101
|
Shum EY, Jones SH, Shao A, Chousal JN, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-Andersen H, Wilkinson MF. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell 2016; 165:382-95. [PMID: 27040500 PMCID: PMC4826573 DOI: 10.1016/j.cell.2016.02.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 01/11/2023]
Abstract
Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.
Collapse
Affiliation(s)
- Eleen Y. Shum
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Jennifer N. Chousal
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Matthew D. Krause
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, University
of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Josh L. Espinoza
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Mimi H. Phan
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San
Antonio, Texas, USA
| | - Kevin J. Peterson
- Department of Biology, Dartmouth College, Hanover, New Hampshire,
USA
| | - Dirk G. De Rooij
- Reproductive Biology Group, Division of Developmental Biology,
Department of Biology, Faculty of Science, Utrecht University, Utrecht, The
Netherlands
| | - Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA,Institute of Genomic Medicine, University of California, San Diego,
La Jolla, California, USA
| |
Collapse
|
102
|
Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism 2016; 7:18. [PMID: 26985359 PMCID: PMC4793536 DOI: 10.1186/s13229-016-0082-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Intellectual disability (ID), autism, and epilepsy share frequent yet variable comorbidities with one another. In order to better understand potential genetic divergence underlying this variable risk, we studied genes responsible for monogenic IDs, grouped according to their autism and epilepsy comorbidities. METHODS Utilizing 465 different forms of ID with known molecular origins, we accessed available genetic databases in conjunction with gene ontology (GO) to determine whether the genetics underlying ID diverge according to its comorbidities with autism and epilepsy and if genes highly penetrant for autism or epilepsy share distinctive features that set them apart from genes that confer comparatively variable or no apparent risk. RESULTS The genetics of ID with autism are relatively enriched in terms associated with nervous system-specific processes and structural morphogenesis. In contrast, we find that ID with highly comorbid epilepsy (HCE) is modestly associated with lipid metabolic processes while ID without autism or epilepsy comorbidity (ID only) is enriched at the Golgi membrane. Highly comorbid autism (HCA) genes, on the other hand, are strongly enriched within the nucleus, are typically involved in regulation of gene expression, and, along with IDs with more variable autism, share strong ties with a core protein-protein interaction (PPI) network integral to basic patterning of the CNS. CONCLUSIONS According to GO terminology, autism-related gene products are integral to neural development. While it is difficult to draw firm conclusions regarding IDs unassociated with autism, it is clear that the majority of HCA genes are tightly linked with general dysregulation of gene expression, suggesting that disturbances to the chronology of neural maturation and patterning may be key in conferring susceptibility to autism spectrum conditions.
Collapse
Affiliation(s)
- Emily L. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| | - Julia L. Sharp
- />Department of Mathematical Sciences, Clemson University, Clemson, USA
| | - Hrishikesh Chakraborty
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Nahid Sultana Sumi
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Manuel F. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| |
Collapse
|
103
|
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1).
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
104
|
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015; 72:4523-44. [PMID: 26283621 PMCID: PMC11113733 DOI: 10.1007/s00018-015-2017-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
105
|
Davis GM, Haas MA, Pocock R. MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front Neurol 2015; 6:245. [PMID: 26635721 PMCID: PMC4656843 DOI: 10.3389/fneur.2015.00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of the brain requires the precise coordination of multilayered gene regulatory networks. The flexibility, speed, and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavor to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.
Collapse
Affiliation(s)
- Gregory M. Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Matilda A. Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
106
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
107
|
Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 2015; 16:665-77. [PMID: 26397022 DOI: 10.1038/nrm4063] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is probably the best characterized eukaryotic RNA degradation pathway. Through intricate steps, a set of NMD factors recognize and degrade mRNAs with translation termination codons that are positioned in abnormal contexts. However, NMD is not only part of a general cellular quality control system that prevents the production of aberrant proteins. Mammalian cells also depend on NMD to dynamically adjust their transcriptomes and their proteomes to varying physiological conditions. In this Review, we discuss how NMD targets mRNAs, the types of mRNAs that are targeted, and the roles of NMD in cellular stress, differentiation and maturation processes.
Collapse
Affiliation(s)
- Søren Lykke-Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
108
|
Hackmann K, Rump A, Haas SA, Lemke JR, Fryns JP, Tzschach A, Wieczorek D, Albrecht B, Kuechler A, Ripperger T, Kobelt A, Oexle K, Tinschert S, Schrock E, Kalscheuer VM, Di Donato N. Tentative clinical diagnosis of Lujan-Fryns syndrome-A conglomeration of different genetic entities? Am J Med Genet A 2015; 170A:94-102. [DOI: 10.1002/ajmg.a.37378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 08/24/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Karl Hackmann
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Andreas Rump
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Stefan A. Haas
- Department of Computational Molecular Biology; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Johannes R. Lemke
- Division of Human Genetics; University Children's Hospital Inselspital; Bern Switzerland
| | - Jean-Pierre Fryns
- Centre for Human Genetics; KU Leuven/University Hospital Leuven; Leuven Belgium
| | - Andreas Tzschach
- Institut fuer Medizinische Genetik und Angewandte Genomik; Universitaetsklinikum; Tuebingen Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Beate Albrecht
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Alma Kuechler
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Tim Ripperger
- Institute of Cell and Molecular Pathology; Hannover Medical School; Hannover Germany
| | - Albrecht Kobelt
- Zentrum fuer Diagnostik GmbH MVZ; Praxis fuer Humangenetik; Klinikum Chemnitz; Chemnitz Germany
| | - Konrad Oexle
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Sigrid Tinschert
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Evelin Schrock
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Vera M. Kalscheuer
- Department of Human Molecular Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Nataliya Di Donato
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| |
Collapse
|
109
|
Lee YS, Lee JA, Kaang BK. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiol Learn Mem 2015; 124:28-33. [PMID: 26291750 DOI: 10.1016/j.nlm.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 11/27/2022]
Abstract
Formation of long-term memories requires coordinated gene expression, which can be regulated at transcriptional, post-transcriptional, and translational levels. Post-transcriptional stabilization and destabilization of mRNAs provides precise temporal and spatial regulation of gene expression, which is critical for consolidation of synaptic plasticity and memory. mRNA stability is regulated by interactions between the cis-acting elements of mRNAs, such as adenine-uridine-rich elements (AREs), and the trans-acting elements, ARE-binding proteins (AUBPs). There are several AUBPs in the nervous system. Among AUBPs, Hu/ELAV-like proteins and AUF1 are the most studied mRNA stabilizing and destabilizing factors, respectively. Here, we summarize compelling evidence for critical roles of these AUBPs in synaptic plasticity, as well as learning and memory, in both vertebrates and invertebrates. Furthermore, we also briefly review the deregulations of AUBPs in neurological disorders.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea.
