101
|
Best LG, Gilbert-Barness E, Gerrard DE, Gendron-Fitzpatrick A, Opitz JM. "Double-muscle" trait in cattle: a possible model for Wiedemann-Beckwith syndrome. Fetal Pediatr Pathol 2006; 25:9-20. [PMID: 16754485 DOI: 10.1080/15227950600701503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Wiedemann-Beckwith syndrome (WBS) was first described in 1963 as a group of anomalies involving primarily macrosomia, macroglossia, and omphalocele. Histologic studies of WBS show nesidioblastosis of the pancreas, adrenocortical cytomegaly, and persistent metanephric blastema of the kidney. Multiple lines of evidence indicate that the human 11p15.5 region is the locus of abnormality in WBS. Insulin-like growth factor II (IGF-2) frequently has been considered a candidate gene, and expression of IGF-2 is known to be significantly delayed in fetal skeletal muscle of double-muscle (DM) cattle. Other candidate genes recently have been proposed for WBS. A number of recessive alleles in the bovine myostatin gene (GDF8, mapped to bovine chromosome 2 and apparently orthologous to the human 2q22 region) have been shown to be responsible for DM. Recently the first human case of deficient GDF8 function has been reported, confirming the importance of this gene. Bovine IGF-2 has been sequenced and localized to chromosome 25. The primary purpose of this study was to compare and contrast histologic findings in DM and WBS. Immunohistochemical staining confirms changes similar to nesidioblastosis in the pancreas. Other dysplastic changes of a cystic nature are seen in the adrenal. The renal histology of DM fetuses did not appear significantly different than controls.
Collapse
Affiliation(s)
- L G Best
- Department of Family Practice, University of North Dakota, Grand Forks, North Dakota, USA.
| | | | | | | | | |
Collapse
|
102
|
Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 137C:12-23. [PMID: 16010676 DOI: 10.1002/ajmg.c.30058] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome associated with an increased risk for embryonal tumor development. BWS provides an ideal model system to study epigenetic mechanisms. This condition is caused by a variety of genetic or epigenetic alterations within two domains of imprinted growth regulatory genes on human chromosome 11p15. Molecular studies of BWS have provided important data with respect to epigenotype/genotype-phenotype correlations; for example, alterations of Domain 1 are associated with the highest risk for tumor development, specifically Wilms' tumor. Further, the elucidation of the molecular basis for monozygotic twinning in BWS defined a critical period for imprint maintenance during pre-implantation embryonic development. In the future, such molecular studies in BWS will permit enhanced medical management and targeted genetic counseling.
Collapse
|
103
|
Lai LP, Su YN, Chiang FT, Juang JM, Liu YB, Ho YL, Chen WJ, Yeh SJ, Wang CC, Ko YL, Wu TJ, Ueng KC, Lei MH, Tsao HM, Chen SA, Lin TK, Wu MH, Lo HM, Huang SKS, Lin JL. Denaturing high-performance liquid chromatography screening of the long QT syndrome-related cardiac sodium and potassium channel genes and identification of novel mutations and single nucleotide polymorphisms. J Hum Genet 2005; 50:490-496. [PMID: 16155735 DOI: 10.1007/s10038-005-0283-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 07/18/2005] [Indexed: 12/19/2022]
Abstract
Mutations in cardiac potassium and sodium channel genes are responsible for several hereditary cardiac arrhythmia syndromes. We established a denaturing high-performance liquid chromatography (DHPLC) protocol for rapid mutation screening of these genes, and reported mutations and variations identified by this method. We included 28 patients with Brugada syndrome, 4 with congenital long QT syndrome (LQTS), 11 with drug-induced LQTS, 4 with idiopathic ventricular fibrillation, and 50 normal volunteers. Polymerase chain reactions were performed to amplify the entire coding region of these genes. DHPLC was used to screen for heteroduplexes then DNA sequencing was performed. With this method, we identified the mutation(s) in all four patients with congenital LQTS (KCNQ1 A341V, KCNH2 N633D, KCNH2 2768Cdel and KCNE1 K70 N Y81C double mutations). We also identified the SCN5A A551T mutation in 1 of the 28 patients with Brugada syndrome. All the above-mentioned mutations were novel except KCNQ1 A341V. No mutations were identified in patients with drug-induced LQTS or idiopathic ventricular fibrillation. In total, 25 single nucleotide polymorphisms were identified, 10 of which were novel. In conclusion, DHPLC is a sensitive and rapid method for detection of cardiac sodium and potassium channel gene mutations.
Collapse
Affiliation(s)
- Ling-Ping Lai
- Institute of Pharmacology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ning Su
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - Jyh-Ming Juang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - Yen-Bin Liu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - Yi-Lwun Ho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - San-Jou Yeh
- Department of Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chun-Chieh Wang
- Department of Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Lin Ko
- Department of Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsu-Juey Wu
- Taichung Veterans General Hospital, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kwo-Chang Ueng
- Division of Cardiology and Cardiovascular Surgery, Institute of Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Meng-Huan Lei
- Department of Internal Medicine, Poh-Ai Hospital, Lotung, Taiwan
| | - Hsuan-Ming Tsao
- Department of Internal Medicine, Poh-Ai Hospital, Lotung, Taiwan
| | - Shih-Ann Chen
- School of Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Tin-Kwang Lin
- Cardiovascular Division, Department of Internal Medicine, Buddhist Dalin Tzu Chi General Hospital, Dalin, Taiwan
| | - Mei-Hwan Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ming Lo
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shoei K Stephen Huang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan
| | - Jiunn-Lee Lin
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Road, Taipei, Taiwan.
| |
Collapse
|
104
|
Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wülfing T, Siebrands C, Engeland B, Mönnig G, Haverkamp W, Brinkmann B, Schulze-Bahr E. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med 2005; 120:129-37. [PMID: 16012827 DOI: 10.1007/s00414-005-0019-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 06/16/2005] [Indexed: 01/08/2023]
Abstract
Sudden infant death syndrome (SIDS) is a frequent cause of death among infants. The etiology of SIDS is unknown and several theories, including fatal ventricular arrhythmias, have been suggested. We performed an epidemiological and genetic investigation of SIDS victims to estimate the presence of inherited long QT syndrome (LQTS) as a contributor for SIDS. Forty-one consecutively collected and unrelated SIDS cases were characterized by clinical and epidemiological criteria. We performed a comprehensive gene mutation screening with single-strand conformation polymorphism analysis and sequencing techniques of the most relevant LQTS genes to assess mutation frequencies. In vitro characterization of identified mutants was subsequently performed by heterologous expression experiments in Chinese hamster ovary cells and in Xenopus laevis oocytes. A positive family history for LQTS was suspected by mild prolonged Q-T interval in family members in 2 of the 41 SIDS cases (5%). In neither case, a family history of sudden cardiac death was present nor a mutation could be identified after thorough investigation. In another SIDS case, a heterozygous missense mutation (H105L) was identified in the N-terminal region of the KCNQ1 (LQTS 1) gene. Despite absence of this mutation in the general population and a high conservational degree of the residue H105 during evolution, electrophysiological investigations failed to show a significant difference between wild-type and KCNQ1(H105L)/minK-mediated I(Ks) currents. Our data suggest that a molecular diagnosis of SIDS related to LQTS genes is rare and that, even when an ion channel mutation is identified, this should be regarded with caution unless a pathophysiological relationship between SIDS and the electrophysiological characterization of the mutated ion channel has been demonstrated.
Collapse
Affiliation(s)
- Horst Wedekind
- Department of Cardiology and Angiology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 2005; 33:2650-60. [PMID: 15888726 PMCID: PMC1097765 DOI: 10.1093/nar/gki555] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Loss of genomic imprinting is involved in a number of developmental abnormalities and cancers. ZAC is an imprinted gene expressed from the paternal allele of chromosome 6q24 within a region known to harbor a tumor suppressor gene for several types of neoplasia. p57KIP2 (CDKN1C) is a maternally expressed gene located on chromosome 11p15.5 which encodes a cyclin-dependent kinase inhibitor that may also act as a tumor suppressor gene. Mutations in ZAC and p57KIP2 have been implicated in transient neonatal diabetes mellitus (TNDB) and Beckwith–Wiedemann syndrome, respectively. Patients with these diseases share many characteristics. Here we show that mouse Zac1 and p57Kip2 have a strikingly similar expression pattern. ZAC, a sequence-specific DNA-binding protein, binds within the CpG island of LIT1 (KCNQ1OT1), a paternally expressed, anti-sense RNA thought to negatively regulate p57KIP2 in cis. ZAC induces LIT1 transcription in a methylation-dependent manner. Our data suggest that ZAC may regulate p57KIP2 through LIT1, forming part of a novel signaling pathway regulating cell growth. Mutations in ZAC may, therefore, contribute to Beckwith–Wiedemann syndrome. Furthermore, we find changes in DNA methylation at the LIT1 putative imprinting control region in two patients with TNDB.
