101
|
Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res 2019; 379:421-428. [PMID: 31776822 DOI: 10.1007/s00441-019-03109-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
Regenerative medicine is a branch of translational research that aims to reestablish irreparably damaged tissues and organs by stimulating the body's own repair mechanisms via the implantation of stem cells differentiated into specialized cell types. A rich source of adult stem cells is located inside the tooth and is represented by human dental pulp stem cells, or hDPSCs. These cells are characterized by a high proliferative rate, have self-renewal and multi-lineage differentiation properties and are often used for tissue engineering and regenerative medicine. The present review will provide an overview of hDPSCs and related features with a special focus on their potential applications in regenerative medicine of the nervous system, such as, for example, after spinal cord injury. Recent advances in the identification and characterization of dental stem cells and in dental tissue engineering strategies suggest that bioengineering approaches may successfully be used to regenerate districts of the central nervous system, previously considered irreparable.
Collapse
|
102
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|
103
|
Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, Shao Z, Hu S, Wang B, Lin H, Wu Y, Tian N, Wu Y, Gao W, Zhou Y, Zhang X, Wang X. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 2019; 24:671-685. [PMID: 31675186 PMCID: PMC6933381 DOI: 10.1111/jcmm.14776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and neuronal apoptosis contribute to the progression of secondary injury after spinal cord injury (SCI) and are targets for SCI therapy; autophagy is reported to suppress apoptosis in neuronal cells and M2 polarization may attenuate inflammatory response in microglia, while both are negatively regulated by mTORC1 signalling. We hypothesize that mTORC1 suppression may have dual effects on inflammation and neuronal apoptosis and may be a feasible approach for SCI therapy. In this study, we evaluate a novel inhibitor of mTORC1 signalling, Astragaloside IV (AS-IV), in vitro and in vivo. Our results showed that AS-IV may suppress mTORC1 signalling both in neuronal cells and microglial cells in vitro and in vivo. AS-IV treatment may stimulate autophagy in neuronal cells and protect them against apoptosis through autophagy regulation; it may also promote M2 polarization in microglial cells and attenuate neuroinflammation. In vivo, rats were intraperitoneally injected with AS-IV (10 mg/kg/d) after SCI, behavioural and histological evaluations showed that AS-IV may promote functional recovery in rats after SCI. We propose that mTORC1 suppression may attenuate both microglial inflammatory response and neuronal apoptosis and promote functional recovery after SCI, while AS-IV may become a novel therapeutic medicine for SCI.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
104
|
Beyer F, Jadasz J, Samper Agrelo I, Schira-Heinen J, Groh J, Manousi A, Bütermann C, Estrada V, Reiche L, Cantone M, Vera J, Viganò F, Dimou L, Müller HW, Hartung HP, Küry P. Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system. Glia 2019; 68:393-406. [PMID: 31633850 DOI: 10.1002/glia.23724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.
Collapse
Affiliation(s)
- Felix Beyer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Janusz Jadasz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Iria Samper Agrelo
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christine Bütermann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Veronica Estrada
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Francesca Viganò
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians Universität München, München, Germany
| | - Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians Universität München, München, Germany
| | - Hans Werner Müller
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
105
|
Wang HC, Lin YT, Hsu SY, Tsai NW, Lai YR, Su BYJ, Kung CT, Lu CH. Serial plasma DNA levels as predictors of outcome in patients with acute traumatic cervical spinal cord injury. J Transl Med 2019; 17:329. [PMID: 31570098 PMCID: PMC6771086 DOI: 10.1186/s12967-019-2084-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute traumatic cervical spinal cord injury (SCI) is a leading cause of disability in adolescents and young adults worldwide. Evidence from previous studies suggests that circulating cell-free DNA is associated with severity following acute injury. The present study determined whether plasma DNA levels in acute cervical SCI are predictive of outcome. METHODS In present study, serial plasma nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) levels were obtained from 44 patients with acute traumatic cervical SCI at five time points from day 1 to day 180 post-injury. Control blood samples were obtained from 66 volunteers. RESULTS Data showed a significant increase in plasma nDNA and mtDNA concentrations at admission in SCI patients compared to the control group. Plasma nDNA levels at admission, but not plasma mtDNA levels, were significantly associated with the Japanese Orthopaedic Association (JOA) score and Injury Severity Score in patients with acute traumatic cervical SCI. In patients with non-excellent outcomes, plasma nDNA increased significantly at days 1, 14 and 30 post-injury. Furthermore, its level at day 14 was independently associated with outcome. Higher plasma nDNA levels at the chosen cutoff point (> 45.6 ng/ml) predicted poorer outcome with a sensitivity of 78.9% and a specificity of 78.4%. CONCLUSIONS These results indicate JOA score performance and plasma nDNA levels reflect the severity of spinal cord injury. Therefore, the plasma nDNA assays can be considered as potential neuropathological markers in patients with acute traumatic cervical SCI.
Collapse
Affiliation(s)
- Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Yuan Hsu
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan
| | - Yun-Ru Lai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan
| | - Ben Yu-Jih Su
- Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan. .,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China.
| |
Collapse
|
106
|
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Front Mol Neurosci 2019; 12:225. [PMID: 31616249 PMCID: PMC6764409 DOI: 10.3389/fnmol.2019.00225] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
In diseases such as multiple sclerosis (MS), inflammation can injure the myelin sheath that surrounds axons, a process known as demyelination. The spontaneous regeneration of myelin, called remyelination, is associated with restoration of function and prevention of axonal degeneration. Boosting remyelination with therapeutic intervention is a promising new approach that is currently being tested in several clinical trials. The endogenous regulation of remyelination is highly dependent on the immune response. In this review article, we highlight the cell biology of remyelination and its regulation by innate immune cells. For the purpose of this review, we discuss the roles of microglia, and also astrocytes and oligodendrocyte progenitor cells (OPCs) as they are being increasingly recognized to have immune cell functions.
Collapse
Affiliation(s)
- Charbel S. Baaklini
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalil S. Rawji
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, United States
| | - Madelene F. S. Ho
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
107
|
Lam C, Li KK, Do CW, Chan H, To CH, Kwong JMK. Quantitative profiling of regional protein expression in rat retina after partial optic nerve transection using fluorescence difference two‑dimensional gel electrophoresis. Mol Med Rep 2019; 20:2734-2742. [PMID: 31524249 PMCID: PMC6691257 DOI: 10.3892/mmr.2019.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
To examine the difference between primary and secondary retinal ganglion cell (RGC) degeneration, the protein expression at four regions of retina including superior, temporal, inferior and nasal quadrant in a rat model of partial optic nerve transection (pONT) using 2-D Fluorescence Difference Gel Electrophoresis (DIGE) were investigated. Unilateral pONT was performed on the temporal side of optic nerves of adult Wistar rats to separate primary and secondary RGC loss. Topographical quantification of RGCs labeled by Rbpms antibody and analysis of axonal injury by grading of optic nerve damage at 1 week (n=8) and 8 weeks (n=15) after pONT demonstrated early RGC loss at temporal region, which is considered as primary RGC degeneration and progressing RGC loss at nasal region, which is considered as secondary RGC degeneration. Early protein expression in each retinal quadrant (n=4) at 2 weeks after pONT was compared with the corresponding quadrant in the contralateral control eye by DIGE. For all comparisons, 24 differentially expressed proteins (>1.2-fold; P<0.05; ≥3 non-duplicated peptide matches) were identified by mass spectrometry (MS). Interestingly, in the nasal retina, serum albumin and members of crystallin family, including αA, αB, βA2, βA3, βB2 and γS indicating stress response were upregulated. By contrast, only αB and βA2 crystallin proteins were altered in temporal quadrant. In the superior and inferior quadrants, βB2 crystallin, keratin type I, S-arrestin and lamin-B1 were upregulated, while heat shock cognate 71 kDa protein and heterogeneous nuclear ribonucleoproteins A2/B1 were downregulated. In summary, the use of DIGE followed by MS is useful to detect early regional protein regulation in the retina after localized optic nerve injury.
