101
|
Tholander F, Roques BP, Fournié-Zaluski MC, Thunnissen MM, Haeggström JZ. Crystal structure of leukotriene A4
hydrolase in complex with kelatorphan, implications for design of zinc metallopeptidase inhibitors. FEBS Lett 2010; 584:3446-51. [DOI: 10.1016/j.febslet.2010.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 01/21/2023]
|
102
|
Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria. Proc Natl Acad Sci U S A 2010; 107:8748-53. [PMID: 20421474 DOI: 10.1073/pnas.0912551107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-beta. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses.
Collapse
|
103
|
Hori T, Sato Y, Takahashi N, Takio K, Yokomizo T, Nakamura M, Shimizu T, Miyano M. Expression, purification and characterization of leukotriene B(4) receptor, BLT1 in Pichia pastoris. Protein Expr Purif 2010; 72:66-74. [PMID: 20188179 DOI: 10.1016/j.pep.2010.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023]
Abstract
The high yield expression of BLT1, a G-protein coupled receptor for leukotriene B(4), was established in Pichia pastoris for structural studies. Guinea pig BLT1 was expressed in a functional form without post-translational modifications for the rapid purification and the crystallization. Among the BLT1s from four species, only guinea pig BLT1 was successfully expressed with the comparable binding affinity to BLT1 of native guinea pig tissues for several ligands. Only Asn4 of the two putative N-glycosylation sites was glycosylated, and the mutation to Ala to avoid glycosylation did not affect the ligand binding affinity. However, the N-terminal region of the mutant was digested at the carboxyl ends of Arg3 and Arg8, as detected by N-terminal amino acid sequencing, and Ser309 in the C-terminal region was partially phosphorylated, as identified in the micro-sequencing by Q-TOF-MS/MS. To avoid chemical heterogeneity, the N-terminal peptide (1-14) truncated and the C-terminal phosphorylation-site eliminated mutant was generated. The binding affinity of the mutant's membrane fraction for LTB(4) was K(d)=6.6 nM and B(max)=50.0 pmol/mg membrane protein. The yield of purified mutant was approximately 0.3-0.4 mg from 1L culture, and the protein showed a single peak at molecular weight of 100 kDa in gel-filtration and no glycosylation or phosphorylation in MALDI-TOF MS.
Collapse
Affiliation(s)
- Tetsuya Hori
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Kim SR, Lee YC. PTEN as a unique promising therapeutic target for occupational asthma. Immunopharmacol Immunotoxicol 2010; 30:793-814. [PMID: 18671162 DOI: 10.1080/08923970802285164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue deleted on chromosome ten (PTEN) dephophorylates phosphatidylinositol 3,4,5-triphosphate (PIP3) and is a key negative regulator of phosphoinositide kinase-3 (PI3K) signaling pathway. PTEN also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumor suppressors in human cancers, and its down-regulation is also implicated in several other diseases including airway inflammatory diseases. There is increasing evidence regarding the protective effects of PTEN on the bronchial asthma which is induced by complex signaling networks. Very recently, as for the occupational asthma (OA) with considerable controversy for its pathobiologic mechanisms, PTEN has been considered as a key molecule which is capable of protecting toluene diisocyanate (TDI)-induced asthma, suggesting that PTEN is located at switching point of various molecular signals in OA. Knowledge of the mechanisms of PTEN regulation/function could direct to the pharmacological manipulation of PTEN. This article reviews the latest knowledge and studies on the roles and mechanisms of PTEN in OA.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School, Jeonju, South Korea
| | | |
Collapse
|
105
|
Toda A, Terawaki K, Yamazaki S, Saeki K, Shimizu T, Yokomizo T. Attenuated Th1 induction by dendritic cells from mice deficient in the leukotriene B4 receptor 1. Biochimie 2009; 92:682-91. [PMID: 20004699 DOI: 10.1016/j.biochi.2009.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/02/2009] [Indexed: 12/01/2022]
Abstract
Dendritic cells (DCs) are important antigen-presenting cells that control Th1- and Th2-type immunological reactions by releasing cytokines and interacting directly with T cells. Leukotriene B4 (LTB4), a classical proinflammatory lipid mediator for phagocytes, was recently identified as an important attractant for effector CD4(+) and CD8(+) T cells. However, little information is available on the roles of LTB4 and its receptor BLT1 in DCs. Here we show that functional BLT1 expressed in mouse bone marrow-derived DCs (BMDCs) plays important role in initiating Th1-type immune response. Detailed analyses using BMDCs revealed that BLT1-deficient DCs produced less IL-12p70 than WT DCs, leading to attenuated IFN-gamma production in an allogeneic mixed lymphocyte reaction. Adoptive transfer of antigen-loaded BLT1-deficient DCs into naïve WT mice induced a weakened Th1- and enhanced Th2-response in vivo compared to WT DCs. BLT1-deficient mice consistently showed much attenuated delayed-type hypersensitivity (DTH), in which Th1-type cellular responses play a key role, and popliteal lymph node cells of BLT1-deficient mice showed reduced production of Th1 cytokines after DTH induction compared to cells from WT mice. Thus, in addition to its role in inflammation, the LTB4-BLT1 axis is important in initiating Th1-type immunological reactions mediated by DCs.
Collapse
Affiliation(s)
- Akiko Toda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
106
|
Stelekati E, Bahri R, D'Orlando O, Orinska Z, Mittrücker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S. Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity 2009; 31:665-76. [PMID: 19818652 DOI: 10.1016/j.immuni.2009.08.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/09/2009] [Accepted: 08/03/2009] [Indexed: 01/08/2023]
Abstract
The characteristics, importance, and molecular requirements for interactions between mast cells (MCs) and CD8(+) T cells have not been elucidated. Here, we demonstrated that MCs induced antigen-specific CD8(+) T cell activation and proliferation. This process required direct cell contact and MHC class I-dependent antigen cross-presentation by MCs and induced the secretion of interleukin-2, interferon-gamma, and macrophage inflammatory protein-1alpha by CD8(+) T cells. MCs regulated antigen-specific CD8(+) T cell cytotoxicity by increasing granzyme B expression and by promoting CD8(+) T cell degranulation. Because MCs also upregulated their expression of costimulatory molecules (4-1BB) and released osteopontin upon direct T cell contact, MC-T cell interactions probably are bidirectional. In vivo, adoptive transfer of antigen-pulsed MCs induced MHC class I-dependent, antigen-specific CD8(+) T cell proliferation, and MCs regulated CD8(+) T cell-specific priming in experimental autoimmune encephalomyelitis. Thus, MCs are important players in antigen-specific regulation of CD8(+) T cells.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Immunology and Cell Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Cho KJ, Seo JM, Shin Y, Yoo MH, Park CS, Lee SH, Chang YS, Cho SH, Kim JH. Blockade of airway inflammation and hyperresponsiveness by inhibition of BLT2, a low-affinity leukotriene B4 receptor. Am J Respir Cell Mol Biol 2009; 42:294-303. [PMID: 19448154 DOI: 10.1165/rcmb.2008-0445oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BLT2 is a low-affinity receptor for leukotriene B(4) (LTB(4)), a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. Unlike BLT1, a high-affinity receptor for LTB(4), no clear physiological function has yet been identified for BLT2, especially with regard to the pathogenesis of asthma. The aim of this study was to investigate whether BLT2 plays a role in the pathogenesis of asthma. A murine model of allergic asthma was used to evaluate the role of BLT2 in ovalbumin-induced airway inflammation and airway hyperresponsiveness. The levels of BLT2 mRNA and its ligand, LTB(4), in the lung airway were highly elevated after ovalbumin challenge, and down-regulation of BLT2 with antisense BLT2 oligonucleotides markedly attenuated airway inflammation and airway hyperresponsiveness. Further analysis, aimed at identifying mediators downstream of BLT2, revealed that BLT2 activation led to elevation of reactive oxygen species and subsequent activation of NF-kappaB, thus inducing the expression of vascular cell adhesion molecule-1, which is known to be involved in eosinophil infiltration into the lung airway. Together, our results suggest that BLT2 plays a pivotal, mediatory role in the pathogenesis of asthma, acting through a "reactive oxygen species-NF-kappaB"-linked inflammatory signaling pathway.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam dong, Sungbuk-gu, Seoul, 136-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49:123-50. [PMID: 18834304 DOI: 10.1146/annurev.pharmtox.011008.145616] [Citation(s) in RCA: 447] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins, leukotrienes, platelet-activating factor, lysophosphatidic acid, sphingosine 1-phosphate, and endocannabinoids, collectively referred to as lipid mediators, play pivotal roles in immune regulation and self-defense, and in the maintenance of homeostasis in living systems. They are produced by multistep enzymatic pathways, which are initiated by the de-esterification of membrane phospholipids by phospholipase A2s or sphingo-myelinase. Lipid mediators exert their biological effects by binding to cognate receptors, which are members of the G protein-coupled receptor superfamily. The synthesis of the lipid mediators and subsequent induction of receptor activity is tightly regulated under normal physiological conditions, and enzyme and/or receptor dysfunction can lead to a variety of disease conditions. Thus, the manipulation of lipid mediator signaling, through either enzyme inhibitors or receptor antagonists and agonists, has great potential as a therapeutic approach to disease. In this review, I summarize our current state of knowledge of the synthesis of lipid mediators and the function of their cognate receptors, and discuss the effects of genetic or pharmacological ablation of enzyme or receptor function on various pathophysiological processes.