Collapse
Affiliation(s)
- Takahiro Arima
- To whom correspondence should be addressed. Tel: +81 977 271660; Fax: +81 977 271661;
| | | | - Toshirou Hayashida
- Department of Molecular and Cell Genetics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | | | - Toshiaki Inoue
- Department of Human Genome Science (Kirin Brewery), Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Yasuaki Shirayoshi
- Department of Molecular and Cell Genetics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | - Hidenobu Soejima
- Department of Biochemistry, Saga Medical School5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Tunehiro Mukai
- Department of Human Genome Science (Kirin Brewery), Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori UniversityNishi-cho 86, Yonago, Tottori 683-8503, Japan
| | | |
Collapse
|
106
|
Cohen MM. Beckwith-Wiedemann syndrome: historical, clinicopathological, and etiopathogenetic perspectives. Pediatr Dev Pathol 2005; 8:287-304. [PMID: 16010495 DOI: 10.1007/s10024-005-1154-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/07/2005] [Indexed: 01/18/2023]
Abstract
Macroglossia, prenatal or postnatal overgrowth, and abdominal wall defects (omphalocele, umbilical hernia, or diastasis recti) permit early recognition of Beckwith-Wiedemann syndrome. Complications include neonatal hypoglycemia and an increased risk for Wilms tumor, adrenal cortical carcinoma, hepatoblastoma, rhabdomyosarcoma, and neuroblastoma, among others. Perinatal mortality can result from complications of prematurity, pronounced macroglossia, and rarely cardiomyopathy. The molecular basis of Beckwith-Wiedemann syndrome is complex, involving deregulation of imprinted genes found in 2 domains within the 11p15 region: telomeric Domain 1 (IGF2 and H19) and centromeric Domain 2 (KCNQ1, KCNQ1OT1, and CDKN1C). Topics discussed in this article are organized as a series of perspectives: general, historical, epidemiologic, clinical, pathologic, genetic/molecular, diagnostic, and differential diagnostic.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie Univesity, Halifax, Nova Scotia B3H 3J5, Canada.
| |
Collapse
|
107
|
Meyer E, Eggermann T, Wollmann HA. Analysis of genomic variants in the KCNQ1OT1 transcript in Silver-Russell syndrome patients. Mol Genet Metab 2005; 84:376-7. [PMID: 15781202 DOI: 10.1016/j.ymgme.2004.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/03/2004] [Accepted: 12/07/2004] [Indexed: 11/20/2022]
|
108
|
Lew JM, Fei YL, Aleck K, Blencowe BJ, Weksberg R, Sadowski PD. CDKN1C mutation in Wiedemann-Beckwith syndrome patients reduces RNA splicing efficiency and identifies a splicing enhancer. Am J Med Genet A 2005; 127A:268-76. [PMID: 15150778 DOI: 10.1002/ajmg.a.30020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wiedemann-Beckwith syndrome (WBS) is a human overgrowth disorder that is accompanied by an increased risk of embryonal tumors and is associated with dsyregulation of the imprinting of genes in chromosome 11p15.5. Maternally inherited mutations in the imprinted CDKN1C gene are known to be associated with WBS. We have identified a novel mutation in several members of a large family affected by WBS. The mutation is a G --> T change in a run of seven G's near the 5' splice site of intron 3. All obligate carriers and affected individuals carry the mutation, and in each affected case, the allele was inherited maternally, strongly suggesting a role in causing WBS. The mutation is located in a poly-G tract in the intron; intronic G-rich sequences in other genes have been shown to have a role in promoting splicing. In transfected 293HEK cells, we found that the G --> T mutation reduced splicing efficiency. Mutation of all seven G's in the poly-G tract further reduced splicing efficiency, supporting a role for the G-tract as a splicing enhancer. The fibroblasts of one affected patient showed a similar reduction in splicing efficiency. Maternal monoallelic expression of CDKN1C was verified in this patient cell line. However, the total amount of spliced message was not reduced by the mutation in spite of the reduced efficiency of splicing. We discuss the possible role of the splicing defect in the pathogenesis of WBS in this pedigree.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
109
|
Kim J, Bergmann A, Lucas S, Stone R, Stubbs L. Lineage-specific imprinting and evolution of the zinc-finger gene ZIM2. Genomics 2005; 84:47-58. [PMID: 15203203 DOI: 10.1016/j.ygeno.2004.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
We have carried out an in-depth comparative analysis of a 100-kb genomic interval containing two imprinted genes, PEG3 and ZIM2, using sequences derived from human, mouse, and cow. In all three mammals, ZIM2 is located at a similar genomic distance and in the same orientation relative to PEG3, indicating the basic structural conservation of this imprinted locus. However, several lineage-specific changes have occurred that affect the exon structure and imprinting status of ZIM2. Human ZIM2 and PEG3 share a set of 5' exons and a common promoter, and both genes are paternally expressed. In contrast, mouse and cow Zim2 genes do not share 5' exons with Peg3, and Zim2 employs a separate downstream promoter in both species. The imprinting status of Zim2 is also not conserved among mammals; mouse Zim2 is expressed biallelically in testis but predominantly from the maternal allele in brain, while cow Zim2 is expressed biallelically in testis. The separate transcription of Zim2 and Peg3 and the change in promoter usage and imprinting status appear to have resulted from independent insertional events that have placed unrelated genes, Zim1 and Ast1, respectively, between Zim2 and Peg3 in mouse and cow. Our results suggest that PEG3 and ZIM2 represent the two original genes at this locus and that rearrangements have occurred independently in different mammalian lineages in recent evolutionary times. Our data also suggest that exon-sharing of human PEG3 and ZIM2 was not ancestral, but may represent a fusion event joining the two neighboring genes and bringing ZIM2 under paternal expression control. These observations are striking in light of the structural and functional conservation that typifies other imprinted domains and suggest that the PEG3/ZIM2 imprinted domain may have evolved in an unusual lineage-specific pattern.
Collapse
Affiliation(s)
- Joomyeong Kim
- Genome Biology Division, Biology and Biotechnology Research Program, L-441, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA.
| | | | | | | | | |
Collapse
|
110
|
Suzuki T, Takimoto K. Differential expression of Kv4 pore-forming and KChIP auxiliary subunits in rat uterus during pregnancy. Am J Physiol Endocrinol Metab 2005; 288:E335-41. [PMID: 15454398 DOI: 10.1152/ajpendo.00250.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of voltage-gated K(+) (K(v)) channel expression may be involved in controlling contractility of uterine smooth muscle cells during pregnancy. Functional expression of these channels is not only controlled by the levels of pore-forming subunits, but requires their association with auxiliary subunits. Specifically, rapidly inactivating K(v) current is prominent in myometrial cells and may be carried by complexes consisting of Kv4 pore-forming and KChIP auxiliary subunits. To determine the molecular identity of the channel complexes and their changes during pregnancy, we examined the expression and localization of these subunits in rat uterus. RT-PCR analysis revealed that rat uterus expressed all three Kv4 pore-forming subunits and KChIP2 and -4 auxiliary subunits. The expression of mRNAs for these subunits was dynamically and region selectively regulated during pregnancy. In the corpus, Kv4.2 mRNA level increased before parturition, whereas the expression of Kv4.1 and Kv4.3 mRNAs decreased during pregnancy. A marked increase in KChIP2 mRNA level was also seen at late gestation. In the cervix, the expression of all three pore-forming and two auxiliary subunit mRNAs increased at late gestation. Immunoprecipitation followed by immunoblot analysis indicated that Kv4.2-KChIP2 complexes were significant in uterus at late pregnancy. Kv4.2- and KChIP2-immunoreactive proteins were present in both circular and longitudinal myometrial cells. Finally, Kv4.2 and KChIP2 mRNA levels were similarly elevated in pregnant and nonpregnant corpora of one side-conceived rats. These results suggest that diffusible factors coordinate the pregnancy-associated changes in molecular compositions of myometrial Kv4-KChIP channel complexes.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dept. of Environmental and Occupational Health, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
111
|
Cerrato F, Sparago A, Di Matteo I, Zou X, Dean W, Sasaki H, Smith P, Genesio R, Bruggemann M, Reik W, Riccio A. The two-domain hypothesis in Beckwith-Wiedemann syndrome: autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster. Hum Mol Genet 2005; 14:503-11. [PMID: 15640248 DOI: 10.1093/hmg/ddi047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A large cluster of imprinted genes is located on the mouse distal chromosome 7. This cluster is well conserved in humans and its dysregulation results in the overgrowth- and tumour-associated Beckwith-Wiedemann syndrome. Two imprinting centres (IC1 and IC2) controlling different sets of genes have been identified in the cluster, raising the hypothesis that the cluster is divided into two functionally independent domains. However, the mechanisms by which imprinting of genes in the IC2 domain (e.g. Cdkn1c and Kcnq1) is regulated have not been well defined, and recent evidence indicates that distantly located cis-acting elements are required for IC2 imprinting. We show that the maternal germ-line methylation at IC2 and the imprinted expression of five genes of the IC2 domain are correctly reproduced on an 800 kb YAC transgene when transferred outside of their normal chromosomal context. These results, together with previous transgenic studies, locate key imprinting control elements within a 400 kb region centromeric of IC2 and demonstrate that each of the two domains of the cluster contains the cis-acting elements required for the imprinting control of its own genes. Finally, maternal, but not paternal, transmission of the transgene results in fetal growth restriction, suggesting that during evolution the acquisition of imprinting may have been facilitated by the opposite effects of the two domains on embryo growth.
