101
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
102
|
Li C, Liu P, Song R, Zhang Y, Lei S, Wu S. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1047-1057. [PMID: 29036539 DOI: 10.1093/abbs/gmx095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Analyses of immunity in pulmonary arterial hypertension (PAH) support the notion that maladaptation of the immune response exists. Altered immunity is an increasingly recognized feature of PAH. Indeed, a delicate balance between immunity and tolerance exists and any disturbance may result in chronic inflammation or autoimmunity. This is suggested by infiltration of various immune cells (e.g. macrophages, T and B lymphocytes) in remodeled pulmonary vessels. In addition, several types of autoantibodies directed against antinuclear antigens, endothelial cells (ECs) and fibroblasts have been found in idiopathic and systemic sclerosis-associated PAH. These autoantibodies may play an important role in EC apoptosis and in the expression of cell adhesion molecules. This review article provides an overview of immunity pathways highlighting their potential roles in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingping Liu
- Department of Emergency, Hunan Children's Hospital, Changsha, China
| | - Rong Song
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqing Zhang
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
103
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
104
|
Dias MD, Goulart M, Dalécio C, Enes-Marques S, Salles ÉDSL, Venâncio M, Pereira EM, Paffaro VA, Incerpi EK, Soncini R. Metformin influences on respiratory system in obese mice induced by postnatal overnutrition. Respir Physiol Neurobiol 2017; 247:96-102. [PMID: 28963087 DOI: 10.1016/j.resp.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Abstract
Many studies have confirmed the merits of metformin to treat type 2 diabetes, but few studies have addressed its effect on the respiratory system. Moreover, vascular endothelial growth factor (VEGF) is critical to many lung functions. In this way, we evaluated the metformin impact on the lung in treated obese Swiss mice, induced by postnatal overnutrition. Glucose and insulin were detected and the insulin resistance index (HOMA) was calculated; inflammatory cells and nitrite/nitrate concentration (NOx) was quantified from bronchoalveolar lavage, collagen and lung VEGF-a was analysed in the lung tissue and lung mechanics were evaluated by methacholine-induced bronchoconstriction. Values of glucose, insulin, HOMA; VEGF-a and collagen demonstrate the partial ability of metformin to improve the effects of obesity. However, metformin is ineffective in re-establishing the inflammation, shows no effects on NOx and does not restore bronchoconstriction in obese mice. In conclusion, metformińs beneficial effects on lung are questionable in the postnatal overnutrition model of obesity.
Collapse
Affiliation(s)
- Maycon Daniel Dias
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Melissa Goulart
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Cecilia Dalécio
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Silvia Enes-Marques
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Évila da Silva Lopes Salles
- Department of Cell and Developmental Biology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Marina Venâncio
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Elisângela Monteiro Pereira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Valdemar Antonio Paffaro
- Department of Cell and Developmental Biology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Erika Kristina Incerpi
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Roseli Soncini
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil.
| |
Collapse
|
105
|
Li Y, Li H, Cao Y, Wu F, Ma W, Wang Y, Sun S. Placenta‑derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep 2017; 16:8137-8145. [PMID: 28944907 PMCID: PMC5779899 DOI: 10.3892/mmr.2017.7605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/04/2017] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess reparative and immunoregulatory properties, representing a hope for stem cell-based treatments. However, the mechanisms by which transplanted MSCs affect T helper (Th)17/regulatory T cell (Treg) balance in asthma patients remain unclear. The aim of the present study was to assess the therapeutic effects of human placenta MSCs (hPMSCs) in asthma, and explore the underlying mechanisms; in addition, the impact of hPMSCs transplantation on Th17/Treg balance in lymph and serum samples from asthmatic animals was evaluated. Sprague-Dawley rats were sensitized and challenged with ovalbumin (OVA). Administration of hPMSCs from human placenta resulted in increased Th17 and Treg in lymph samples compared with peripheral blood specimens. Enhanced pause values in OVA-treated animals were significantly higher than those in the control and hPMSCs treatment groups. The numbers of total cells, macrophages, neutrophils, and eosinophils were markedly increased in the OVA group compared with those of control + hPMSCs and control groups. In addition, interleukin 10, forkhead box P3 (Foxp3) and Treg levels in lymph, peripheral blood and lung tissue samples from asthma rats were increased significantly following hPMSC transplantation. Furthermore, Foxp3 protein levels increased, while those of RAR-related orphan receptor γ (RORγt) decreased after hPMSCs transplantation compared with the asthma group. Reduced IL-17, RORγt and Th17 levels were accompanied by reduced inflammatory cell infiltration, sub-epithelial smooth layer attenuation and mucus production in lung tissues. These results suggest that hPMSCs may improve airway hyperresponsiveness and inflammation by regulating the Th17/Treg balance in rats with asthma.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pediatrics, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongbo Li
- Department of Respiratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yinyin Cao
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fuling Wu
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Wenbin Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yuesi Wang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shuzhen Sun
- Department of Pediatrics, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
106
|
Murray LA, Habiel DM, Hohmann M, Camelo A, Shang H, Zhou Y, Coelho AL, Peng X, Gulati M, Crestani B, Sleeman MA, Mustelin T, Moore MW, Ryu C, Osafo-Addo AD, Elias JA, Lee CG, Hu B, Herazo-Maya JD, Knight DA, Hogaboam CM, Herzog EL. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017; 2:92192. [PMID: 28814671 PMCID: PMC5621899 DOI: 10.1172/jci.insight.92192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
The chronic progressive decline in lung function observed in idiopathic pulmonary fibrosis (IPF) appears to result from persistent nonresolving injury to the epithelium, impaired restitution of the epithelial barrier in the lung, and enhanced fibroblast activation. Thus, understanding these key mechanisms and pathways modulating both is essential to greater understanding of IPF pathogenesis. We examined the association of VEGF with the IPF disease state and preclinical models in vivo and in vitro. Tissue and circulating levels of VEGF were significantly reduced in patients with IPF, particularly in those with a rapidly progressive phenotype, compared with healthy controls. Lung-specific overexpression of VEGF significantly protected mice following intratracheal bleomycin challenge, with a decrease in fibrosis and bleomycin-induced cell death observed in the VEGF transgenic mice. In vitro, apoptotic endothelial cell–derived mediators enhanced epithelial cell injury and reduced epithelial wound closure. This process was rescued by VEGF pretreatment of the endothelial cells via a mechanism involving thrombospondin-1 (TSP1). Taken together, these data indicate beneficial roles for VEGF during lung fibrosis via modulating epithelial homeostasis through a previously unrecognized mechanism involving the endothelium. Elevated VEGF is associated with less severe disease in IPF patients, and VEGF overexpression ameliorates bleomycin-induced lung fibrosis in a murine model.
