101
|
Velazquez JJ, Ebrahimkhani MR. Cholangiocyte organoids as a cell source for biliary repair. Transpl Int 2021; 34:999-1001. [PMID: 33977592 DOI: 10.1111/tri.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
102
|
Ramírez-Marín Y, Abad-Contreras DE, Ustarroz-Cano M, Pérez-Gallardo NS, Villafuerte-García L, Puente-Guzmán DM, del Villar-Velasco JL, Rodríguez-López LA, Torres-Villalobos G, Mercado MÁ, Tapia-Jurado J, Martínez-García FD, Harmsen MC, Piña-Barba MC, Giraldo-Gomez DM. Perfusion Decellularization of Extrahepatic Bile Duct Allows Tissue-Engineered Scaffold Generation by Preserving Matrix Architecture and Cytocompatibility. MATERIALS 2021; 14:ma14113099. [PMID: 34198787 PMCID: PMC8201334 DOI: 10.3390/ma14113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Reconstruction of bile ducts damaged remains a vexing medical problem. Surgeons have few options when it comes to a long segment reconstruction of the bile duct. Biological scaffolds of decellularized biliary origin may offer an approach to support the replace of bile ducts. Our objective was to obtain an extracellular matrix scaffold derived from porcine extrahepatic bile ducts (dECM-BD) and to analyze its biological and biochemical properties. The efficiency of the tailored perfusion decellularization process was assessed through histology stainings. Results from 4'-6-diamidino-2-phenylindole (DAPI), Hematoxylin and Eosin (H&E) stainings, and deoxyribonucleic acid (DNA) quantification showed proper extracellular matrix (ECM) decellularization with an effectiveness of 98%. Immunohistochemistry results indicate an effective decrease in immunogenic marker as human leukocyte antigens (HLA-A) and Cytokeratin 7 (CK7) proteins. The ECM of the bile duct was preserved according to Masson and Herovici stainings. Data derived from scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed the preservation of the dECM-BD hierarchical structures. Cytotoxicity of dECM-BD was null, with cells able to infiltrate the scaffold. In this work, we standardized a decellularization method that allows one to obtain a natural bile duct scaffold with hierarchical ultrastructure preservation and adequate cytocompatibility.
Collapse
Affiliation(s)
- Yolik Ramírez-Marín
- Program of Medical Specialization General Surgery, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio “E” 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - David Eduardo Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.E.A.-C.); (M.C.P.-B.)
| | - Martha Ustarroz-Cano
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” 3° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Norma S. Pérez-Gallardo
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Lorena Villafuerte-García
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Dulce Maria Puente-Guzmán
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Jorge Luna del Villar-Velasco
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Leonardo Alejandro Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Gonzalo Torres-Villalobos
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Miguel Ángel Mercado
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Jesús Tapia-Jurado
- Unit of Advanced Medical Simulation, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio “B” 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands; (F.D.M.-G.); (M.C.H.)
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands; (F.D.M.-G.); (M.C.H.)
| | - M. Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.E.A.-C.); (M.C.P.-B.)
| | - David M. Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” 3° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” planta baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
103
|
Rodrigues PM, Banales JM. Applications of organoids in regenerative medicine: a proof-of-concept for biliary injury. Nat Rev Gastroenterol Hepatol 2021; 18:371-372. [PMID: 33948023 DOI: 10.1038/s41575-021-00459-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain. .,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
104
|
Marsee A, Roos FJM, Verstegen MMA, Gehart H, de Koning E, Lemaigre F, Forbes SJ, Peng WC, Huch M, Takebe T, Vallier L, Clevers H, van der Laan LJW, Spee B. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 2021; 28:816-832. [PMID: 33961769 PMCID: PMC11699540 DOI: 10.1016/j.stem.2021.04.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic, pancreatic, and biliary (HPB) organoids are powerful tools for studying development, disease, and regeneration. As organoid research expands, the need for clear definitions and nomenclature describing these systems also grows. To facilitate scientific communication and consistent interpretation, we revisit the concept of an organoid and introduce an intuitive classification system and nomenclature for describing these 3D structures through the consensus of experts in the field. To promote the standardization and validation of HPB organoids, we propose guidelines for establishing, characterizing, and benchmarking future systems. Finally, we address some of the major challenges to the clinical application of organoids.
Collapse
Affiliation(s)
- Ary Marsee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Helmuth Gehart
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Eelco de Koning
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands; Leiden University Medical Center, Department of Medicine, Leiden, the Netherlands
| | - Frédéric Lemaigre
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Stuart J Forbes
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, and Center for Stem Cell, and Organoid Medicine (CuSTOM), Cincinnati Children Hospital Medical Center, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, Cambridgeshire, UK; Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Center, Cambridge, UK
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
105
|
Liu X, Yan J, Liu J, Wang Y, Yin J, Fu J. Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication 2021; 13. [PMID: 33873178 DOI: 10.1088/1758-5090/abf995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Tubular scaffolds serve as a controllable extracellular environment to guide the repair and regeneration of tissues. But it is still a challenge to achieve both excellent mechanical properties and cell compatibility of artificial scaffolds for long-term structural and biological stability. In this study, a four-step solution casting method was developed to fabricate dual-layer cell-laden tubular scaffolds for nerve and bile duct regeneration. The dual-layer tubular scaffold consisted of a bone marrow mesenchymal stem cells (BMSCs)-laden hydrogel inner layer and an outer layer of gelatin methacrylate (GelMA)/polyethylene glycol diacrylate. While the inner layer had a good biocompatibility, the outer layer had desired mechanical properties. The interfacial toughness, Young's modulus, maximum tensile strain, and compressive modulus of dual-layer tubular scaffolds were 65 J m-2, 122.37 ± 23.21 kPa, 100.87 ± 40.10%, and 39.14 ± 18.56 N m-1, respectively. More importantly, the fabrication procedure was very cell-friendly, since the BMSC viability encapsulated in the inner layer of 10% (w/v) GelMA reached 94.68 ± 0.43% after 5 d of culture. Then, a preliminary evaluation of the potential application of dual-layer tubular scaffolds as nerve conduits and biliary scaffolds was performed, and demonstrated that the cell-laden dual-layer tubular scaffolds proposed in this work are expected to extend the application of tubular scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang University Innovation Center of Minimally Invasive Technology and Medical Equipment, Hangzhou 310016, People's Republic of China
| | - Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310016, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| |
Collapse
|
106
|
van der Vaart J, Clevers H. Airway organoids as models of human disease. J Intern Med 2021; 289:604-613. [PMID: 32350962 DOI: 10.1111/joim.13075] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Studies developing and applying organoid technology have greatly increased in volume and visibility over the past decade. Organoids are three-dimensional structures that are established from pluripotent stem cells (PSCs) or adult tissue stem cells (ASCs). They consist of organ-specific cell types that self-organize through cell sorting and spatially restricted lineage commitment to generate architectural and functional characteristics of the tissue of interest. The field of respiratory development and disease has been particularly productive in this regard. Starting from human cells (PSCs or ASCs), models of the two segments of the lung, the airways and the alveoli, can be built. Such organoids allow the study of development, physiology and disease and thus bridge the gap between animal models and clinical studies. This review discusses current developments in the pulmonary organoid field, highlighting the potential and limitations of current models.