Collapse
Affiliation(s)
- Flavia Cerrato
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
The kinship theory of genomic imprinting proposes that parent-specific gene expression evolves at a locus because a gene's level of expression in one individual has fitness effects on other individuals who have different probabilities of carrying the maternal and paternal alleles of the individual in which the gene is expressed. Therefore, natural selection favors different levels of expression depending on an allele's sex-of-origin in the previous generation. This review considers the strength of evidence in support of this hypothesis for imprinted genes in four "clusters," associated with the imprinted loci Igf2, Igf2r, callipyge, and Gnas. The clusters associated with Igf2 and Igf2r both contain paternally expressed transcripts that act as enhancers of prenatal growth and maternally expressed transcripts that act as inhibitors of prenatal growth. This is consistent with predictions of the kinship theory. However, the clusters also contain imprinted genes whose phenotypes as yet remain unexplained by the theory. The principal effects of imprinted genes in the callipyge and Gnas clusters appear to involve lipid and energy metabolism. The kinship theory predicts that maternally expressed transcripts will favor higher levels of nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of animals that huddle for warmth as offspring. The phenotypes of reciprocal heterozygotes for Gnas knockouts provide provisional support for this hypothesis, as does some evidence from other imprinted genes (albeit more tentatively). The diverse effects of imprinted genes on the development of white adipose tissue (WAT) have so far defied a unifying hypothesis in terms of the kinship theory.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
113
|
Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-Term Intermittent Compressive Stimulation Improves the Composition and Mechanical Properties of Tissue-Engineered Cartilage. ACTA ACUST UNITED AC 2004. [DOI: 10.1089/ten.2004.10.1323] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen D. Waldman
- CIHR–BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Caroline G. Spiteri
- CIHR–BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marc D. Grynpas
- CIHR–BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert M. Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rita A. Kandel
- CIHR–BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
114
|
Saini S, Wick TM. Effect of Low Oxygen Tension on Tissue-Engineered Cartilage Construct Development in the Concentric Cylinder Bioreactor. ACTA ACUST UNITED AC 2004; 10:825-32. [PMID: 15265300 DOI: 10.1089/1076327041348545] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cartilage is exposed to low oxygen tension in vivo, suggesting culture in a low-oxygen environment as a strategy to enhance matrix deposition in tissue-engineered cartilage in vitro. To assess the effects of oxygen tension on cartilage matrix accumulation, porous polylactic acid constructs were dynamically seeded in a concentric cylinder bioreactor with bovine chondrocytes and cultured for 3 weeks at either 20 or 5% oxygen tension. Robust chondrocyte proliferation and matrix deposition were achieved. After 22 days in culture, constructs from bioreactors operated at either 20 or 5% oxygen saturation had similar chondrocyte densities and collagen content. During the first 12 days of culture, the matrix glycosaminoglycan (GAG) deposition rate was 19.5 x 10(-9) mg/cell per day at 5% oxygen tension and 65% greater than the matrix GAG deposition rate at 20% oxygen tension. After 22 days of bioreactor culture, constructs at 5% oxygen contained 4.5 +/- 0.3 mg of GAG per construct, nearly double the 2.5 +/- 0.2 mg of GAG per construct at 20% oxygen tension. These data demonstrate that culture in bioreactors at low oxygen tension favors the production and retention of GAG within cartilage matrix without adversely affecting chondrocyte proliferation or collagen deposition. Bioreactor studies such as these can identify conditions that enhance matrix accumulation and construct development for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sunil Saini
- School of Chemical and Biomolecular Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA
| | | |
Collapse
|
115
|
Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 2004; 74:599-609. [PMID: 14991528 PMCID: PMC1181938 DOI: 10.1086/382897] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 01/15/2004] [Indexed: 11/03/2022] Open
Abstract
A surprising set of recent observations suggests a link between assisted reproductive technology (ART) and epigenetic errors--that is, errors involving information other than DNA sequence that is heritable during cell division. An apparent association with ART was found in registries of children with Beckwith-Wiedemann syndrome, Angelman syndrome, and retinoblastoma. Here, we review the epidemiology and molecular biology behind these studies and those of relevant model systems, and we highlight the need for investigation of two major questions: (1) large-scale case-control studies of ART outcomes, including long-term assessment of the incidence of birth defects and cancer, and (2) investigation of the relationship between epigenetic errors in both offspring and parents, the specific methods of ART used, and the underlying infertility diagnoses. In addition, the components of proprietary commercial media used in ART procedures must be fully and publicly disclosed, so that factors such as methionine content can be assessed, given the relationship in animal studies between methionine exposure and epigenetic changes.
Collapse
Affiliation(s)
- Emily L. Niemitz
- Predoctoral Program in Human Genetics and Epigenetics Unit, Departments of Medicine, Molecular Biology & Genetics, and Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Andrew P. Feinberg
- Predoctoral Program in Human Genetics and Epigenetics Unit, Departments of Medicine, Molecular Biology & Genetics, and Oncology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
116
|
Weber M, Hagège H, Lutfalla G, Dandolo L, Brunel C, Cathala G, Forné T. A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias. Anal Biochem 2003; 320:252-8. [PMID: 12927831 DOI: 10.1016/s0003-2697(03)00396-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Allele-specific epigenetic modifications are crucial for several important biological functions, including genomic imprinting and X-inactivation in mammals. Consequently, an ever increasing number of investigations requires accurate quantification of the relative abundance of parental alleles of a specific sequence in a DNA sample. Here, combining the use of polymorphic restriction sites with real-time polymerase chain reaction (PCR) amplification, we describe a simple and quantitative assay to measure allele ratios. The efficiency of the assay was assessed on genomic DNA for several polymorphic restriction sites located in the mouse Igf2/H19 imprinted locus. The assay was also successfully applied to quantify allele ratio in cDNA samples. In addition, we provide an experimental procedure for detection and correction of potential PCR amplification bias which significantly extends the range of application of the assay.