Collapse
Affiliation(s)
| | - David M Habiel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miriam Hohmann
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Camelo
- MedImmune Ltd., Cambridge, England, United Kingdom
| | - Huilan Shang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yang Zhou
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ana Lucia Coelho
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xueyan Peng
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, Centre de Compétences des Maladies Pulmonaires Rares, Paris, France Université Paris Diderot, Sorbonne Paris Cité, INSERM Unité 1152, Paris
| | | | | | - Meagan W Moore
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jack A Elias
- Warren Alpert School of Medicine, Providence, Rhode Island, USA
| | - Chun G Lee
- Warren Alpert School of Medicine, Providence, Rhode Island, USA
| | - Buqu Hu
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Darryl A Knight
- Viva program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Cory M Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erica L Herzog
- Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
107
|
Kouzaki H, Matsumoto K, Kikuoka H, Kato T, Tojima I, Shimizu S, Kita H, Shimizu T. Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to Eosinophilic Chronic Rhinosinusitis. Am J Respir Crit Care Med 2017; 195:737-747. [PMID: 27779422 DOI: 10.1164/rccm.201603-0529oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Cystatin A and SPINK5 are endogenous protease inhibitors (EPIs) that may play key roles in epithelial barrier function. OBJECTIVES To investigate the roles of EPIs in the pathogenesis of chronic rhinosinusitis (CRS). METHODS We examined the expression of cystatin A and SPINK5 in the nasal epithelial cells of patients with CRS. Additionally, the in vitro effects of recombinant EPIs on the secretion of the epithelial-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin in airway epithelial cells, and the in vivo effects of recombinant EPIs in the nasal epithelium of mice exposed to multiple airborne allergens (MAA) were examined. MEASUREMENTS AND MAIN RESULTS Compared with control subjects and patients with noneosinophilic CRS, patients with eosinophilic CRS showed significantly lower protein and mRNA expression of cystatin A and SPINK5 in the nasal epithelium. Allergen-induced production of IL-25, IL-33, and thymic stromal lymphopoietin in normal human bronchial epithelial cells was inhibited by treatment with recombinant cystatin A or SPINK5. Conversely, the production of these cytokines was increased when cystatin A or SPINK5 were knocked down with small interfering RNA. Chronic MAA exposure induced goblet cell metaplasia and epithelial disruption in mouse nasal epithelium and decreased the tissue expression and nasal lavage levels of cystatin A and SPINK5. Intranasal instillations of recombinant EPIs attenuated this MAA-induced pathology. CONCLUSIONS Cystatin A and SPINK5 play an important role in protecting the airway epithelium from exogenous proteases. The preservation of EPIs may have a therapeutic benefit in intractable airway inflammation, such as eosinophilic CRS.
Collapse
Affiliation(s)
- Hideaki Kouzaki
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Koji Matsumoto
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Hirotaka Kikuoka
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Tomohisa Kato
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Ichiro Tojima
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Shino Shimizu
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| | - Hirohito Kita
- 2 Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Takeshi Shimizu
- 1 Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan; and
| |
Collapse
|
108
|
Lee HY, Hur J, Kim IK, Kang JY, Yoon HK, Lee SY, Kwon SS, Kim YK, Rhee CK. Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model. Exp Lung Res 2017; 43:187-196. [PMID: 28696800 DOI: 10.1080/01902148.2017.1339141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Nintedanib is a multi-tyrosine kinase receptor inhibitor recently approved for treatment of idiopathic pulmonary fibrosis. Although angiogenesis is a key process involved in airway structural changes in patients with bronchial asthma, the effect of nintedanib targeting the angiokinase pathway on airway inflammation and remodeling has not been evaluated. METHODS We used a 3-month ovalbumin (OVA) challenge mouse model of airway remodeling. Nintedanib was orally administrated during the challenge period, and the effects were examined based on the percentage of airway inflammatory cells, airway hyper-reactivity (AHR), peribronchial goblet cell hyperplasia, total lung collagen and smooth muscle area. The expression of growth factor receptors was analyzed in mice lung tissues. RESULTS The OVA challenged group showed a significant increase in airway eosinophilic inflammation, elevated Th2 cytokines, AHR, and airway remodeling compared to those in the control group. The airway remodeling process, as evaluated by goblet cell hyperplasia, total lung collagen level, and airway smooth muscle area, was suppressed by nintedanib compared to that by OVA. Nintedanib effectively suppressed the phosphorylation of vascular endothelial growth factor/ platelet derived growth factor subunit2/fibroblast growth factor3 receptors in the mice lung. CONCLUSIONS Nintedanib effectively ameliorated airway inflammation and remodeling in an OVA-induced chronic asthma model. These results suggest that nintedanib could be a new treatment agent targeting airway remodeling in patients with severe asthma.
Collapse
Affiliation(s)
- Hwa Young Lee
- a Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Gyeonggi-do , Republic of Korea
| | - Jung Hur
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - In Kyoung Kim
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Ji Young Kang
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Hyoung Kyu Yoon
- c Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Youido St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Sook Young Lee
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Soon Suk Kwon
- d Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Gyeonggi-do , Republic of Korea
| | - Young Kyoon Kim
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Chin Kook Rhee
- b Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| |
Collapse
|
109
|
Yao L, Zhao H, Tang H, Xiong J, Zhao W, Liu L, Dong H, Zou F, Cai S. Blockade of β-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy 2017; 72:579-589. [PMID: 27624805 DOI: 10.1111/all.13045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aberrant activation of β-catenin signaling by both WNT-dependent and WNT-independent pathways has been demonstrated in asthmatic airways, which is thought to contribute critically in remodeling of the airways. Yet, the exact role of β-catenin in asthma is very poorly defined. As we have previously reported abnormal expression of β-catenin in a toluene diisocyanate (TDI)-induced asthma model, in this study, we evaluated the therapeutic efficacy of two small molecules XAV-939 and ICG-001 in TDI-asthmatic male BALB/c mice, which selectively block β-catenin-mediated transcription. METHODS Male BALB/c mice were sensitized and challenged with TDI to generate a chemically induced asthma model. Inhibitors of β-catenin, XAV-939, and ICG-001 were respectively given to the mice through intraperitoneally injection. RESULTS TDI exposure led to a significantly increased activity of β-catenin, which was then confirmed by a luciferase assay in 16HBE transfected with the TOPFlash reporter plasmid. Treatment with either XAV-939 or ICG-001 effectively inhibited activation of β-catenin and downregulated mRNA expression of β-catenin-targeted genes in TDI-asthmatic mice, paralleled by dramatically attenuated TDI-induced hyperresponsiveness and inflammation of the airway, alleviated airway goblet cell metaplasia and collagen deposition, decreased Th2 inflammation, as well as lower levels of TGFβ1, VEGF, HMGB1, and IL-1β. CONCLUSION The results showed that β-catenin is a principal mediator of TDI-induced asthma, proposing β-catenin as a promising therapeutic target in asthma.