Collapse
Affiliation(s)
- Takao Shimizu
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
109
|
Kim GY, Lee JW, Cho SH, Seo JM, Kim JH. Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 2009; 29:915-20. [PMID: 19286633 DOI: 10.1161/atvbaha.109.185793] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The leukotriene B(4) (LTB(4)) receptor BLT2 is expressed in endothelium, but no clear physiological function for it has yet been identified, especially in vascular angiogenesis. The purpose of this study is to characterize the potential function of BLT2 in vascular endothelial growth factor (VEGF)-induced angiogenesis. METHODS AND RESULTS VEGF significantly upregulates BLT2 expression in human umbilical vein endothelial cells (HUVECs), and BLT2 knockdown by siRNA or inhibition of BLT2 by a specific BLT2 antagonist LY255283 attenuates VEGF-induced angiogenesis, which was determined by its effect on the formation of tube-like structures and on transmigration. The role of BLT2 in VEGF-induced angiogenesis was more evident in vivo, where BLT2 inhibition by LY255283 almost completely blocked VEGF-induced vessel formation in Matrigel-plug assays. In addition, we found that VEGF upregulates synthesis of the BLT2 ligand, 12(S)-hydroxyeicosatetraenoic acid (HETE). siRNA knockdown of 12-lipoxygenase (12-LO) expression attenuates VEGF-induced angiogenesis in HUVECs, and the addition of 12(S)-HETE to the 12-LO knockdown-HUVECs restores VEGF-induced angiogenesis. The activation of BLT2 itself by either 12(S)-HETE or LTB(4) evoked significant angiogenic phenotypes, both in vitro and in vivo. CONCLUSIONS Our findings indicate that BLT2 plays an essential role in mediating VEGF-induced angiogenesis.
Collapse
Affiliation(s)
- Geun-Young Kim
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Korea
| | | | | | | | | |
Collapse
|
110
|
Theoharides TC, Kempuraj D, Kourelis T, Manola A. Human mast cells stimulate activated T cells: implications for multiple sclerosis. Ann N Y Acad Sci 2009; 1144:74-82. [PMID: 19076366 DOI: 10.1196/annals.1418.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an autoimmune demyelinating disease of the central nervous system mainly mediated by Th1 and/or Th17 cells, which cross the blood-brain barrier. Recent evidence indicates that Th2 cells and mast cells, typically associated with allergic reactions, are also involved. Brain mast cells are critically located perivascularly and secrete numerous proinflammatory and vasoactive molecules that can disrupt the blood-brain barrier, a finding that precedes clinical or pathologic signs of multiple sclerosis. Brain mast cells in multiple sclerosis are activated by neural factors, including substance P, myelin basic protein, and corticotropin-releasing hormone, caused by acute stress, which induce release of several inflammatory mediators. Mast cells can stimulate activated T cells coming in contact with them at the blood-brain barrier, as well as after stimulation with myelin basic protein or substance P. Pretreatment with the flavone luteolin blocks mast cell stimulation and T cell activation, as well as experimental autoimmune encephalitis. Interactions between mast cells and T cells could constitute a new and unique therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
111
|
Xue L, Barrow A, Pettipher R. Interaction between prostaglandin D and chemoattractant receptor-homologous molecule expressed on Th2 cells mediates cytokine production by Th2 lymphocytes in response to activated mast cells. Clin Exp Immunol 2009; 156:126-33. [PMID: 19220324 DOI: 10.1111/j.1365-2249.2008.03871.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanisms by which immunologically activated mast cells stimulate the production of proinflammatory cytokines by T helper type 2 (Th2) lymphocytes were investigated in a human cell culture system. Supernatants collected from cord blood-derived mast cells after treatment with immunoglobulin E (IgE)/anti-IgE contained an activity that stimulated the production of interleukin (IL)-4, IL-5 and IL-13 (both mRNA and protein) by Th2 lymphocytes. This activity was not detected in supernatants from unactivated mast cells and its production was inhibited by treatment of activated mast cells with the cyclo-oxygenase inhibitor diclofenac. The concentration of diclofenac used inhibited completely the production of prostaglandin D(2) (PGD(2)) but did not inhibit the release of histamine or leukotriene C(4). The effect of supernatants from activated mast cells was mimicked by exogenous PGD(2) at concentrations similar to those detected in the cultures of activated mast cells, and addition of exogenous PGD(2) to supernatants from diclofenac-treated mast cells restored their ability to stimulate Th2 cytokine production. The ability of the mast cell supernatants to stimulate production of Th2 cytokines was not affected by addition of diclofenac to the Th2 cells directly, indicating that the production, but not the action, of the factor was sensitive to diclofenac treatment. Inhibition of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) abolished the effect of the mast cell supernatants on Th2 cytokine production. These data indicate that mast cells have the ability to stimulate Th2 cells to elaborate cytokines independently of T cell receptor activation or co-stimulation and this response is mediated by PGD(2) acting upon CRTH2 expressed by Th2 cells.
Collapse
Affiliation(s)
- L Xue
- Oxagen Ltd, Abingdon, Oxon, UK.
| | | | | |
Collapse
|
112
|
Mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2-dependent pathways are essential for CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J Allergy Clin Immunol 2009; 123:249-57. [PMID: 19130938 DOI: 10.1016/j.jaci.2008.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 10/23/2008] [Accepted: 10/29/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ligation of the leukotriene B(4) (LTB(4)) receptor 1 on effector memory CD8(+) T cells by LTB(4) is important for the recruitment of CD8(+) T cells into the airways, which appears central to the induction of airway hyperresponsiveness (AHR) and allergic inflammation. Phosphorylation of extracellular signal-regulated kinase (ERK) is important in activation and cytokine production from many cell types. OBJECTIVE The roles of ERKs in effector CD8(+) T-cell function and on CD8(+) T cell-mediated AHR were determined. METHODS Effector CD8(+) T cells were generated from OVA(257-264) (SIINFEKL) peptide-primed mononuclear cells from OT-1 mice. The effects of U0126, an ERK inhibitor, on effector CD8(+) T-cell function and on CD8(+) T cell-mediated AHR and allergic inflammation were examined. RESULTS Pretreatment of effector CD8(+) T cells with U0126 suppressed anti-CD3/anti-CD28-induced ERK1/2 phosphorylation and cytokine production, but did not affect LTB(4)-induced Ca(2+) mobilization or chemotaxis. Adoptive transfer of U0126-treated CD8(+) T cells into sensitized mice before secondary allergen challenge resulted in significant decreases in AHR, eosinophilic inflammation, goblet cell metaplasia, and IL-5 and IL-13 levels in bronchoalveolar lavage fluid of recipient mice. The number of transferred CD8(+) T cells accumulating in bronchoalveolar lavage fluid or lungs was unaffected by treatment. CONCLUSION ERK1/2-dependent pathways are essential for the effector functions of CD8(+) T cells, including T(H)2 cytokine production, allergic inflammation, and development of AHR. Inhibition of ERK1/2 signaling has potential therapeutic benefit in preventing CD8(+) T cell-mediated AHR.