Collapse
Affiliation(s)
- Michaël Weber
- Institut de Génétique Moléculaire, UMR 5535 CNRS-Université Montpellier 2, IFR 24, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
117
|
Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT. Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering. ACTA ACUST UNITED AC 2003; 9:597-611. [PMID: 13678439 DOI: 10.1089/107632703768247304] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It has previously been demonstrated that dynamic deformational loading of chondrocyte-seeded agarose hydrogels over the course of 1 month can increase construct mechanical and biochemical properties relative to free-swelling controls. The present study examines the manner in which two mediators of matrix biosynthesis, the growth factors TGF-beta1 and IGF-I, interact with applied dynamic deformational loading. Under free-swelling conditions in control medium (C), the [proteoglycan content][collagen content][equilibrium aggregate modulus] of cell-laden (10 x 10(6) cells/mL) 2% agarose constructs reached a peak of [0.54% wet weight (ww)][0.16% ww][13.4 kPa]c, whereas the addition of TGF-beta1 or IGF-I to the control medium led to significantly higher peaks of [1.18% ww][0.97% ww][23.6 kPa](C-TGF) and [1.00% ww][0.63% ww][19.3 kPa](C-IGF), respectively, by day 28 or 35 (p<0.01). Under dynamic loading in control medium (L), the measured parameters were [1.10% ww][0.52% ww][24.5 kPa]L, and with the addition of TGF-beta1 or IGF-I to the control medium these further increased to [1.49% ww][1.07% ww][50.5 kPa](L-TGF) and [1.48% ww][0.81% ww][46.2 kPa](L-IGF), respectively (p<0.05). Immunohistochemical staining revealed that type II collagen accumulated primarily in the pericellular area under free-swelling conditions, but spanned the entire tissue in dynamically loaded constructs. Applied in concert, dynamic deformational loading and TGF-beta1 or IGF-I increased the aggregate modulus of engineered constructs by 277 or 245%, respectively, an increase greater than the sum of either stimulus applied alone. These results support the hypothesis that the combination of chemical and mechanical promoters of matrix biosynthesis can optimize the growth of tissue-engineered cartilage constructs.
Collapse
Affiliation(s)
- Robert L Mauck
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
118
|
Abstract
Genomic imprinting is traditionally defined as an epigenetic process leading to parental origin-dependent monoallelic expression of some genes. The current paradigm considers this unusual expression mode as the biological raison d être of imprinting. The present chapter proposes a critical review of our ideas about genomic imprinting in light of more recent investigatory progress. Many observations are difficult to explain on the basis of the current paradigm. Studies of allelic expression of many imprinted genes and other characteristics of chromatin domains containing clustered imprinted genes, such as replication and chromatin structure, revealed an unexpectedly complex situation that challenged the role of genomic imprinting as a mechanism of transcriptional regulation. The emerging picture is that parental imprinting is a feature of large chromatin domains with their own domain-wide characteristics. The primary biological function of imprinting may reside in the differential chromatin structure of the parental chromosomal regions and not in the monoallelic expression of some of the genes contained within them.
Collapse
Affiliation(s)
- Andras Paldi
- Institut Jacques Monod, CNRS, Ecole Pratique des Hautes Etudes, 75005 Paris, France
| |
Collapse
|
119
|
Kayashima T, Yamasaki K, Joh K, Yamada T, Ohta T, Yoshiura KI, Matsumoto N, Nakane Y, Mukai T, Niikawa N, Kishino T. Atp10a, the mouse ortholog of the human imprinted ATP10A gene, escapes genomic imprinting. Genomics 2003; 81:644-7. [PMID: 12782135 DOI: 10.1016/s0888-7543(03)00077-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mouse Atp10a gene is located at the border of an imprinted domain distal to the p-locus on mouse chromosome 7. The localization of Atp10a neighboring the maternally expressed gene Ube3a in the imprinted domain and an unusual inheritance pattern of the obesity phenotype with a p-locus deletion have suggested that Atp10a might be imprinted and associated with body fat. Recently, its human ortholog, ATP10A, was identified as the second imprinted gene with maternal expression in the human chromosome 15q11-q13 imprinted domain. To elucidate the imprinting status of Atp10a, we performed expression analysis in various tissues from reciprocal crosses between C57BL/6 and PWK (divergent strains of Mus musculus) mice. The results revealed that Atp10a was biallelically expressed in all tissues examined. Furthermore, there was no differential methylation in the CpG island and no antisense transcripts of the gene. These findings suggest that the mouse Atp10a gene escapes genomic imprinting.
Collapse
Affiliation(s)
- Tomohiko Kayashima
- Department of Human Genetics, Nagasaki University, School of Medicine, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
CONTEXT Beckwith-Wiedemann syndrome is a complex and heterogeneous overgrowth syndrome with genetic and epigenetic alterations, involving genomic imprinting and cancer predisposition. Isolated hemihyperplasia is of unknown cause, and it may represent a partial or incomplete expression of Beckwith-Wiedemann syndrome. OBJECTIVES A clinical and molecular review and proposal of the use of an experimental protocol to provide a practical approach for the physician. DATA SYNTHESIS This review demonstrates the genetic and epigenetic mechanisms involved in the Beckwith-Wiedemann syndrome and isolated hemihyperplasia, and the candidate genes. To our knowledge, this is the first Brazilian protocol for research into these disorders. The results have been used at the Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, to elucidate the basis of Beckwith-Wiedemann syndrome and isolated hemihyperplasia, and have been applied at the Hospital Universitário of the Faculdade de Medicina. CONCLUSIONS Elucidation of the etiological mechanisms and use of a laboratory protocol to detect alterations in these disorders may be useful for guiding the management of such patients and genetic counseling of the families.
Collapse
Affiliation(s)
- Marcus Vinícius de Matos Gomes
- Department of Genetics, Faculdade de Medicina de Ribeir o Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | |
Collapse
|
121
|
Bruce CK, Howard P, Nowak NJ, Hoban PR. Molecular analysis of region t(5;6)(q21;q21) in Wilms tumor. CANCER GENETICS AND CYTOGENETICS 2003; 141:106-13. [PMID: 12606127 DOI: 10.1016/s0165-4608(02)00669-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously described the physical localization of a constitutional t(5;6)(q21;q21) in a patient (tumor cell sample designated as MA214) with bilateral Wilms tumor (WT). We have now physically refined the breakpoints and identified putative gene targets within this region. The translocation breakpoints are contained within a 2.5-Mbp region on 5q21 containing four candidate genes and a 1.3-Mbp region on 6q21 that contains three candidate genes. To explore the role of this region in WT genesis, we have performed loss of heterozygosity (LOH) analysis with markers flanking the translocation breakpoints in tumor from MA214 and a panel of sporadic WT. Alleles were retained for all informative markers used in the MA214 tumor. In sporadic tumors LOH was found in 6 of 63 (9.5%) and 5 of 62 (8%) informative cases for flanking markers D6S301 and D6S1592 on 6q21. LOH was found in 3 of 58 (5.2%) and 2 of 54 (3.6%) for flanking markers D5S495 and D5S409 on 5q21. These preliminary data suggest LOH at the t(5;6)(q21;q21) region is unlikely to be a mechanism for tumor development in MA214, but may be important for a subgroup of sporadic WT.
Collapse
Affiliation(s)
- C K Bruce
- Centre for Cell and Molecular Medicine, University of Keele, North Stafforshire Hospital, Stoke-on-Trent, UK
| | | | | | | |
Collapse
|
122
|
Affiliation(s)
- Ona M Faye-Petersen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
123
|
Feinberg AP, Cui H, Ohlsson R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 2002; 12:389-98. [PMID: 12191638 DOI: 10.1016/s1044-579x(02)00059-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the discovery of epigenetic alterations in cancer 20 years ago by Feinberg and Vogelstein, a variety of such alterations have been found, including global hypomethylation, gene hypomethylation and hypermethylation, and loss of imprinting (LOI). LOI may precede the development of cancer and may thus serve as a common marker for risk, but also as a model for understanding the developmental mechanism for normal imprinting.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 1064 Ross, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
124
|
Davisson T, Sah RL, Ratcliffe A. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. TISSUE ENGINEERING 2002; 8:807-16. [PMID: 12459059 DOI: 10.1089/10763270260424169] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work examines the effect of perfusion on the cell content and sulfated glycosaminoglycan synthesis of ovine articular chondrocytes cultured on polyglycolic acid (PGA) scaffolds. Ovine chondrocytes were seeded onto the scaffolds and cultured for up to 9 days. During this time the cells were subjected to perfusion at velocities of up to 170 microm/s. The samples were radiolabeled with (35)SO(4) to quantify the overall synthesis of sulfated glycosaminoglycans (S-GAGs) and the retention of S-GAGs in the construct. The constructs were also analyzed for DNA as a measure of cellular content. Constructs subjected to perfusion during culture had significantly higher DNA contents than those cultured statically. Matrix metabolism was also modulated by perfusion, with this modulation depending on culture duration. Nine days of continuous perfusion increased S-GAG synthesis and deposition by approximately 40% when compared with static controls. However, perfusion at early time points (during the initial 3-day culture period) suppressed the synthesis and retention of S-GAGs when compared with controls. This work demonstrates the effects of perfusion on cartilage growth in vitro, illustrating the use of perfusion to modulate the growth of tissue-engineered cartilage constructs, and potentially enhance tissue growth in vitro.