Collapse
Affiliation(s)
- L. Yao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Zhao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Tang
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - J. Xiong
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - W. Zhao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - L. Liu
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Dong
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - F. Zou
- School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou China
| | - S. Cai
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
110
|
Xia J, Chen H, Yan J, Wu H, Wang H, Guo J, Zhang X, Zhang S, Zhao C, Chen Y. High-Purity Magnesium Staples Suppress Inflammatory Response in Rectal Anastomoses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9506-9515. [PMID: 28240546 DOI: 10.1021/acsami.7b00813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnesium-based materials are promising biodegradable implants, although the impact of magnesium on rectal anastomotic inflammation is poorly understood. Thus, we investigated the inflammatory effects of high-purity Mg staples in rectal anastomoses by in vivo luciferase reporter gene expression in transgenic mice, hematoxylin-eosin staining, immunohistochemistry, and Western blotting. As expected, strong IL-1β-mediated inflammation and inflammatory cell infiltration were observed 1 day after rectal anastomoses were stapled with high-purity Mg or Ti. However, inflammation and inflammatory cell infiltration decreased more robustly 4-7 days postoperation in tissues stapled with high-purity Mg. This rapid reduction in inflammation was confirmed by immunohistochemical analysis of IL-6 and TNF-α. Western blot also suggested that the reduced inflammatory response is due to suppressed TLR4/NF-κB signaling. In contrast, MCP-1, uPAR, and VEGF were abundantly expressed, in line with the notion that expression of these proteins is regulated by feedback between the VEGF and NF-κB pathways. In vitro expression of MCP-1, uPAR, and VEGF was also similarly high in primary rectal mucosal epithelial cells exposed to extracts from Mg staples, as measured by antibody array. Collectively, the results suggest that high-purity Mg staples suppress the inflammatory response during rectal anastomoses via TLR4/NF-κB and VEGF signaling.
Collapse
Affiliation(s)
- Jiazeng Xia
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Hui Chen
- Department of Pathology, Nanjing General Hospital , Jiangsu 210002, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, People's Republic of China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Hao Wang
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Jian Guo
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Company Ltd. , 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu 215513, People's Republic of China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yigang Chen
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| |
Collapse
|
111
|
Alsmman AH, Radwan G, Abozaid MA, Mohammed UA, Abd Elhaleim NG. Preoperative subconjunctival combined injection of bevacizumab and mitomycin C before the surgical excision of primary pterygium: clinical and histological results. Clin Ophthalmol 2017; 11:493-501. [PMID: 28331283 PMCID: PMC5354544 DOI: 10.2147/opth.s127700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The aim of this study was to detect the clinical and histological effects of preoperative subconjunctival injection of both bevacizumab and mitomycin C (MMC) 1 month before the surgical excision of primary pterygium using a bare sclera technique. Patients and methods A total of 20 patients with primary pterygium underwent subconjunctival combined injection of 0.1 mL of MMC (0.1 mg/mL) and 0.1 mL of bevacizumab (1.25 mg/0.1 mL) 1 month before bare sclera excision of the pterygium. The excised pterygium tissues were examined histologically and immunohistologically by CD31 staining, and the patients were followed up clinically for at least 2 years. The excised pterygia of two patients without preoperative injection were used for histological comparison. Results Clinically, there were no intraoperative or postoperative complications. No recurrence was noted during the follow-up period. Histologically, the previously injected pterygia showed a decreased number of epithelial cells and stromal fibroblasts. The latter were rounded or oval and swollen rather than spindle shaped, and some were degenerating or apoptotic. Collagen and elastic fibers were degenerated, distorted, and decreased in density, while blood capillaries were obliterated. There was a significant decrease in CD31-positive cells in previously injected pterygia. Conclusion Preoperative subpterygium combined injection of bevacizumab and MMC is safe and effective in reducing the postoperative recurrence of primary pterygium. Histological and immunohistological changes in the form of decreased fibrovascular activity and degeneration of the extracellular matrix and nerve axons were noted.
Collapse
|
112
|
Lee HY, Min KH, Lee SM, Lee JE, Rhee CK. Clinical significance of serum vascular endothelial growth factor in young male asthma patients. Korean J Intern Med 2017; 32:295-301. [PMID: 26996348 PMCID: PMC5339454 DOI: 10.3904/kjim.2014.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 04/04/2015] [Accepted: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. However, little is known about the potential use of serum levels of VEGF as a biomarker for asthma. We investigated the differences in VEGF levels among normal controls, stable asthma patients, and those with exacerbation of acute asthma. All subjects were young males. METHODS We measured VEGF levels in each patient group, and examined any serial changes in those with acute exacerbation. RESULTS VEGF levels were significantly higher in stable asthmatic patients and even more so in acute asthmatic patients, compared to healthy controls. However, there was no correlation between VEGF levels and forced expiratory volume in 1 second in patients with stable asthma. In addition, there were no correlations between VEGF levels and asthma control test scores. In patients with acute exacerbation, VEGF levels significantly increased during the acute period; their levels decreased gradually at 7 and 14 days after treatment. CONCLUSIONS Compared to normal control patients, the serum levels of VEGF were elevated in stable asthma patients and even more elevated in patients with acute exacerbation. However, the role of VEGF as a biomarker in stable asthma is limited. In patients with acute exacerbation, VEGF levels were associated with clinical improvements.
Collapse
Affiliation(s)
- Hea Yon Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyung Hoon Min
- Division of Respiratory Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Ji Eun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Armed Forces Capital Hospital, Seongnam, Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Chin Kook Rhee, M.D. Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6067 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
113
|
Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y. VEGF Promoter Polymorphism Confers an Increased Risk of Pulmonary Arterial Hypertension in a Chinese Population. Yonsei Med J 2017; 58:305-311. [PMID: 28120560 PMCID: PMC5290009 DOI: 10.3349/ymj.2017.58.2.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Evidence on the contribution of genes to the hereditary predisposition to pulmonary arterial hypertension (PAH) is limited. MATERIALS AND METHODS In this study, we hypothesized that single nucleotide variants in vascular endothelial growth factor (VEGF) gene may alter gene function and expression and may be associated with PAH risk. Five putatively functional loci (rs699947C>A and rs833061T>C in the promoter, rs3025040C>T, rs10434G>A and rs3025053G>A in the 3'-UTR) in the VEGF gene were genotyped and analyzed in a retrospective study of 587 patients with PAH and 736 healthy subjects from southern China. RESULTS We found that the rs833061T>C polymorphism was significantly associated with PAH risk, while the other single nucleotide polymorphisms were not. Compared to carriers with TT genotype, those with rs833061C variant genotype (CT/CC) had an increased risk of PAH (odds ratio=1.47, 95% confidence interval=1.18-1.83, p=0.001). Functional assays indicated that CT/CC variant genotype had significantly higher mRNA levels of VEGF in peripheral blood mononuclear cells than TT genotype (p=0.021). Luciferase reporter assay indicated that having a C allele conferred a significantly higher transcription activity than that with a T allele. CONCLUSION Our findings suggest that the functional polymorphism rs833061T>C in VEGF gene promoter modulates VEGF expression and may be a valuable biomarker for predicting PAH susceptibility.