Collapse
|
113
|
Mahshid Y, Lisy MR, Wang X, Spanbroek R, Flygare J, Christensson B, Björkholm M, Sander B, Habenicht AJR, Claesson HE. High expression of 5-lipoxygenase in normal and malignant mantle zone B lymphocytes. BMC Immunol 2009; 10:2. [PMID: 19134178 PMCID: PMC2631017 DOI: 10.1186/1471-2172-10-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/09/2009] [Indexed: 08/08/2023] Open
Abstract
Background Human B lymphocytes can produce leukotriene B4 but the biological function of the 5-lipoxygenase (5-LO) pathway in B cells is unclear. In order to better understand and define the role of 5-LO in B cells, we investigated the expression of 5-LO mRNA and protein in subsets of B cells from human tonsils and different types of B cell lymphoma. Results Based on RT-PCR and western blot/immunohistochemical staining, with a polyclonal antibody raised against 5-LO, high expression of 5-LO was found in mantle zone B cells from tonsils. By contrast, only a weak expression of 5-LO was detected in germinal centre cells and no expression in plasma cells from tonsils. This pattern of 5-LO expression was preserved in malignant lymphoma with high expression in mantle B cell lymphoma (MCL) and weak or no expression in follicular lymphoma. Primary leukemized MCL, so called B-prolymphocytic leukaemia cells, and MCL cell lines also expressed 5-LO and readily produced LTB4 after activation. Conclusion The present report demonstrates the expression of 5-LO mainly in normal and malignant mantle zone B cells while the expression is low or absent in germinal centre B cells and plasma cells, indicating a role of the 5-LO pathway in B cells before the cells finally differentiate to plasma cells.
Collapse
Affiliation(s)
- Yilmaz Mahshid
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Tristano AG. Tyrosine kinases as targets in rheumatoid arthritis. Int Immunopharmacol 2009; 9:1-9. [PMID: 18848912 DOI: 10.1016/j.intimp.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the accumulation and proliferation of inflammatory cells in the synovial (joint) lining, resulting in the formation of pannus tissue, which invades and destroys adjacent cartilage and bone. In RA macrophages, B cells, mast cells, fibroblast-like synoviocytes (FLSs) and CD4+ T lymphocytes become activated and contribute to synovial inflammation and joint destruction. It has been showed that different tyrosine kinases participate in the activation of those cells having important participation in the physiopathology of RA. Therefore, the tyrosine kinases inhibitors could be the next step in the treatment of patients with RA. This review focuses on recent advances on the role of tyrosine kinases and their inhibitors in the physiopathology of RA.
Collapse
|
115
|
The controversial role of mast cells in tumor growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:89-131. [PMID: 19491054 DOI: 10.1016/s1937-6448(09)75004-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) were first described by Paul Ehrlich (Beiträge zur Theorie und Praxis der Histologischen Färbung, Thesis, Leipzig University, 1878). They have long been implicated in the pathogenesis of allergic reactions and protective responses to parasites. However, their functional role has been found to be complex and multifarious. MCs are also involved in various cell-mediated immune reactions and found in tissues from multiple disease sites, and as a component of the host reaction to bacteria, parasite, and even virus infections. They also participate in angiogenic and tissue repair processes after injury. The importance of a possible functional link between chronic inflammation and cancer has long been recognized. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, a possible contribution of these cells to tumor development has emerged. In this review, general biology of mast cells, their development, anatomical distribution, and phenotype as well as their secretory products will first be discussed. The specific involvement of MCs in tumor biology and tumor fate will then be considered, with particular emphasis on their capacity to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Finally, it is suggested that mast cells may serve as a novel therapeutic target for cancer treatment.
Collapse
|
116
|
Mandal AK, Jones PB, Bair AM, Christmas P, Miller D, Yamin TTD, Wisniewski D, Menke J, Evans JF, Hyman BT, Bacskai B, Chen M, Lee DM, Nikolic B, Soberman RJ. The nuclear membrane organization of leukotriene synthesis. Proc Natl Acad Sci U S A 2008; 105:20434-9. [PMID: 19075240 PMCID: PMC2629249 DOI: 10.1073/pnas.0808211106] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Indexed: 01/08/2023] Open
Abstract
Leukotrienes (LTs) are signaling molecules derived from arachidonic acid that initiate and amplify innate and adaptive immunity. In turn, how their synthesis is organized on the nuclear envelope of myeloid cells in response to extracellular signals is not understood. We define the supramolecular architecture of LT synthesis by identifying the activation-dependent assembly of novel multiprotein complexes on the outer and inner nuclear membranes of mast cells. These complexes are centered on the integral membrane protein 5-Lipoxygenase-Activating Protein, which we identify as a scaffold protein for 5-Lipoxygenase, the initial enzyme of LT synthesis. We also identify these complexes in mouse neutrophils isolated from inflamed joints. Our studies reveal the macromolecular organization of LT synthesis.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Unit, Massachusetts General Hospital, Building 149-The Navy Yard, 13th Street, Charlestown, MA 02129
| | - Phillip B. Jones
- Department of Neurology and Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Building 114-The Navy Yard, 16th Street, Charlestown MA, 02129
| | - Angela M. Bair
- Renal Unit, Massachusetts General Hospital, Building 149-The Navy Yard, 13th Street, Charlestown, MA 02129
| | - Peter Christmas
- Renal Unit, Massachusetts General Hospital, Building 149-The Navy Yard, 13th Street, Charlestown, MA 02129
| | | | | | | | - John Menke
- Merck Research Laboratories, Rahway, NJ 07065; and
| | | | - Bradley T. Hyman
- Department of Neurology and Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Building 114-The Navy Yard, 16th Street, Charlestown MA, 02129
| | - Brian Bacskai
- Department of Neurology and Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Building 114-The Navy Yard, 16th Street, Charlestown MA, 02129
| | - Mei Chen
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - David M. Lee
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Boris Nikolic
- Renal Unit, Massachusetts General Hospital, Building 149-The Navy Yard, 13th Street, Charlestown, MA 02129
| | - Roy J. Soberman
- Renal Unit, Massachusetts General Hospital, Building 149-The Navy Yard, 13th Street, Charlestown, MA 02129
| |
Collapse
|
117
|
Beaufays J, Adam B, Menten-Dedoyart C, Fievez L, Grosjean A, Decrem Y, Prévôt PP, Santini S, Brasseur R, Brossard M, Vanhaeverbeek M, Bureau F, Heinen E, Lins L, Vanhamme L, Godfroid E. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One 2008; 3:e3987. [PMID: 19096526 PMCID: PMC2600610 DOI: 10.1371/journal.pone.0003987] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/17/2008] [Indexed: 01/13/2023] Open
Abstract
Background During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. Methodology/Principal Findings We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: ±1 nM), similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. Conclusions/Significance These elements suggest that Ir-LBP is a “scavenger” of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.