Collapse
Affiliation(s)
- J van der Vaart
- From the, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - H Clevers
- From the, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
107
|
Soroka CJ, Roberts SJ, Boyer JL, Assis DN. Role of Biliary Organoids in Cholestasis Research and Regenerative Medicine. Semin Liver Dis 2021; 41:206-212. [PMID: 33957696 DOI: 10.1055/s-0041-1728663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Translational studies in human cholestatic diseases have for years been hindered by various challenges, including the rarity of the disorders, the difficulty in obtaining biliary tissue from across the spectrum of the disease stage, and the difficulty culturing and maintaining primary cholangiocytes. Organoid technology is increasingly being viewed as a technological breakthrough in translational medicine as it allows the culture and biobanking of self-organizing cells from various sources that facilitate the study of pathophysiology and therapeutics, including from individual patients in a personalized approach. This review describes current research using biliary organoids for the study of human cholestatic diseases and the emerging applications of organoids to regenerative medicine directed at the biliary tree. Challenges and possible solutions to the current hurdles in this emerging field, particularly the need for standardization of terminology and clarity on source materials and techniques, are also discussed.
Collapse
Affiliation(s)
- Carol J Soroka
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Scott J Roberts
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - James L Boyer
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - David N Assis
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
108
|
Roos FJM, Bijvelds MJC, Verstegen MMA, Roest HP, Metselaar HJ, Polak WG, Jonge HRD, IJzermans JNM, van der Laan LJW. Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids. Am J Physiol Gastrointest Liver Physiol 2021; 320:G741-G752. [PMID: 33655768 DOI: 10.1152/ajpgi.00389.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholangiocytes express cystic fibrosis transmembrane conductance regulator (CFTR), which is involved in bicarbonate secretion for the protection against bile toxicity. During liver transplantation, prolonged hypoxia of the graft is associated with cholangiocyte loss and biliary complications. Hypoxia is known to diminish CFTR activity in the intestine, but whether it affects CFTR activity in cholangiocytes remains unknown. Thus, the aim of this study is to investigate the effect of hypoxia on CFTR activity in intrahepatic cholangiocyte organoids (ICOs) and test drug interventions to restore bicarbonate secretion. Fifteen different human ICOs were cultured as monolayers and ion channel [CFTR and anoctamin-1 (ANO1)] activity was determined using an Ussing chamber assay with or without AMP kinase (AMPK) inhibitor under hypoxic and oxygenated conditions. Bile toxicity was tested by apical exposure of cells to fresh human bile. Overall gene expression analysis showed a high similarity between ICOs and primary cholangiocytes. Under oxygenated conditions, both CFTR and ANO1 channels were responsible for forskolin and uridine-5'-triphosphate (UTP) UTP-activated anion secretion. Forskolin stimulation in the absence of intracellular chloride showed ion transport, indicating that bicarbonate could be secreted by CFTR. During hypoxia, CFTR activity significantly decreased (P = 0.01). Switching from oxygen to hypoxia during CFTR measurements reduced CFTR activity (P = 0.03). Consequently, cell death increased when ICO monolayers were exposed to bile during hypoxia compared with oxygen (P = 0.04). Importantly, addition of AMPK inhibitor restored CFTR-mediated anion secretion during hypoxia. ICOs provide an excellent model to study cholangiocyte anion channels and drug-related interventions. Here, we demonstrate that hypoxia affects cholangiocyte ion secretion, leaving cholangiocytes vulnerable to bile toxicity. The mechanistic insights from this model maybe relevant for hypoxia-related biliary injury during liver transplantation.NEW & NOTEWORTHY The previously described liver-derived organoids resemble primary cholangiocytes and should be properly named intrahepatic cholangiocyte organoids (ICOs). ICOs have functional cholangiocyte ion channels (CFTR and ANO1). CFTR might be able to secrete bicarbonate directly into the bile duct lumen. Hypoxia inhibits CFTR and ANO1 functionality in ICOs, which can partially be restored by addition of an AMP kinase inhibitor. Hypoxia impairs cholangiocyte resistance against cytotoxic effects of bile, resulting in increased cell death.
Collapse
Affiliation(s)
- Floris J M Roos
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Henk P Roest
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wojciech G Polak
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Transplant Institute, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
109
|
Preclinical Application of Reduced Manipulated Processing Strategy to Collect Transplantable Hepatocytes: A Pilot and Feasibility Study. J Pers Med 2021; 11:jpm11050326. [PMID: 33919203 PMCID: PMC8143084 DOI: 10.3390/jpm11050326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Background: The complex isolation and purification process of hepatocytes for transplantation is labor intensive and with great contamination risk. Here, as a pilot and feasibility study, we examined in vitro and in vivo hepatocyte isolation feasibility and cell function of Cell Saver® Elite®, an intraoperative blood-cell-recovery system. Methods: Rat and pig liver cells were collected using this system and then cultured in vitro, and their hepatocyte-specific enzymes were characterized. We then transplanted the hepatocytes in an established acute liver–injured (retrorsine+D-galactosamine-treated) rat model for engraftment. Recipient rats were sacrificed 1, 2, and 4 weeks after transplantation, followed by donor-cell identification and histological, serologic, and immunohistopathological examination. To demonstrate this Cell Saver® strategy is workable in the first place, traditional (classical) strategy, in our study, behaved as certainty during the cell manufacturing process for monitoring quality assurance throughout the course, from the start of cell isolation to post-transplantation. Results: We noted that in situ collagenase perfusion was followed by filtration, centrifugation, and collection in the Cell Saver® until the process ended. Most (>85%) isolated cells were hepatocytes (>80% viability) freshly demonstrating hepatocyte nuclear factor 4α and carbamoyl-phosphate synthase 1 (a key enzyme in the urea cycle), and proliferating through intercellular contact in culture, with expression of albumin and CYP3A4. After hepatocyte transplantation in dipeptidyl peptidase IV (−/−) rat liver, wild-type donor hepatocytes engrafted and repopulated progressively in 4 weeks with liver functional improvement. Proliferating donor hepatocyte–native biliary ductular cell interaction was identified. Post-transplantation global liver functional recovery after Cell Saver and traditional methods was comparable. Conclusions: Cell Saver® requires reduced manual manipulation for isolating transplantable hepatocytes.
Collapse
|
110
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
111
|
Aloia L. Epigenetic Regulation of Cell-Fate Changes That Determine Adult Liver Regeneration After Injury. Front Cell Dev Biol 2021; 9:643055. [PMID: 33732709 PMCID: PMC7957008 DOI: 10.3389/fcell.2021.643055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
The adult liver has excellent regenerative potential following injury. In contrast to other organs of the body that have high cellular turnover during homeostasis (e.g., intestine, stomach, and skin), the adult liver is a slowly self-renewing organ and does not contain a defined stem-cell compartment that maintains homeostasis. However, tissue damage induces significant proliferation across the liver and can trigger cell-fate changes, such as trans-differentiation and de-differentiation into liver progenitors, which contribute to efficient tissue regeneration and restoration of liver functions. Epigenetic mechanisms have been shown to regulate cell-fate decisions in both embryonic and adult tissues in response to environmental cues. Underlying their relevance in liver biology, expression levels and epigenetic activity of chromatin modifiers are often altered in chronic liver disease and liver cancer. In this review, I examine the role of several chromatin modifiers in the regulation of cell-fate changes that determine efficient adult liver epithelial regeneration in response to tissue injury in mouse models. Specifically, I focus on epigenetic mechanisms such as chromatin remodelling, DNA methylation and hydroxymethylation, and histone methylation and deacetylation. Finally, I address how altered epigenetic mechanisms and the interplay between epigenetics and metabolism may contribute to the initiation and progression of liver disease and cancer.