Collapse
Affiliation(s)
- Yufeng Zhuo
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China.
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Guoyang Li
- Department of Respiratory Medicine, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Qiang Xie
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Ying Cheng
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| |
Collapse
|
114
|
Guan Y, Jin X, Liu X, Huang Y, Wang M, Li X. Uncovering potential key genes associated with the pathogenesis of asthma: A microarray analysis of asthma-relevant tissues. Allergol Immunopathol (Madr) 2017; 45:152-159. [PMID: 27842724 DOI: 10.1016/j.aller.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The present study aimed to discover more potential genes associated with the pathogenesis of asthma. METHODS The microarray data of GSE67940 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in bronchial alveolar lavage cells from patients with mild-moderate asthma (notSA) and severe asthma (SA) compared with normal controls (NC), respectively. Functional and pathway enrichment analysis, protein-protein interaction (PPI) network analysis were performed upon the identified up- and down-regulated DEGs. Besides, the gene association network based on the common up-regulated and down-regulated genes was generated and transcriptional regulatory pairs of overlapping DEGs in the PPI network were identified. RESULTS A total of 104 DEGs (30 up- and 74 down-regulated genes) were identified in notSA vs. NC. Additionally, 2796 DEGs were screened out in SA vs. NC group, including 320 up-regulated DEGs, and 135 down-regulated DEGs. Specially, 41 overlapping DEGs were screened out in notSA vs. NC and SA vs. NC, including 16 common up-regulated genes and 25 common down-regulated genes. No pathways were enriched by the DEGs in notSA vs. NC. DEGs in SA vs. NC were associated with cytokine-cytokine receptor interaction. VEGFA was a hub protein in both the PPI networks of DEGs in notSA vs. NC and SA vs. NC. Gene association network showed that signalling pathways and cytokine-cytokine receptor interaction were involved in. The overlapping VEGFA, and IFRD1, and ZNF331 were regulated by more TFs. CONCLUSION Genes such as VEGFA, and IFRD1, and ZNF331 may be associated with pathogenesis of asthma.
Collapse
|
115
|
Wu D, Lai T, Yuan Y, Chen M, Xia J, Li W, Pan G, Yuan B, Lv Q, Li Y, Li D, Wu B. Elevated expression of placental growth factor is associated with airway-wall vascular remodelling and thickening in smokers with asthma. Sci Rep 2017; 7:43017. [PMID: 28220848 PMCID: PMC5318961 DOI: 10.1038/srep43017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
The increased expression of placental growth factor (PlGF) in chronic obstructive pulmonary disease and allergy-related asthma suggests its role in the pathogenesis of these diseases. In asthmatic smokers, airway remodelling is accompanied by an accelerated decline in lung function. However, whether PlGF contributes to the persistent airflow obstruction and vascular remodelling typically seen in asthmatic smokers is unknown. In this study we measured lung function, airway-wall thickening, and PlGF levels in serum and induced sputum in 74 asthmatic and 42 healthy smokers and never-smokers. Using human lung microvascular endothelial cells (HLMECs), we evaluated the in vitro effects of PlGF on each step of vascular remodelling, including proliferation, migration, stress-fibre expression, and tubule formation. Our data showed significantly higher serum and sputum PlGF levels in asthma patients, especially asthmatic smokers, than in healthy controls. Serum and sputum PlGF levels correlated negatively with post-bronchodilator forced expiratory volume in 1 s (FEV1) and the FEV1/forced vital capacity, but positively with airway-wall thickening. Stimulation of HLMECs with rhPlGF promoted all of the steps of airway-microvascular remodelling. These findings provide insights into the influence of cigarette smoking on the structural changes in the airways of asthmatics and the important pathogenic role played by PlGF.
Collapse
Affiliation(s)
- Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tianwen Lai
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yalian Yuan
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Min Chen
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jun Xia
- Department of Radiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wen Li
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guihai Pan
- Department of Radiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Binfan Yuan
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Quanchao Lv
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yanyu Li
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dongmin Li
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
116
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
117
|
Pondman KM, Paudyal B, Sim RB, Kaur A, Kouser L, Tsolaki AG, Jones LA, Salvador-Morales C, Khan HA, Ten Haken B, Stenbeck G, Kishore U. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. NANOSCALE 2017; 9:1097-1109. [PMID: 27991644 DOI: 10.1039/c6nr08807d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanotubes (CNTs) are increasingly being developed for use in biomedical applications, including drug delivery. One of the most promising applications under evaluation is in treating pulmonary diseases such as tuberculosis. Once inhaled or administered, the nanoparticles are likely to be recognised by innate immune molecules in the lungs such as hydrophilic pulmonary surfactant proteins. Here, we set out to examine the interaction between surfactant protein D (SP-D), a key lung pattern recognition molecule and CNTs, and possible downstream effects on the immune response via macrophages. We show here that a recombinant form of human SP-D (rhSP-D) bound to oxidised and carboxymethyl cellulose (CMC) coated CNTs via its C-type lectin domain and enhanced phagocytosis by U937 and THP-1 macrophages/monocytic cell lines, together with an increased pro-inflammatory response, suggesting that sequestration of SP-D by CNTs in the lungs can trigger an unwanted and damaging immune response. We also observed that functionalised CNTs, opsonised with rhSP-D, continued to activate complement via the classical pathway, suggesting that C1q, which is the recognition sub-component of the classical pathway, and SP-D have distinct pattern recognition sites on the CNTs. Consistent with our earlier reports, complement deposition on the rhSP-D opsonised CNTs led to dampening of the pro-inflammatory immune response by THP-1 macrophages, as evident from qPCR, cytokine array and NF-κB nuclear translocation analyses. This study highlights the importance of understanding the interplay between innate immune humoral factors including complement in devising nanoparticle based drug delivery strategies.