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
110
|
Jin Z, Yu L, Geng J, Wang J, Jin X, Huang H. A novel 47.2Mb duplication on chromosomal bands Xq21.1–25 associated with mental retardation. Gene 2015; 567:98-102. [DOI: 10.1016/j.gene.2015.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
111
|
Abstract
The cerebral cortex is built during embryonic neurogenesis, a period when excitatory neurons are generated from progenitors. Defects in neurogenesis can cause acute neurodevelopmental disorders, such as microcephaly (reduced brain size). Altered dosage of the 1q21.1 locus has been implicated in the etiology of neurodevelopmental phenotypes; however, the role of 1q21.1 genes in neurogenesis has remained elusive. Here, we show that haploinsufficiency for Rbm8a, an exon junction complex (EJC) component within 1q21.1, causes severe microcephaly and defective neurogenesis in the mouse. At the onset of neurogenesis, Rbm8a regulates radial glia proliferation and prevents premature neuronal differentiation. Reduced Rbm8a levels result in subsequent apoptosis of neurons, and to a lesser extent, radial glia. Hence, compared to control, Rbm8a-haploinsufficient brains have fewer progenitors and neurons, resulting in defective cortical lamination. To determine whether reciprocal dosage change of Rbm8a alters embryonic neurogenesis, we overexpressed human RBM8A in two animal models. Using in utero electroporation of mouse neocortices as well as zebrafish models, we find RBM8A overexpression does not significantly perturb progenitor number or head size. Our findings demonstrate that Rbm8a is an essential neurogenesis regulator, and add to a growing literature highlighting roles for EJC components in cortical development and neurodevelopmental pathology. Our results indicate that disruption of RBM8A may contribute to neurodevelopmental phenotypes associated with proximal 1q21.1 microdeletions.
Collapse
|
112
|
Tan C, Shard C, Ranieri E, Hynes K, Pham DH, Leach D, Buchanan G, Corbett M, Shoubridge C, Kumar R, Douglas E, Nguyen LS, Mcmahon J, Sadleir L, Specchio N, Marini C, Guerrini R, Moller RS, Depienne C, Haan E, Thomas PQ, Berkovic SF, Scheffer IE, Gecz J. Mutations of protocadherin 19 in female epilepsy (PCDH19-FE) lead to allopregnanolone deficiency. Hum Mol Genet 2015; 24:5250-9. [DOI: 10.1093/hmg/ddv245] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
|
113
|
Zou D, McSweeney C, Sebastian A, Reynolds DJ, Dong F, Zhou Y, Deng D, Wang Y, Liu L, Zhu J, Zou J, Shi Y, Albert I, Mao Y. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev 2015; 10:18. [PMID: 26094033 PMCID: PMC4479087 DOI: 10.1186/s13064-015-0045-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. Result We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. Conclusions Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donghua Zou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Geriatrics, The 303 Hospital of Chinese People's Liberation Army, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Dazhi Deng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Emergency, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi Province, 530021, China.
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Long Liu
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Jizhong Zou
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yingwei Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
114
|
Alrahbeni T, Sartor F, Anderson J, Miedzybrodzka Z, McCaig C, Müller B. Full UPF3B function is critical for neuronal differentiation of neural stem cells. Mol Brain 2015; 8:33. [PMID: 26012578 PMCID: PMC4445987 DOI: 10.1186/s13041-015-0122-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/11/2015] [Indexed: 12/03/2022] Open
Abstract
Background Mutation in the UPF3B gene on chromosome X is implicated in neurodevelopmental disorders including X-linked intellectual disability, autism and schizophrenia. The protein UPF3B is involved in the nonsense-mediated mRNA decay pathway (NMD) that controls mRNA stability and functions in the prevention of the synthesis of truncated proteins. Results Here we show that NMD pathway components UPF3B and UPF1 are down-regulated during differentiation of neural stem cells into neurons. Using tethered function assays we found that UPF3B missense mutations described in families with neurodevelopmental disorders reduced the activity of UPF3B protein in NMD. In neural stem cells, UPF3B protein was detected in the cytoplasm and in the nucleus. Similarly in neurons, UPF3B protein was detected in neurites, the somatic cytoplasm and in the nucleus. In both cell types nuclear UPF3B protein was enriched in the nucleolus. Using GFP tagged UPF3B proteins we found that the missense mutations did not affect the cellular localisation. Expression of missense mutant UPF3B disturbed neuronal differentiation and reduced the complexity of the branching of neurites. Neuronal differentiation was similarly affected in the presence of the NMD inhibitor Amlexanox. The expression of mutant UPF3B proteins lead to a subtle increase in mRNA levels of selected NMD targets. Conclusions Together our findings indicate that, despite the down-regulation of NMD factors, functional NMD is critical for neuronal differentiation. We propose that the neurodevelopmental phenotype of UPF3B missense mutation is caused by impairment of NMD function altering neuronal differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0122-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tahani Alrahbeni
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK. .,Current address: Riyadh Colleges of Dentistry and Pharmacy, Olaya Campus, Riyadh, Saudi Arabia.