Collapse
Affiliation(s)
- Chuen Lam
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - King Kit Li
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Chi Wai Do
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Henry Chan
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Chi Ho To
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Jacky Man Kwong Kwong
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
108
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
109
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
110
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
111
|
Gok S, Sahin M. Prediction of Forelimb EMGs and Movement Phases from Corticospinal Signals in the Rat During the Reach-to-Pull Task. Int J Neural Syst 2019; 29:1950009. [DOI: 10.1142/s0129065719500096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain-computer interfaces access the volitional command signals from various brain areas in order to substitute for the motor functions lost due to spinal cord injury or disease. As the final common pathway of the central nervous system (CNS) outputs, the descending tracts of the spinal cord offer an alternative site to extract movement-related command signals. Using flexible 2D microelectrode arrays, we have recorded the corticospinal tract (CST) signals in rats during a reach-to-pull task. The CST activity was then classified by the forelimb movement phases into two or three classes in a training dataset and cross validated in a test set. The average classification accuracies were [Formula: see text] (min: [Formula: see text] to max: [Formula: see text]) and [Formula: see text] (min: 43% to max: 71%) for two-class and three-class cases, respectively. The forelimb flexor and extensor EMG envelopes were also predicted from the CST signals using linear regression. The average correlation coefficient between the actual and predicted EMG signals was [Formula: see text] [Formula: see text], whereas the highest correlation was 0.81 for the biceps EMG. Although the forelimb motor function cannot be explained completely by the CST activity alone, the success rates obtained in reconstructing the EMG signals support the feasibility of a spinal-cord-computer interface as a concept.
Collapse
Affiliation(s)
- Sinan Gok
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
112
|
Qatomah AY, Alhabter A, Alqahtani A, Albshabshi A, Alnaami I. Subacute progressive ascending myelopathy following motor vehicle accident. Chirurgia (Bucur) 2019. [DOI: 10.23736/s0394-9508.18.04813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
113
|
Huang LJ, Li G, Ding Y, Sun JH, Wu TT, Zhao W, Zeng YS. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp Neurol 2019; 320:112965. [PMID: 31132364 DOI: 10.1016/j.expneurol.2019.112965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein 1 (LINGO-1) is a transmembrane protein that negatively regulates neural regeneration in the central nervous system. LINGO-1 expression is up-regulated after central nerve injury, and is accompanied by cell death. Both LINGO-1 and cell death in the injury microenvironment are thought to limit neural regeneration, but the relationship between LINGO-1 and cell death has not been characterized. To investigate whether LINGO-1 deletion improves the spinal cord microenvironment after spinal cord injury (SCI) and contributes to cell survival, we generated LINGO-1 knockout (KO) mice. These mice and wild-type control mice were subjected to spinal cord transection. Fourteen days after spinal cord transection, cell apoptosis, inflammation, glial scar, and growth of nerve fibers were evaluated by immunostaining. The results showed that LINGO-1 KO mice demonstrated a profound reduction in expression of caspase-3, transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL), ionized calcium binding adapter molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and chondroitin sulfate proteoglycans (CSPGs) compared to controls. In contrast, expression of neurofilament (NF) at the SCI site in LINGO-1 KO mice was markedly increased compared to that in wild-type mice. These results suggested that LINGO-1 plays a critical role in the injury microenvironment in processes such as cell death, inflammatory response, and glial scar formation. Importantly, LINGO-1 deletion and a positive microenvironment may exert synergistic effects to promote nerve fiber regeneration. Therefore, inhibition of LINGO-1 may be a therapeutic strategy to promote neural regeneration following SCI.
Collapse
Affiliation(s)
- Li-Jun Huang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting-Ting Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
114
|
Aydoseli A, Özgen U, Akgül T, Orhan EK, Adıyaman AE, Can H, Karadağ C. Subacute Traumatic Ascending Myelopathy in a 28-Year-Old Man: A Rare Case. World Neurosurg 2019; 128:143-148. [PMID: 31042601 DOI: 10.1016/j.wneu.2019.04.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Subacute posttraumatic ascending myelopathy (SPAM) involves the rise in high signal intensity on T2-weighted images ≥4 vertebral segments above the initial injured site, and it usually occurs within the first few weeks after the injury. The pathophysiologic mechanisms of traumatic spinal cord damage are not clearly understood; however, there are some pathophysiologic processes such as arterial thrombosis, venous thrombosis, congestive ischemia, inflammatory or autoimmune reaction, and infection in the form of meningitis or myelitis that could lead to SPAM. CASE DESCRIPTION We present a case of T7 fracture because of left shoulder gunshot injury and ascending myelopathy up to the C2 vertebra level, which occurred 1 week after the gunshot injury, without pretraumatic cervical injury or syringomyelia. Although control magnetic resonance imaging findings showed the second rise in the high signal intensity level of the spinal cord, T2-weighted signal intensity and cord edema decreased and the patient showed neurologic improvement. CONCLUSIONS This was the first case in the literature that showed rise 2 times in high signal intensity level in the spinal cord because of gunshot injury. Inflammatory reactions and secondary injury processes might have led to neurologic deterioration and ascending myelopathy in our case; therefore, the patient may have shown neurologic improvement after methylprednisolone therapy because of its anti-inflammatory and antiedema effects. There is no clear evidence whether neurologic improvement is associated with steroid therapy or it is because of the natural course of SPAM.
Collapse
Affiliation(s)
- Aydın Aydoseli
- Department of Neurosurgery, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Utku Özgen
- Department of Neurosurgery, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey.
| | - Turgut Akgül
- Department of Orthopaedics and Traumatology, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Elif Kocasoy Orhan
- Department of Neurology, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Ali Ekrem Adıyaman
- Department of Neurosurgery, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Halil Can
- Department of Neurosurgery, Medicine Hospital, Istanbul, Turkey; Department of Neurosurgery, Biruni University, Istanbul, Turkey
| | - Cihat Karadağ
- Department of Neurosurgery, University Hospital Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
115
|
Li H, Wang Y, Hu X, Ma B, Zhang H. Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway. Gene 2019; 707:136-142. [PMID: 31054361 DOI: 10.1016/j.gene.2019.04.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Neural stem/progenitor cells (NSPCs) can enhance regeneration after spinal cord injury (SCI), but survival of transplanted cells remains poor. Understanding how NSPCs respond to the chemical mediators of secondary injury thus is essential for treating SCI. Thymosin β4 (Tβ4) has physiological functions that are highly relevant to SCI. We exposed NSPCs to oxidative stress and found reduced expression of Tβ4 in H2O2-injured NSPCs. Using an MTT assay, we found that Tβ4 dose dependently increased viability of the injured NSPCs. Tβ4 also reversed the decreases of intracellular Ca2+ concentration and increases of lactate dehydrogenase in NSPCs induced by H2O2 treatment. H2O2 exposure increased NSPC apoptosis, which Tβ4 decreased. In H2O2-induced NSPCs, ROS production and pro-inflammatory cytokines increased, and again, Tβ4 reversed these effects. We investigated the toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling pathway as an underlying mechanism in Tβ4's protective effect on H2O2-exposed NSPCs. Our results showed that Tβ4 reduced expression of TLR4 and MyD88. Moreover, H2O2-exposed NSPCs that were treated with the TLR4/MyD88 pathway inhibitor showed a reversal of all the effects caused by H2O2, similar to Tβ4's effects. In conclusion, our study determined that Tβ4 attenuated H2O2-induced oxidative stress injury in NSPCs via the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Yonggang Wang
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Xuchang Hu
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Bing Ma
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Haihong Zhang
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China.
| |
Collapse
|
116
|
Neuroprotection, Recovery of Function and Endogenous Neurogenesis in Traumatic Spinal Cord Injury Following Transplantation of Activated Adipose Tissue. Cells 2019; 8:cells8040329. [PMID: 30965679 PMCID: PMC6523261 DOI: 10.3390/cells8040329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease, which leads to paralysis and is associated to substantially high costs for the individual and society. At present, no effective therapies are available. Here, the use of mechanically-activated lipoaspirate adipose tissue (MALS) in a murine experimental model of SCI is presented. Our results show that, following acute intraspinal MALS transplantation, there is an engraftment at injury site with the acute powerful inhibition of the posttraumatic inflammatory response, followed by a significant progressive improvement in recovery of function. This is accompanied by spinal cord tissue preservation at the lesion site with the promotion of endogenous neurogenesis as indicated by the significant increase of Nestin-positive cells in perilesional areas. Cells originated from MALS infiltrate profoundly the recipient cord, while the extra-dural fat transplant is gradually impoverished in stromal cells. Altogether, these novel results suggest the potential of MALS application in the promotion of recovery in SCI.