Collapse
Affiliation(s)
- Kirsten M Pondman
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Basudev Paudyal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lubna Kouser
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Anthony G Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lucy A Jones
- Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Carolina Salvador-Morales
- Bioengineering Department and Krasnow Institute for Advanced Study, George Mason University, Fairfax, 22030 Virginia, USA
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bennie Ten Haken
- Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Gudrun Stenbeck
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
118
|
Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, Kähönen M, Lyytikäinen LP, Raitoharju E, Seppälä I, Sarin AP, Ripatti S, Palotie A, Perola M, Viikari JS, Jalkanen S, Maksimow M, Salomaa V, Salmi M, Kettunen J, Raitakari OT. Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. Am J Hum Genet 2017; 100:40-50. [PMID: 27989323 DOI: 10.1016/j.ajhg.2016.11.007] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating cytokines and growth factors are regulators of inflammation and have been implicated in autoimmune and metabolic diseases. In this genome-wide association study (GWAS) of up to 8,293 Finns we identified 27 genome-widely significant loci (p < 1.2 × 10-9) for one or more cytokines. Fifteen of the associated variants had expression quantitative trait loci in whole blood. We provide genetic instruments to clarify the causal roles of cytokine signaling and upstream inflammation in immune-related and other chronic diseases. We further link inflammatory markers with variants previously associated with autoimmune diseases such as Crohn disease, multiple sclerosis, and ulcerative colitis and hereby elucidate the molecular mechanisms underpinning these diseases and suggest potential drug targets.
Collapse
|
119
|
Bae JS, Kim JH, Kim EH, Mo JH. The Role of IL-17 in a Lipopolysaccharide-Induced Rhinitis Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:169-176. [PMID: 28102062 PMCID: PMC5266111 DOI: 10.4168/aair.2017.9.2.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/30/2022]
Abstract
Purpose Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria and important for pro-inflammatory mediators. This study aimed to establish a rhinitis model using ovalbumin (OVA) and LPS in order to evaluate the role of interleukin (IL)-17 in the pathogenesis of an LPS-induced non-eosionophilic rhinitis model. Methods Mice were divided into 4 groups and each group consisted of 10 mice (negative control group, allergic rhinitis model group, 1-µg LPS treatment group, and 10-µg LPS treatment group). BALB/c mice were sensitized with OVA and 1 or 10 µg of LPS, and challenged intranasally with OVA. Multiple parameters of rhinitis were also evaluated to establish the LPS-induced rhinitis model. IL-17 knockout mice were used to check if the LPS-induced rhinitis model were dependent on IL-17. Eosinophil and neutrophil infiltration, and mRNA and protein expression profiles of cytokine in nasal mucosa or spleen cell culture were evaluated using molecular, biochemical, histopathological, and immunohistological methods. Results In the LPS-induced rhinitis model, neutrophil infiltration increased in the nasal mucosa, and systemic and nasal IL-17 and interferon-gamma (IFN-γ) levels also increased as compared with the OVA-induced allergic rhinitis model. These findings were LPS-dose-dependent. In IL-17 knockout mice, those phenotypes (neutrophil infiltration, IL-17, and IFN-γ) were reversed, showing IL-17 dependency of LPS-induced rhinitis. The expression of vascular endothelial growth factor (VEGF), an important mediator for inflammation and angiogenesis, decreased in IL-17 knockout mice, showing the relationship between IL-17 and VEGF. Conclusions This study established an LPS-induced rhinitis model dependent on IL-17, characterized by neutrophil infiltration and increased expression of IL-17.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Department of Premedical Course, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.
| |
Collapse
|
120
|
Indoleamine 2,3-Dioxygenase Is Not a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation through Adipose-Derived Stem Cells. PLoS One 2016; 11:e0165661. [PMID: 27812173 PMCID: PMC5094728 DOI: 10.1371/journal.pone.0165661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Background Although indoleamine 2,3-dioxygenase (IDO)-mediated immune suppression of mesenchymal stem cells (MSCs) has been revealed in septic and tumor microenvironments, the role of IDO in suppressing allergic airway inflammation by MSCs is not well documented. We evaluated the effects of adipose-derived stem cells (ASCs) on allergic inflammation in IDO-knockout (KO) asthmatic mice or asthmatic mice treated with ASCs derived from IDO-KO mice. Methods and Findings ASCs were injected intravenously in wild-type (WT) and IDO-KO asthmatic mice. Furthermore, asthmatic mice were injected with ASCs derived from IDO-KO mice. We investigated the immunomodulatory effects of ASCs between WT and IDO-KO mice or IDO-KO ASCs in asthmatic mice. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in bronchoalveolar lavage fluid (BALF), eosinophilic inflammation, goblet hyperplasia, and serum concentrations of total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL)-4, IL-5, and IL-13, and enhanced Th1 cytokine (interferon-γ) and regulatory cytokines (IL-10, TGF-β) in BALF and lung draining lymph nodes (LLNs). ASCs led to significant increases in regulatory T-cells (Tregs) and IL-10+ T cell populations in LLNs. However, the immunosuppressive effects of ASCs did not significantly differ between WT and IDO-KO mice. Moreover, ASCs derived from IDO-KO mice showed immunosuppressive effects in allergic airway inflammation. Conclusions IDO did not play a pivotal role in the suppression of allergic airway inflammation through ASCs, suggesting that it is not the major regulator responsible for suppressing allergic airway inflammation.
Collapse
|
121
|
Oussa NAE, Dahmani A, Gomis M, Richaud M, Andreev E, Navab-Daneshmand AR, Taillefer J, Carli C, Boulet S, Sabbagh L, Labrecque N, Sapieha P, Delisle JS. VEGF Requires the Receptor NRP-1 To Inhibit Lipopolysaccharide-Dependent Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2016; 197:3927-3935. [PMID: 27815442 DOI: 10.4049/jimmunol.1601116] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022]
Abstract
To stimulate a productive T cell response, dendritic cells (DC) must undergo maturation characterized by heightened cell surface expression of MHC and costimulatory molecules as well as cytokine production. Conversely, the inhibition of DC maturation is a central mechanism of immune tolerance. The control of the DC maturation process relies on the integration of several cellular stimulatory or inhibitory signals. The soluble factors and their receptors controlling this central aspect of DC biology are incompletely characterized. We show that murine bone marrow-derived DC (BMDC) maturation induced by LPS, as opposed to polyinosinic:polycytidylic acid or cytosine-phosphate-guanine, is robustly inhibited by vascular endothelial growth factor (VEGF), a previously identified immunosuppressive cytokine. Using BMDC from wild type and conditional knockout mice, we show that neuropilin-1 (NRP-1), a known receptor of VEGF, is necessary to suppress LPS-dependent BMDC maturation. The absence of NRP-1 had no ostensible effects on the biology of BMDC in the absence of VEGF. However, NRP-1-deficient BMDC remained completely insensitive to the VEGF-dependent inhibition of BMDC maturation in culture. In the presence of VEGF, NRP-1 directly interacted with the LPS receptor TLR4 and suppressed downstream signaling through ERK and NF-κβ, resulting in a sharp inhibition of MHC class II and costimulatory molecules (CD40, CD86) expression as well as proinflammatory cytokine production. Consequently, we identify NRP-1 as a target to optimize DC maturation within environments that are rich in VEGF, such as tumors.