Collapse
Affiliation(s)
- Jérôme Beaufays
- Laboratory for Molecular Biology of Ectoparasites, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Benoît Adam
- Centre de Biophysique Moléculaire Numérique, Gembloux Agricultural University, Gembloux, Belgium
| | - Catherine Menten-Dedoyart
- Institute of Human Histology, Department of Morphology and Immunology, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Physiology, GIGA-Research, University of Liège, Liège, Belgium
| | - Amélie Grosjean
- Laboratoire de Médecine Expérimentale (ULB 222 Unit), ISPPC Hopital André Vesale, Montigny-Le-Tilleul, Belgium
| | - Yves Decrem
- Laboratory for Molecular Biology of Ectoparasites, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pierre-Paul Prévôt
- Laboratory for Molecular Biology of Ectoparasites, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sébastien Santini
- Centre de Biophysique Moléculaire Numérique, Gembloux Agricultural University, Gembloux, Belgium
| | - Robert Brasseur
- Centre de Biophysique Moléculaire Numérique, Gembloux Agricultural University, Gembloux, Belgium
| | - Michel Brossard
- Institute of Zoology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Michel Vanhaeverbeek
- Laboratoire de Médecine Expérimentale (ULB 222 Unit), ISPPC Hopital André Vesale, Montigny-Le-Tilleul, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Physiology, GIGA-Research, University of Liège, Liège, Belgium
| | - Ernst Heinen
- Institute of Human Histology, Department of Morphology and Immunology, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Laurence Lins
- Centre de Biophysique Moléculaire Numérique, Gembloux Agricultural University, Gembloux, Belgium
| | - Luc Vanhamme
- Laboratory for Molecular Biology of Ectoparasites, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Edmond Godfroid
- Laboratory for Molecular Biology of Ectoparasites, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
118
|
Bansal G, DiVietro J, Kuehn HS, Rao S, Nocka KH, Gilfillan AM, Druey KM. RGS13 controls g protein-coupled receptor-evoked responses of human mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7882-90. [PMID: 19017978 PMCID: PMC2693264 DOI: 10.4049/jimmunol.181.11.7882] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgE-mediated mast cell degranulation and release of vasoactive mediators induced by allergens elicits allergic responses. Although G protein-coupled receptor (GPCR)-induced signals may amplify IgE-dependent degranulation, how GPCR signaling in mast cells is regulated remains incompletely defined. We investigated the role of regulator of G protein signaling (RGS) proteins in the modulation of these pathways in human mast cells. Several RGS proteins were expressed in mast cells including RGS13, which we previously showed inhibited IgE-mediated mast cell degranulation and anaphylaxis in mice. To characterize how RGS13 affects GPCR-mediated functions of human mast cells, we analyzed human mast cell lines (HMC-1 and LAD2) depleted of RGS13 by specific small interfering RNA or short hairpin RNA and HMC-1 cells overexpressing RGS13. Transient RGS13 knockdown in LAD2 cells lead to increased degranulation to sphingosine-1-phosphate but not to IgE-Ag or C3a. Relative to control cells, HMC-1 cells stably expressing RGS13-targeted short hairpin RNA had greater Ca(2+) mobilization in response to several natural GPCR ligands such as adenosine, C5a, sphingosine-1-phosphate, and CXCL12 than wild-type cells. Akt phosphorylation, chemotaxis, and cytokine (IL-8) secretion induced by CXCL12 were also greater in short hairpin RGS13-HMC-1 cells compared with control. RGS13 overexpression inhibited CXCL12-evoked Ca(2+) mobilization, Akt phosphorylation and chemotaxis. These results suggest that RGS13 restricts certain GPCR-mediated biological responses of human mast cells.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | | | | | | | | | - Kirk M. Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
119
|
Miyahara N, Ohnishi H, Miyahara S, Takeda K, Matsubara S, Matsuda H, Okamoto M, Loader JE, Joetham A, Tanimoto M, Dakhama A, Gelfand EW. Leukotriene B4 release from mast cells in IgE-mediated airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 2008; 40:672-82. [PMID: 19029019 DOI: 10.1165/rcmb.2008-0095oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that leukotriene B4 (LTB4), a proinflammatory lipid mediator, is linked to the development of airway hyperresponsiveness through the accumulation of IL-13-producing CD8+ T cells, which express a high affinity receptor for LTB4, BLT1 (Miyahara et al., Am J Respir Crit Care Med 2005;172:161-167; J Immunol 2005;174:4979-4984). By using leukotriene A4 hydrolase-deficient (LTA4H-/-) mice, which fail to synthesize LTB4, we determined the role of this lipid mediator in allergen-induced airway responses. Two approaches were used. In the first, LTA4H-/- mice and wild-type (LTA4H+/+) mice were systemically sensitized and challenged via the airways to ovalbumin. In the second, mice were passively sensitized with anti-ovalbumin IgE and exposed to ovalbumin via the airways. Mast cells were generated from bone marrow of LTA4H+/+ mice or LTA4H-/- mice. After active sensitization and challenge, LTA4H-/- mice showed significantly lower airway hyperresponsiveness compared with LTA4H+/+ mice, and eosinophil numbers and IL-13 levels in the bronchoalveoloar lavage of LTA4H-/- mice were also significantly lower. LTA4H-/- mice also showed decreased airway reactivity after passive sensitization and challenge. After LTA4H+/+ mast cell transfer, LTA4H-/- mice showed increased airway reactivity after passive sensitization and challenge, but not after systemic sensitization and challenge. These data confirm the important role for LTB4 in the development of altered airway responses and suggest that LTB4 secretion from mast cells is critical to eliciting increased airway reactivity after passive sensitization with allergen-specific IgE.
Collapse
Affiliation(s)
- Nobuaki Miyahara
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
|
121
|
Brown MA, Sayed BA, Christy A. Mast cells and the adaptive immune response. J Clin Immunol 2008; 28:671-6. [PMID: 18802742 DOI: 10.1007/s10875-008-9247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/10/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND The idea that the innate and adaptive immune systems are not separate entities is no longer new. In fact, it is surprising that this paradigm was accepted without question for so long. Many innate cells express cell surface molecules and soluble mediators that are essential for the development and activation of T cells and B cells. Yet among the innate cell populations, mast cells may play the major role in regulating adaptive immune cell function. DISCUSSION This role first came to light in studies of mast cells and their involvement in the autoimmune disease experimental allergic encephalomyelitis, the major rodent model of multiple sclerosis and has subsequently been verified in many in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Melissa A Brown
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
122
|
Whalen KA, Legault H, Hang C, Hill A, Kasaian M, Donaldson D, Bensch GW, Bensch G, Baker J, Reddy PS, Wood N, Ramarao MK, Ellis DK, Csimma C, McKee C, Clark JD, Ryan J, Dorner AJ, O'Toole M. In vitro allergen challenge of peripheral blood induces differential gene expression in mononuclear cells of asthmatic patients: inhibition of cytosolic phospholipase A2alpha overcomes the asthma-associated response. Clin Exp Allergy 2008; 38:1590-605. [PMID: 18665843 PMCID: PMC2613256 DOI: 10.1111/j.1365-2222.2008.03059.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 01/14/2023]
Abstract
BACKGROUND Existing treatments for asthma are not effective in all patients and disease exacerbations are common, highlighting the need for increased understanding of disease mechanisms and novel treatment strategies. The leukotriene pathway including the enzyme responsible for arachidonic acid release from cellular phospholipids, cPLA(2)alpha, is a major contributor to asthmatic responses and an attractive target in asthma therapies. OBJECTIVE The study reported here investigates (a) the differential effects of in vitro exposure of peripheral blood mononuclear cells (PBMCs) to allergen between asthma and healthy subjects, and (b) the contribution of cPLA(2)alpha to these differences in gene expression. METHODS In vitro responses of asthma (N=26) and healthy (N=11) subject PBMC samples to allergen stimulation in the presence and absence of cPLA(2)alpha inhibition or 5-lipoxygenase inhibition were compared at the gene expression level using oligonucleotide arrays and at the protein level using ELISA. RESULTS Subject samples within both asthma and healthy groups showed allergen-dependent cytokine production and allergen-dependent gene expression changes, although transcriptional profiling identified 153 genes that were modulated significantly differently by allergen between asthma and healthy subjects. Among these were genes previously associated with asthma, but the majority (about 80%) have not previously been associated with asthma. CONCLUSIONS Transcriptional profiling elucidated novel gene expression differences between the asthmatic and healthy subject samples. Although 5-lipoxygenase inhibition did not significantly affect allergen-modulated gene expression, the inhibition of cPLA(2)alpha activity affected many of the allergen-dependent, asthma-associated gene expression changes.