Collapse
|
117
|
Gao Y, Vijayaraghavalu S, Stees M, Kwon BK, Labhasetwar V. Evaluating accessibility of intravenously administered nanoparticles at the lesion site in rat and pig contusion models of spinal cord injury. J Control Release 2019; 302:160-168. [PMID: 30930216 DOI: 10.1016/j.jconrel.2019.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
In spinal cord injury (SCI), timely therapeutic intervention is critical to inhibit the post-injury rapidly progressing degeneration of spinal cord. Towards that objective, we determined the accessibility of intravenously administered biodegradable nanoparticles (NPs) as a drug delivery system to the lesion site in rat and pig contusion models of SCI. Poly (d,l-lactide co-glycolide, PLGA)-based NPs loaded with a near-infrared dye as a marker for NPs were used. To analyze and quantify localization of NPs to the lesion site, we mapped the entire spinal cord, segment-by-segment, for the signal count. Our objectives were to determine the NP dose effect and duration of retention of NPs at the lesion site, and the time window post-SCI within which NPs localize at the lesion site. We hypothesized that breakdown of the blood-spinal cord barrier following contusion injury could lead to more specific localization of NPs at the lesion site. The mapping data showed a dose-dependent increase and significantly greater localization of NPs at the lesion site than in the remaining uninjured segment of the spinal cord. Further, NPs were seen to be retained at the lesion site for more than a week. With delayed post-SCI administration, localization of NPs at the lesion site was reduced but still localize even at four weeks post-injury administration. Interestingly, in uninjured animals (sham control), greater accumulation of NPs was seen in the thoracic and lumbar enlargement regions of the spinal cord, which in animals with SCI changed to the lesion site, indicating drastic post-injury hemodynamic changes in the spinal cord. Similar to the rat results, pig contusion model of SCI showed greater NP localization at the lesion site. In conclusion, NPs could potentially be explored as a carrier for delivery of therapeutics to the lesion site to minimize the impact of post-SCI response.
Collapse
Affiliation(s)
- Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Melinda Stees
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopedics, International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
118
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
119
|
Li R, Bao L, Hu W, Liang H, Dang X. Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects on a rat model of acute spinal cord injury. Tissue Cell 2019; 57:22-33. [PMID: 30947960 DOI: 10.1016/j.tice.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Acute spinal cord injuries (ASCI) are common neural disorders in traumatology medicine. MicroRNA-210 (miR-210) plays a crucial role in cell survival, endothelial cell migration and cell regeneration. This paper is aim to validate the pathophysiological function of miR-210 on ASCI. We built a rat model of ASCI and utilized an adeno-associated virus (rAAV)-expressing miR-210 for stable over-expression of miR-210. We tested in vivo miR-210 gain of function on ASCI by microinjected rAAV-miR-210 into the rat spinal cord. We further screened the targeting genes of miR-210 by PCR array and detected related signal proteins by Western Blot and qPCR. Over-expression of miR-210 protected neurons while neurologic function scores were improved. We further identified less TUNEL-positive cells, few features of apoptosis under electron microscopy, decreased activities of caspase-3 and 8 and increased vessel count in the spinal cord from rAAV-miR-210 group. We also found rAAV-miR-210 promoted expression of angiogenesis and metastasis-related protein (VEGF and Glut1) and regulated serum levels of inflammation-related cytokines. PCR screen array showed PTP1B, target of miR-210, was significantly down-regulated and Akt phosphorylation was significantly increased in rAAV-miR-210 group. The current data suggest that over-expression of miR-210 may target PTP1B and plays a neuroprotective role on rats after ASCI.
Collapse
Affiliation(s)
- Ruofei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, Shaanxi, 710004, China; Department of Orthopaedics, The Central Hospital of Xianyang, No. 78, Renming East Road, Xianyang, Shaanxi, 712000, China.
| | - Lizhong Bao
- Department of Orthopaedics, The Central Hospital of Xianyang, No. 78, Renming East Road, Xianyang, Shaanxi, 712000, China.
| | - Wei Hu
- Department of Orthopaedics, The Central Hospital of Xianyang, No. 78, Renming East Road, Xianyang, Shaanxi, 712000, China.
| | - Huiping Liang
- Department of Dermatology, The Central Hospital of Xianyang, No. 78, Renming East Road, Xianyang, Shaanxi, 712000, China.
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
120
|
Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review. Neuroscience 2019; 402:37-50. [PMID: 30685542 DOI: 10.1016/j.neuroscience.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Extensive oligodendrocyte death after acute traumatic spinal cord injuries (TSCI) leads to axon demyelination and subsequently may leave axons vulnerable to degeneration. Despite the present evidence showing spontaneous remyelination after TSCI the cellular origin of new myelin and the time course of the axon ensheathment/remyelination remained controversial issue. In this systematic review the trend of oligodendrocyte death after injury as well as the extent and the cellular origin of oligodendrogliogenesis were comprehensively evaluated. The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched with no temporal or linguistic restrictions. Also, hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies discussing different types of myelinating cells including oligodendrocytes, Schwann cells and oligodendrocyte progenitor cells (OPCs) were evaluated. The extent of oligodendrocyte death, oligodendrocyte differentiation and remyelination were the pathophysiological outcome measures. We found 12,359 studies, 34 of which met the inclusion criteria. The cumulative evidence shows extensive oligodendrocytes cell death during the first week post-injury (pi). OPCs and peripheral invading Schwann cells are the dominant cells contributing in myelin formation. The maximum OPC proliferation was observed at around 2 weeks pi and oligodendrogliogenesis continues at later stages until the number of oligodendrocytes return to normal tissue by one month pi. Taken together, the evidence in animals reveals the potential role for endogenous myelinating cells in the axon ensheathment/remyelination after TSCI and this can be the target of pharmacotherapy to induce oligodendrocyte differentiation and myelin formation post-injury.
Collapse
|
121
|
Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem Int 2019; 124:181-192. [PMID: 30664898 DOI: 10.1016/j.neuint.2019.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 01/31/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries including inflammation. Inflammatory response is one of the major events resulting in apoptosis, scar formation and neuronal dysfunction after SCI. Here, we investigated whether protocatechuic acid (PCA), a natural phenolic compound, would attenuate BSCB disruption and hemorrhage, leading to functional improvement after SCI. After a moderate contusion injury at T9, PCA (50 mg/kg) was administrated via intraperitoneal injection immediately, 6 h, and 12 h after SCI, and the same dose of PCA once a day until 7 d after injury. Our data show that PCA inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after injury. PCA also attenuated BSCB disruption and hemorrhage and reduced the infiltration of neutrophils and macrophages compared to vehicle control. Moreover, PCA inhibited the expression and activation of matrix metalloprotease-9, which is well known to disrupt BSCB after SCI. Furthermore, PCA treatment significantly inhibited the expression of sulfonylurea receptor 1 and transient receptor potential melastatin 4, which are known to mediate hemorrhage at an early stage after SCI. Consistent with these findings, the mRNA and protein expression of inflammatory mediators such as tumor necrosis factor alpha, interleukin 1 beta, cyclooxygenase-2, inducible nitric oxide synthase, and chemokines was significantly alleviated by PCA treatment. Thus, our results suggest that PCA improved functional recovery after SCI in part by inhibiting BSCB disruption and hemorrhage through the down-regulation of sulfonylurea receptor 1/transient receptor potential melastatin 4 and matrix metalloprotease-9.