Collapse
Affiliation(s)
- Twana Davisson
- Advanced Tissue Sciences, 10933 N. Torrey Pines Road, La Jolla, CA 92037-1005, USA
| | | | | |
Collapse
|
125
|
Abstract
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | |
Collapse
|
126
|
Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A 2002; 99:10599-604. [PMID: 12114541 PMCID: PMC124986 DOI: 10.1073/pnas.152327599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 05/31/2002] [Indexed: 11/18/2022] Open
Abstract
Imprinting is an epigenetic modification leading to monoallelic expression of some genes, and disrupted imprinting is believed to be a barrier to human stem cell transplantation, based on studies that suggest that epigenetic marks are unstable in mouse embryonic germ (EG) and embryonic stem (ES) cells. However, stem cell imprinting has not previously been examined directly in humans. We found that three imprinted genes, TSSC5, H19, and SNRPN, show monoallelic expression in in vitro differentiated human EG-derived cells, and a fourth gene, IGF2, shows partially relaxed imprinting at a ratio from 4:1 to 5:1, comparable to that found in normal somatic cells. In addition, we found normal methylation of an imprinting control region (ICR) that regulates H19 and IGF2 imprinting, suggesting that imprinting may not be a significant epigenetic barrier to human EG cell transplantation. Finally, we were able to construct an in vitro mouse model of genomic imprinting, by generating EG cells from 8.5-day embryos of an interspecific cross, in which undifferentiated cells show biallelic expression and acquire preferential parental allele expression after differentiation. This model should allow experimental manipulation of epigenetic modifications of cultured EG cells that may not be possible in human stem cell studies.
Collapse
Affiliation(s)
- Patrick Onyango
- Institute of Genetic Medicine and Department of Medicine, Johns Hopkins University School of Medicine, 1064 Ross, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Finley MR, Li Y, Hua F, Lillich J, Mitchell KE, Ganta S, Gilmour RF, Freeman LC. Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart. Am J Physiol Heart Circ Physiol 2002; 283:H126-38. [PMID: 12063283 DOI: 10.1152/ajpheart.00622.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In dogs and in humans, potassium channels formed by ether-a-go-go-related gene 1 protein ERG1 (KCNH2) and KCNQ1 alpha-subunits, in association with KCNE beta-subunits, play a role in normal repolarization and may contribute to abnormal repolarization associated with long QT syndrome (LQTS). The molecular basis of repolarization in horse heart is unknown, although horses exhibit common cardiac arrhythmias and may receive drugs that induce LQTS. In horse heart, we have used immunoblotting and immunostaining to demonstrate the expression of ERG1, KCNQ1, KCNE1, and KCNE3 proteins and RT-PCR to detect KCNE2 message. Peptide N-glycosidase F-sensitive forms of horse ERG1 (145 kDa) and KCNQ1 (75 kDa) were detected. Both ERG1 and KCNQ1 coimmunoprecipitated with KCNE1. Cardiac action potential duration was prolonged by antagonists of either ERG1 (MK-499, cisapride) or KCNQ1/KCNE1 (chromanol 293B). Patch-clamp analysis confirmed the presence of a slow delayed rectifier current. These data suggest that repolarizing currents in horses are similar to those of other species, and that horses are therefore at risk for acquired LQTS. The data also provide unique evidence for coassociation between ERG1 and KCNE1 in cardiac tissue.
Collapse
Affiliation(s)
- Melissa R Finley
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Kido K, Doerks A, Lochelt M, Flügel RM. Identification and functional characterization of an intragenic DNA binding site for the spumaretroviral trans-activator in the human p57Kip2 gene. J Biol Chem 2002; 277:12032-9. [PMID: 11815601 DOI: 10.1074/jbc.m108747200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the human cyclin-dependent protein kinase inhibitor p57(Kip2) gene was previously shown to be specifically and strongly activated by the retroviral trans-activator Bel1 of human foamy virus by means of expression profiling, Northern, and Western blot analysis. Here we report that Bel1-mediated trans-activation was conferred by a Bel1 response element (BRE) located in the second exon of p57(Kip2). The intragenic Kip2-BRE was capable of trans-activating the luciferase reporter gene upon cotransfection with Bel1. In electrophoretic mobility shift assays using 293T nuclear extracts or a purified glutathione S-transferase (GST) small middle dotBel1 fusion protein, we identified the 55-nucleotide-long Kip2-BRE site that mainly consists of three direct repeats of 14-mers partially homologous to a functionally active BRE in the viral internal promoter. The specificity of the transactivator-DNA binding was shown by using mutated and shortened Kip2-BRE oligodeoxynucleotides in competition experiments with the authentic viral internal promoter and by Bel1-specific antibody that led to a supershift of the nuclear protein small middle dotKip2-BRE and GST small middle dotBel1 small middle dotKip2-BRE complex. The data indicate that Bel1 can directly bind to BRE sites. The cellular Kip2-BRE can be used to predict those human genes that are directly or indirectly activated by the Bel1 trans-activator.
Collapse
Affiliation(s)
- Kenji Kido
- Division of Retroviral Gene Expression, Research Program Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany
| | | | | | | |
Collapse
|
129
|
Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, Feinberg AP. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 2002; 12:543-54. [PMID: 11932239 PMCID: PMC187522 DOI: 10.1101/gr.224102] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA methylation is a covalent modification of the nucleotide cytosine that is stably inherited at the dinucleotide CpG by somatic cells, and 70% of CpG dinucleotides in the genome are methylated. The exception to this pattern of methylation are CpG islands, CpG-rich sequences that are protected from methylation, and generally are thought to be methylated only on the inactive X-chromosome and in tumors, as well as differentially methylated regions (DMRs) in the vicinity of imprinted genes. To identify chromosomal regions that might harbor imprinted genes, we devised a strategy for isolating a library of normally methylated CpG islands. Most of the methylated CpG islands represented high copy number dispersed repeats. However, 62 unique clones in the library were characterized, all of which were methylated and GC-rich, with a GC content >50%. Of these, 43 clones also showed a CpG(obs)/CpG(exp) >0.6, of which 30 were studied in detail. These unique methylated CpG islands mapped to 23 chromosomal regions, and 12 were differentially methylated regions in uniparental tissues of germline origin, i.e., hydatidiform moles (paternal origin) and complete ovarian teratomas (maternal origin), even though many apparently were methylated in somatic tissues. We term these sequences gDMRs, for germline differentially methylated regions. At least two gDMRs mapped near imprinted genes, HYMA1 and a novel homolog of Elongin A and Elongin A2, which we term Elongin A3. Surprisingly, 18 of the methylated CpG islands were methylated in germline tissues of both parental origins, representing a previously uncharacterized class of normally methylated CpG islands in the genome, and which we term similarly methylated regions (SMRs). These SMRs, in contrast to the gDMRs, were significantly associated with telomeric band locations (P =.0008), suggesting a potential role for SMRs in chromosome organization. At least 10 of the methylated CpG islands were on average 85% conserved between mouse and human. These sequences will provide a valuable resource in the search for novel imprinted genes, for defining the molecular substrates of the normal methylome, and for identifying novel targets for mammalian chromatin formation.
Collapse
Affiliation(s)
- Liora Z Strichman-Almashanu
- Department of Medicine, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
DeBaun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 2002; 70:604-11. [PMID: 11813134 PMCID: PMC384940 DOI: 10.1086/338934] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 11/29/2001] [Indexed: 01/20/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a congenital cancer-predisposition syndrome associated with embryonal cancers, macroglossia, macrosomia, ear pits or ear creases, and midline abdominal-wall defects. The most common constitutional abnormalities in BWS are epigenetic, involving abnormal methylation of either H19 or LIT1, which encode untranslated RNAs on 11p15. We hypothesized that different epigenetic alterations would be associated with specific phenotypes in BWS. To test this hypothesis, we performed a case-cohort study, using the BWS Registry. The cohort consisted of 92 patients with BWS and molecular analysis of both H19 and LIT1, and these patients showed the same frequency of clinical phenotypes as those patients in the Registry from whom biological samples were not available. The frequency of altered DNA methylation of H19 in patients with cancer was significantly higher, 56% (9/16), than the frequency in patients without cancer, 17% (13/76; P=.002), and cancer was not associated with LIT1 alterations. Furthermore, the frequency of altered DNA methylation of LIT1 in patients with midline abdominal-wall defects and macrosomia was significantly higher, 65% (41/63) and 60% (46/77), respectively, than in patients without such defects, 34% (10/29) and 18% (2/11), respectively (P=.012 and P=.02, respectively). Additionally, paternal uniparental disomy (UPD) of 11p15 was associated with hemihypertrophy (P=.003), cancer (P=.03), and hypoglycemia (P=.05). These results define an epigenotype-phenotype relationship in BWS, in which aberrant methylation of H19 and LIT1 and UPD are strongly associated with cancer risk and specific birth defects.