| | - Francesca Sartor
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Jihan Anderson
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Zosia Miedzybrodzka
- Medical Genetics, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Colin McCaig
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Berndt Müller
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
115
|
Linder B, Fischer U, Gehring NH. mRNA metabolism and neuronal disease. FEBS Lett 2015; 589:1598-606. [DOI: 10.1016/j.febslet.2015.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
|
116
|
Regulation of gene expression through production of unstable mRNA isoforms. Biochem Soc Trans 2015; 42:1196-205. [PMID: 25110025 DOI: 10.1042/bst20140102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is universally accredited for expanding the information encoded within the transcriptome. In recent years, several tightly regulated alternative splicing events have been reported which do not lead to generation of protein products, but lead to unstable mRNA isoforms. Instead these transcripts are targets for NMD (nonsense-mediated decay) or retained in the nucleus and degraded. In the present review I discuss the regulation of these events, and how many have been implicated in control of gene expression that is instrumental to a number of developmental paradigms. I further discuss their relevance to disease settings and conclude by highlighting technologies that will aid identification of more candidate events in future.
Collapse
|
117
|
Karam R, Lou CH, Kroeger H, Huang L, Lin JH, Wilkinson MF. The unfolded protein response is shaped by the NMD pathway. EMBO Rep 2015; 16:599-609. [PMID: 25807986 DOI: 10.15252/embr.201439696] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/24/2015] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), an essential adaptive intracellular pathway that relieves the stress. Although the UPR is an evolutionarily conserved and beneficial pathway, its chronic activation contributes to the pathogenesis of a wide variety of human disorders. The fidelity of UPR activation must thus be tightly regulated to prevent inappropriate signaling. The nonsense-mediated RNA decay (NMD) pathway has long been known to function in RNA quality control, rapidly degrading aberrant mRNAs, and has been suggested to regulate subsets of normal mRNAs. Here, we report that the NMD pathway regulates the UPR. NMD increases the threshold for triggering the UPR in vitro and in vivo, thereby preventing UPR activation in response to normally innocuous levels of ER stress. NMD also promotes the timely termination of the UPR. We demonstrate that NMD directly targets the mRNAs encoding several UPR components, including the highly conserved UPR sensor, IRE1α, whose NMD-dependent degradation partly underpins this process. Our work not only sheds light on UPR regulation, but demonstrates the physiological relevance of NMD's ability to regulate normal mRNAs.
Collapse
Affiliation(s)
- Rachid Karam
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Heike Kroeger
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jonathan H Lin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
118
|
Abstract
The unfolded protein response (UPR) is a major signaling cascade that determines cell fate under conditions of endoplasmic reticulum (ER) stress. The kinetics and amplitude of UPR responses are tightly controlled by several feedback loops and the expression of positive and negative regulators. In this issue of EMBO Reports, the Wilkinson lab uncovers a novel function of nonsense-mediated RNA decay (NMD) in fine-tuning the UPR. NMD is an mRNA quality control mechanism known to destabilize aberrant mRNAs that contain premature termination codons. In this work, NMD was shown to determine the threshold of stress necessary to activate the UPR, in addition to adjusting the amplitude of downstream responses and the termination phase. These effects were mapped to the control of the mRNA stability of IRE1, a major ER stress transducer. This study highlights the dynamic crosstalk between mRNA metabolism and the proteostasis network demonstrating the physiological relevance of normal mRNA regulation by the NMD pathway.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
119
|
Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, Scheller U, Vasli N, Rafiq MA, Brohi MQ, Mikhailov A, Ayaz M, Bhatti A, Sticht H, Nasr T, Carter MT, Uebe S, Reis A, Ayub M, John P, Kiledjian M, Vincent JB, Jamra RA. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015; 24:3172-80. [PMID: 25701870 DOI: 10.1093/hmg/ddv069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects.
Collapse
Affiliation(s)
- Iltaf Ahmed
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kirti Mittal
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Taimoor I Sheikh
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | | | - Nasim Vasli
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Arshad Rafiq
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - M Qasim Brohi
- Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Ayaz
- Lahore Institute of Research and Development, Lahore 51000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tanveer Nasr
- Department of Psychiatry, Mayo Hospital, Lahore 54000, Pakistan Department of Psychiatry, Chaudhary Hospital, Gujranwala 52250, Pakistan
| | - Melissa T Carter
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada M5G1X8
| | | | | | - Muhammad Ayub
- Lahore Institute of Research and Development, Lahore 51000, Pakistan Division of Developmental Disabilities, Department of Psychiatry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - John B Vincent
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| | | |
Collapse
|
120
|
Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, Kerem E, Rivlin J, Zahdeh F, Mann M, Geiger T, Kerem B. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med 2014; 6:685-701. [PMID: 24705877 PMCID: PMC4023889 DOI: 10.1002/emmm.201303347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions.
Collapse
Affiliation(s)
- Yifat S Oren
- Department of Genetics, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Bao J, Tang C, Yuan S, Porse BT, Yan W. UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development 2014; 142:352-62. [PMID: 25503407 DOI: 10.1242/dev.115642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) represents a highly conserved RNA surveillance mechanism through which mRNA transcripts bearing premature termination codons (PTCs) are selectively degraded to maintain transcriptomic fidelity in the cell. Numerous in vitro studies have demonstrated the importance of the NMD pathway; however, evidence supporting its physiological necessity has only just started to emerge. Here, we report that ablation of Upf2, which encodes a core NMD factor, in murine embryonic Sertoli cells (SCs) leads to severe testicular atrophy and male sterility owing to rapid depletion of both SCs and germ cells during prepubertal testicular development. RNA-Seq and bioinformatic analyses revealed impaired transcriptomic homeostasis in SC-specific Upf2 knockout testes, characterized by an accumulation of PTC-containing transcripts and the transcriptome-wide dysregulation of genes encoding splicing factors and key proteins essential for SC fate control. Our data demonstrate an essential role of UPF2-mediated NMD in prepubertal SC development and male fertility.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Jagtvej 124, Copenhagen, DK-2200, Denmark Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Jagtvej 124, Copenhagen, DK-2200, Denmark Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK2200, Denmark
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA
| |
Collapse
|
122
|
Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PJ. Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res 2014; 43:309-23. [PMID: 25429978 PMCID: PMC4288159 DOI: 10.1093/nar/gku1258] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In metazoans, cleavage by the endoribonuclease SMG6 is often the first degradative event in non-sense-mediated mRNA decay (NMD). However, the exact sites of SMG6 cleavage have yet to be determined for any endogenous targets, and most evidence as to the identity of SMG6 substrates is indirect. Here, we use Parallel Analysis of RNA Ends to specifically identify the 5′ termini of decay intermediates whose production is dependent on SMG6 and the universal NMD factor UPF1. In this manner, the SMG6 cleavage sites in hundreds of endogenous NMD targets in human cells have been mapped at high resolution. In addition, a preferred sequence motif spanning most SMG6 cleavage sites has been discovered and validated by mutational analysis. For many SMG6 substrates, depletion of SMG6 resulted in the accumulation of decapped transcripts, an effect indicative of competition between SMG6-dependent and SMG6-independent NMD pathways. These findings provide key insights into the mechanisms by which mRNAs targeted by NMD are degraded.