Collapse
|
122
|
Mei X, Wang H, Zhang H, Liu C, Guo Z, Wang Y, Yuan Y, Zhao Z, Li D, Tang P. Blockade of receptor for advanced glycation end products promotes oligodendrocyte autophagy in spinal cord injury. Neurosci Lett 2019; 698:198-203. [PMID: 30660637 DOI: 10.1016/j.neulet.2019.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Receptor for advanced glycation end product (RAGE) is involved in neuronal inflammation, cell cycle and differentiation. However, the role of RAGE in autophagy in the process of spinal cord injury (SCI) is yet unknown. The present study investigated the effect of RAGE blockade on autophagy in SCI. A rat Allen SCI model was established and the animals were micro-injected with rabbit RAGE neutralizing antibody or rabbit polyclonal Ig G immediately after the injury. The oligodendrocytes(OLs) marker, 2', 3'-cyclic nucleotide 3'-phosphodiesterase(CNPase) and autophagy-related marker microtubule associated protein light chain 3B(LC3B) were evaluated by Western blot. Furthermore, myelin basic protein (MBP) and LC3B double staining were observed in the SCI via immunofluorescence. The results showed that RAGE blockade reduced the expression of CNPase, promoted LC3B-II/I and p62 expression after SCI. In addition, the MBP/LC3B double positive oligodendrocytes-expressing LC3B was up-regulated by RAGE blockade. Moreover, RAGE blockade attenuated the neuronal survival at ventral horn after SCI. The present study revealed the role of RAGE in maintaining oligodendrocyte autophagy to promote neuronal regeneration post-SCI.
Collapse
Affiliation(s)
- Xifan Mei
- Department of Orthopedic, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Hongyu Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Hua Zhang
- Jinzhou Medical University, Jinzhou City, 121000, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhanpeng Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yansong Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Dingding Li
- Department of Orthopedic, the First People's Hospital of Longquanyi District, Chengdu City, PR China
| | - Peifu Tang
- Department of Orthopedic, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
123
|
Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging. Spinal Cord 2019; 57:404-411. [PMID: 30643168 DOI: 10.1038/s41393-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES To evaluate the efficacy of hyperbaric oxygen (HBO) therapy for spinal cord injury (SCI) in rats with different treatment course using diffusion tensor imaging (DTI). SETTING Hospital in Fuzhou, China. METHODS Fifty adult Sprague-Dawley rats were grouped as: (A) sham-operated group (n = 10); (B) SCI without HBO therapy group (n = 10); (C) SCI with HBO therapy for 2 weeks (SCI+HBO2W) group (n = 10); (D) SCI with HBO therapy for 4 weeks (SCI+HBO4W) group (n = 10); (E) SCI with HBO therapy for 6 weeks (SCI+HBO6W) group (n = 10). Basso Beattie Bresnahan (BBB) scores and diffusion tensor imaging parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (RD), and axial diffusion (AD) values in the injury epicenter, as well as 2 mm rostral and caudal to the injury epicenter were collected and analyzed 6 weeks post-injury. RESULTS Higher BBB score and FA values were found in the SCI+HBO4W group than in the SCI and SCI+HBO2W groups (all P < 0.05), whereas no significant differences of these metrics were observed between the SCI+HBO4W and SCI+HBO6W groups. MD and RD values of the SCI+HBO4W group were significantly lower than those of the SCI group (all P < 0.01). FA values were positively correlated with BBB scores. MD and RD values were negatively correlated with BBB scores. CONCLUSION DTI parameters, especially FA, could non-invasively and quantifiably evaluate the efficacy of HBO treatment for rats with SCI and 4 weeks may be the more appropriate treatment course.
Collapse
|
124
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
125
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
126
|
Giacci M, Fitzgerald M. Oligodendroglia Are Particularly Vulnerable to Oxidative Damage After Neurotrauma In Vivo. J Exp Neurosci 2018; 12:1179069518810004. [PMID: 30479489 PMCID: PMC6240964 DOI: 10.1177/1179069518810004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/15/2022] Open
Abstract
In the paper “Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo,” we determined the extent of oxidative damage to specific cellular subpopulations and structures within regions vulnerable to secondary degeneration and assessed the effect this had on oligodendroglial function. Comparative assessment of oxidative damage demonstrated selective vulnerability of oligodendroglia, specifically oligodendrocyte progenitor cells (OPCs) to DNA oxidation in vivo. Immunohistochemical fate mapping along the oligodendroglial lineage showed a transient susceptibility of these cells to DNA oxidation, protein nitration, and lipid peroxidation, with mature oligodendrocytes derived immediately after injury more vulnerable to DNA oxidation than their counterparts existing at the time of injury or later derived. In situ hybridization demonstrated a reduction in myelin regulatory factor (MyRF) messenger RNA (mRNA) fluorescence in newly derived mature oligodendrocytes, suggesting a compromise in the production and maintenance of the myelin sheath in these cells. The data imply a deficit in the normal differentiation of OPCs to myelinating oligodendrocytes, associated with a transient increase in oxidative damage, which may contribute to the dysmyelinating phenotype seen at chronic time points after injury. Identifying and understanding the sources of this oxidative damage is integral for the development of therapeutic interventions for neurotrauma.
Collapse
Affiliation(s)
- Marcus Giacci
- School of Biological Sciences, The University of Western Australia, Nedlands, Australia
| | - Melinda Fitzgerald
- School of Biological Sciences, The University of Western Australia, Nedlands, Australia.,Curtin Health Innovation Research Institute, Curtin University, Belmont, Australia.,Perron Institute for Neurological and Translational Sciences, Sarich Neuroscience Research Institute Building, Nedlands, Australia
| |
Collapse
|
127
|
Squair JW, Tigchelaar S, Moon KM, Liu J, Tetzlaff W, Kwon BK, Krassioukov AV, West CR, Foster LJ, Skinnider MA. Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. eLife 2018; 7:39188. [PMID: 30277459 PMCID: PMC6173583 DOI: 10.7554/elife.39188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition for which there are currently no effective treatment options to restore function. A major obstacle to the development of new therapies is our fragmentary understanding of the coordinated pathophysiological processes triggered by damage to the human spinal cord. Here, we describe a systems biology approach to integrate decades of small-scale experiments with unbiased, genome-wide gene expression from the human spinal cord, revealing a gene regulatory network signature of the pathophysiological response to SCI. Our integrative analyses converge on an evolutionarily conserved gene subnetwork enriched for genes associated with the response to SCI by small-scale experiments, and whose expression is upregulated in a severity-dependent manner following injury and downregulated in functional recovery. We validate the severity-dependent upregulation of this subnetwork in rodents in primary transcriptomic and proteomic studies. Our analysis provides systems-level view of the coordinated molecular processes activated in response to SCI.
Collapse
Affiliation(s)
- Jordan W Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Michael A Skinnider
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
128
|
Park CH, Joa KL, Lee MO, Yoon SH, Kim MO. The combined effect of granulocyte-colony stimulating factor (G-CSF) treatment and exercise in rats with spinal cord injury. J Spinal Cord Med 2018; 43:339-346. [PMID: 30230978 PMCID: PMC7241473 DOI: 10.1080/10790268.2018.1521567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: To identify that the combined G-CSF and treadmill exercise is more effective in functional recovery after spinal cord injury (SCI).Design: Rats were divided into 4 groups: a SCI group treated with G-CSF (G-CSF group, n = 6), a SCI group treated with treadmill exercise plus G-CSF (G-CSF/exercise group, n = 6), a SCI group with treadmill exercise (exercise group, n = 6), and a SCI group without treatments (control group, n = 6). We performed laminectomy at the T8-10 spinal levels with compression injury of the spinal cord in all rats. G-CSF (20 μg/ml) was administered intraperitoneally for 5 consecutive days after SCI in G-CSF and G-CSF/exercise groups. From one week after surgery, animals in G-CSF/exercise and exercise groups received 30 min of exercise 5 days per week for 4 weeks. Functional recoveries were assessed using the Basso, Beattie, and Bresnahan (BBB) scale and the inclined plane test. Five weeks after SCI, hematoxylin and eosin staining for cavity size and immunohistochemistry for glial scar formation and neuro-regeneration factor expression were conducted.Setting: Inha University School of medicine, Incheon, KoreaResults: Rats in G-CSF/exercise group showed the most effective functional recovery in the BBB scale and the inclined plane test, and spinal cord cavity size by injury were the smallest, and immunohistochemistry revealed expression of higher BDNF (brain-derived neurotrophic factor) and VEGF (vascular endothelial growth factor) and lower GFAP (glial fibrillary acidic protein) than others.Conclusion: Combined treatment provided more effective neuroplasty and functional recovery than individual treatments.