Collapse
Affiliation(s)
- Michael R. DeBaun
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| | - Emily L. Niemitz
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| | - D. Elizabeth McNeil
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| | - Sheri A. Brandenburg
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| | - Maxwell P. Lee
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| | - Andrew P. Feinberg
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis; Genetic Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Institute of Genetic Medicine, Predoctoral Program in Human Genetics, and Departments of Medicine, Oncology, and Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
131
|
Lottin S, Vercoutter-Edouart AS, Adriaenssens E, Czeszak X, Lemoine J, Roudbaraki M, Coll J, Hondermarck H, Dugimont T, Curgy JJ. Thioredoxin post-transcriptional regulation by H19 provides a new function to mRNA-like non-coding RNA. Oncogene 2002; 21:1625-31. [PMID: 11896592 DOI: 10.1038/sj.onc.1205233] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/26/2001] [Accepted: 12/05/2001] [Indexed: 11/09/2022]
Abstract
Classically, the functional product of coding genes is a protein whose synthesis is directed by an mRNA-template. However, in the last few years several genes yielding an mRNA-like non-coding RNA as a functional product have been identified. In most cases these transcripts are synthesized by the RNA polymerase II, capped, spliced and polyadenylated, like classical mRNA. These latter have non-conserved open reading frames and seem to be untranslated. Consequently, it has been proposed and admitted that these genes act at the RNA level, and are so-called 'riboregulators'. H19 belongs to this class of gene and its role remains a matter of debate: for some authors it is an oncogene, for others a tumour suppressor. Here, we demonstrate, using a proteomic approach, that an H19 overexpression in human cancerous mammary epithelial cells stably transfected with genomic DNA containing the entire H19 gene is responsible for positively regulating at the post-transcriptional level the thioredoxin, a key protein of the cellular redox metabolism. Interestingly, this protein accumulates in many cancerous tissues, such as breast carcinomas in which we have also demonstrated an overexpression of the H19 gene.
Collapse
Affiliation(s)
- Séverine Lottin
- Laboratoire de Biologie du Développement, UPRES-EA 1033, SN3, USTL, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Greally JM. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci U S A 2002; 99:327-32. [PMID: 11756672 PMCID: PMC117560 DOI: 10.1073/pnas.012539199] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Indexed: 11/18/2022] Open
Abstract
To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.
Collapse
Affiliation(s)
- John M Greally
- Department of Medicine (Hematology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 925, Bronx, NY 10461, USA.
| |
Collapse
|
133
|
Abstract
Genomic imprinting is an epigenetic phenomenon affecting a small number of genes that leads to expression from only one parental allele. Several imprinted genes are important for neurologic development and function and several neurobehavioral disorders are caused by genetic defects involving imprinted genes. For some genes, the imprinting is tissue specific, leading to biallelic expression in some tissues and monoallelic expression in other tissues. Defects involving these genes may produce one restricted phenotype due to loss of expression of the gene product in tissues where the gene is imprinted and, in some instances, a second phenotype due to haploinsufficiency of the gene product in tissues where it is biallelically expressed.
Collapse
Affiliation(s)
- L S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 10/Room 8C101, Bethesda, MD 20892-1752, USA
| |
Collapse
|
134
|
Xiao JF, Fischer C, Steinlein OK, JianFeng X. Cloning and mutation analysis of the human potassium channel KCNQ2 gene promoter. Neuroreport 2001; 12:3733-9. [PMID: 11726784 DOI: 10.1097/00001756-200112040-00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Benign familial neonatal convulsions (BFNC) have been previously found to be associated with mutations within the coding region of KCNQ2. We have now cloned and analyzed the promoter region of the human KCNQ2 gene. 5'-RACE identified a transcription start site (TSS) located 200 bp upstream of the ATG start codon. The TSS is located close to a repetitive region containing seven copies of a degenerate 42-mer repeat. Several different luciferase (LUC) reporter plas- mids containing fragments from the KCNQ2 5'-flanking region were constructed and expressed in NT2N and SH-SY5Y cell lines. A core promoter region was found to be located between bp 20 and bp 74 upstream of the TSS. Neither the promoter region nor the repetitive region showed any mutations in 13 index patients from unrelated BFNC families.
Collapse
Affiliation(s)
- J F Xiao
- Institute of Human Genetics, University Hospital Bonn, Wilhelmstr. 31, D-53111 Bonn, Germany
| | | | | | | |
Collapse
|
135
|
Paradinas FJ, Sebire NJ, Fisher RA, Rees HC, Foskett M, Seckl MJ, Newlands ES. Pseudo-partial moles: placental stem vessel hydrops and the association with Beckwith-Wiedemann syndrome and complete moles. Histopathology 2001; 39:447-54. [PMID: 11737301 DOI: 10.1046/j.1365-2559.2001.01256.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To describe the clinical and histological features of a series of cases of placentas originally diagnosed as partial moles in which the final diagnosis was that of placental stem villous hydrops, mesenchymal dysplasia or Beckwith-Wiedemann syndrome. METHODS AND RESULTS We searched a computerized database containing cases of suspected or proven trophoblastic disease examined at the Trophoblastic Disease Unit at Charing Cross Hospital, London, to identify cases in which stem vessel hydrops was present without other histological features of partial mole. For each case, histological sections were examined and the histological features present recorded. There were 15 cases identified. Placental weight was above the 95th centile of the normal for gestation in all cases in which this information was documented. In an additional five cases the placenta was described as 'large'. All cases had marked stem vessel hydropic change with cyst formation and in the majority of cases some terminal villous hydrops was also present. In 13 of the 15 cases there was marked aneurysmal dilatation of stem villous vessels. Nine had focal chorioangiomatoid change and in four of these extramedullary haematopoiesis was focally present in these areas. No excessive trophoblast proliferation was noted in any case and no trophoblastic inclusions typical of partial mole were identified. CONCLUSIONS This study has identified cases of stem villous hydrops, mesenchymal dysplasia or Beckwith-Wiedemann spectrum in pregnancies initially diagnosed as partial hydatidiform mole in the second half of pregnancy and has highlighted the need for detailed pathological examination and clinicopathological correlation in all such cases.
Collapse
Affiliation(s)
- F J Paradinas
- Department of Histopathology, Imperial College School of Medicine at Charing Cross Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
136
|
Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease. J Pathol 2001; 195:97-110. [PMID: 11568896 DOI: 10.1002/path.890] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in DNA methylation profiles are common features of development and in a number of human diseases, such as cancer and imprinting disorders like Beckwith-Wiedemann and Prader-Willi/Angelman syndromes. This suggests that DNA methylation is required for proper gene regulation during development and in differentiated tissues and has clinical relevance. DNA methylation is also involved in X-chromosome inactivation and the allele-specific silencing of imprinted genes. This review describes possible mechanisms by which DNA methylation can regulate gene expression, using imprinted genes as examples. The molecular basis of methylation-mediated gene regulation is related to changes in chromatin structure and appears to be similar for both imprinted and biallelically expressed genes.
Collapse
Affiliation(s)
- M Paulsen
- University of Cambridge, Department of Anatomy, Cambridge CB2 3DY, UK
| | | |
Collapse
|
137
|
Sakatani T, Wei M, Katoh M, Okita C, Wada D, Mitsuya K, Meguro M, Ikeguchi M, Ito H, Tycko B, Oshimura M. Epigenetic heterogeneity at imprinted loci in normal populations. Biochem Biophys Res Commun 2001; 283:1124-30. [PMID: 11355889 DOI: 10.1006/bbrc.2001.4916] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic imprinting is the phenomenon by which the two alleles of certain genes are differentially expressed according to their parental origin. Extensive analysis of allelic expression at multiple imprinted loci in a normal population has not performed so far. In the present study, we examined the allelic expression pattern of three imprinted genes in a panel of 262 Japanese normal individuals. We observed differences in the extent of maintenance of allele-specific expression of the three genes. The allelic expression of small nuclear ribonucleoprotein N (SNRPN) was stringently regulated while that of multimembrane-spanning polyspecific transporter-like gene 1 (IMPT1) showed a large degree of variation. Significant biallelic expression of insulin-like growth factor II (IGF2) was observed in about 10% of normal individuals. Our findings add to the accumulating evidence for variable allelic expression at multiple loci in a normal human population. This epigenetic heterogeneity can be a stable trait and potentially influence individual phenotypes.