Collapse
Affiliation(s)
- Nougboli A E Oussa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Amina Dahmani
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Marie Gomis
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Manon Richaud
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Emil Andreev
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | | | - Julie Taillefer
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Salix Boulet
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Laurent Sabbagh
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Przemyslaw Sapieha
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département d'Ophtalmologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Division d'Hématologie-Oncologie, Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
122
|
Das UN. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Arch Med Sci 2016; 12:1142-1157. [PMID: 27695506 PMCID: PMC5016593 DOI: 10.5114/aoms.2016.61918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD.
Collapse
|
123
|
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12:174. [PMID: 27553600 PMCID: PMC4995625 DOI: 10.1186/s12917-016-0805-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic and pruritic skin disease in dogs. The development of cAD involves complex interactions between environmental antigens, genetic predisposition and a number of disparate cell types. The aim of the present study was to perform comprehensive analyses of peripheral blood of AD dogs in relation to healthy subjects in order to determine the changes which would be characteristic for cAD. Results The number of cells in specific subpopulations of lymphocytes was analyzed by flow cytometry, concentration of chosen pro- and anti-inflammatory cytokines (IL-4, IL-10, IL-13, TNF-α, TGF-β1) was determined by ELISA; and microarray analysis was performed on RNA samples isolated from peripheral blood nuclear cells of AD and healthy dogs. The number of Th cells (CD3+CD4+) in AD and healthy dogs was similar, whereas the percentage of Tc (CD3+CD8+) and Treg (CD4+CD25+ Foxp3+) cells increased significantly in AD dogs. Increased concentrations of IL-13 and TNF-α, and decreased levels of IL-10 and TGF-β1 was observed in AD dogs. The level of IL-4 was similar in both groups of animals. Results of the microarray experiment revealed differentially expressed genes involved in transcriptional regulation (e.g., transcription factors: SMAD2, RORA) or signal transduction pathways (e.g., VEGF, SHB21, PROC) taking part in T lymphocytes lineages differentiation and cytokines synthesis. Conclusions Results obtained indicate that CD8+ T cells, beside CD4+ T lymphocytes, contribute to the development of the allergic response. Increased IL-13 concentration in AD dogs suggests that this cytokine may play more important role than IL-4 in mediating changes induced by allergic inflammation. Furthermore, observed increase in Treg cells in parallel with high concentrations of TNF-α and low levels of IL-10 and TGF-β1 in the peripheral blood of AD dogs point at the functional insufficiency of Treg cells in patients with AD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0805-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Henryk Maciejewski
- Department of Computer Engineering, Wroclaw University of Technology, Wrocław, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michał Jank
- Veterinary Institute, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
124
|
Kim M, Allen B, Korhonen EA, Nitschké M, Yang HW, Baluk P, Saharinen P, Alitalo K, Daly C, Thurston G, McDonald DM. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest 2016; 126:3511-25. [PMID: 27548529 DOI: 10.1172/jci84871] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/24/2016] [Indexed: 01/12/2023] Open
Abstract
Angiopoietin-2 (ANG2) regulates blood vessel remodeling in many pathological conditions through differential effects on Tie2 signaling. While ANG2 competes with ANG1 to inhibit Tie2, it can paradoxically also promote Tie2 phosphorylation (p-Tie2). A related paradox is that both inactivation and overactivation of Tie2 can result in vascular remodeling. Here, we reconciled these opposing actions of ANG2 by manipulating conditions that govern its actions in the vasculature. ANG2 drove vascular remodeling during Mycoplasma pulmonis infection by acting as a Tie2 antagonist, which led to p-Tie2 suppression, forkhead box O1 (FOXO1) activation, increased ANG2 expression, and vessel leakiness. These changes were exaggerated by anti-Tie2 antibody, inhibition of PI3K signaling, or ANG2 overexpression and were reduced by anti-ANG2 antibody or exogenous ANG1. In contrast, under pathogen-free conditions, ANG2 drove vascular remodeling by acting as an agonist, promoting high p-Tie2, low FOXO1 activation, and no leakage. Tie1 activation was strong under pathogen-free conditions, but infection or TNF-α led to Tie1 inactivation by ectodomain cleavage and promoted the Tie2 antagonist action of ANG2. Together, these data indicate that ANG2 activation of Tie2 supports stable enlargement of normal nonleaky vessels, but reduction of Tie1 in inflammation leads to ANG2 antagonism of Tie2 and initiates a positive feedback loop wherein FOXO1-driven ANG2 expression promotes vascular remodeling and leakage.
Collapse
|
125
|
Lee AJ, Ro M, Kim JH. Leukotriene B4 Receptor 2 Is Critical for the Synthesis of Vascular Endothelial Growth Factor in Allergen-Stimulated Mast Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2069-78. [PMID: 27489284 DOI: 10.4049/jimmunol.1502565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/05/2016] [Indexed: 01/31/2023]
Abstract
Mast cells are among the principal effector cells in the pathogenesis of allergic asthma. In allergic reactions, allergen (Ag)-induced cross-linking of IgE bound to FcεRI on mast cells results in the production of vascular endothelial growth factor (VEGF), which is essential for the initiation and development of the allergic response. Despite the central role of VEGF in allergic asthma, the signaling events responsible for the production of VEGF remain unclear, particularly in Ag-stimulated mast cells. In the present study, we observed that blocking leukotriene B4 receptor 2 (BLT2) completely abrogated the production of VEGF in Ag-stimulated bone marrow-derived mast cells (BMMCs). The synthesis of BLT2 ligands (leukotriene B4 and 12(S)-hydroxyeicosatetraenoic acid) was also required for VEGF production, suggesting a mediating role of an autocrine BLT2 ligands-BLT2 axis in the production of VEGF in mast cells. The NADPH oxidase 1-reactive oxygen species-NF-κB cascade is downstream of BLT2 during Ag signaling to VEGF synthesis in mast cells. Furthermore, the level of VEGF synthesis in genetically mast cell-deficient Kit(W/Wv) mice was significantly lower than that in wild-type mice in the OVA-induced asthma model, suggesting that mast cells play a critical role in the synthesis of VEGF in OVA-induced allergic asthma. Importantly, VEGF production was restored to the levels observed in wild-type mice after adoptive transfer of normal BMMCs into Kit(W/Wv) mice but was not restored in BLT2(-/-) BMMC-reconstituted Kit(W/Wv) mice in the OVA-induced asthma model. Taken together, our results suggest that BLT2 expression in mast cells is essential for the production of VEGF in OVA-induced allergic asthma.