Collapse
Affiliation(s)
- K A Whalen
- Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Holdsworth SR, Summers SA. Role of Mast Cells in Progressive Renal Diseases: Figure 1. J Am Soc Nephrol 2008; 19:2254-61. [DOI: 10.1681/asn.2008010015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
124
|
Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008; 224:44-57. [PMID: 18759919 PMCID: PMC2968700 DOI: 10.1111/j.1600-065x.2008.00663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.
Collapse
Affiliation(s)
- Carol T. Cady
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Jeffrey S. Rice
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Vanessa L. Ott
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - John C. Cambier
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| |
Collapse
|
125
|
Cell types involved in allergic asthma and their use in in vitro models to assess respiratory sensitization. Toxicol In Vitro 2008; 22:1419-31. [PMID: 18603401 DOI: 10.1016/j.tiv.2008.05.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/02/2008] [Accepted: 05/23/2008] [Indexed: 11/22/2022]
Abstract
This review first describes the mechanism and cell types involved in allergic asthma, which is a complex clinical disease characterized by airway obstruction, airway inflammation and airway hyperresponsiveness to a variety of stimuli. The development of allergic asthma exists of three phases, namely the induction phase, the early-phase asthmatic reaction (EAR) and the late-phase asthmatic reaction (LAR). In the induction phase, antigen-presenting cells play a major role. Most important cells in the EAR are mast cells, and during the LAR, various cell types, such as eosinophils, neutrophils, T cells, macrophages, dendritic cells (DCs), and cells that endow structure are involved. In occupational asthma, this immunological mechanism is involved in 90% of the cases. The second part of this review gives an overview of in vitro models to assess the hazardous potential of high- and low-molecular weight chemicals on the respiratory system. In order to develop a good in vitro model for respiratory allergy, the choice of appropriate cell types is important. Epithelial cells, macrophages and DCs are currently the most used models in this field of research.
Collapse
|
126
|
Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 2008; 26:705-39. [PMID: 18370925 DOI: 10.1146/annurev.immunol.26.021607.090320] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are many parallels between allergic and autoimmune responses. Both are considered hypersensitivity responses: pathologies that are elicited by an exuberant reaction to antigens that do not pose any inherent danger to the organism. Although mast cells have long been recognized as central players in allergy, only recently has their role in autoimmunity become apparent. Because of the commonalities of these responses, much of what we have learned about the underlying mast cell-dependent mechanisms of inflammatory damage in allergy and asthma can be used to understand autoimmunity. Here we review mast cell biology in the context of autoimmune disease. We discuss the huge diversity in mast cell responses that can exert either proinflammatory or antiinflammatory activity. We also consider the myriad factors that cause one response to predominate over another in a particular immune setting.
Collapse
Affiliation(s)
- Blayne A Sayed
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
127
|
Okamoto M, Takeda K, Joetham A, Ohnishi H, Matsuda H, Swasey CH, Swanson BJ, Yasutomo K, Dakhama A, Gelfand EW. Essential role of Notch signaling in effector memory CD8+ T cell-mediated airway hyperresponsiveness and inflammation. ACTA ACUST UNITED AC 2008; 205:1087-97. [PMID: 18426985 PMCID: PMC2373841 DOI: 10.1084/jem.20072200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adoptive transfer of in vivo-primed CD8(+) T cells or in vitro-generated effector memory CD8(+) T (T(EFF)) cells restores airway hyperresponsiveness (AHR) and airway inflammation in CD8-deficient (CD8(-/-)) mice. Examining transcription levels, there was a strong induction of Notch1 in T(EFF) cells compared with central memory CD8(+) T cells. Treatment of T(EFF) cells with a gamma-secretase inhibitor (GSI) strongly inhibited Notch signaling in these cells, and after adoptive transfer, GSI-treated T(EFF) cells failed to restore AHR and airway inflammation in sensitized and challenged recipient CD8(-/-) mice, or to enhance these responses in recipient wild-type (WT) mice. These effects of GSI were also associated with increased expression of the Notch ligand Delta1 in T(EFF) cells. Treatment of sensitized and challenged WT mice with Delta1-Fc resulted in decreased AHR and airway inflammation accompanied by higher levels of interferon gamma in bronchoalveolar lavage fluid. These results demonstrate a role for Notch in skewing the T cell response from a T helper (Th)2 to a Th1 phenotype as a consequence of the inhibition of Notch receptor activation and the up-regulation of the Notch ligand Delta1. These data are the first to show a functional role for Notch in the challenge phase of CD8(+) T cell-mediated development of AHR and airway inflammation, and identify Delta1 as an important regulator of allergic airway inflammation.
Collapse
Affiliation(s)
- Masakazu Okamoto
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ohnishi H, Miyahara N, Dakhama A, Takeda K, Mathis S, Haribabu B, Gelfand EW. Corticosteroids enhance CD8+ T cell-mediated airway hyperresponsiveness and allergic inflammation by upregulating leukotriene B4 receptor 1. J Allergy Clin Immunol 2008; 121:864-71.e4. [PMID: 18395551 DOI: 10.1016/j.jaci.2008.01.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Leukotriene B4 (LTB4) is a potent inflammatory lipid mediator that binds to LTB4 receptor 1 (BLT1). Ligation of BLT1 by LTB4 plays an important role in the recruitment of effector memory CD8+ T cells into the airways of sensitized and challenged mice. OBJECTIVES The effects of the corticosteroid dexamethasone (DEX) on BLT1-expressing effector memory CD8+ T cells and effector memory CD8+ T cell-mediated airway hyperresponsiveness (AHR) and allergic inflammation were determined. METHODS Effector memory CD8+ T cells were generated from ovalbumin(257-264)-primed mononuclear cells from OT-1 mice in the presence of IL-2. In some cultures DEX was added. The effects of DEX on BLT1 expression, LTB4-induced Ca2+ influx, phosphorylation of extracellular signal-regulated kinase 1/2, chemotaxis, and effector memory CD8+ T cell-mediated AHR were examined. RESULTS DEX-treated effector memory CD8+ T cells showed significant increases in surface expression of BLT1, LTB4-induced intracellular Ca2+ influx, phosphorylation of extracellular signal-regulated kinase 1/2, and chemotaxis. Upregulation of BLT1 by DEX was accompanied by increased IL-2 receptor expression. Adoptive transfer of DEX-treated effector memory CD8+ T cells into ovalbumin-sensitized and ovalbumin-challenged CD8-/- mice resulted in significant increases in AHR, allergic inflammation, goblet cell metaplasia, and numbers of both CD8+ and CD4+ T cells in the bronchoalveolar lavage fluid and lungs. CONCLUSIONS Corticosteroids upregulate BLT1 on effector memory CD8+ T cells and related signaling pathways and potentiate allergic airway inflammation and AHR induced by these cells.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Kirkland TA, Adler M, Bauman JG, Chen M, Haeggström JZ, King B, Kochanny MJ, Liang AM, Mendoza L, Phillips GB, Thunnissen M, Trinh L, Whitlow M, Ye B, Ye H, Parkinson J, Guilford WJ. Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem 2008; 16:4963-83. [PMID: 18394906 DOI: 10.1016/j.bmc.2008.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/12/2022]
Abstract
Leukotriene B(4) (LTB(4)) is a potent pro-inflammatory mediator that has been implicated in the pathogenesis of multiple diseases, including psoriasis, inflammatory bowel disease, multiple sclerosis and asthma. As a method to decrease the level of LTB(4) and possibly identify novel treatments, inhibitors of the LTB(4) biosynthetic enzyme, leukotriene A(4) hydrolase (LTA(4)-h), have been explored. Here we describe the discovery of a potent inhibitor of LTA(4)-h, arylamide of glutamic acid 4f, starting from the corresponding glycinamide 2. Analogs of 4f are then described, focusing on compounds that are both active and stable in whole blood. This effort culminated in the identification of amino alcohol 12a and amino ester 6b which meet these criteria.
