
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Lynn H Lee
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
148
|
Abstract
Acute lymphoblastic leukaemia develops in both children and adults, with a peak incidence between 1 year and 4 years. Most acute lymphoblastic leukaemia arises in healthy individuals, and predisposing factors such as inherited genetic susceptibility or environmental exposure have been identified in only a few patients. It is characterised by chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. Along with response to treatment, these abnormalities are important prognostic factors. Disease-risk stratification and the development of intensified chemotherapy protocols substantially improves the outcome of patients with acute lymphoblastic leukaemia, particularly in children (1-14 years), but also in adolescents and young adults (15-39 years). However, the outcome of older adults (≥40 years) and patients with relapsed or refractory acute lymphoblastic leukaemia remains poor. New immunotherapeutic strategies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T cells, are being developed and over the next few years could change the options for acute lymphoblastic leukaemia treatment.
Collapse
Affiliation(s)
- Florent Malard
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France.
| |
Collapse
|
149
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
150
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|