Collapse
Affiliation(s)
- Chan-Hyuk Park
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Mi-Ok Lee
- School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Hwan Yoon
- Department of Neurosurgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Myeong-Ok Kim
- Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Incheon, Republic of Korea,Correspondence to: Myeong-Ok Kim, Department of Physical & Rehabilitation Medicine, School of Medicine, Inha University, Inha University Hospital, 27, Inhang-ro, Jung-Gu, Incheon, 222–332, Korea; Ph: +82-32-890-2480.
| |
Collapse
|
129
|
Abstract
We first considered that saffron is really safety food because it has a long-use history. The neuroprotective activities of saffron and its major constituent, crocin, are separately discussed in vitro and in vivo. We reviewed the inhibitory activities of crocin against PC-12 cell apoptosis. The oxidative stress decreased the cellular levels of glutathione (GSH) which is an inhibitor of neutral sphingomyelinase (N-SMase). Therefore, the level of GSH was assayed by the addition of crocin resulted in the activation of glutathione reductase (GR). It became evident that crocin treatment prevents the N-SMase activation resulting in the decrease of ceramide release. From these evidences we summarized the role of crocin for neuronal cell death. We used the ethanol-blocking assay system for learning and memory activities. The effect of saffron and crocin on improving ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks has been clear. Further, we did make clear that saffron and crocin prevent the inhibitory effect of ethanol on long-term potentiation (LTP) in the dentate gyrus. Finally we found that 100 mg/kg of crocin gave non-rapid eye movement sleep (non-REM sleep) although mice were started to be active during night time.
Collapse
|
130
|
Seif M, Curt A, Thompson AJ, Grabher P, Weiskopf N, Freund P. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. Neuroimage Clin 2018; 20:556-563. [PMID: 30175042 PMCID: PMC6115607 DOI: 10.1016/j.nicl.2018.08.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/11/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Objective To reveal the immediate extent of trauma-induced neurodegenerative changes rostral to the level of lesion and determine the predictive clinical value of quantitative MRI (qMRI) following acute spinal cord injury (SCI). Methods Twenty-four acute SCI patients and 23 healthy controls underwent a high-resolution T1-weighted protocol. Eighteen of those patients and 20 of controls additionally underwent a multi-parameter mapping (MPM) MRI protocol sensitive to the content of tissue structure, including myelin and iron. Patients were examined clinically at baseline, 2, 6, 12, and 24 months post-SCI. We assessed volume and microstructural changes in the spinal cord and brain using T1-weighted MRI, magnetization transfer (MT), longitudinal relaxation rate (R1), and effective transverse relaxation rate (R2*) maps. Regression analysis determined associations between acute qMRI parameters and recovery. Results At baseline, cord area and its anterior-posterior width were decreased in patients, whereas MT, R1, and R2* parameters remained unchanged in the cord. Within the cerebellum, volume decrease was paralleled by increases of MT and R2* parameters. Early grey matter changes were observed within the primary motor cortex and limbic system. Importantly, early volume and microstructural changes of the cord and cerebellum predicted functional recovery following injury. Conclusions Neurodegenerative changes rostral to the level of lesion occur early in SCI, with varying temporal and spatial dynamics. Early qMRI markers of spinal cord and cerebellum are predictive of functional recovery. These neuroimaging biomarkers may supplement clinical assessments and provide insights into the potential of therapeutic interventions to enhance neural plasticity.
Collapse
Key Words
- APW, anterior posterior width
- Acute micro-structural changes
- Brain and spinal cord atrophy
- ISNCSCI, international standards for the neurological classification of spinal cord injury
- LRW, left right width
- MPM, multi-parameter mapping
- MT, magnetization transfer
- PD*, effective proton density
- Quantitative neuroimaging
- R1, longitudinal relaxation rate
- R2*, effective transverse relaxation rate
- ROI, region of interest
- SCA, spinal cord area
- SCI, spinal cord injury
- SCIM, spinal cord independence measure
- Spinal cord injury
- VBCT, voxel based cortical thickness
- VBM, voxel based morphometry
- VBQ, voxel based quantification
- Voxel-based morphometry and quantification
Collapse
Affiliation(s)
- Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland
| | - Alan J Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Grabher
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.
| |
Collapse
|
131
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Liu J, Moulson A, Plemel JR, Tetzlaff W. Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat Commun 2018; 9:3066. [PMID: 30076300 PMCID: PMC6076268 DOI: 10.1038/s41467-018-05473-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Remyelination occurs after spinal cord injury (SCI) but its functional relevance is unclear. We assessed the necessity of myelin regulatory factor (Myrf) in remyelination after contusive SCI by deleting the gene from platelet-derived growth factor receptor alpha positive (PDGFRα-positive) oligodendrocyte progenitor cells (OPCs) in mice prior to SCI. While OPC proliferation and density are not altered by Myrf inducible knockout after SCI, the accumulation of new oligodendrocytes is largely prevented. This greatly inhibits myelin regeneration, resulting in a 44% reduction in myelinated axons at the lesion epicenter. However, spontaneous locomotor recovery after SCI is not altered by remyelination failure. In controls with functional MYRF, locomotor recovery precedes the onset of most oligodendrocyte myelin regeneration. Collectively, these data demonstrate that MYRF expression in PDGFRα-positive cell derived oligodendrocytes is indispensable for myelin regeneration following contusive SCI but that oligodendrocyte remyelination is not required for spontaneous recovery of stepping.
Collapse
Affiliation(s)
- Greg J Duncan
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
| | - Sohrab B Manesh
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, V6T 1Z3, BC, Canada
| | - Brett J Hilton
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Straße 27, 53127, Bonn, Germany
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, V6T 1Z3, BC, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
| | - Aaron Moulson
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
| | - Jason R Plemel
- The Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada.
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada.
- Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, V5Z 1M9, BC, Canada.
| |
Collapse
|
132
|
Zhang Z, Chen J, Chen F, Yu D, Li R, Lv C, Wang H, Li H, Li J, Cai Y. Tauroursodeoxycholic acid alleviates secondary injury in the spinal cord via up-regulation of CIBZ gene. Cell Stress Chaperones 2018; 23:551-560. [PMID: 29151236 PMCID: PMC6045539 DOI: 10.1007/s12192-017-0862-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is generally divided into primary and secondary injuries, and apoptosis is an important event of the secondary injury. As an endogenous bile acid and recognized endoplasmic reticulum (ER) stress inhibitor, tauroursodeoxycholic acid (TUDCA) administration has been reported to have a potentially therapeutic effect on neurodegenerative diseases, but its real mechanism is still unclear. In this study, we evaluated whether TUDCA could alleviate traumatic damage of the spinal cord and improve locomotion function in a mouse model of SCI. Traumatic SCI mice were intraperitoneally injected with TUDCA, and the effects were evaluated based on motor function assessment, histopathology, apoptosis detection, qRT-PCR, and western blot at different time periods. TUDCA administration can improve motor function and reduce secondary injury and lesion area after SCI. Furthermore, the apoptotic ratios were significantly reduced; Grp78, Erdj4, and CHOP were attenuated by the treatment. Unexpectedly, the levels of CIBZ, a novel therapeutic target for SCI, were specifically up-regulated. Taken together, it is suggested that TUDCA effectively suppressed ER stress through targeted up-regulation of CIBZ. This study also provides a new strategy for relieving secondary damage by inhibiting apoptosis in the early treatment of spinal cord injury.
Collapse
Affiliation(s)
- Zongmeng Zhang
- College of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, 241000, China
| | - Jie Chen
- College of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, 241000, China
- The Secondary Hospital of Wuhu, Wuhu, Anhui, 241000, China
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolun Yu
- College of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, 241000, China
| | - Rui Li
- College of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, 241000, China
| | - Chenglong Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haosen Wang
- The Forth Hospital of Taizhou, Taizhou, Jiangsu, 225300, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Jun Li
- College of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, 241000, China.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
133
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
134
|
Maldonado-Lasunción I, Verhaagen J, Oudega M. Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics 2018; 15:578-587. [PMID: 29728851 PMCID: PMC6095786 DOI: 10.1007/s13311-018-0629-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair of the damaged spinal cord often associated with improved functional recovery. Transplanted MSCs immediately encounter the abundance of inflammatory macrophages in the injury site. It is known that MSCs interact closely and reciprocally with macrophages during tissue healing. Here, we will review the roles of (transplanted) MSCs and macrophages in spinal cord injury and repair. Molecular interactions between MSCs and macrophages and the deficiencies in our knowledge about the underlying mechanisms will be reviewed. We will discuss possible ways to benefit from the MSC-macrophage choreography for developing repair strategies for the spinal cord.