Collapse
Affiliation(s)
- Thomas A Kirkland
- Department of Medicinal Chemistry, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Norman MU, Hulliger S, Colarusso P, Kubes P. Multichannel fluorescence spinning disk microscopy reveals early endogenous CD4 T cell recruitment in contact sensitivity via complement. THE JOURNAL OF IMMUNOLOGY 2008; 180:510-21. [PMID: 18097053 DOI: 10.4049/jimmunol.180.1.510] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Contact sensitivity (CS) is one of the primary in vivo models of T cell-mediated inflammation. The presence of CS-initiating CD4 T lymphocytes at the time of challenge is essential for transfer and full development of the late phase CS inflammatory response. From this observation investigators have speculated that early recruitment of CD4 T cells to the site of challenge must occur. Moreover, there must be rapid synthesis/release and disappearance of an important mediator during the first hours after hapten challenge. Using spinning disk confocal microscopy, we observed the very early effector events of the immune response. Simultaneous, real-time visualization of predominant neutrophil and extremely rare CD4 T cell trafficking in the challenged skin vasculature was noted (one rolling CD4 T cell for every 10-18 rolling and adherent neutrophils). We demonstrate that neutrophil adhesion during the early CS response was reduced in C5a receptor-deficient (C5aR-/-) mice or leukotriene B4 receptor antagonist-treated mice, whereas CD4 T cell recruitment was only inhibited in C5aR-/- mice. In line with these observations, leukocyte infiltration and the associated tissue damage were significantly reduced in C5aR-/- mice but not in leukotriene B4 receptor antagonist-treated wild-type mice 24 h after challenge. C5a receptor expression on T cells and not on tissue resident cells was important for the development of a CS response. Thus, by using spinning disk confocal microscopy we visualized the early events of an adaptive immune response and identified the rare but essential recruitment of CD4 T cells via the complement pathway.
Collapse
Affiliation(s)
- M Ursula Norman
- Immunology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
131
|
Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol 2008; 195:176-85. [DOI: 10.1016/j.jneuroim.2008.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/20/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
132
|
Narushima S, DiMeo D, Tian J, Zhang J, Liu D, Berg DJ. 5-Lipoxygenase-derived lipid mediators are not required for the development of NSAID-induced inflammatory bowel disease in IL-10-/- mice. Am J Physiol Gastrointest Liver Physiol 2008; 294:G477-88. [PMID: 18048478 DOI: 10.1152/ajpgi.00229.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leukotrienes are potent lipid mediators derived from the metabolism of arachidonic acid by the enzyme 5-lipoxygenase (5-LO). Elevated levels of the proinflammatory leukotriene LTB(4) have been found in preclinical models of inflammatory bowel disease (IBD) as well as in colon tissue from individuals with IBD. We therefore determined the extent to which absence of 5-LO-derived lipid mediators would alter the colitis in IL-10(-/-) mice, a model of human IBD. IL-10(-/-)/5-LO(-/-) mice were generated and were healthy. Absence of 5-LO did not alter the development of spontaneous colitis in IL-10-deficient mice. We then evaluated the extent to which absence of 5-LO would alter the development of NSAID-induced colitis in IL-10(-/-) mice. Absence of 5-LO did not delay the onset or alter the severity of inflammation in NSAID-treated IL-10(-/-) mice. At an early time point, 3 days after NSAID treatment was initiated, a qualitative increase in the number of dendritic cells and CD4(+) T cells was noted in the colons of IL-10(-/-)/5-LO(-/-); however, this difference was no longer present after 14 days of NSAID treatment. Absence of 5-LO did not alter the degree of neutrophil infiltration into the in this model. Absence of 5-LO does not alter the development of IFN-gamma producing Th1-type CD4(+) T cells or IL-17 producing CD4(+) T cells. Absence of 5-LO-derived mediators did not alter the expression of the adhesion molecules ICAM-1 and P-selectin. Development of colitis in IL-10(-/-) mice was associated with increased levels of the 5-LO-derived anti-inflammatory lipoxin LXA(4). These studies demonstrate that 5-LO-derived leukotrienes are not required for the development or maintenance of spontaneous or NSAID-induced colonic inflammation in IL-10(-/-) mice.
Collapse
Affiliation(s)
- Seiko Narushima
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
133
|
Hurley BP, Sin A, McCormick BA. Adhesion molecules involved in hepoxilin A3-mediated neutrophil transepithelial migration. Clin Exp Immunol 2008; 151:297-305. [PMID: 18005361 PMCID: PMC2276941 DOI: 10.1111/j.1365-2249.2007.03551.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2007] [Indexed: 11/28/2022] Open
Abstract
A common feature underlying active states of inflammation is the migration of neutrophils (PMNs) from the circulation and across a number of tissue barriers in response to chemoattractant stimuli. Although our group has recently established a discreet role for the PMN chemoattractant, hepoxilin A3 (HXA3) in the process of PMN recruitment, very little is known regarding the interaction of HXA3 with PMNs. To characterize further the event of HXA3-induced PMN transepithelial migration, we sought to determine the adhesion molecules required for migration across different epithelial surfaces (T84 intestinal and A549 airway cells) relative to two well-studied PMN chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 (LTB4). Our findings reveal that the adhesion interaction profile of PMN transepithelial migration in response to HXA3 differs from the adhesion interaction profile exhibited by the structurally related eicosanoid LTB4. Furthermore, unique to PMN transepithelial migration induced by gradients of HXA3 was the critical dependency of all four major surface adhesion molecules examined (i.e. CD18, CD47, CD44 and CD55). Our results suggest that the particular chemoattractant gradient imposed, as well as the type of epithelial cell monolayer, each plays a role in determining the adhesion molecules involved in transepithelial migration. Given the complexities of these interactions, our findings are important to consider with respect to adhesion molecules that may be targeted for potential drug development.
Collapse
Affiliation(s)
- B P Hurley
- Mucosal Immunology Laboratory, Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | |
Collapse
|
134
|
Whittle BJR, Varga C, Berko A, Horvath K, Posa A, Riley JP, Lundeen KA, Fourie AM, Dunford PJ. Attenuation of inflammation and cytokine production in rat colitis by a novel selective inhibitor of leukotriene A4 hydrolase. Br J Pharmacol 2007; 153:983-91. [PMID: 18157165 DOI: 10.1038/sj.bjp.0707645] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Leukotriene B(4) (LTB(4)), formed by the sequential actions of the 5-lipoxygenase (5-LO) and leukotriene A(4) hydrolase (LTA(4)H), is a pro-inflammatory mediator implicated in the pathogenesis of inflammatory bowel disease. However, inhibitors of 5-LO have not proved to be consistent in their therapeutic efficacy in colitis. Another approach to inhibiting LTB(4) synthesis is through the use of inhibitors of LTA(4)H, such as the novel, potent and selective compound, JNJ 26993135. EXPERIMENTAL APPROACH The effect of oral administration of JNJ 26993135 has been evaluated in a rat model of colitis provoked by colonic instillation of trinitrobenzenesulphonic acid (TNBS). The extent and severity of the macroscopic inflammatory response, the colonic levels of myeloperoxidase (MPO) and LTB(4) and of the pro-inflammatory cytokines, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were measured. KEY RESULTS Oral administration of JNJ 26993135 (5, 15 and 30 mg kg(-1), twice a day) dose-dependently reduced both the extent and intensity of the colonic inflammatory damage observed 3 days after TNBS challenge. JNJ 26993135 also dose-dependently reduced the elevated colonic levels of LTB(4), as well as the inflammatory biomarkers, MPO, IL-6 and TNF-alpha. This dosing regimen was supported by the pharmacokinetic profile of JNJ 26993135, along with the demonstration of the inhibition of ex vivo production of LTB(4) in whole blood following oral administration. CONCLUSIONS AND IMPLICATIONS These results with JNJ 26993135 in the rat TNBS model support the role of LTB(4) in colitis and the potential value of targeting LTA(4)H for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- B J R Whittle
- William Harvey Research Institute, Barts and the London, Queen Mary's School of Medicine, Charterhouse Square, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Ando K, Kawamura Y, Akai Y, Kunitomo JI, Yokomizo T, Yamashita M, Ohta S, Ohishi T, Ohishi Y. Preparation of 2-, 3-, 4- and 7-(2-alkylcarbamoyl-1-alkylvinyl)benzo[b]furans and their BLT1 and/or BLT2 inhibitory activities. Org Biomol Chem 2007; 6:296-307. [PMID: 18174999 DOI: 10.1039/b710935k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several 2-alkylcarbamoyl-1-alkylvinylbenzo[b]furans were designed to find a selective leukotriene B4 (LTB4) receptor antagonist. 2-(2-Alkylcarbamoyl-1-alkylvinyl)benzo[b]furans having a substituent group at the 3-position, 4-(2-alkylcarbamoyl-1-methylvinyl)benzo[b]furans having a substituent group at the 3-position, and 7-(2-alkylcarbamoyl-1-methylvinyl)benzo[b]furans and 3-(2-alkylcarbamoyl-1-alkylvinyl)benzo[b]furans were prepared and evaluated for LTB4 receptor (BLT1 and BLT2) inhibitory activities. (E)-3-Amino-4-[2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]benzo[b]furan ((E)-17c) showed potent and selective inhibitory activity for BLT2. On the other hand, (E)-7-(2-diethylcarbamoyl-1-methylvinyl)benzo[b]furan ((E)-27a) showed potent inhibitory activity for both BLT1 and BLT2.