Collapse
Affiliation(s)
- A-Jin Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - MyungJa Ro
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jae-Hong Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
126
|
Yao L, Zhao H, Tang H, Liang J, Liu L, Dong H, Zou F, Cai S. The receptor for advanced glycation end products is required for β-catenin stabilization in a chemical-induced asthma model. Br J Pharmacol 2016; 173:2600-13. [PMID: 27332707 DOI: 10.1111/bph.13539] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic retention of β-catenin will lead to its nuclear translocation and subsequent interaction with the transcription factor TCF/LEF that regulates target gene expression. We have previously demonstrated aberrant expression of β-catenin in a model of asthma induced by toluene diisocyanate (TDI). The aim of this study was to examine whether the receptor for advanced glycation end products (RAGE) can regulate β-catenin expression in TDI-induced asthma. EXPERIMENTAL APPROACH Male BALB/c mice were sensitized and challenged with TDI to generate a chemically-induced asthma model. Inhibitors of RAGE, FPS-ZM1 and the RAGE antagonist peptide (RAP), were injected i.p. after each challenge. Airway resistance was measured in vivo and bronchoalveolar lavage fluid was analysed. Lungs were examined by histology and immunohistochemistry. Western blotting and quantitative PCR were also used. KEY RESULTS Expression of RAGE and of its ligands HMGB1, S100A12, S100B, HSP70 was increased in TDI-exposed lungs. These increases were inhibited by FPS-ZM1 or RAP. Either antagonist blunted airway reactivity, airway inflammation and goblet cell metaplasia, and decreased release of Th2 cytokines. TDI exposure decreased level of membrane β-catenin, phosphorylated Akt (Ser(473) ), inactivated GSK3β (Ser(9) ), dephosphorylated β-catenin at Ser(33) /(37) /Thr(41) , which controls its cytoplasmic degradation, increased phosphorylated β-catenin at Ser(552) , raised cytoplasmic and nuclear levels of β-catenin and up-regulated its targeted gene expression (MMP2, MMP7, MMP9, VEGF, cyclin D1, fibronectin), all of which were reversed by RAGE inhibition. CONCLUSION AND IMPLICATIONS RAGE was required for stabilization of β-catenin in TDI-induced asthma, identifying protective effects of RAGE blockade in this model.
Collapse
Affiliation(s)
- Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixiong Tang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Liang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
127
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
128
|
RIG-like Helicase Regulation of Chitinase 3-like 1 Axis and Pulmonary Metastasis. Sci Rep 2016; 6:26299. [PMID: 27198666 PMCID: PMC4873814 DOI: 10.1038/srep26299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Chi3l1 is induced by a variety of cancers where it portends a poor prognosis and plays a key role in the generation of metastasis. However, the mechanisms that Chi3l1 uses to mediate these responses and the pathways that control Chi3l1-induced tumor responses are poorly understood. We characterized the mechanisms that Chi3l1 uses to foster tumor progression and the ability of the RIG-like helicase (RLH) innate immune response to control Chi3l1 elaboration and pulmonary metastasis. Here we demonstrate that RLH activation inhibits tumor induction of Chi3l1 and the expression of receptor IL-13Rα2 and pulmonary metastasis while restoring NK cell accumulation and activation, augmenting the expression of IFN-α/β, chemerin and its receptor ChemR23, p-cofilin, LIMK2 and PTEN and inhibiting BRAF and NLRX1 in a MAVS-dependent manner. These studies demonstrate that Chi3l1 is a multifaceted immune stimulator of tumor progression and metastasis whose elaboration and tissue effects are abrogated by RLH innate immune responses.
Collapse
|
129
|
Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Sci Rep 2016; 6:25781. [PMID: 27165276 PMCID: PMC4863152 DOI: 10.1038/srep25781] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/22/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target.
Collapse
|
130
|
Trueba A, Ryan MW, Vogel PD, Ritz T. Effects of academic exam stress on nasal leukotriene B4 and vascular endothelial growth factor in asthma and health. Biol Psychol 2016; 118:44-51. [PMID: 27143192 DOI: 10.1016/j.biopsycho.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To examine the effect of final exam stress on the concentrations of leukotriene B4 (LTB4) and vascular endothelial growth factor (VEGF) in the upper airways among healthy and asthmatic individuals. METHOD Nasal samples were collected from 12 individuals with asthma and 23 healthy controls early and late in a final exam period, and during a low-stress period in the semester. We determined LTB4 and VEGF concentrations using Enzyme-Linked Immunoassays. RESULTS Mixed effects analysis of variance models showed that asthmatic participants with allergies in contrast to healthy individuals experienced a decrease in nasal LTB4 during the final exam period as compared to mid-semester (low stress period). There were no significant changes in nasal VEGF across the observation period. Changes in nasal LTB4 and VEGF were not associated with salivary cortisol, exhaled nitric oxide, or spirometric lung function. CONCLUSIONS Our results suggest that nasal LTB4 concentrations change in periods of psychological stress for asthmatic individuals with allergies.
Collapse
Affiliation(s)
- Ana Trueba
- Department of Psychology, Quito Brain and Behavior Laboratory, Universidad San Francisco de Quito, Quito, Ecuador; Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - Matthew W Ryan
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pia D Vogel
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
131
|
Koczy-Baron E, Grzanka A, Jochem J, Gawlik R, Kasperska-Zajac A. Evaluation of circulating vascular endothelial growth factor and its soluble receptors in patients suffering from persistent allergic rhinitis. Allergy Asthma Clin Immunol 2016; 12:17. [PMID: 27127523 PMCID: PMC4848800 DOI: 10.1186/s13223-016-0124-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Background Overexpression and enhanced release of vascular endothelial growth factor (VEGF) have been detected in various types of allergic inflammation, including asthma. Aim To further evaluate the pattern of systemic release of VEGF in atopic allergy, free circulating VEGF was measured in patients with persistent allergic rhinitis (PAR). Methods The concentrations of VEGF and its soluble receptors (sVEGF-R1 and VEGF-R2) in plasma were measured in patients with PAR sensitized to house dust mites and the healthy subjects. Results No significant differences were found between PAR patients and healthy subjects with respect to plasma levels of VEGF and its receptors. Conclusions It seems that free circulating VEGF may not be elevated in PAR patients. Moreover, on the basis of the present study as well as the earlier ones, it appears likely that systemic release of VEGF varies among patients with distinct clinical manifestation of atopy; may depend on severity/activity and the extent of inflammatory response.