Collapse
Affiliation(s)
- Inés Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Avenue, Miami, FL 33136, USA.
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, The Netherlands.
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Martin Oudega
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Avenue, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33155, USA.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
135
|
Liao H, Zhu Z, Peng Y. Potential Utility of Retinal Imaging for Alzheimer's Disease: A Review. Front Aging Neurosci 2018; 10:188. [PMID: 29988470 PMCID: PMC6024140 DOI: 10.3389/fnagi.2018.00188] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023] Open
Abstract
The ensuing upward shift in demographic distribution due to the increase in life expectancy has resulted in a rising prevalence of Alzheimer's disease (AD). The heavy public burden of AD, along with the urgent to prevent and treat the disease before the irreversible damage to the brain, calls for a sensitive and specific screening technology to identify high-risk individuals before cognitive symptoms arise. Even though current modalities, such as positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker, showed their potential clinical uses in early detection of AD, the high cost, narrow isotope availability of PET probes and invasive characteristics of CSF biomarker limited their broad utility. Therefore, additional tools for detection of AD are needed. As a projection of the central nervous system (CNS), the retina has been described as a "window to the brain" and a novel marker for AD. Low cost, easy accessibility and non-invasive features make retina tests suitable for large-scale population screening and investigations of preclinical AD. Furthermore, a number of novel approaches in retina imaging, such as optical coherence tomography (OCT), have been developed and made it possible to visualize changes in the retina at a very fine resolution. In this review, we outline the background for AD to accelerate the adoption of retina imaging for the diagnosis and management of AD in clinical practice. Then, we focus on recent findings on the application of retina imaging to investigate AD and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Huan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
136
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
137
|
Ren X, Ding W, Yang X. [Effect of astaxanthin on the apoptosis after spinal cord injury in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:548-553. [PMID: 29806341 DOI: 10.7507/1002-1892.201712127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To study the effects of astaxanthin on the apoptosis after spinal cord injury in rats. Methods One hundred and forty-four healthy adult Sprague Dawley rats were divided into experimental group, control group, and sham group according to the random number table ( n=48). In the control group and the experimental group, the modified Allen's method was used to make the spinal cord injury model; in the sham group, only the lamina was cut without damaging the spinal cord. At immediate after operation, the rats in the experimental group were given intragastric administration of astaxanthin (75 mg/kg) twice a day; and the rats in the control group and the sham group were given equal amount of olive oil by gavage twice a day. BBB score was used to assess the motor function at 1 day and 1, 2, 3, and 4 weeks after operation. The malondialdehyde (MDA) content was determined by the thiobarbituric acid method at 24 hours after operation; and the activity of superoxide dismutase (SOD) was determined by the xanthine oxidase method. Apoptosis index (AI) was determined by TUNEL method at 6, 24, and 48 hours after operation. At 48 hours after operation, the water content of spinal cord was measured by dry-wet weight method, the lesion ratio of spinal cord was calculated, the ultrastructure of the spinal cord was observed by transmission electron microscopy, and ultrastructure scoring was performed using the Kaptanoglu score method. Results The BBB score in the control group and the experimental group was significantly lower than that in the sham group at each postoperative time point ( P<0.05); and the BBB score in the experimental group were significantly higher than that in the control group at 1-4 weeks postoperatively ( P<0.05). The MDA content in the control group and the experimental group was significantly higher than that in the sham group at 24 hours after operation, and in the experimental group was significantly lower than in the control group ( P<0.05). The SOD activity in the control group and the experimental group was significantly lower than that in the sham group, and in the experimental group was significantly higher than in the control group ( P<0.05). At each time point postoperatively, the AI in the control group and the experimental group was significantly higher than that in the sham group, and in the experimental group was significantly lower than in the control group ( P<0.05). At 48 hours after operation, the water content of spinal cord, the lesion ratio of spinal cord, and the ultrastructure score in the control group and the experimental group were significantly higher than those in the sham group, and in the experimental group were significantly lower than in the control group ( P<0.05). Conclusion Astaxanthin can inhibit the lipid peroxidation, reduce the apoptosis, reduce the spinal cord edema, reduce the spinal cord lesion, reduce the histopathological damage after spinal cord injury, and improve the motor function of rats with spinal cord injury, and protect the spinal cord tissue, showing an obvious neuroprotective effect.
Collapse
Affiliation(s)
- Xiansheng Ren
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun Jilin, 130041,
| | - Wei Ding
- Department of General Surgery, the Second Hospital of Jilin University, Changchun Jilin, 130041, P.R.China
| | - Xiaoyu Yang
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun Jilin, 130041, P.R.China
| |
Collapse
|
138
|
Zhang G, Hu J, Rodemer W, Li S, Selzer ME. RhoA activation in axotomy-induced neuronal death. Exp Neurol 2018; 306:76-91. [PMID: 29715475 DOI: 10.1016/j.expneurol.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
After spinal cord injury (SCI) in mammals, severed axons fail to regenerate, due to both extrinsic inhibitory factors, e.g., the chondroitin sulfate proteoglycans (CSPGs) and myelin-associated growth inhibitors (MAIs), and a developmental loss of intrinsic growth capacity. The latter is suggested by findings in lamprey that the 18 pairs of individually identified reticulospinal neurons vary greatly in their ability to regenerate their axons through the same spinal cord environment. Moreover, those neurons that are poor regenerators undergo very delayed apoptosis, and express common molecular markers after SCI. Thus the signaling pathways for retrograde cell death might converge with those inhibiting axon regeneration. Many extrinsic growth-inhibitory molecules activate RhoA, whereas inhibiting RhoA enhances axon growth. Whether RhoA also is involved in retrograde neuronal death after axotomy is less clear. Therefore, we cloned lamprey RhoA and correlated its mRNA expression and activation state with apoptosis signaling in identified reticulospinal neurons. RhoA mRNA was expressed widely in normal lamprey brain, and only slightly more in poorly-regenerating neurons than in good regenerators. However, within a day after spinal cord transection, RhoA mRNA was found in severed axon tips. Beginning at 5 days post-SCI RhoA mRNA was upregulated selectively in pre-apoptotic neuronal perikarya, as indicated by labelling with fluorescently labeled inhibitors of caspase activation (FLICA). After 2 weeks post-transection, RhoA expression decreased in the perikarya, and was translocated anterogradely into the axons. More striking than changes in RhoA mRNA levels, RhoA was continuously active selectively in FLICA-positive neurons through 9 weeks post-SCI. At that time, almost no neurons whose axons had regenerated were FLICA-positive. These findings are consistent with a role for RhoA activation in triggering retrograde neuronal death after SCI, and suggest that RhoA may be a point of convergence for inhibition of both axon regeneration and neuronal survival after axotomy.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. Anatomy and Cell Biology, The Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. of Neurology, USA.