Collapse
Affiliation(s)
- Kumiko Ando
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
It is generally thought that mast cells influence T-cell activation nonspecifically through the release of inflammatory mediators. In this report, we provide evidence that mast cells may also affect antigen-specific T-cell responses by internalizing immunoglobulin E-bound antigens for presentation to antigen-specific T cells. Surprisingly, T-cell activation did not require that mast cells express major histocompatibility complex class II, indicating that mast cells were not involved in the direct presentation of the internalized antigens. Rather, the antigen captured by mast cells is presented by other major histocompatibility complex class II(+) antigen-presenting cells. To explore how this may occur, we investigated the fate of mast cells stimulated by antigen and found that FcepsilonRI crosslinking enhances mast cell apoptosis. Cell death by antigen-captured mast cells was required for efficient presentation because protection of mast cell death significantly decreased T-cell activation. These results suggest that mast cells may be involved in antigen presentation by acting as an antigen reservoir after antigen capture through specific immunoglobulin E molecules bound to their FcepsilonRI. This mechanism may contribute to how mast cells impact the development of T-cell responses.
Collapse
|
137
|
Affiliation(s)
- Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor 48109-5642, USA.
| | | |
Collapse
|
138
|
Koya T, Miyahara N, Takeda K, Matsubara S, Matsuda H, Swasey C, Balhorn A, Dakhama A, Gelfand EW. CD8+ T cell-mediated airway hyperresponsiveness and inflammation is dependent on CD4+IL-4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:2787-96. [PMID: 17709492 DOI: 10.4049/jimmunol.179.5.2787] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.
Collapse
Affiliation(s)
- Toshiyuki Koya
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Christy AL, Brown MA. The Multitasking Mast Cell: Positive and Negative Roles in the Progression of Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2007; 179:2673-9. [PMID: 17709477 DOI: 10.4049/jimmunol.179.5.2673] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among the potential outcomes of an aberrantly functioning immune system are allergic disease and autoimmunity. Although it has been assumed that the underlying mechanisms mediating these conditions are completely different, recent evidence shows that mast cells provide a common link. Mast cells reside in most tissues, are particularly prevalent at sites of Ag entry, and act as sentinel cells of the immune system. They express many inflammatory mediators that affect both innate and adaptive cellular function. They contribute to pathologic allergic inflammation but also serve an important protective role in bacterial and parasite infections. Given the proinflammatory nature of autoimmune responses, it is not surprising that studies using murine models of autoimmunity clearly implicate mast cells in the initiation and/or progression of autoimmune disease. In this review, we discuss the defined and hypothesized mechanisms of mast cell influence on autoimmune diseases, including their surprising and newly discovered role as anti-inflammatory cells.
Collapse
Affiliation(s)
- Alison L Christy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, USA
| | | |
Collapse
|
140
|
Eklund KK. Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 2007; 217:38-52. [PMID: 17498050 DOI: 10.1111/j.1600-065x.2007.00504.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests that mast cells (MCs), in addition to acute allergic reactions, are involved in the pathogenesis of chronic inflammatory diseases and in particular in rheumatoid arthritis (RA). MCs reside in connective tissues and in synovial tissue of joints. They produce an array of proinflammatory mediators, tissue destructive proteases, and cytokines, most prominently tumor necrosis factor-alpha, which is one of the key cytokines in the pathogenesis of RA. MCs may also participate in the development of secondary or amyloid A amyloidosis, as the partial degradation of the serum amyloid A (SAA) protein by MCs leads to the generation of a highly amyloidogenic N-terminal fragment of SAA. MCs may contribute to the pathogenesis of connective tissue diseases, scleroderma, vasculitic syndromes, and systemic lupus erythematosus, although the data available are limited. Inhibition of the most important growth factor receptor of human MCs, c-Kit, by the selective tyrosine kinase inhibitor imatinib mesylate, induces apoptosis of synovial tissue MCs. As MCs are long-lived cells, induction of their apoptosis could be a feasible approach to inhibit their functions. Preliminary findings suggest that a drug that inhibits c-Kit could have anti-rheumatic activity in the treatment of patients with RA and spondyloarthropathies.
Collapse
Affiliation(s)
- Kari K Eklund
- Division of Rheumatology, Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
141
|
Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 2007; 217:304-28. [PMID: 17498068 DOI: 10.1111/j.1600-065x.2007.00520.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Observations of increased numbers of mast cells at sites of chronic inflammation have been reported for over a hundred years. Light and electron microscopic evidence of mast cell activation at such sites, taken together with the known functions of the diverse mediators, cytokines, and growth factors that can be secreted by appropriately activated mast cells, have suggested a wide range of possible functions for mast cells in promoting (or suppressing) many features of chronic inflammation. Similarly, these and other lines of evidence have implicated mast cells in a variety of adaptive or pathological responses that are associated with persistent inflammation at the affected sites. Definitively characterizing the importance of mast cells in chronic inflammation in humans is difficult. However, mice that genetically lack mast cells, especially those which can undergo engraftment with wildtype or genetically altered mast cells, provide a means to investigate the importance of mast cells and specific mast cell functions or products in diverse models of chronic inflammation. Such work has confirmed that mast cells can significantly influence multiple features of chronic inflammatory responses, through diverse effects that can either promote or, perhaps more surprisingly, suppress aspects of these responses.
Collapse
Affiliation(s)
- Martin Metz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
142
|
Beer F, Kuo CH, Morohoshi K, Goodliffe J, Munro P, Aye CC, Dawson M, Richardson RM, Jones LH, Ikeda Y, Nakamura T, Toda M, Flynn T, Ohbayashi M, Miyazaki D, Ono SJ. Role of beta-chemokines in mast cell activation and type I hypersensitivity reactions in the conjunctiva: in vivo and in vitro studies. Immunol Rev 2007; 217:96-104. [PMID: 17498054 DOI: 10.1111/j.1600-065x.2007.00521.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemokines have a clearly defined role in mobilizing the recruitment of leukocytes to both healthy and inflamed tissues. This review details work from our and other laboratories, indicating that beta-chemokines may play important roles (i) in driving the terminal differentiation of mast cell precursors in mucosal tissues and (ii) in providing priming or costimulatory signals required for mast cell activation, leading to an antigen-driven inflammatory response. These data stem from in vivo, ex vivo, and in vitro studies. Data are also presented that suggest that Fc epsilon RI:chemokine receptor cross talk may involve spatiotemporal dynamics that may control the strength and nature of the complex activating signals controlling mast cell effector function.