Collapse
Affiliation(s)
- T Sakatani
- CREST Program of the Japan Science and Technology Corporation (JST), Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Schofield PN, Joyce JA, Lam WK, Grandjean V, Ferguson-Smith A, Reik W, Maher ER. Genomic imprinting and cancer; new paradigms in the genetics of neoplasia. Toxicol Lett 2001; 120:151-60. [PMID: 11323172 DOI: 10.1016/s0378-4274(01)00294-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of epigenetic modification of gene expression is becoming increasingly important in how we understand the loss of tumour suppressor gene function in a variety of tumours and tumour predisposing syndromes. This review explores the importance of epimutation in Beckwith-Wiedemann syndrome and Wilms' tumour and focuses on genomic methylation in both imprinted and non-imprinted genes as a key mechanism in the development of cancer.
Collapse
Affiliation(s)
- P N Schofield
- Laboratory of Stem Cell Biology, Department of Anatomy, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
139
|
Affiliation(s)
- M T Keating
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Department of Cardiology, Children's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
140
|
Mainprize TG, Taylor MD, Rutka JT, Dirks PB. Cip/Kip cell-cycle inhibitors: a neuro-oncological perspective. J Neurooncol 2001; 51:205-18. [PMID: 11407593 DOI: 10.1023/a:1010671908204] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell cycle is a precisely controlled cellular program that ensures normal cellular proliferation and development. The cyclin-dependant kinases (CDK) are molecules central to the continued progression through the cell-cycle checkpoints and as such are regulated by various mechanisms including cyclin levels, phosphorylation/dephosphorylation and cyclin-dependant kinase inhibitors (CKI). The CKIs are grouped into two families based on their structure and function, four lnk4 CKIs and three Cip/Kip CKIs. Abnormalities in these proteins can give rise to developmental defects and cancer. In this review, we will discuss the biochemistry and cell biology of the each of the Cip/Kip CKIs, their role in development as evidenced by targeted mutations in mice, and their role as possible tumor suppressor genes.
Collapse
Affiliation(s)
- T G Mainprize
- Division of Neurosurgery and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, University of Toronto, Canada
| | | | | | | |
Collapse
|
141
|
Piippo K, Swan H, Pasternack M, Chapman H, Paavonen K, Viitasalo M, Toivonen L, Kontula K. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J Am Coll Cardiol 2001; 37:562-8. [PMID: 11216980 DOI: 10.1016/s0735-1097(00)01124-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We took advantage of the genetic isolate of Finns to characterize a common long QT syndrome (LQTS) mutation, and to estimate the prevalence of LQTS. BACKGROUND The LQTS is caused by mutations in different ion channel genes, which vary in their molecular nature from family to family. METHODS The potassium channel gene KCNQ1 was sequenced in two unrelated Finnish patients with Jervell and Lange-Nielsen syndrome (JLNS), followed by genotyping of 114 LQTS probands and their available family members. The functional properties of the mutation were studied using a whole-cell patch-damp technique. RESULTS We identified a novel missense mutation (G589D or KCNQ1-Fin) in the C-terminus of the KCNQ1 subunit. The voltage threshold of activation for the KCNQ1-Fin channel was markedly increased compared to the wild-type channel. This mutation was present in homozygous form in two siblings with JLNS, and in heterozygous form in 34 of 114 probands with Romano-Ward syndrome (RWS) and 282 family members. The mean (+/- SD) rate-corrected QT intervals of the heterozygous subjects (n = 316) and noncarriers (n = 423) were 460 +/- 40 ms and 410 +/- 20 ms (p < 0.001), respectively. CONCLUSIONS A single missense mutation of the KCNQ1 gene accounts for 30% of Finnish cases with LQTS, and it may be associated with both the RWS and JLNS phenotypes of the syndrome. The relative enrichment of this mutation most likely represents a founder gene effect. These circumstances provide an excellent opportunity to examine how genetic and nongenetic factors modify the LQTS phenotype.
Collapse
Affiliation(s)
- K Piippo
- Department of Medicine, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, Francis H, Gorelikow M, Gu H, Washington K, Argani P, Goldenring JR, Coffey RJ, Feinberg AP. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000; 106:1447-55. [PMID: 11120752 PMCID: PMC387258 DOI: 10.1172/jci10897] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The KvLQT1 gene encodes a voltage-gated potassium channel. Mutations in KvLQT1 underlie the dominantly transmitted Ward-Romano long QT syndrome, which causes cardiac arrhythmia, and the recessively transmitted Jervell and Lange-Nielsen syndrome, which causes both cardiac arrhythmia and congenital deafness. KvLQT1 is also disrupted by balanced germline chromosomal rearrangements in patients with Beckwith-Wiedemann syndrome (BWS), which causes prenatal overgrowth and cancer. Because of the diverse human disorders and organ systems affected by this gene, we developed an animal model by inactivating the murine Kvlqt1. No electrocardiographic abnormalities were observed. However, homozygous mice exhibited complete deafness, as well as circular movement and repetitive falling, suggesting imbalance. Histochemical study revealed severe anatomic disruption of the cochlear and vestibular end organs, suggesting that Kvlqt1 is essential for normal development of the inner ear. Surprisingly, homozygous mice also displayed threefold enlargement by weight of the stomach resulting from mucous neck cell hyperplasia. Finally, there were no features of BWS, suggesting that Kvlqt1 is not responsible for BWS.
Collapse
Affiliation(s)
- M P Lee
- Institute of Genetic Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Pardo-Manuel de Villena F, de la Casa-Esperón E, Sapienza C. Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 2000; 16:573-9. [PMID: 11102708 DOI: 10.1016/s0168-9525(00)02134-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most hypotheses of the evolutionary origin of genome imprinting assume that the biochemical character on which natural selection has operated is the expression of the allele from only one parent at an affected locus. We propose an alternative - that natural selection has operated on differences in the chromatin structure of maternal and paternal chromosomes to facilitate pairing during meiosis and to maintain the distinction between homologues during DNA repair and recombination in both meiotic and mitotic cells. Maintenance of differences in chromatin structure in somatic cells can sometimes result in the transcription of only one allele at a locus. This pattern of transcription might be selected, in some instances, for reasons that are unrelated to the original establishment of the imprint. Differences in the chromatin structure of homologous chromosomes might facilitate pairing and recombination during meiosis, but some such differences could also result in non-random segregation of chromosomes, leading to parental-origin-dependent transmission ratio distortion. This hypothesis unites two broad classes of parental origin effects under a single selective force and identifies a single substrate through which Mendel's first and second laws might be violated.
Collapse
Affiliation(s)
- F Pardo-Manuel de Villena
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
144
|
Zhu X, Higashimoto K, Soejima H, Yatsuki H, Sugihara H, Mukai T, Joh K. C11orf21, a novel gene within the Beckwith-Wiedemann syndrome region in human chromosome 11p15.5. Gene 2000; 256:311-7. [PMID: 11054561 DOI: 10.1016/s0378-1119(00)00377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel gene, C11orf2, was identified by BLAST search in the human chromosome 11p15.5 region potentially responsible for Beckwith-Wiedemann Syndrome (BWS) and some cancers. Two cDNA clones with different sizes were obtained, which share a potential ORF of 399bp and are different in their 3' untranslated regions. This gene was revealed to be expressed exclusively in human heart and in almost no other tissues examined by northern blotting. Two transcripts of different sizes, 0.9 and 3.1kb, were identified in heart, consistent with the length of the two cDNA clones. The gene shows biallelic expression (non-imprinted) in fetal liver, although it is located in the imprinted domain of 11p15.5. C11orf21 codes a protein of 132 amino acids as proved by the expression of C11orf21-EGFP fusion protein in cultured cells. The EGFP-fusion protein expressed in cultured cells localized mainly in the cytoplasm.