| |
Collapse
|
139
|
Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G. Motor Recovery after Transplantation of Bone Marrow Mesenchymal Stem Cells in Rat Models of Spinal Cord Injury. Ann Neurosci 2018; 25:126-140. [PMID: 30814821 DOI: 10.1159/000487069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuronal tissue has a limited potential to self-renew or get repaired after damage. Cell therapies using stem cells are promising approaches for the treatment of central nervous system (CNS) injuries. However, the clinical use of embryonic stem cells is limited by ethical concerns and other scientific consequences. Bone marrow mesenchymal stromal cells (BM-MSC) could represent an alternative source of stem cells for replacement therapy. Indeed, many studies have demonstrated that MSCs can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Purpose Motor recovery by transplantation of bone marrow MSCs in rat models of spinal cord injury (SCI). Methods Bone marrow was collected from the femur of albino Wistar rats. MSCs were separated using the Ficoll-Paque density gradient method and cultured in Dulbecco's Modified Eagle Medium supplemented with 20% fetal bovine serum. Cultured MSC was characterized by immunohistochemistry and flow cytometry and neuronal-induced cells were further characterized for neural markers. Cultured MSCs were transplanted into the experimentally injured spinal cord of Wistar rats. Control (injured, but without cell transplantation) and transplanted rats were followed up to 8 weeks, analyzed using the Basso, Beattie, Bresnahan (BBB) scale and electromyography (EMG) for behavioral and physiological status of the injured spinal cord. Finally, the tissue was evaluated histologically. Results Rat MSCs expressed positivity for a panel of MSC markers CD29, CD54, CD90, CD73, and CD105, and negativity for hematopoietic markers CD34, CD14, and CD45. In vitro neuronal transdifferentiated MSCs express positivity for β III tubulin, MAP2, NF, NeuN, Nav1.1, oligodendrocyte (O4), and negativity for glial fibrillary acid protein. All the treated groups show promising hind-limb motor recovery BBB score, except the control group. There was increased EMG amplitude in treated groups as compared to the control group. Green fluorescent protein (GFP)-labeled MSC survived and differentiated into neurons in the injured spinal cord, which is responsible for functional recovery. Conclusion Our results demonstrate that BM-MSC has the potential to repair the injured cord in rat models of SCI. Thus, BM-MSC appears to be a promising candidate for cell-based therapy in CNS injury.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | | | | | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| |
Collapse
|
140
|
Huber E, David G, Thompson AJ, Weiskopf N, Mohammadi S, Freund P. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology 2018; 90:e1510-e1522. [PMID: 29592888 PMCID: PMC5921039 DOI: 10.1212/wnl.0000000000005361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate whether gray matter pathology above the level of injury, alongside white matter changes, also contributes to sensorimotor impairments after spinal cord injury. METHODS A 3T MRI protocol was acquired in 17 tetraplegic patients and 21 controls. A sagittal T2-weighted sequence was used to characterize lesion severity. At the C2-3 level, a high-resolution T2*-weighted sequence was used to assess cross-sectional areas of gray and white matter, including their subcompartments; a diffusion-weighted sequence was used to compute voxel-based diffusion indices. Regression models determined associations between lesion severity and tissue-specific neurodegeneration and associations between the latter with neurophysiologic and clinical outcome. RESULTS Neurodegeneration was evident within the dorsal and ventral horns and white matter above the level of injury. Tract-specific neurodegeneration was associated with prolonged conduction of appropriate electrophysiologic recordings. Dorsal horn atrophy was associated with sensory outcome, while ventral horn atrophy was associated with motor outcome. White matter integrity of dorsal columns and corticospinal tracts was associated with daily-life independence. CONCLUSION Our results suggest that, next to anterograde and retrograde degeneration of white matter tracts, neuronal circuits within the spinal cord far above the level of injury undergo transsynaptic neurodegeneration, resulting in specific gray matter changes. Such improved understanding of tissue-specific cord pathology offers potential biomarkers with more efficient targeting and monitoring of neuroregenerative (i.e., white matter) and neuroprotective (i.e., gray matter) agents.
Collapse
Affiliation(s)
- Eveline Huber
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Gergely David
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Alan J Thompson
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Nikolaus Weiskopf
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Siawoosh Mohammadi
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany.
| |
Collapse
|
141
|
Cai Y, Li J, Zhang Z, Chen J, Zhu Y, Li R, Chen J, Gao L, Liu R, Teng Y. Zbtb38 is a novel target for spinal cord injury. Oncotarget 2018; 8:45356-45366. [PMID: 28514761 PMCID: PMC5542192 DOI: 10.18632/oncotarget.17487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/14/2017] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) is currently incurable since treatments applied to clinic are limited to minimizing secondary complications and the mechanisms of injury-induced spinal cord damage are poorly understood. Zbtb38, also called CIBZ, is highly expressed in spinal cord and it functions as a negative regulator in SCI-induced apoptosis. We show here that Zbtb38 is downregulated under endoplasmic reticulum (ER) stress, which promotes ER stress-associated apoptosis in human bone marrow neuroblastoma cells. In the traumatic SCI mice, ER stress presented in injured spinal cord induced repression of Zbtb38 expression and triggered Zbtb38-mediated apoptosis. ChIP-QPCR analysis revealed that ATF4, an ER-stress inducible transcription factor, directly activated Zbtb38 transcription by binding to the Zbtb38 promoter. However, this binding was significantly reduced following SCI, leading to a sharp decrease in Zbtb38 expression. Restoring Zbtb38 function in injured spinal cord by injection of lentivirus containing Zbtb38 into SCI mice, significantly alleviated secondary damage of spinal cord with decreased ER stress-associated apoptosis and partially recovered spinal cord functions. These findings demonstrate that restoration of Zbtb38 expression can reduce secondary tissue damage after SCI, and suggest that a therapeutic strategy for targeting Zbtb38 may promote functional recovery of spinal cord for patients with SCI.
Collapse
Affiliation(s)
- Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zongmeng Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yangzi Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Rui Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jie Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Lixia Gao
- Department of Oral Biology, Augusta University, Augusta, GA 30912, USA
| | - Rong Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Teng
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.,Department of Oral Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
142
|
Sobrido-Cameán D, Barreiro-Iglesias A. Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury. Front Mol Neurosci 2018; 11:101. [PMID: 29666570 PMCID: PMC5891576 DOI: 10.3389/fnmol.2018.00101] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the injury is one of the main causes of disability after SCI. Evidence accumulated in last decades has shown that the activation of apoptotic mechanisms is one of the factors causing the death of intrinsic spinal cord (SC) cells following SCI. Although this is not as clear for brain descending neurons, some studies have also shown that apoptosis can be activated in the brain following SCI. There are two main apoptotic pathways, the extrinsic and the intrinsic pathways. Activation of caspase-8 is an important step in the initiation of the extrinsic pathway. Studies in rodents have shown that caspase-8 is activated in SC glial cells and neurons and that the Fas receptor plays a key role in its activation following a traumatic SCI. Recent work in the lamprey model of SCI has also shown the retrograde activation of caspase-8 in brain descending neurons following SCI. Here, we review our current knowledge on the role of caspase-8 and the Fas pathway in cell death following SCI. We also provide a perspective for future work on this process, like the importance of studying the possible contribution of Fas/caspase-8 signaling in the degeneration of brain neurons after SCI in mammals.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
143
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
144
|
Dou HC, Chen JY, Ran TF, Jiang WM. Panax quinquefolius saponin inhibits endoplasmic reticulum stress-mediated apoptosis and neurite injury and improves functional recovery in a rat spinal cord injury model. Biomed Pharmacother 2018; 102:212-220. [PMID: 29558718 DOI: 10.1016/j.biopha.2018.03.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment goal in spinal cord injury (SCI) is to repair neurites and suppress cell apoptosis. Panax quinquefolius saponin (PQS) is the major active ingredient of American ginseng and has been demonstrated to have anti-inflammatory and anti-apoptotic roles in various diseases. However, the potential effect of PQS on the pathological process of acute SCI remains unknown. This work tested the effects of PQS on acute SCI and clarified its potential mechanisms. PQS treatment ameliorated the damage to spinal tissue and improved the functional recovery after SCI. PQS treatment inhibited endoplasmic reticulum (ER) stress and the associated apoptosis after acute SCI. PQS further abolished the triglyceride (TG)-induced ER stress and associated apoptosis in neuronal cultures. PQS appears to inhibit the ER-stress-induced neurite injury in PC12 cells. Our results suggest that PQS is a novel therapeutic agent for acute central nervous system injury.
Collapse
Affiliation(s)
- Hai-Cheng Dou
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jun-Yu Chen
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Tang-Fei Ran
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Wei-Min Jiang
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
145
|
Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep 2018; 8:3979. [PMID: 29507421 PMCID: PMC5838102 DOI: 10.1038/s41598-018-22361-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma.