Collapse
Affiliation(s)
- Luigi Aloia
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
112
|
Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, Mahbubani K, Canu G, Gieseck R, Berntsen NL, Mulcahy VL, Crick K, Fear C, Robinson S, Swift L, Gambardella L, Bargehr J, Ortmann D, Brown SE, Osnato A, Murphy MP, Corbett G, Gelson WTH, Mells GF, Humphreys P, Davies SE, Amin I, Gibbs P, Sinha S, Teichmann SA, Butler AJ, See TC, Melum E, Watson CJE, Saeb-Parsy K, Vallier L. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371:839-846. [PMID: 33602855 PMCID: PMC7610478 DOI: 10.1126/science.aaz6964] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/01/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust,Correspondence to: Fotios Sampaziotis, ; Ludovic Vallier,
| | | | - Olivia C. Tysoe
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | - Stephen Sawiak
- University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy E. Beach
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | - Edmund M. Godfrey
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Sara S. Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | | | | | - Jose Garcia-Bernardo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | | | - Richard Gieseck
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20852, USA
| | - Natalie L. Berntsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Victoria L. Mulcahy
- Department of Medicine, University of Cambridge,Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Keziah Crick
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sharayne Robinson
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Laure Gambardella
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge
| | - Johannes Bargehr
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge,Division of Cardiovascular Medicine, University of Cambridge, ACCI Level 6, Box 110, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | | | | | - Anna Osnato
- Wellcome and MRC Cambridge Stem Cell Institute
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - William T. H. Gelson
- Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust
| | - George F. Mells
- Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust,Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - Susan E. Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Irum Amin
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sanjay Sinha
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK,Cavendish Laboratory, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Teik Choon See
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway,Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christopher J. E. Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK,National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the,University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Correspondence to: Fotios Sampaziotis, ; Ludovic Vallier,
| |
Collapse
|
113
|
Waddell SH, Boulter L. Developing models of cholangiocarcinoma to close the translational gap in cancer research. Expert Opin Investig Drugs 2021; 30:439-450. [PMID: 33513027 DOI: 10.1080/13543784.2021.1882993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is an aggressive primary liver malignancy with abysmal prognosis and increasing global incidence. Individuals afflicted with CCA often remain asymptomatic until late stages of disease, resulting in very limited possibilities for therapeutic intervention. The emergence of numerous preclinical models in vitro and in vivo has expanded the tool kit for CCA researchers; nonetheless, how these tools can be best applied to understand CCA biology and accelerate drug development requires further scrutiny.Areas covered: The paper reviews the literature on animal and organoid models of CCA (available through PubMed between September 2020 and January 2021) and examines their investigational role in CCA therapeutics. Finally, the potential of these systems for screening therapeutics to improve CCA patient outcomes is illuminated.Expert Opinion: The expansion of CCA models has yielded a diverse and interesting tool kit for preclinical research. However, investigators should consider which tools are best suited to answer key preclinical questions for real progress. A combination of advanced in vitro cell systems and in vivo testing will be necessary to accelerate translational medicine in cholangiocarcinoma.
Collapse
Affiliation(s)
- Scott H Waddell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh, UK
| |
Collapse
|
114
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
115
|
Roos FJM, Verstegen MMA, Muñoz Albarinos L, Roest HP, Poley JW, Tetteroo GWM, IJzermans JNM, van der Laan LJW. Human Bile Contains Cholangiocyte Organoid-Initiating Cells Which Expand as Functional Cholangiocytes in Non-canonical Wnt Stimulating Conditions. Front Cell Dev Biol 2021; 8:630492. [PMID: 33634107 PMCID: PMC7900156 DOI: 10.3389/fcell.2020.630492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Diseases of the bile duct (cholangiopathies) remain a common indication for liver transplantation, while little progress has been made over the last decade in understanding the underlying pathophysiology. This is largely due to lack of proper in vitro model systems to study cholangiopathies. Recently, a culture method has been developed that allows for expansion of human bile duct epithelial cells grown as extrahepatic cholangiocyte organoids (ncECOs) in non-canonical Wnt-stimulating conditions. These ncECOs closely resemble cholangiocytes in culture and have shown to efficiently repopulate collagen scaffolds that could act as functional biliary tissue in mice. Thus far, initiation of ncECOs required tissue samples, thereby limiting broad patient-specific applications. Here, we report that bile fluid, which can be less invasively obtained and with low risk for the patients, is an alternative source for culturing ncECOs. Further characterization showed that bile-derived cholangiocyte organoids (ncBCOs) are highly similar to ncECOs obtained from bile duct tissue biopsies. Compared to the previously reported bile-cholangiocyte organoids cultured in canonical Wnt-stimulation conditions, ncBCOs have superior function of cholangiocyte ion channels and are able to respond to secretin and somatostatin. In conclusion, bile is a new, less invasive, source for patient-derived cholangiocyte organoids and makes their regenerative medicine applications more safe and feasible.
Collapse
Affiliation(s)
- Floris J M Roos
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Muñoz Albarinos
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jan-Werner Poley
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Geert W M Tetteroo
- Department of Surgery, IJsselland Hospital, Capelle aan den IJssel, Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
116
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
117
|
Fujii M, Sato T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. NATURE MATERIALS 2021; 20:156-169. [PMID: 32807924 DOI: 10.1038/s41563-020-0754-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 05/19/2023]
Abstract
Recent progress in our understanding of the regulation of epithelial tissue stem cells has allowed us to exploit their abilities and instruct them to self-organize into tissue-mimicking structures, so-called organoids. Organoids preserve the molecular, structural and functional characteristics of their tissues of origin, thus providing an attractive opportunity to study the biology of human tissues in health and disease. In parallel to deriving organoids from yet-uncultured epithelial tissues, the field is devoting a growing amount of effort to model human diseases using organoids. This Review describes multidisciplinary approaches for creating organoid models of human genetic, neoplastic, immunological and infectious diseases, and details how they have contributed to our understanding of disease biology. We further highlight the potential role as well as limitations of organoids in clinical practice and showcase the latest achievements and approaches for tuning the organoid culture system to position organoids in biologically defined settings and to grant organoids with better representation of human tissues.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
118
|
Rimland CA, Tilson SG, Morell CM, Tomaz RA, Lu W, Adams SE, Georgakopoulos N, Otaizo‐Carrasquero F, Myers TG, Ferdinand JR, Gieseck RL, Sampaziotis F, Tysoe OC, Ross A, Kraiczy JM, Wesley B, Muraro D, Zilbauer M, Oniscu GC, Hannan NR, Forbes SJ, Saeb‐Parsy K, Wynn TA, Vallier L. Regional Differences in Human Biliary Tissues and Corresponding In Vitro-Derived Organoids. Hepatology 2021; 73:247-267. [PMID: 32222998 PMCID: PMC8641381 DOI: 10.1002/hep.31252] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.