Collapse
Affiliation(s)
- Frederick Beer
- Emory University School of Medicine, Emory Eye Center, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Doepping S, Funk CD, Habenicht AJR, Spanbroek R. Selective 5-Lipoxygenase Expression in Langerhans Cells and Impaired Dendritic Cell Migration in 5-LO-Deficient Mice Reveal Leukotriene Action in Skin. J Invest Dermatol 2007; 127:1692-700. [PMID: 17392829 DOI: 10.1038/sj.jid.5700796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the initial steps in the formation of leukotrienes (LTs), which are implicated in immune reactions. Recently, it was shown that FITC-triggered epidermal Langerhans cell (LC) emigration to draining lymph nodes (LNs) is impaired in LTC4 export pump (multidrug resistance-associated protein 1)-deficient mice. Here, we sought genetic evidence for a role of endogenous LTs in dendritic cell function through the study of 5-LO-deficient mice. Though DC numbers in skin, spleen, and peripheral LNs were similar in both 5-LO-deficient and wild-type (WT) mice, DC homing from skin to draining LNs induced by FITC was reduced by 75% in 5-LO-deficient mice. Moreover, in WT mice, all epidermal LCs, dermal langerin+ LCs, and subsets of dermal macrophages and langerin+ LCs in T-cell areas of skin-draining LNs markedly expressed 5-LO. However, the enzyme was noticeably absent in all DC subsets of the dermis, thymus, spleen, Peyer's patches, mesenteric LNs, and mucosal surfaces of lung and intestine. As all epidermal cells other than LCs lacked 5-LO and because differentiation and activation of DCs generated from 5-LO-deficient mice in vitro were normal, these data support a selective role of endogenous LTs in DC homing following skin sensitization.
Collapse
Affiliation(s)
- Sandra Doepping
- Institute for Vascular Medicine, Friedrich-Schiller University of Jena, Jena, Germany
| | | | | | | |
Collapse
|
144
|
Yokomizo T. [Leukotriene B4 receptors: identification and roles in inflammatory diseases]. Nihon Yakurigaku Zasshi 2007; 130:29-33. [PMID: 17634677 DOI: 10.1254/fpj.130.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
145
|
Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7:365-78. [PMID: 17438574 DOI: 10.1038/nri2072] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The high-affinity Fc receptor for IgE (FcepsilonRI), a multimeric immune receptor, is a crucial structure for IgE-mediated allergic reactions. In recent years, advances have been made in several important areas of the study of FcepsilonRI. The first area relates to FcepsilonRI-mediated biological responses that are antigen independent. The second area encompasses the biological relevance of the distinct signalling pathways that are activated by FcepsilonRI; and the third area relates to the accumulated evidence for the tight control of FcepsilonRI signalling through a broad array of inhibitory mechanisms, which are being developed into promising therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Kraft
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine 945, 71 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
146
|
Abstract
Mast cells are versatile tissue regulator cells controlling major intestinal functions such as epithelial secretion, epithelial permeability, blood flow, neuroimmune interactions, and peristalsis. Most importantly, mast cells are key regulators of the integrity and function of the gastrointestinal barrier. At the same time, they can act as immunomodulatory cells by reacting to various exogenous signals from bacteria, viruses, and parasites through innate recognition receptors, such as Toll-like receptors (TLRs) or through receptors of the specific immune system, such as immunoglobulins (Igs) bound to their cell surface. This mast cell function is enhanced by an intensive cross talk of mast cells with other cells of the innate or adaptive immune systems. Finally, mast cells act as inflammatory cells mediating diseases such as allergy, once they become dysregulated because of excess of allergen, allergen-specific IgE and cytokines, or invading microbes. The present article focuses on the human mast cell functions in the intestine and compares the data with those derived from animal experiments. In particular, the role of bacteria and TLRs expression by mast cells for allergic reactions are discussed.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine and Immunology, University of Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
147
|
Abstract
Mast cells reside in the normal synovium and increase strikingly in number in rheumatoid arthritis and other joint diseases. Given the broad spectrum of activity of this lineage, it has for decades been considered probable that mast cells are involved in the pathophysiology of synovitis. Recent work in murine arthritis has substantiated this suspicion, showing that mast cells can contribute importantly to the initiation of inflammatory arthritis. However, the role of the greatly expanded population of synovial mast cells in established arthritis remains unknown. Here we review the current understanding of mast cell function in acute arthritis and consider the potentially important influence of this cell on key processes within the chronically inflamed synovium, including leukocyte recruitment and activation, fibroblast proliferation, angiogenesis, matrix remodeling, and injury to collagen and bone. We also consider recent evidence supporting an immunomodulatory or anti-inflammatory role for mast cells as well as pharmacologic approaches to the mast cell as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
148
|
Abstract
Although mast cells have long been considered the integral effector cell in allergy and atopic disease, the paradigm of mast cell function is now evolving to incorporate data showing that mast cells make innumerable contributions to both protective and pathologic immune responses. Mast cells express cell surface molecules with costimulatory or co-inhibitory activity and produce a multitude of mediators that can direct dendritic cell (DC) or T-cell differentiation and function. In addition, mast cells exhibit a widespread distribution and are in close proximity to DCs and T cells at several critical sites. While there has been amazing progress in characterizing mast cell populations in vitro, only recently has the ability to monitor their in vivo effects become a reality. In this review, we discuss the evolution of our understanding of mast cell biology with an emphasis on their established and hypothesized roles in influencing T-cell differentiation and function. The fact that T-cell and mast cell interactions exist and are a normal component of most adaptive immune responses is one of the best illustrations of the now established concept that innate and adaptive immunity are not completely independent entities.
Collapse
Affiliation(s)
- Blayne Amir Sayed
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
149
|
Abstract
Inflammatory kidney disease involves a complex network of interactions between resident kidney and infiltrating hematopoietic cells. Mast cells (MCs) are constitutively found in kidneys in small numbers but increase considerably in various renal diseases. While this increase is usually interpreted as a sign of pathological involvement, recent data using MC-deficient animals show their ability to restore kidney homeostasis. In anti-glomerular basement membrane antibody-induced glomerulonephritis, MCs are protective by initiating repair and remodeling functions counteracting the devastating effects of glomerular injury. Protection may also include immunoregulatory capacities to limit autoreactive T-cell responses. MCs also control tubulointerstitial fibrosis by activating tissue remodeling and neutralizing fibrotic factors. Release of mediators by MCs during inflammation, however, could also promote unwanted responses that ultimately lead to destruction of kidney structure, as exemplified by data showing either protection or aggravation in related renal disease models. Similarly, while the action of proteases may initially be beneficial, the generation of fibrosis-promoting angiotensin II by chymase also shows the limits of adaptive responses to achieve homeostasis. Thus, it is likely the physiological context involving the interaction with other cells and inflammatory mediators that determines the final action of MCs in the development of kidney disease.
Collapse
Affiliation(s)
- Ulrich Blank
- Inserm U699, Immunopathologie Rénale, Récepteurs et Inflammation, Univesité Paris 7, Paris, France.
| | | | | | | | | |
Collapse
|
150
|
Metz M, Maurer M. Mast cells--key effector cells in immune responses. Trends Immunol 2007; 28:234-41. [PMID: 17400512 DOI: 10.1016/j.it.2007.03.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 03/02/2007] [Accepted: 03/16/2007] [Indexed: 12/28/2022]
Abstract
Mast cells are best known for their potent effector functions in allergic disorders. In recent years, however, mast cells have been identified to be involved in a surprisingly complex range of immune functions that go far beyond allergies and include the development of autoimmune disorders and peripheral tolerance, and the initiation and maintenance of adaptive and innate host responses. Here, we review the key signals and effector mechanisms that have lately been identified for mast cell functions in these immune responses.
Collapse
Affiliation(s)
- Martin Metz
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | |
Collapse
|