Collapse
Affiliation(s)
- Skye A Schmidt
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patricia L Foley
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Dong-Hoon Jeong
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Linda A Rymarquis
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Francis Doyle
- Department of Life Science, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Scott A Tenenbaum
- Department of Life Science, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
123
|
Azzalin CM, Lingner J. Telomere functions grounding on TERRA firma. Trends Cell Biol 2014; 25:29-36. [PMID: 25257515 DOI: 10.1016/j.tcb.2014.08.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Long noncoding telomeric repeat-containing RNAs - TERRAs - are transcribed in a regulated manner from telomeres throughout eukaryotes. TERRA molecules consist of chromosome end-specific subtelomeric sequences and telomeric repeats at their 3' ends. Recent work suggests that TERRA sustains several important functions at chromosome ends. TERRA can regulate telomere length through modulation of exonuclease 1 and telomerase, it may promote recruitment of chromatin modifiers to damaged telomeres and thereby enable DNA end-processing, and it may promote telomere protein composition changes during cell cycle progression. Furthermore, telomere transcription regulates chromosome-end mobility within the nucleus. We review how TERRA, by regulated expression and by providing a molecular scaffold for various protein enzymes, can support a large variety of vital functions.
Collapse
Affiliation(s)
- Claus M Azzalin
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zürich, Switzerland.
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences (SV), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
124
|
Abstract
Epigenetic control of gene expression programs is essential for normal organismal development and cellular function. Abrogation of epigenetic regulation is seen in many human diseases, including cancer and neuropsychiatric disorders, where it can affect disease etiology and progression. Abnormal epigenetic profiles can serve as biomarkers of disease states and predictors of disease outcomes. Therefore, epigenetics is a key area of clinical investigation in diagnosis, prognosis, and treatment. In this review, we give an overarching view of epigenetic mechanisms of human disease. Genetic mutations in genes that encode chromatin regulators can cause monogenic disease or are incriminated in polygenic, multifactorial diseases. Environmental stresses can also impact directly on chromatin regulation, and these changes can increase the risk of, or directly cause, disease. Finally, emerging evidence suggests that exposure to environmental stresses in older generations may predispose subsequent generations to disease in a manner that involves the transgenerational inheritance of epigenetic information.
Collapse
Affiliation(s)
- Emily Brookes
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
125
|
Nickless A, Jackson E, Marasa J, Nugent P, Mercer RW, Piwnica-Worms D, You Z. Intracellular calcium regulates nonsense-mediated mRNA decay. Nat Med 2014; 20:961-6. [PMID: 25064126 PMCID: PMC4126864 DOI: 10.1038/nm.3620] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/23/2014] [Indexed: 12/17/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent a target for therapeutic intervention. Here, we have developed a new multicolored bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides, including ouabain and digoxin, as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the sodium-potassium ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from the endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has implications for exploiting NMD in the treatment of disease.
Collapse
Affiliation(s)
- Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Erin Jackson
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jayne Marasa
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Patrick Nugent
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert W. Mercer
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David Piwnica-Worms
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
126
|
Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. EUKARYOTIC CELL 2014; 13:1126-35. [PMID: 25038084 DOI: 10.1128/ec.00090-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs. The degradation of natural mRNAs by NMD has been identified in multiple eukaryotes, including Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana, and humans. S. cerevisiae is used extensively as a model to study natural mRNA regulation by NMD. Inactivation of the NMD pathway in S. cerevisiae affects approximately 10% of the transcriptome. Similar percentages of natural mRNAs in the D. melanogaster and human transcriptomes are also sensitive to the pathway, indicating that NMD is important for the regulation of gene expression in multiple organisms. NMD can either directly or indirectly regulate the decay rate of natural mRNAs. Direct NMD targets possess NMD-inducing features. This minireview focuses on the regulation of natural mRNAs by the NMD pathway, as well as the features demonstrated to target these mRNAs for decay by the pathway in S. cerevisiae. We also compare NMD-targeting features identified in S. cerevisiae with known NMD-targeting features in other eukaryotic organisms.
Collapse
|
127
|
Nonsense-mediated decay in genetic disease: friend or foe? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:52-64. [PMID: 25485595 DOI: 10.1016/j.mrrev.2014.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target.