Collapse
Affiliation(s)
- Casey A. Rimland
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Immunopathogenesis SectionLaboratory of Parasitic DiseasesNIAIDNIHBethesdaMD,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom,Medical Scientist Training ProgramSchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNC
| | - Samantha G. Tilson
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom,Welcome Trust Sanger InstituteHinxtonUnited Kingdom,Liver Diseases BranchNIDDKNIHBethesdaMD
| | - Carola M. Morell
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Rute A. Tomaz
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Wei‐Yu Lu
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom,Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and ImmunotherapyThe University of BirminghamBirminghamUnited Kingdom
| | - Simone E. Adams
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Immunopathogenesis SectionLaboratory of Parasitic DiseasesNIAIDNIHBethesdaMD,Department of Biological SciencesNorth Carolina State UniversityRaleighNC
| | - Nikitas Georgakopoulos
- Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | | | - Timothy G. Myers
- Genomic Technologies SectionResearch Technologies BranchNIAIDNIHBethesdaMD
| | - John R. Ferdinand
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Richard L. Gieseck
- Immunopathogenesis SectionLaboratory of Parasitic DiseasesNIAIDNIHBethesdaMD
| | - Fotios Sampaziotis
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Olivia C. Tysoe
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Alexander Ross
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of PaediatricsUniversity of CambridgeCambridgeUnited Kingdom
| | - Judith M. Kraiczy
- Department of PaediatricsUniversity of CambridgeCambridgeUnited Kingdom
| | - Brandon Wesley
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Daniele Muraro
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom,Welcome Trust Sanger InstituteHinxtonUnited Kingdom
| | - Matthias Zilbauer
- Department of PaediatricsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gabriel C. Oniscu
- Edinburgh Transplant CentreRoyal Infirmary of EdinburghUniversity of EdinburghEdinburghUnited Kingdom
| | - Nicholas R.F. Hannan
- Division of Cancer and Stem CellsSchool of MedicineCentre for Biomolecular SciencesUniversity of NottinghamNottinghamUnited Kingdom,National Institute for Health Research Nottingham Digestive Diseases Biomedical Research UnitNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUnited Kingdom
| | - Stuart J. Forbes
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Thomas A. Wynn
- Immunopathogenesis SectionLaboratory of Parasitic DiseasesNIAIDNIHBethesdaMD
| | - Ludovic Vallier
- Wellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom,Department of SurgeryUniversity of Cambridge and National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| |
Collapse
|
119
|
Meng L, Liu J, Wang J, Du M, Zhang S, Huang Y, Shen Z, Dong R, Chen G, Zheng S. Characteristics of the Gut Microbiome and IL-13/TGF-β1 Mediated Fibrosis in Post-Kasai Cholangitis of Biliary Atresia. Front Pediatr 2021; 9:751204. [PMID: 34858903 PMCID: PMC8630618 DOI: 10.3389/fped.2021.751204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/15/2021] [Indexed: 01/18/2023] Open
Abstract
Aims: Cholangitis in biliary atresia (BA), which accelerates liver fibrosis progression, is among the most common serious complications after Kasai surgery; however, its etiology remains elusive. Gut microbiome migration may contribute to post-Kasai cholangitis. Further, there is no appropriate model of BA post-Kasai cholangitis for use in investigation of its pathogenesis. Methods: We explored the characteristics of gut microbiome in patients with BA before and after Kasai procedure based on 16S rDNA sequencing. We isolated the dominant strain from patient stool samples and established an in vitro model by infecting patient-derived liver organoids. Bulk RNA-seq was performed, and we conducted qPCR, ELISA, and western blot to explore the mechanism of fibrosis. Results: Gut microbiome diversity was lower in patients after, relative to before, Kasai procedure, while the relative abundance of Klebsiella was higher. Patients who developed cholangitis within 1 month after discharge tended to have simpler gut microbiome composition, dominated by Klebsiella. Klebsiella pneumoniae (KPN) was isolated and used for modeling. RNA-seq showed that BA liver organoids expressed markers of hepatic progenitor cells (KRT19, KRT7, EPCAM, etc.) and that organoids were more stable and less heterogeneous among individuals than liver tissues. After infection with KPN, gene expression patterns in BA liver organoids were enriched in pathways related to infection, apoptosis, and fibrosis. Preliminary experiments indicated the presence of IL-13/TGF-β1-mediated fibrosis in post-Kasai cholangitis. Conclusions: Our findings using a newly-developed model, demonstrate a key role for Klebsiella, and a potential mechanism underlying fibrosis in post-Kasai cholangitis, mediated by the IL-13/TGF-β1 pathway.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Jia Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Junfeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Min Du
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Yanlei Huang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhen Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
120
|
Abstract
Organoids are in vitro miniaturized and simplified model systems of organs that have gained enormous interest for modelling tissue development and disease, and for personalized medicine, drug screening and cell therapy. Despite considerable success in culturing physiologically relevant organoids, challenges remain to achieve real-life applications. In particular, the high variability of self-organizing growth and restricted experimental and analytical access hamper the translatability of organoid systems. In this Review, we argue that many limitations of traditional organoid culture can be addressed by engineering approaches at all levels of organoid systems. We investigate cell surface and genetic engineering approaches, and discuss stem cell niche engineering based on the design of matrices that allow spatiotemporal control of organoid growth and shape-guided morphogenesis. We examine how microfluidic approaches and lessons learnt from organs-on-a-chip enable the integration of mechano-physiological parameters and increase accessibility of organoids to improve functional readouts. Applying engineering principles to organoids increases reproducibility and provides experimental control, which will, ultimately, be required to enable clinical translation.
Collapse
Affiliation(s)
- Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
121
|
Jiang S, Zhao H, Zhang W, Wang J, Liu Y, Cao Y, Zheng H, Hu Z, Wang S, Zhu Y, Wang W, Cui S, Lobie PE, Huang L, Ma S. An Automated Organoid Platform with Inter-organoid Homogeneity and Inter-patient Heterogeneity. CELL REPORTS MEDICINE 2020; 1:100161. [PMID: 33377132 PMCID: PMC7762778 DOI: 10.1016/j.xcrm.2020.100161] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Current organoid technologies require intensive manual manipulation and lack uniformity in organoid size and cell composition. We present here an automated organoid platform that generates uniform organoid precursors in high-throughput. This is achieved by templating from monodisperse Matrigel droplets and sequentially delivering them into wells using a synchronized microfluidic droplet printer. Each droplet encapsulates a certain number of cells (e.g., 1,500 cells), which statistically represent the heterogeneous cell population in a tumor section. The system produces >400-μm organoids within 1 week with both inter-organoid homogeneity and inter-patient heterogeneity. This enables automated organoid printing to obtain one organoid per well. The organoids recapitulate 97% gene mutations in the parental tumor and reflect the patient-to-patient variation in drug response and sensitivity, from which we obtained more than 80% accuracy among the 21 patients investigated. This organoid platform is anticipated to fulfill the personalized medicine goal of 1-week high-throughput screening for cancer patients.