Collapse
Affiliation(s)
- X Zhu
- Department of Biochemistry, Saga Medical School, 5-1-1, Nabeshima, 849-8501, Saga, Japan
| | | | | | | | | | | | | |
Collapse
|
145
|
Staehelin F, Bissig H, Hösli I, Betts DR, Schäfer BW, Scholl FA, Holzgreve W, Kühne T. Inv(11)(p13p15) and myf-3(MyoD1) in a malignant extrarenal rhabdoid tumor of a premature newborn. Pediatr Res 2000; 48:463-7. [PMID: 11004236 DOI: 10.1203/00006450-200010000-00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present a premature newborn of 32 wk of gestation with a congenital malignant extrarenal rhabdoid tumor (MERT) on the right shoulder with generalized metastases. Standard histologic, immunohistochemical, molecular and cytogenetic methods were used in the evaluation of diagnostic material. Biopsy of a skin lesion showed the histologic features of a malignant rhabdoid tumor. Cytogenetic analysis of the tumor cells revealed an inv(11)(p13p15) and additionally, an increased expression of myf-3 (myogenic determination factor, MyoD1) and PAX3 was detected. These results suggest an origin of the neoplasm derived from a pluripotent cell with the potential of myogenic differentiation. Tumor suppressor genes located on chromosome 11p13 and 11p15 may play an important role for malignant rhabdoid tumor development and progression.
Collapse
Affiliation(s)
- F Staehelin
- Division of Hematology/Oncology, University Children's Hospital Basel, Römergasse 8, 4005 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Pfeifer K. Mechanisms of genomic imprinting. Am J Hum Genet 2000; 67:777-87. [PMID: 10986038 PMCID: PMC1287882 DOI: 10.1086/303101] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Accepted: 08/17/2000] [Indexed: 12/12/2022] Open
Abstract
Imprinted genes represent a curious defiance of normal Mendelian genetics. Mammals inherit two complete sets of chromosomes, one from the mother and one from the father, and most autosomal genes will be expressed from both the maternal and the paternal alleles. Imprinted genes, however, are expressed from only one chromosome, in a parent-of-origin-dependent manner. Because silent and active promoters are present in a single nucleus, the differences in activity cannot be explained by transcription-factor abundance. Thus, transcription of imprinted genes represents a clear situation in which epigenetic mechanisms restrict gene expression and, therefore, offers a model for understanding the role of DNA modifications and chromatin structure in maintaining appropriate patterns of expression. Furthermore, because of their parent-of-origin-restricted expression, phenotypes determined by imprinted genes are susceptible not only to genetic alterations in the genes but also to disruptions in the epigenetic programs controlling regulation. Imprinted genes are often associated with human diseases, including disorders affecting cell growth, development, and behavior.
Collapse
Affiliation(s)
- K Pfeifer
- Laboratory of Mammalian Genes and Development, NICHD/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
147
|
Abstract
In this study we have examined 32 patients with Beckwith Wiedemann Syndrome (BWS) for mutations affecting the CDKN1C gene, including seven cases of familial BWS. Mutations were not detected in the coding region of the CDKN1C gene in any individual with BWS. However in two patients, two G/A base substitutions at adjacent positions in the 5'UTR were detected. These substitutions were also found in normal controls. Expression of CDKN1C in somatic tissues was examined in 18 of the 32 cases using semi-quantitative RT-PCR. CDKN1C expression was significantly reduced in the peripheral blood of three cases compared with controls. These results suggest that, although coding region mutations in the CDKN1C gene are rare in BWS, mutations disrupting CDKN1C expression may be found. Three of five informative patients exhibited biallelic CDKN1C expression in lymphocytes, cord blood, and kidney tissue, respectively. Biallelic expression was not associated with overall CDKN1C levels significantly different to those in controls. Patients who expressed CDKN1C biallelically, or who were low CDKN1C expressors, maintained monoallelic methylation in the Differentially Methylated Region 2 (DMR2) of the IGF2 locus. One patient expressing CDKN1C biallelically, maintained imprinted gene expression at the IGF2 locus. These results suggest that biallelic CDKN1C expression does not significantly perturb the overall levels of CDKN1C expression in somatic tissue. They also confirm other studies showing that the mechanisms associated with regulating CDKN1C expression and imprinting are separate from those regulating IGF2 imprinting.
Collapse
Affiliation(s)
- E Algar
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
148
|
Uejima H, Lee MP, Cui H, Feinberg AP. Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat Genet 2000; 25:375-6. [PMID: 10932175 DOI: 10.1038/78040] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed a simple, quantitative assay for measurement of allele ratios that circumvents the problem of heteroduplex formation skewing the results of restriction endonuclease digestion of PCR products. This assay, 'hot-stop PCR', involves addition of a radiolabelled PCR primer at the final cycle. We applied the assay to analysis of loss of imprinting (LOI) of the insulin-like growth factor II gene (IGF2) in tumours.
Collapse
Affiliation(s)
- H Uejima
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
149
|
Kim J, Noskov VN, Lu X, Bergmann A, Ren X, Warth T, Richardson P, Kouprina N, Stubbs L. Discovery of a novel, paternally expressed ubiquitin-specific processing protease gene through comparative analysis of an imprinted region of mouse chromosome 7 and human chromosome 19q13.4. Genome Res 2000; 10:1138-47. [PMID: 10958632 PMCID: PMC310910 DOI: 10.1101/gr.10.8.1138] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using mouse BAC clones spanning an imprinted interval of proximal mouse chromosome 7 and the genomic sequence of the related interval of human chromosome 19q13.4, we have identified a novel mouse gene, Usp29 (ubiquitin-specific processing protease 29), near two known imprinted genes, Peg3 and Zim1. Gene Usp29 is located directly adjacent to Peg3 in a "head-to-head" orientation, and comprises exons distributed over a genomic distance of at least 400 kb. A similar human gene is also found in the homologous location in human chromosome 19q13.4. The mouse Usp29 gene is also imprinted and is transcribed mainly from the paternal allele with highest expression levels in adult brain, especially in the cerebral cortex and hippocampus, and in the forebrain, face, and limb buds of midgestation mouse embryos. Analysis of a full-length 7.6-kb cDNA clone revealed that Usp29 encodes an 869-amino-acid protein that displays significant homology with yeast and nematode ubiquitin carboxyl-terminal hydrolases. These data suggest that, like the candidate Angelman syndrome gene Ube3a (ubiquitin ligase), Usp29 may represent another imprinted gene involved in the ubiquitination pathway. This identification of a third imprinted gene, Usp29, from the Peg3/Zim1-region confirms the presence of a conserved imprinted domain spanning at least 500 kb in the proximal portion of mouse chromosome 7 (Mmu7).
Collapse
Affiliation(s)
- J Kim
- Human Genome Center, Biology and Biotechnology Research Program, L-441, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Enklaar T, Esswein M, Oswald M, Hilbert K, Winterpacht A, Higgins M, Zabel B, Prawitt D. Mtr1, a novel biallelically expressed gene in the center of the mouse distal chromosome 7 imprinting cluster, is a member of the Trp gene family. Genomics 2000; 67:179-87. [PMID: 10903843 DOI: 10.1006/geno.2000.6234] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described a novel putative Ca(2+) channel gene, MTR1, which shows a high level of homology to the human TRPC7 gene and the melastatin 1 (MLSN1) gene, another Trp (transient receptor potential protein)-related gene whose transcript was found to be downregulated in metastatic melanomas. It maps to human chromosome band 11p15.5, which is associated with the Beckwith-Wiedemann syndrome and predisposition to a variety of neoplasias. Here we report the isolation and characterization of the murine orthologue Mtr1. The chromosomal localization on distal chromosome 7 places it in a cluster of imprinted genes, flanked by the previously described Tapa1 and Kcnq1 genes. The Mtr1 gene encodes a 4.4-kb transcript, present in a variety of fetal and adult tissues. The putative open reading frame consists of 24 exons, encoding 1158 amino acids. Transmembrane prediction algorithms indicate the presence of six membrane-spanning domains in the proposed protein. Imprinting analysis, using RT-PCR on RNA from reciprocal mouse crosses harboring a sequence polymorphism, revealed biallelic expression of Mtr1 transcripts at all stages and tissues examined.
Collapse
Affiliation(s)
- T Enklaar
- Children's Hospital, University of Mainz, Langenbeckstrasse 1, Mainz, D-55101, Germany.
| | | | | | | | | | | | | | | |
Collapse
|