Collapse
|
128
|
McMahon JJ, Shi L, Silver DL. Generation of a Magoh conditional allele in mice. Genesis 2014; 52:752-8. [PMID: 24771530 DOI: 10.1002/dvg.22788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 02/02/2023]
Abstract
Magoh encodes a core component of the exon junction complex (EJC), which binds mRNA and regulates mRNA metabolism. Magoh is highly expressed in proliferative tissues during development. EJC components have been implicated in several developmental disorders including TAR syndrome, Richieri-Costa-Pereira syndrome, and intellectual disability. Existing germline null Magoh mice are embryonic lethal as homozygotes and perinatal lethal as heterozygotes, precluding detailed analysis of embryonic and postnatal functions. Here, we report the generation of a new genetic tool to dissect temporal and tissue-specific roles for Magoh in development and adult homeostasis. This Magoh conditional allele has two loxP sites flanking the second exon. Ubiquitous Cre-mediated deletion of the floxed allele in a heterozygous mouse (Magoh(del/+) ) causes 50% reduction of both Magoh mRNA and protein. Magoh(del/+) mice exhibit both microcephaly and hypopigmentation, thus phenocopying germline haploinsufficient Magoh mice. Using Emx1-Cre, we further show that conditional Magoh deletion in neural progenitors during embryonic development also causes microcephaly. We anticipate this novel conditional allele will be a valuable tool for assessing tissue-specific roles for Magoh in mammalian development and postnatal processes.
Collapse
Affiliation(s)
- John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | | | | |
Collapse
|
129
|
Abstract
Nonsense suppression therapy encompasses approaches aimed at suppressing translation termination at in-frame premature termination codons (PTCs, also known as nonsense mutations) to restore deficient protein function. In this review, we examine the current status of PTC suppression as a therapy for genetic diseases caused by nonsense mutations. We discuss what is currently known about the mechanism of PTC suppression as well as therapeutic approaches under development to suppress PTCs. The approaches considered include readthrough drugs, suppressor tRNAs, PTC pseudouridylation, and inhibition of nonsense-mediated mRNA decay. We also discuss the barriers that currently limit the clinical application of nonsense suppression therapy and suggest how some of these difficulties may be overcome. Finally, we consider how PTC suppression may play a role in the clinical treatment of genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294; , , ,
| | | | | | | |
Collapse
|
130
|
Abstract
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642;
| | | |
Collapse
|
131
|
Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, Wilkinson MF. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep 2014; 6:748-64. [PMID: 24529710 DOI: 10.1016/j.celrep.2014.01.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 12/11/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The mechanisms dictating whether a cell proliferates or differentiates have undergone intense scrutiny, but they remain poorly understood. Here, we report that UPF1, a central component in the nonsense-mediated RNA decay (NMD) pathway, plays a key role in this decision by promoting the proliferative, undifferentiated cell state. UPF1 acts, in part, by destabilizing the NMD substrate encoding the TGF-β inhibitor SMAD7 and stimulating TGF-β signaling. UPF1 also promotes the decay of mRNAs encoding many other proteins that oppose the proliferative, undifferentiated cell state. Neural differentiation is triggered when NMD is downregulated by neurally expressed microRNAs (miRNAs). This UPF1-miRNA circuitry is highly conserved and harbors negative feedback loops that act as a molecular switch. Our results suggest that the NMD pathway collaborates with the TGF-β signaling pathway to lock in the stem-like state, a cellular state that is stably reversed when neural differentiation signals that induce NMD-repressive miRNAs are received.
Collapse
Affiliation(s)
- Chih H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Rachid Karam
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA.
| |
Collapse
|
132
|
Ishigaki Y, Nakamura Y, Tatsuno T, Hashimoto M, Shimasaki T, Iwabuchi K, Tomosugi N. Depletion of RNA-binding protein RBM8A (Y14) causes cell cycle deficiency and apoptosis in human cells. Exp Biol Med (Maywood) 2014; 238:889-97. [PMID: 23970407 DOI: 10.1177/1535370213494646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RBM8A (Y14) contains an RNA-binding motif and forms a tight heterodimer with Magoh. The heterodimer is known to be a member of the exon junction complex that forms on mRNA before export and it is required for mRNA metabolism processes such as splicing, mRNA export and nonsense-mediated mRNA decay. Recently, deficient cellular proliferation has been observed in RBM8A- or Magoh-depleted cells. These results prompted us to study the role of RBM8A in cell cycle progression of human tumour cells. The depletion of RBM8A in A549 cells resulted in poor cell survival and the accumulation of mitotic cells. After release from G1/S arrest induced by a double thymidine block, the RBM8A-silenced cells could not proceed to the next G1 phase beyond G2/M phase. Finally, the sub-G1 population increased and the apoptosis markers caspases 3/7 were activated. Silenced cells exhibited an increased frequency of multipolar or monopolar centrosomes, which may have caused the observed deficiency in cell cycle progression. Finally, silencing of either RBM8A or Magoh resulted in mutual downregulation of the other protein. These results illustrate that the RBM8A-Magoh mRNA binding complex is required for M phase progression and both proteins may be novel targets for anticancer therapy.
Collapse
Affiliation(s)
- Yasuhito Ishigaki
- Division of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | | | | | | | | | | | | |
Collapse
|
133
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
134
|
Ge Y, Porse BT. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. Bioessays 2013; 36:236-43. [PMID: 24352796 DOI: 10.1002/bies.201300156] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The explosion in sequencing technologies has provided us with an instrument to describe mammalian transcriptomes at unprecedented depths. This has revealed that alternative splicing is used extensively not only to generate protein diversity, but also as a means to regulate gene expression post-transcriptionally. Intron retention (IR) is overwhelmingly perceived as an aberrant splicing event with little or no functional consequence. However, recent work has now shown that IR is used to regulate a specific differentiation event within the haematopoietic system by coupling it to nonsense-mediated mRNA decay (NMD). Here, we highlight how IR and, more broadly, alternative splicing coupled to NMD (AS-NMD) can be used to regulate gene expression and how this is deregulated in disease. We suggest that the importance of AS-NMD is not restricted to the haematopoietic system but that it plays a prominent role in other normal and aberrant biological settings.