Collapse
Affiliation(s)
- Shengwei Jiang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Haoran Zhao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No1 Jianshe East Road, Zhengzhou 450052, China
| | - Jiaqi Wang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Yuhong Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanxiong Cao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Honghui Zheng
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Zhiwei Hu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen PKU-HKUST Medical Center, 1120 Lianhua Road, Shenzhen 518036, China
| | - Yu Zhu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen PKU-HKUST Medical Center, 1120 Lianhua Road, Shenzhen 518036, China
| | - Wei Wang
- Department of Pathology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, China
| | - Peter E. Lobie
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
| | - Laiqiang Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Corresponding author
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
122
|
Verstegen MMA, Roos FJM, Burka K, Gehart H, Jager M, de Wolf M, Bijvelds MJC, de Jonge HR, Ardisasmita AI, van Huizen NA, Roest HP, de Jonge J, Koch M, Pampaloni F, Fuchs SA, Schene IF, Luider TM, van der Doef HPJ, Bodewes FAJA, de Kleine RHJ, Spee B, Kremers GJ, Clevers H, IJzermans JNM, Cuppen E, van der Laan LJW. Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease. Sci Rep 2020; 10:21900. [PMID: 33318612 PMCID: PMC7736890 DOI: 10.1038/s41598-020-79082-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.
Collapse
Affiliation(s)
- Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ksenia Burka
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Helmuth Gehart
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike de Wolf
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Arif I Ardisasmita
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nick A van Huizen
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Michael Koch
- Goethe-University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Francesco Pampaloni
- Goethe-University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hubert P J van der Doef
- Department of Pediatric Gastroenterology Hepatology and Nutrition, University Medical Center Groningen, University of Groningen, Utrecht, The Netherlands
| | - Frank A J A Bodewes
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ruben H J de Kleine
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University Utrecht, Utrecht, The Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
123
|
Huang Y, Miyamoto D, Hidaka M, Adachi T, Gu WL, Eguchi S. Regenerative medicine for the hepatobiliary system: A review. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:913-930. [PMID: 33314713 DOI: 10.1002/jhbp.882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Liver transplantation, the only proven treatment for end-stage liver disease and acute liver failure, is hampered by the scarcity of donors. Regenerative medicine provides an alternative therapeutic approach. Tremendous efforts dedicated to liver regenerative medicine include the delivery of transplantable cells, microtissues, and bioengineered whole livers via tissue engineering and the maintenance of partial liver function via extracorporeal support. This brief review summarizes the current status of regenerative medicine for the hepatobiliary system. For liver regenerative medicine, the focus is on strategies for expansion of transplantable hepatocytes, generation of hepatocyte-like cells, and therapeutic potential of engineered tissues in liver disease models. For biliary regenerative medicine, the discussion concentrates on the methods for generation of cholangiocyte-like cells and strategies in the treatment of biliary disease. Significant advances have been made in large-scale and long-term expansion of liver cells. The development of tissue engineering and stem cell induction technology holds great promise for the future treatment of hepatobiliary diseases. The application of regenerative medicine in liver still lacks extensive animal experiments. Therefore, a large number of preclinical studies are necessary to provide sufficient evidence for their therapeutic effectiveness. Much remains to be done for the treatment of hepatobiliary diseases with regenerative medicine.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wei-Li Gu
- Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
124
|
Malik A, Thanekar U, Mourya R, Shivakumar P. Recent developments in etiology and disease modeling of biliary atresia: a narrative review. ACTA ACUST UNITED AC 2020; 3. [PMID: 33615212 PMCID: PMC7891552 DOI: 10.21037/dmr-20-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
125
|
Self-organization of organoids from endoderm-derived cells. J Mol Med (Berl) 2020; 99:449-462. [PMID: 33221939 PMCID: PMC8026476 DOI: 10.1007/s00109-020-02010-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.
Collapse
|
126
|
Willemse J, Roos FJM, Voogt IJ, Schurink IJ, Bijvelds M, de Jonge HR, van der Laan LJW, de Jonge J, Verstegen MMA. Scaffolds obtained from decellularized human extrahepatic bile ducts support organoids to establish functional biliary tissue in a dish. Biotechnol Bioeng 2020; 118:836-851. [PMID: 33118611 PMCID: PMC7894321 DOI: 10.1002/bit.27613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Biliary disorders can lead to life‐threatening disease and are also a challenging complication of liver transplantation. As there are limited treatment options, tissue engineered bile ducts could be employed to replace or repair damaged bile ducts. We explored how these constructs can be created by seeding hepatobiliary LGR5+ organoids onto tissue‐specific scaffold. For this, we decellularized discarded human extrahepatic bile ducts (EBD) that we recellularized with organoids of different origin, that is, liver biopsies, extrahepatic bile duct biopsies, and bile samples. Here, we demonstrate efficient decellularization of EBD tissue. Recellularization of the EBD extracellular matrix (ECM) with the organoids of extrahepatic origin (EBD tissue and bile derived organoids) showed more profound repopulation of the ductal ECM when compared with liver tissue (intrahepatic bile duct) derived organoids. The bile duct constructs that were repopulated with extrahepatic organoids expressed mature cholangiocyte‐markers and had increased electrical resistance, indicating restoration of the barrier function. Therefore, the organoids of extrahepatic sources are identified to be the optimal candidate for the development of personalized tissue engineered EBD constructs.
Collapse
Affiliation(s)
- Jorke Willemse
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Iris J Voogt
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ivo J Schurink
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Marcel Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
127
|
Zarei K, Stroik MR, Gansemer ND, Thurman AL, Ostedgaard LS, Ernst SE, Thornell IM, Powers LS, Pezzulo AA, Meyerholz DK, Stoltz DA. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. J Transl Med 2020; 100:1388-1399. [PMID: 32719544 PMCID: PMC7578062 DOI: 10.1038/s41374-020-0474-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nick D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah E Ernst
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
128
|
Thomas J, Patel S, Troop L, Guru R, Faist N, Bellott BJ, Esterlen BA. 3D Printed Model of Extrahepatic Biliary Ducts for Biliary Stent Testing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4788. [PMID: 33120964 PMCID: PMC7663029 DOI: 10.3390/ma13214788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
Several inflammatory conditions of the bile ducts cause strictures that prevent the drainage of bile into the gastrointestinal tract. Non-pharmacological treatments to re-establish bile flow include plastic or self-expanding metal stents (SEMs) that are inserted in the bile ducts during endoscopic retrograde cholangiopancreatography (ERCP) procedures. The focus of this study was to 3D print an anatomically accurate model of the extrahepatic bile ducts (EHBDs) with tissue-like mechanical properties to improve in vitro testing of stent prototypes. Following generation of an EHBD model via computer aided design (CAD), we tested the ability of Formlabs SLA 3D printers to precisely print the model with polymers selected based on the desired mechanical properties. We found the printers were reliable in printing the dimensionally accurate EHBD model with candidate polymers. Next, we evaluated the mechanical properties of Formlabs Elastic (FE), Flexible (FF), and Durable (FD) resins pre- and post-exposure to water, saline, or bile acid solution at 37 °C for up to one week. FE possessed the most bile duct-like mechanical properties based on its elastic moduli, percent elongations at break, and changes in mass under all liquid exposure conditions. EHBD models printed in FE sustained no functional damage during biliary stent deployment or when tube connectors were inserted, and provided a high level of visualization of deployed stents. These results demonstrate that our 3D printed EHBD model facilitates more realistic pre-clinical in vitro testing of biliary stent prototypes.