Collapse
Affiliation(s)
- Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, 2006, New South Wales, Australia
| | - Matt R Kilburn
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
146
|
Jeffery N, Boudreau CE, Konarik M, Mays T, Fajt V. Pharmacokinetics and safety of oral glyburide in dogs with acute spinal cord injury. PeerJ 2018; 6:e4387. [PMID: 29503767 PMCID: PMC5831157 DOI: 10.7717/peerj.4387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background Glyburide (also known as glibenclamide) is effective in reducing the severity of tissue destruction and improving functional outcome after experimental spinal cord injury in rodents and so has promise as a therapy in humans. There are many important differences between spinal cord injury in experimental animals and in human clinical cases, making it difficult to introduce new therapies into clinical practice. Spinal cord injury is also common in pet dogs and requires new effective therapies, meaning that they can act as a translational model for the human condition while also deriving direct benefits from such research. In this study we investigated the pharmacokinetics and safety of glyburide in dogs with clinical spinal cord injury. Methods We recruited dogs that had incurred an acute thoracolumbar spinal cord injury within the previous 72 h. These had become acutely non-ambulatory on the pelvic limbs and were admitted to our veterinary hospitals to undergo anesthesia, cross sectional diagnostic imaging, and surgical decompression. Oral glyburide was given to each dog at a dose of 75 mcg/kg. In five dogs, we measured blood glucose concentrations for 10 h after a single oral dose. In six dogs, we measured serum glyburide and glucose concentrations for 24 h and estimated pharmacokinetic parameters to estimate a suitable dose for use in a subsequent clinical trial in similarly affected dogs. Results No detrimental effects of glyburide administration were detected in any participating dog. Peak serum concentrations of glyburide were attained at a mean of 13 h after dosing, and mean apparent elimination half-life was approximately 7 h. Observed mean maximum plasma concentration was 31 ng/mL. At the glyburide dose administered there was no observable association between glyburide and glucose concentrations in blood. Discussion Our data suggest that glyburide can be safely administered to dogs that are undergoing anesthesia, imaging and surgery for treatment of their acute spinal cord injury and can attain clinically-relevant serum concentrations without developing hazardous hypoglycemia. Serum glyburide concentrations achieved in this study suggest that a loading dose of 150 mcg/kg followed by repeat doses of 75 mcg/kg at 8-hourly intervals would lead to serum glyburide concentrations of 25-50 ng/mL within an acceptably short enough period after oral administration to be appropriate for a clinical trial in canine spinal cord injury.
Collapse
Affiliation(s)
- Nick Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States of America
| | - C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Megan Konarik
- Veterinary Medical Diagnostic Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Travis Mays
- Veterinary Medical Diagnostic Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Virginia Fajt
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
147
|
Cordero K, Coronel GG, Serrano-Illán M, Cruz-Bracero J, Figueroa JD, De León M. Effects of Dietary Vitamin E Supplementation in Bladder Function and Spasticity during Spinal Cord Injury. Brain Sci 2018; 8:E38. [PMID: 29495419 PMCID: PMC5870356 DOI: 10.3390/brainsci8030038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in debilitating autonomic dysfunctions, paralysis and significant sensorimotor impairments. A key component of SCI is the generation of free radicals that contributes to the high levels of oxidative stress observed. This study investigates whether dietary supplementation with the antioxidant vitamin E (alpha-tocopherol) improves functional recovery after SCI. Female adult Sprague-Dawley rats were fed either with a normal diet or a dietary regiment supplemented with vitamin E (51 IU/g) for eight weeks. The rats were subsequently exposed either to a contusive SCI or sham operation, and evaluated using standard functional behavior analysis. We report that the rats that consumed the vitamin E-enriched diet showed an accelerated bladder recovery and significant improvements in locomotor function relative to controls, as determined by residual volumes and Basso, Beatie, and Bresnaham BBB scores, respectively. Interestingly, the prophylactic dietary intervention did not preserve neurons in the ventral horn of injured rats, but it significantly increased the numbers of oligodendrocytes. Vitamin E supplementation attenuated the depression of the H-reflex (a typical functional consequence of SCI) while increasing the levels of supraspinal serotonin immunoreactivity. Our findings support the potential complementary use of vitamin E to ameliorate sensory and autonomic dysfunctions associated with spinal cord injury, and identified promising new cellular and functional targets of its neuroprotective effects.
Collapse
Affiliation(s)
- Kathia Cordero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Gemma G Coronel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Miguel Serrano-Illán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jennifer Cruz-Bracero
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
148
|
Chen B, Li J, Borgens RB. Neuroprotection by chitosan nanoparticles in oxidative stress-mediated injury. BMC Res Notes 2018; 11:49. [PMID: 29351805 PMCID: PMC5775548 DOI: 10.1186/s13104-018-3162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/12/2018] [Indexed: 11/25/2022] Open
Abstract
Objective Oxidative stress is a critical component of nervous system secondary injury. Oxidative stress produces toxic chemical byproducts including reactive aldehydes that traverse intact membranes and attack neighboring healthy cells. This secondary damage often leads to further patho-biochemical cascades that exacerbate the original insult. In this work, we investigate the therapeutic effects of chitosan nanoparticles on cell cultures exposed to oxidative stress. Results We found chitosan nanoparticles can rescue BV-2 glial cells from death, but only for cells undergoing necrosis. Necrosis occurred when cultures were challenged with high concentrations of H2O2 (> 110 μM) whereas a slow and progressive loss of cultures was observed in more dilute (50–100 μM) peroxide applications. In the latter case, the primary mode of cell death was apoptosis. These studies revealed that while rescue of H2O2 challenged cultures was achieved for necrotic cell death, no such sparing was observed in apoptotic cells. Based on the current and cumulative data regarding the membrane fusogenic properties of chitosan, we conclude that chitosan neuroprotection arises from its membrane sealing effects. Consistent with this hypothesis is the observation that apoptotic cells did not exhibit early stage membrane damage. These in vitro results elucidate mechanisms by which membrane fusogens may provide therapeutic benefit. Electronic supplementary material The online version of this article (10.1186/s13104-018-3162-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bojun Chen
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 408 S. University St., West Lafayette, IN, 47907, USA.,University of Southern Indiana, 8600 University Blvd, Evansville, IN, 47712, USA
| | - Jianming Li
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 408 S. University St., West Lafayette, IN, 47907, USA
| | - Richard Ben Borgens
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 408 S. University St., West Lafayette, IN, 47907, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
149
|
Wang YL, Qi YN, Wang W, Dong CK, Yi P, Yang F, Tang XS, Tan MS. Effects of decompression joint Governor Vessel electro-acupuncture on rats with acute upper cervical spinal cord injury. Neural Regen Res 2018; 13:1241-1246. [PMID: 30028333 PMCID: PMC6065222 DOI: 10.4103/1673-5374.235062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decompression is the major therapeutic strategy for acute spinal cord injury, but there is some debate about the time window for decompression following spinal cord injury. An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury. Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord. In this study, Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury. The rat models were established by inserting a balloon catheter into the atlanto-occipital space. The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression. Electroacupuncture was conducted at the acupoints Dazhui (GV14) and Baihui (GV 20) (2 Hz, 15 minutes) once a day for 14 consecutive days. Compared with decompression alone, hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture. However, the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours. Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone. These findings indicate that compared with decompression alone, Governor Vessel electroacupuncture combined with delayed decompression (48 hours) is more effective in the treatment of upper cervical spinal cord injury. Governor Vessel electroacupuncture combined with early decompression (12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury. Nevertheless, further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone.
Collapse
Affiliation(s)
- Yan-Lei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Na Qi
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Ke Dong
- Beijing University of Chinese Medicine, Beijing, China
| | - Ping Yi
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Yang
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiang-Sheng Tang
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ming-Sheng Tan
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
150
|
Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 2018; 13:35-42. [PMID: 29451202 PMCID: PMC5840986 DOI: 10.4103/1673-5374.224360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nanotechnology and regenerative medicine strategies holding promise for the development of novel therapies that would reach from bench to bedside to serve the SCI patients. There has already been significant progress in the field of cell-based therapies, with the clinical application for SCI, currently in phase II of the clinical trial. Stem cells (e.g., induced pluripotent stem cells, fetal stem cells, human embryonic stem cells, and olfactory ensheathing cells) are certainly not to be considered the panacea for neural repair but, especially when combined with rehabilitation or other combinatorial approaches using the help of nanotechnology, they seem to be the source of some of the most promising and clinical translatable cell-based therapies that could help solving impactful problems on neural repair.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Magdalini Tsintou
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (Ltd.), The London BioScience Innovation Centre, London, UK
| |
Collapse
|