Collapse
Affiliation(s)
- Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
135
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
136
|
Graham JM, Schwartz CE. MED12 related disorders. Am J Med Genet A 2013; 161A:2734-40. [PMID: 24123922 DOI: 10.1002/ajmg.a.36183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/20/2013] [Indexed: 11/05/2022]
Abstract
MED12: is a member of the large Mediator complex, which has a critical and central role in RNA polymerase II transcription. As a multiprotien complex, Mediator regulates signals involved in cell growth, development, and differentiation, and it is involved in a protein network required for extraneuronal gene silencing and also functions as a direct suppressor of Gli3-dependent Sonic hedgehog signaling. This may explain its role in several different X-linked intellectual disability syndromes that share some overlapping clinical features. This review will compare and contrast four different clinical conditions that have been associated with different mutations in MED12, which is located at Xq13. To date, these conditions include Opitz-Kaveggia (FG) syndrome, Lujan syndrome, Ohdo syndrome (Maat-Kievit-Brunner type, or OSMKB), and one large family with profound X-linked intellectual disability due to a novel c.5898insC frameshift mutation that unlike the other three syndromes, resulted in affected female carriers and truncation of the MED12 protein. It is likely that more MED12 mutations will be detected in sporadic patients and X-linked families with intellectual disability and dysmorphic features as exome sequencing becomes more commonly utilized, and this overview of MED12-related disorders may help to correlate MED12 genotypes with clinical findings.
Collapse
Affiliation(s)
- John M Graham
- Department of Pediatrics, Medical Genetics Institute, Cedars Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
137
|
Metze S, Herzog VA, Ruepp MD, Mühlemann O. Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA (NEW YORK, N.Y.) 2013; 19:1432-48. [PMID: 23962664 PMCID: PMC3854533 DOI: 10.1261/rna.038893.113] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin μ and β-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin μ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas β-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.
Collapse
Affiliation(s)
- Stefanie Metze
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Veronika A. Herzog
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Corresponding authorE-mail
| |
Collapse
|
138
|
Genome-wide survey of interindividual differences of RNA stability in human lymphoblastoid cell lines. Sci Rep 2013; 3:1318. [PMID: 23422947 PMCID: PMC3576867 DOI: 10.1038/srep01318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
The extent to which RNA stability differs between individuals and its contribution to the interindividual expression variation remain unknown. We conducted a genome-wide analysis of RNA stability in seven human HapMap lymphoblastoid cell lines (LCLs) and analyzed the effect of DNA sequence variation on RNA half-life differences. Twenty-six percent of the expressed genes exhibited RNA half-life differences between LCLs at a false discovery rate (FDR) < 0.05, which accounted for ~ 37% of the gene expression differences between individuals. Nonsense polymorphisms were associated with reduced RNA half-lives. In genes presenting interindividual RNA half-life differences, higher coding GC3 contents (G and C percentages at the third-codon positions) were correlated with increased RNA half-life. Consistently, G and C alleles of single nucleotide polymorphisms (SNPs) in protein coding sequences were associated with enhanced RNA stability. These results suggest widespread interindividual differences in RNA stability related to DNA sequence and composition variation.
Collapse
|
139
|
Leoyklang P, Suphapeetiporn K, Srichomthong C, Tongkobpetch S, Fietze S, Dorward H, Cullinane AR, Gahl WA, Huizing M, Shotelersuk V. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene. Hum Genet 2013; 132:1383-93. [PMID: 23925499 DOI: 10.1007/s00439-013-1345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient's leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knockout mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 activates UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction.
Collapse
Affiliation(s)
- Petcharat Leoyklang
- Biomedical Science Program, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Jolly LA, Homan CC, Jacob R, Barry S, Gecz J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 2013; 22:4673-87. [PMID: 23821644 DOI: 10.1093/hmg/ddt315] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Loss-of-function mutations in UPF3B result in variable clinical presentations including intellectual disability (ID, syndromic and non-syndromic), autism, childhood onset schizophrenia and attention deficit hyperactivity disorder. UPF3B is a core member of the nonsense-mediated mRNA decay (NMD) pathway that functions to rapidly degrade transcripts with premature termination codons (PTCs). Traditionally identified in thousands of human diseases, PTCs were recently also found to be part of 'normal' genetic variation in human populations. Furthermore, many human transcripts have naturally occurring regulatory features compatible with 'endogenous' PTCs strongly suggesting roles of NMD beyond PTC mRNA control. In this study, we investigated the role of Upf3b and NMD in neural cells. We provide evidence that suggests Upf3b-dependent NMD (Upf3b-NMD) is regulated at multiple levels during development including regulation of expression and sub-cellular localization of Upf3b. Furthermore, complementary expression of Upf3b, Upf3a and Stau1 stratify the developing dorsal telencephalon, suggesting that alternative NMD, and the related Staufen1-mediated mRNA decay (SMD) pathways are differentially employed. A loss of Upf3b-NMD in neural progenitor cells (NPCs) resulted in the expansion of cell numbers at the expense of their differentiation. In primary hippocampal neurons, loss of Upf3b-NMD resulted in subtle neurite growth effects. Our data suggest that the cellular consequences of loss of Upf3b-NMD can be explained in-part by changes in expression of key NMD-feature containing transcripts, which are commonly deregulated also in patients with UPF3B mutations. Our research identifies novel pathological mechanisms of UPF3B mutations and at least partly explains the clinical phenotype of UPF3B patients.