Collapse
Affiliation(s)
- Joanna Thomas
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Sagar Patel
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Leia Troop
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Robyn Guru
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Nicholas Faist
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Brian J. Bellott
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| | - Bethany A. Esterlen
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| |
Collapse
|
129
|
Ogoke O, Maloy M, Parashurama N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol Rev Camb Philos Soc 2020; 96:179-204. [PMID: 33002311 DOI: 10.1111/brv.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| |
Collapse
|
130
|
Brevini T, Tysoe OC, Sampaziotis F. Tissue engineering of the biliary tract and modelling of cholestatic disorders. J Hepatol 2020; 73:918-932. [PMID: 32535061 DOI: 10.1016/j.jhep.2020.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Our insight into the pathogenesis of cholestatic liver disease remains limited, partly owing to challenges in capturing the multitude of factors that contribute to disease pathogenesis in vitro. Tissue engineering could address this challenge by combining cells, materials and fabrication strategies into dynamic modelling platforms, recapitulating the multifaceted aetiology of cholangiopathies. Herein, we review the advantages and limitations of platforms for bioengineering the biliary tree, looking at how these can be applied to model biliary disorders, as well as exploring future directions for the field.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Olivia C Tysoe
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
131
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
132
|
Abstract
Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC.
Collapse
|
133
|
Azparren-Angulo M, Royo F, Gonzalez E, Liebana M, Brotons B, Berganza J, Goñi-de-Cerio F, Manicardi N, Abad-Jordà L, Gracia-Sancho J, Falcon-Perez JM. Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities. Pharmacol Ther 2020; 218:107683. [PMID: 32961265 DOI: 10.1016/j.pharmthera.2020.107683] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Since the first descriptions of hepatocyte-released exosome-like vesicles in 2008, the number of publications describing Extracellular Vesicles (EVs) released by liver cells in the context of hepatic physiology and pathology has grown exponentially. This growing interest highlights both the importance that cell-to-cell communication has in the organization of multicellular organisms from a physiological point of view, as well as the opportunity that these circulating organelles offer in diagnostics and therapeutics. In the present review, we summarize systematically and comprehensively the myriad of works that appeared in the last decade and lighted the discussion about the best opportunities for using EVs in liver disease therapeutics.
Collapse
Affiliation(s)
- Maria Azparren-Angulo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Marc Liebana
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Bruno Brotons
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Jesús Berganza
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170 Zamudio, Bizkaia, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170 Zamudio, Bizkaia, Spain
| | - Nicoló Manicardi
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Laia Abad-Jordà
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain; Hepatology, Department of Biomedical Research, Inselspital & University of Bern, Switzerland
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain.
| |
Collapse
|
134
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
135
|
Xu Y, Jacquat RPB, Shen Y, Vigolo D, Morse D, Zhang S, Knowles TPJ. Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000432. [PMID: 32529798 DOI: 10.1002/smll.202000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
3D scaffolds in the form of hydrogels and microgels have allowed for more native cell-culture systems to be developed relative to flat substrates. Native biological tissues are, however, usually spatially inhomogeneous and anisotropic, but regulating the spatial density of hydrogels at the microscale to mimic this inhomogeneity has been challenging to achieve. Moreover, the development of biocompatible synthesis approaches for protein-based microgels remains challenging, and typical gelation conditions include UV light, extreme pH, extreme temperature, or organic solvents, factors which can compromise the viability of cells. This study addresses these challenges by demonstrating an approach to fabricate protein microgels with controllable radial density through microfluidic mixing and physical and enzymatic crosslinking of gelatin precursor molecules. Microgels with a higher density in their cores and microgels with a higher density in their shells are demonstrated. The microgels have robust stability at 37 °C and different dissolution rates through enzymolysis, which can be further used for gradient scaffolds for 3D cell culture, enabling controlled degradability, and the release of biomolecules. The design principles of the microgels could also be exploited to generate other soft materials for applications ranging from novel protein-only micro reactors to soft robots.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Raphaël P B Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Morse
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuyuan Zhang
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
136
|
Kunst RF, Niemeijer M, van der Laan LJW, Spee B, van de Graaf SFJ. From fatty hepatocytes to impaired bile flow: Matching model systems for liver biology and disease. Biochem Pharmacol 2020; 180:114173. [PMID: 32717228 DOI: 10.1016/j.bcp.2020.114173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an overview of established and emerging models for specific research questions. We specifically discuss the value and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the scientific community for continuous innovation in model development to better mimic the human (patho)physiology.
Collapse
Affiliation(s)
- Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
137
|
Abstract
Organ constructs are organ-like structures grown in vitro or in vivo that harbor the components, architecture, and function of in vivo organs, in part or in toto. The convergence of stem cell biology, bioengineering, and gene editing tools have substantially broadened our ability to generate various types of organ constructs for regenerative medicine as well as to address pressing biomedical questions. In this Review, we highlight prevailing approaches for generating organ constructs, from organoids to chimeric organ engineering. We also discuss design principles of different approaches, their utility and limitations, and propose strategies to resolve existing hurdles.
Collapse
Affiliation(s)
- Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
138
|
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020; 21:571-584. [PMID: 32636524 PMCID: PMC7339799 DOI: 10.1038/s41580-020-0259-3] [Citation(s) in RCA: 1051] [Impact Index Per Article: 210.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The historical reliance of biological research on the use of animal models has sometimes made it challenging to address questions that are specific to the understanding of human biology and disease. But with the advent of human organoids — which are stem cell-derived 3D culture systems — it is now possible to re-create the architecture and physiology of human organs in remarkable detail. Human organoids provide unique opportunities for the study of human disease and complement animal models. Human organoids have been used to study infectious diseases, genetic disorders and cancers through the genetic engineering of human stem cells, as well as directly when organoids are generated from patient biopsy samples. This Review discusses the applications, advantages and disadvantages of human organoids as models of development and disease and outlines the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments. Human organoids are valuable models for the study of development and disease and for drug discovery, thus complementing traditional animal models. The generation of organoids from patient biopsy samples has enabled researchers to study, for example, infectious diseases, genetic disorders and cancers. This Review discusses the advantages, disadvantages and future challenges of the use of organoids as models for human biology.