Collapse
Affiliation(s)
- Lachlan A Jolly
- Department of Genetic and Molecular Pathology, SA Pathology, North Adelaide 5006, Australia
| | | | | | | | | |
Collapse
|
141
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-66. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
142
|
Callier P, Aral B, Hanna N, Lambert S, Dindy H, Ragon C, Payet M, Collod-Beroud G, Carmignac V, Delrue MA, Goizet C, Philip N, Busa T, Dulac Y, Missotte I, Sznajer Y, Toutain A, Francannet C, Megarbane A, Julia S, Edouard T, Sarda P, Amiel J, Lyonnet S, Cormier-Daire V, Gilbert B, Jacquette A, Heron D, Collignon P, Lacombe D, Morice-Picard F, Jouk PS, Cusin V, Willems M, Sarrazin E, Amarof K, Coubes C, Addor MC, Journel H, Colin E, Khau Van Kien P, Baumann C, Leheup B, Martin-Coignard D, Doco-Fenzy M, Goldenberg A, Plessis G, Thevenon J, Pasquier L, Odent S, Vabres P, Huet F, Marle N, Mosca-Boidron AL, Mugneret F, Gauthier S, Binquet C, Thauvin-Robinet C, Jondeau G, Boileau C, Faivre L. Systematic molecular and cytogenetic screening of 100 patients with marfanoid syndromes and intellectual disability. Clin Genet 2013; 84:507-21. [PMID: 23506379 DOI: 10.1111/cge.12094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 01/13/2023]
Abstract
The association of marfanoid habitus (MH) and intellectual disability (ID) has been reported in the literature, with overlapping presentations and genetic heterogeneity. A hundred patients (71 males and 29 females) with a MH and ID were recruited. Custom-designed 244K array-CGH (Agilent®; Agilent Technologies Inc., Santa Clara, CA) and MED12, ZDHHC9, UPF3B, FBN1, TGFBR1 and TGFBR2 sequencing analyses were performed. Eighty patients could be classified as isolated MH and ID: 12 chromosomal imbalances, 1 FBN1 mutation and 1 possibly pathogenic MED12 mutation were found (17%). Twenty patients could be classified as ID with other extra-skeletal features of the Marfan syndrome (MFS) spectrum: 4 pathogenic FBN1 mutations and 4 chromosomal imbalances were found (2 patients with both FBN1 mutation and chromosomal rearrangement) (29%). These results suggest either that there are more loci with genes yet to be discovered or that MH can also be a relatively non-specific feature of patients with ID. The search for aortic complications is mandatory even if MH is associated with ID since FBN1 mutations or rearrangements were found in some patients. The excess of males is in favour of the involvement of other X-linked genes. Although it was impossible to make a diagnosis in 80% of patients, these results will improve genetic counselling in families.
Collapse
Affiliation(s)
- P Callier
- Service de Cytogénétique, Plateau technique de Biologie, CHU, Dijon, France; Equipe GAD, EA 4271, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Karam R, Wengrod J, Gardner LB, Wilkinson MF. Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:624-33. [PMID: 23500037 DOI: 10.1016/j.bbagrm.2013.03.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/24/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA quality control mechanism that destabilizes aberrant mRNAs harboring premature termination (nonsense) codons (PTCs). Recent studies have shown that NMD also targets mRNAs transcribed from a large subset of wild-type genes. This raises the possibility that NMD itself is under regulatory control. Indeed, several recent studies have shown that NMD activity is modulated in specific cell types and that key components of the NMD pathway are regulated by several pathways, including microRNA circuits and NMD itself. Cellular stress also modulates the magnitude of NMD by mechanisms that are beginning to be understood. Here, we review the evidence that NMD is regulated and discuss the physiological role for this regulation. We propose that the efficiency of NMD is altered in some cellular contexts to regulate normal biological events. In disease states-such as in cancer-NMD is disturbed by intrinsic and extrinsic factors, resulting in altered levels of crucial NMD-targeted mRNAs that lead to downstream pathological consequences. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Rachid Karam
- Department of Reproductive Medicine, University of California, San Diego, CA 92093-0864, USA
| | | | | | | |
Collapse
|
144
|
Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:612-23. [PMID: 23435113 DOI: 10.1016/j.bbagrm.2013.02.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
145
|
Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, Layman LC, Shaffer LG, Gécz J. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 2013; 22:1816-25. [PMID: 23376982 DOI: 10.1093/hmg/ddt035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.
Collapse
Affiliation(s)
- Lam S Nguyen
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Yap K, Makeyev EV. Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 2013; 56:420-8. [PMID: 23357783 DOI: 10.1016/j.mcn.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|
147
|
Eom T, Zhang C, Wang H, Lay K, Fak J, Noebels JL, Darnell RB. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eLife 2013; 2:e00178. [PMID: 23359859 PMCID: PMC3552424 DOI: 10.7554/elife.00178] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 12/13/2022] Open
Abstract
The neuronal RNA binding protein NOVA regulates splicing, shuttles to the cytoplasm, and co-localizes with target transcripts in dendrites, suggesting links between splicing and local translation. Here we identified >200 transcripts showing NOVA-dependent changes in abundance, but, surprisingly, HITS-CLIP revealed NOVA binds these RNAs in introns rather than 3′ UTRs. This led us to discover NOVA-regulated splicing of cryptic exons within these introns. These exons triggered nonsense mediated decay (NMD), as UPF1 and protein synthesis were required for NOVA's effect on RNA levels. Their regulation was dynamic and physiologically relevant. The NMD exons were regulated by seizures, which also induced changes in Nova subcellular localization and mediated large changes in synaptic proteins, including proteins implicated in familial epilepsy. Moreover, Nova haploinsufficient mice had spontaneous epilepsy. The data reveal a hidden means of dynamic RNA regulation linking electrical activity to splicing and protein output, and of mediating homeostatic excitation/inhibition balance in neurons. DOI:http://dx.doi.org/10.7554/eLife.00178.001 After the DNA in a gene has been transcribed into messenger RNA, portions of the mRNA called introns are removed, and the remaining stretches of mRNA, which are known as exons, are spliced together. Within eukaryotic cells, a process known as alternative splicing allows a single gene to encode for multiple protein variants by ensuring that some exons are included in the final, modified mRNA, while other exons are excluded. This modified mRNA is then translated into proteins. Eukaryotic cells also contain proteins that bind to RNA to regulate alternative splicing. These RNA-binding proteins are often found in both the cytoplasm and nucleus of cells, and their involvement in splicing may be linked to other processes in the cell such as mRNA localization and translation. It has also become clear over the past two decades that certain types of RNA-binding proteins, including NOVA proteins, are only found in neurons, and that these proteins have been best