Collapse
Affiliation(s)
- Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria. .,Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
139
|
Stripecke R, Münz C, Schuringa JJ, Bissig K, Soper B, Meeham T, Yao L, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb‐Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med 2020; 12:e8662. [PMID: 32578942 PMCID: PMC7338801 DOI: 10.15252/emmm.201708662] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF)Hannover RegionGermany
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Jan Jacob Schuringa
- Department of HematologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | | | | | | | - Michael Brehm
- University of Massachusetts Medical SchoolWorcesterMAUSA
| | | | - Anja Kathrin Wege
- Department of Gynecology and ObstetricsUniversity Cancer Center RegensburgRegensburgGermany
| | | | | | | | - Scott Kitchen
- University of California, Los AngelesLos AngelesCAUSA
| | | | | | | | - Amar Deep Sharma
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Livio Trusolino
- Department of OncologyUniversity of Torino Medical SchoolTurinItaly
- Candiolo Cancer Institute FPO IRCCSCandioloItaly
| | | | | |
Collapse
|
140
|
Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319:C151-C165. [PMID: 32459504 PMCID: PMC7468890 DOI: 10.1152/ajpcell.00120.2020] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
In vitro cell cultures are crucial research tools for modeling human development and diseases. Although the conventional monolayer cell cultures have been widely used in the past, the lack of tissue architecture and complexity of such model fails to inform the true biological processes in vivo. Recent advances in the organoid technology have revolutionized the in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate the cellular heterogeneity, structure, and functions of the primary tissues. Such organoid technology enables researchers to recreate human organs and diseases in a dish and thus holds great promises for many translational applications such as regenerative medicine, drug discovery, and precision medicine. In this review, we provide an overview of the organoid history and development. We discuss the strengths and limitations of organoids as well as their potential applications in the laboratory and the clinic.
Collapse
Affiliation(s)
- Claudia Corrò
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| | - Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London United Kingdom
| |
Collapse
|
141
|
Sun S, Yuan L, An Z, Shi D, Xin J, Jiang J, Ren K, Chen J, Guo B, Zhou X, Zhou Q, Jin X, Ruan S, Cheng T, Xia N, Li J. DLL4 restores damaged liver by enhancing hBMSC differentiation into cholangiocytes. Stem Cell Res 2020; 47:101900. [PMID: 32622343 DOI: 10.1016/j.scr.2020.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND & AIMS Biliary injury is one of the main pathological mechanisms of fulminant hepatic failure (FHF). Delta-like ligand 4 (DLL4)-mediated Notch activation contributes to reversing biliary injury; however, the specific role of DLL4 in biliary restoration is still unclear. This study aimed to determine whether human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into biliary epithelial cells (cholangiocytes) in vitro and in vivo and to clarify the role of DLL4 in restoring damaged liver by enhancing cholangiocyte differentiation. METHODS hBMSCs were transplanted into immunodeficient mice (FRGS) with FHF induced by the hamster-anti-mouse CD95 antibody JO2. The appearance of human cholangiocytes was evaluated in the generated hBMSC-FRGS mice by q-PCR expression, flow cytometry and immunohistochemistry. The potency of DLL4 in inducing cholangiocyte differentiation from hBMSCs was assessed by observing the cell morphology and measuring the expression of cholangiocyte-specific genes and proteins. RESULTS Human KRT19- and KRT7-double-positive cholangiocyte-like cells appeared in hBMSC-FRGS mice at 12 weeks after transplantation. After these cells were separated and collected by fluorescent-activated cell sorting (FACS), there were high levels of expression of eight typical human cholangiocyte-specific genes and proteins (e.g., KRT19 and KRT7). Furthermore, hBMSC-derived cholangiocytes induced by DLL4 had a better shape with higher nucleus/cytoplasm ratios and showed a specific increase in the expression of cholangiocyte-specific genes and proteins (e.g., KRT19, KRT7, SOX9 and CFTR). CONCLUSIONS Cholangiocytes can be efficiently differentiated from hBMSCs in vivo and in vitro. DLL4 restores damaged liver by enhancing cholangiocyte differentiation from hBMSCs and has the potential to be used in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanglu An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xiaojun Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Sihan Ruan
- Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China.
| |
Collapse
|
142
|
Lin JY, Cheng J, Du YQ, Pan W, Zhang Z, Wang J, An J, Yang F, Xu YF, Lin H, An WT, Wang J, Yang Z, Chai RJ, Sha XY, Hu HL, Sun JP, Yu X. In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals. Cell Discov 2020; 6:20. [PMID: 32284878 PMCID: PMC7136205 DOI: 10.1038/s41421-020-0159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/08/2020] [Indexed: 01/04/2023] Open
Abstract
Tissue regeneration, such as pancreatic islet tissue propagation in vitro, could serve as a promising strategy for diabetes therapy and personalised drug testing. However, such a strategy has not been realised yet. Propagation could be divided into two steps, in vitro expansion and repeated passaging. Even the first step of the in vitro islet expansion has not been achieved to date. Here, we describe a method that enables the expansion of islet clusters isolated from pregnant mice or wild-type rats by employing a combination of specific regeneration factors and chemical compounds in vitro. The expanded islet clusters expressed insulin, glucagon and somatostatin, which are markers corresponding to pancreatic β cells, α cells and δ cells, respectively. These different types of cells grouped together, were spatially organised and functioned similarly to primary islets. Further mechanistic analysis revealed that forskolin in our recipe contributed to renewal and regeneration, whereas exendin-4 was essential for preserving islet cell identity. Our results provide a novel method for the in vitro expansion of islet clusters, which is an important step forward in developing future protocols and media used for islet tissue propagation in vitro. Such method is important for future regenerative diabetes therapies and personalised medicines using large amounts of pancreatic islets derived from the same person.
Collapse
Affiliation(s)
- Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Ya-Qin Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, 210096 Nanjing, Jiangsu China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jie An
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Fan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Yun-Fei Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 250012 Jinan, Shandong China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Wen-Tao An
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jia Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Ren-Jie Chai
- Key Laboratory for Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, 210096 Nanjing, Jiangsu China
| | - Xue-Ying Sha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
| | - Hui-Li Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| |
Collapse
|
143
|
Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 2020; 17:203-222. [PMID: 32099092 DOI: 10.1038/s41575-019-0255-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a major public health problem worldwide. Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality. Historically, the mechanisms of tumour initiation and progression in the gastrointestinal tract have been studied using cancer cell lines in vitro and animal models. Traditional cell culture methods are associated with a strong selection of aberrant genomic variants that no longer reflect the original tumours in terms of their (metastatic) behaviour or response to therapy. Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and the corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits. Importantly, accumulating evidence suggests that organoid cultures have great value in predicting the outcome of therapy in individual patients. Herein, we review the current literature on organoid models of the most common gastrointestinal cancers, including colorectal cancer, gastric cancer, oesophageal cancer, liver cancer and pancreatic cancer, and their value in modelling tumour initiation, metastatic progression and therapy response. We also explore the limitations of current organoid models and discuss how they could be improved to maximally benefit basic and translational research in the future, especially in the fields of drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
144
|
Du Y, Khandekar G, Llewellyn J, Polacheck W, Chen CS, Wells RG. A Bile Duct-on-a-Chip With Organ-Level Functions. Hepatology 2020; 71:1350-1363. [PMID: 31465556 PMCID: PMC7048662 DOI: 10.1002/hep.30918] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are frequently associated with damage to the barrier function of the biliary epithelium. Here, we report on a bile duct-on-a-chip that phenocopies not only the tubular architecture of the bile duct in three dimensions, but also its barrier functions. APPROACH AND RESULTS We showed that mouse cholangiocytes in the channel of the device became polarized and formed mature tight junctions, that the permeability of the cholangiocyte monolayer was comparable to ex vivo measurements, and that cholangiocytes in the device were mechanosensitive (as demonstrated by changes in calcium flux under applied luminal flow). Permeability decreased significantly when cells formed a compact monolayer with cell densities comparable to those observed in vivo. This device enabled independent access to the apical and basolateral surfaces of the cholangiocyte channel, allowing proof-of-concept toxicity studies with the biliary toxin, biliatresone, and the bile acid, glycochenodeoxycholic acid. The cholangiocyte basolateral side was more vulnerable than the apical side to treatment with either agent, suggesting a protective adaptation of the apical surface that is normally exposed to bile. Further studies revealed a protective role of the cholangiocyte apical glycocalyx, wherein disruption of the glycocalyx with neuraminidase increased the permeability of the cholangiocyte monolayer after treatment with glycochenodeoxycholic acid. CONCLUSIONS This bile duct-on-a-chip captured essential features of a simplified bile duct in structure and organ-level functions and represents an in vitro platform to study the pathophysiology of the bile duct using cholangiocytes from a variety of sources.