characterized as alternative splicing regulators. Recent work has also suggested that they also have important roles in regulating neuronal activity and development, and that their actions in neuronal nuclei and cytoplasm might be coordinated. Now Eom et al. use the predictive power of a high throughput sequencing and crosslinking method termed HITS-CLIP to show that NOVA proteins can indirectly regulate cytoplasmic mRNA levels by regulating the process of alternative splicing in the nucleus to produce ‘cryptic’ exons in the brains of mice. The presence of these exons in the mRNA leads to the production of premature termination codons in the cytoplasm. These codons trigger a process called nonsense-mediated decay that involves identifying mRNA transcripts that contain nonsense mutations, and then degrading them. These cryptic exons were seen in mice missing the NOVA proteins, where they are expressed in abnormally high levels; in normal mice, these exons have not been seen before, hence they were termed ‘cryptic’. Eom et al. also show that these cryptic exons are physiologically relevant by inducing epileptic seizures in mice. Following the seizures, they find that the NOVA proteins up-regulate and down-regulate the levels of different cryptic exons, leading to changes in the levels of the proteins encoded by these mRNAs, including proteins that inhibit further seizures. Overall the results indicate that, by controlling the production of various proteins in neurons, these previously unknown cryptic exons have important roles in the workings of the brain. DOI:http://dx.doi.org/10.7554/eLife.00178.002
Collapse
Affiliation(s)
- Taesun Eom
- Laboratory of Molecular Neuro-Oncology , Rockefeller University , New York , United States
| | | | | | | | | | | | | |
Collapse
|
148
|
Palacios IM. Nonsense-mediated mRNA decay: from mechanistic insights to impacts on human health. Brief Funct Genomics 2012; 12:25-36. [PMID: 23148322 DOI: 10.1093/bfgp/els051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells are able to recognize and degrade aberrant transcripts in order to self-protect from potentially toxic proteins. Various pathways detect aberrant RNAs in the cytoplasm and are dependent on translation. One of these pathways is the nonsense-mediated RNA decay (NMD). NMD is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of possibly harmful truncated proteins. For example, the degradation of a nonsense harming β-globin allele renders normal phenotypes. On the other hand, regulating NMD is also important in those cases when the produced aberrant protein is better than having no protein, as it has been shown for cystic fibrosis. These findings reflect the important role for NMD in human health. In addition, NMD controls the levels of physiologic transcripts, which defines this pathway as a novel gene expression regulator, with huge impact on homeostasis, cell growth and development. While the mechanistic details of NMD are being gradually understood, the physiological role of this RNA surveillance pathway still remains largely unknown. This is a brief and simplified review on various aspects of NMD, such as the nature of the NMD targets, the mechanism of target degradation and the links between NMD and cell growth, animal development and diseases.
Collapse
Affiliation(s)
- Isabel M Palacios
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|
149
|
Nguyen LS, Jolly L, Shoubridge C, Chan WK, Huang L, Laumonnier F, Raynaud M, Hackett A, Field M, Rodriguez J, Srivastava AK, Lee Y, Long R, Addington AM, Rapoport JL, Suren S, Hahn CN, Gamble J, Wilkinson MF, Corbett MA, Gecz J. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol Psychiatry 2012; 17:1103-15. [PMID: 22182939 PMCID: PMC4281019 DOI: 10.1038/mp.2011.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 11/09/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway was originally discovered by virtue of its ability to rapidly degrade aberrant mRNAs with premature termination codons. More recently, it was shown that NMD also directly regulates subsets of normal transcripts, suggesting that NMD has roles in normal biological processes. Indeed, several NMD factors have been shown to regulate neurological events (for example, neurogenesis and synaptic plasticity) in numerous vertebrate species. In man, mutations in the NMD factor gene UPF3B, which disrupts a branch of the NMD pathway, cause various forms of intellectual disability (ID). Using Epstein Barr virus-immortalized B cells, also known as lymphoblastoid cell lines (LCLs), from ID patients that have loss-of-function mutations in UPF3B, we investigated the genome-wide consequences of compromised NMD and the role of NMD in neuronal development and function. We found that ~5% of the human transcriptome is impacted in UPF3B patients. The UPF3B paralog, UPF3A, is stabilized in all UPF3B patients, and partially compensates for the loss of UPF3B function. Interestingly, UPF3A protein, but not mRNA, was stabilised in a quantitative manner that inversely correlated with the severity of patients' phenotype. This suggested that the ability to stabilize the UPF3A protein is a crucial modifier of the neurological symptoms due to loss of UPF3B. We also identified ARHGAP24, which encodes a GTPase-activating protein, as a canonical target of NMD, and we provide evidence that deregulation of this gene inhibits axon and dendrite outgrowth and branching. Our results demonstrate that the UPF3B-dependent NMD pathway is a major regulator of the transcriptome and that its targets have important roles in neuronal cells.
Collapse
Affiliation(s)
- LS Nguyen
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - L Jolly
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - C Shoubridge
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - WK Chan
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Huang
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - F Laumonnier
- INSERM, U930, Tours, France
- CNRS, ERL3106, Tours, France
- University Francois-Rabelais, UMR ‘Imaging and Brain’, Tours, France
| | - M Raynaud
- INSERM, U930, Tours, France
- University Francois-Rabelais, UMR ‘Imaging and Brain’, Tours, France
- CHRU de Tours, Service de Genetique, Tours, France
| | - A Hackett
- GOLD Service, Hunter Genetics, Newcastle, Australia
| | - M Field
- GOLD Service, Hunter Genetics, Newcastle, Australia
| | - J Rodriguez
- J.C. Self Research Institute, Greenwood Genetic Centre, Greenwood, SC, USA
| | - AK Srivastava
- J.C. Self Research Institute, Greenwood Genetic Centre, Greenwood, SC, USA
| | - Y Lee
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - R Long
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - AM Addington
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - JL Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - S Suren
- Human Developmental Biology Resource, Neural Development Unit, UCL Institute of Child Health, London, UK
| | - CN Hahn
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - J Gamble
- Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, NSW, Australia
| | - MF Wilkinson
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - MA Corbett
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - J Gecz
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
150
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|