Collapse
Affiliation(s)
- Yu Du
- Division of GastroenterologyDepartment of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA,Center for Engineering MechanoBiologyThe University of PennsylvaniaPhiladelphiaPA
| | - Gauri Khandekar
- Division of GastroenterologyDepartment of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA,Center for Engineering MechanoBiologyThe University of PennsylvaniaPhiladelphiaPA
| | - Jessica Llewellyn
- Division of GastroenterologyDepartment of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA,Center for Engineering MechanoBiologyThe University of PennsylvaniaPhiladelphiaPA
| | - William Polacheck
- The Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA,The Biological Design Center and Department of Biomedical EngineeringBoston UniversityBostonMA,Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNC
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical EngineeringBoston UniversityBostonMA,Tissue Microfabrication LaboratoryDepartment of Biomedical EngineeringBoston UniversityBostonMA,Center for Engineering MechanoBiologyThe University of PennsylvaniaPhiladelphiaPA
| | - Rebecca G. Wells
- Division of GastroenterologyDepartment of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA,Department of BioengineeringSchool of Engineering and Applied SciencesThe University of PennsylvaniaPhiladelphiaPA,Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA,Center for Engineering MechanoBiologyThe University of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
145
|
Cholangiocarcinoma Disease Modelling Through Patients Derived Organoids. Cells 2020; 9:cells9040832. [PMID: 32235647 PMCID: PMC7226733 DOI: 10.3390/cells9040832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer organoids are 3D phenotypic cultures that can be established from resected or biopsy tumour samples and can be grown as mini tumours in the dish. Flourishing evidence supports the feasibility of patient derived organoids (PDO) from a number of solid tumours. Evidence for cholangiocarcinoma (CCA) PDO is still sparse but growing. CCA PDO lines have been established from resected early stage disease, advanced cancers and highly chemorefractory tumours. Cancer PDO was shown to recapitulate the 3D morphology, genomic landscape and transcriptomic profile of the source counterpart. They proved to be a valued model for drug discovery and sensitivity testing, and they showed to mimic the drug response observed in vivo in the patients. However, PDO lack representation of the intratumour heterogeneity and the tumour-stroma interaction. The efficiency rate of CCA PDO within the three different subtypes, intrahepatic, perihilar and distal, is still to be explored. In this manuscript we will review evidence for CCA PDO highlighting advantages and limitations of this novel disease model.
Collapse
|
146
|
Rizki-Safitri A, Shinohara M, Tanaka M, Sakai Y. Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery. J Biol Eng 2020; 14:11. [PMID: 32206088 PMCID: PMC7081557 DOI: 10.1186/s13036-020-0230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver metabolites are used to diagnose disease and examine drugs in clinical pharmacokinetics. Therefore, development of an in vitro assay system that reproduces liver metabolite recovery would provide important benefits to pharmaceutical research. However, liver models have proven challenging to develop because of the lack of an appropriate bile duct structure for the accumulation and transport of metabolites from the liver parenchyma. Currently available bile duct models, such as the bile duct cyst-embedded extracellular matrix (ECM), lack any morphological resemblance to the tubular morphology of the living bile duct. Moreover, these systems cannot overcome metabolite recovery issues because they are established in isolated culture systems. Here, we successfully established a non-continuous tubular bile duct structure model in an open-culture system, which closely resembled an in vivo structure. This system was utilized to effectively collect liver metabolites separately from liver parenchymal cells. Results Triple-cell co-culture of primary rat hepatoblasts, rat biliary epithelial cells, and mouse embryonic fibroblasts was grown to mimic the morphogenesis of the bile duct during liver development. Overlaying the cells with ECM containing a Matrigel and collagen type I gel mixture promoted the development of a tubular bile duct structure. In this culture system, the expression of specific markers and signaling molecules related to biliary epithelial cell differentiation was highly upregulated during the ductal formation process. This bile duct structure also enabled the separate accumulation of metabolite analogs from liver parenchymal cells. Conclusions A morphogenesis-based culture system effectively establishes an advanced bile duct structure and improves the plasticity of liver models feasible for autologous in vitro metabolite-bile collection, which may enhance the performance of high-throughput liver models in cell-based assays.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- 2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- 4Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan.,5Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yasuyuki Sakai
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,6Max Planck-The University of Tokyo, Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
147
|
Recent Advances in Practical Methods for Liver Cell Biology: A Short Overview. Int J Mol Sci 2020; 21:ijms21062027. [PMID: 32188134 PMCID: PMC7139397 DOI: 10.3390/ijms21062027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.
Collapse
|
148
|
Carpino G, Nevi L, Overi D, Cardinale V, Lu WY, Di Matteo S, Safarikia S, Berloco PB, Venere R, Onori P, Franchitto A, Forbes SJ, Alvaro D, Gaudio E. Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology 2020; 71:972-989. [PMID: 31330051 DOI: 10.1002/hep.30871] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Lorenzo Nevi
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Wei-Yu Lu
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Sabina Di Matteo
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
149
|
Kaur S, Tripathi DM, Venugopal JR, Ramakrishna S. Advances in biomaterials for hepatic tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
150
|
Baptista PM, Penning LC. Transplantable Liver Organoids, Too Many Cell Types to Choose: a Need for Scientific Self-Organization. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00266-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Purpose of Review
Liver stem cells have been proposed as alternatives or additions for whole liver transplantations to accommodate the donor liver shortage. Various sources of liver stem cells have been described in experimental animal studies. Here we aim to compare the various studies.
Recent Findings
Irrespective of the experimental design, the percentage of long-lasting survival and functional recovery of transplanted cells is generally very low. An exception to this are the proliferating hepatocytes transplanted into Fah(-/-) Rag2−/−IL2rg−/− mice; here 4-month post-transplantation around 65% repopulation was observed, and 11/14 mice survived in contrast to zero survival in sham-treated animals.
Summary
Taking the different cellular sources for the organoids, the different maturation status of the transplanted cells, and the variable animal models into account, a paper-to-paper comparison is compromised. This lack of objective comparison restricts the translation of these model studies into clinical practice.
Collapse
|