Collapse
Affiliation(s)
- E Koczy-Baron
- Department of Dermatology and Venerology, Bytom, Poland
| | - A Grzanka
- Department of Internal Diseases, Dermatology and Allergology, SMDZ in Zabrze, Medical University of Silesia, Katowice, Poland
| | - J Jochem
- Departament of Basic Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - R Gawlik
- Clinical Department of Internal Diseases, Allergology and Clinical Immunology, SMDZ in Zabrze, Medical University of Silesia, Katowice, Poland
| | - A Kasperska-Zajac
- Department of Internal Diseases, Dermatology and Allergology, SMDZ in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
132
|
Kang MJ, Yoon CM, Nam M, Kim DH, Choi JM, Lee CG, Elias JA. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung. Am J Respir Cell Mol Biol 2016; 53:863-71. [PMID: 25955511 DOI: 10.1165/rcmb.2014-0366oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.
Collapse
Affiliation(s)
- Min-Jong Kang
- 1 Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut.,2 Departments of Molecular Microbiology and Immunology, and Medicine, Brown University, Providence, Rhode Island; and
| | - Chang Min Yoon
- 1 Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut.,2 Departments of Molecular Microbiology and Immunology, and Medicine, Brown University, Providence, Rhode Island; and
| | - Milang Nam
- 1 Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut.,2 Departments of Molecular Microbiology and Immunology, and Medicine, Brown University, Providence, Rhode Island; and
| | - Do-Hyun Kim
- 3 Department of Life Science, Research Institute for Natural Sciences, and.,4 Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- 3 Department of Life Science, Research Institute for Natural Sciences, and.,4 Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Chun Geun Lee
- 2 Departments of Molecular Microbiology and Immunology, and Medicine, Brown University, Providence, Rhode Island; and
| | - Jack A Elias
- 1 Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut.,2 Departments of Molecular Microbiology and Immunology, and Medicine, Brown University, Providence, Rhode Island; and
| |
Collapse
|
133
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
134
|
Samitas K, Poulos N, Semitekolou M, Morianos I, Tousa S, Economidou E, Robinson DS, Kariyawasam HH, Zervas E, Corrigan CJ, Ying S, Xanthou G, Gaga M. Activin-A is overexpressed in severe asthma and is implicated in angiogenic processes. Eur Respir J 2016; 47:769-82. [PMID: 26869672 DOI: 10.1183/13993003.00437-2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023]
Abstract
Activin-A is a pleiotropic cytokine that regulates allergic inflammation. Its role in the regulation of angiogenesis, a key feature of airways remodelling in asthma, remains unexplored. Our objective was to investigate the expression of activin-A in asthma and its effects on angiogenesis in vitro.Expression of soluble/immunoreactive activin-A and its receptors was measured in serum, bronchoalveolar lavage fluid (BALF) and endobronchial biopsies from 16 healthy controls, 19 patients with mild/moderate asthma and 22 severely asthmatic patients. In vitro effects of activin-A on baseline and vascular endothelial growth factor (VEGF)-induced human endothelial cell angiogenesis, signalling and cytokine release were compared with BALF concentrations of these cytokines in vivo.Activin-A expression was significantly elevated in serum, BALF and bronchial tissue of the asthmatics, while expression of its protein receptors was reduced. In vitro, activin-A suppressed VEGF-induced endothelial cell proliferation and angiogenesis, inducing autocrine production of anti-angiogenic soluble VEGF receptor (R)1 and interleukin (IL)-18, while reducing production of pro-angiogenic VEGFR2 and IL-17. In parallel, BALF concentrations of soluble VEGFR1 and IL-18 were significantly reduced in severe asthmatics in vivo and inversely correlated with angiogenesis.Activin-A is overexpressed and has anti-angiogenic effects in vitro that are not propagated in vivo, where reduced basal expression of its receptors is observed particularly in severe asthma.
Collapse
Affiliation(s)
- Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece These authors contributed equally
| | - Nikolaos Poulos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Tousa
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Erasmia Economidou
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Douglas S Robinson
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Harsha H Kariyawasam
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK Department of Allergy and Medical Rhinology, Royal National Throat, Nose and Ear Hospital, University College, London, UK
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Christopher J Corrigan
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Sun Ying
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece Both authors contributed equally
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece Both authors contributed equally
| |
Collapse
|
135
|
Breithaupt-Faloppa AC, Ferreira SG, Kudo GK, Armstrong R, Tavares-de-Lima W, da Silva LFF, Sannomiya P, Moreira LFP. Sex-related differences in lung inflammation after brain death. J Surg Res 2016; 200:714-21. [DOI: 10.1016/j.jss.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
136
|
Prasad S, Rana RK, Sheth R, Mauskar AV. A Hospital Based Study to Establish the Correlation between Recurrent Wheeze and Vitamin D Deficiency Among Children of Age Group Less than 3 Years in Indian Scenario. J Clin Diagn Res 2016; 10:SC18-21. [PMID: 27042548 DOI: 10.7860/jcdr/2016/17318.7287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/20/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Early childhood wheezing is a heterogeneous condition, which has several phenotypic expressions and a complex relationship with the development of asthma later in life. New studies indicate the prevalence of recurrent wheeze to be associated with Vitamin D deficiency. This has not been explored in Indian settings widely, mandating this exploration. AIM To determine the severity of Vitamin D deficiency and its association with recurrent wheeze in children less than 3 years of age. MATERIALS AND METHODS Consecutive type of non-probability sampling was followed for selection of study subjects with a total sample size to be 122 children in the Hospital setting. A pre- formed, pre- tested, structured interview schedule was used to obtain information. Estimation of 25 (OH) Vitamin D was done using ELISA method. Kit used for estimation was DLD Diagnostika GMBH 25(OH) Vitamin D ELISA from Germany. Standard statistical tools were used including Logistic regression analysis, and ROC curve, p value <0.05 was considered to be statistically significant. SPSS software version 17.0 was used. RESULTS Each 10ng/ml decrease in Vitamin D level is associated with 7.25% greater odds of wheezing. Our study also suggests, exclusive breast feeding and delaying of complementary feeding beyond 6 months of age are significant predictors of Vitamin D deficiency and have indirect association with increased incidence of wheezing in children. CONCLUSION The study concluded that Vitamin D deficiency is associated with increased risk of recurrent wheezing.
Collapse
Affiliation(s)
- Santosh Prasad
- Senior Registrar, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| | - Rishabh Kumar Rana
- Epidemiologist, Department of Community Medicine, Life Member Indian Medical Association, International Epidemiological Association (USA) , IAPSM, India
| | - Ronak Sheth
- Senior Registrar, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| | - Anupama V Mauskar
- Addtnl Professor, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| |
Collapse
|
137
|
Syed MA, Choo-Wing R, Homer RJ, Bhandari V. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs. PLoS One 2016; 11:e0147588. [PMID: 26799210 PMCID: PMC4723240 DOI: 10.1371/journal.pone.0147588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
Background The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. Methodology We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. Results VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2−/− and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Conclusion Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.
Collapse
Affiliation(s)
- Mansoor A. Syed
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
| | - Rayman Choo-Wing
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, United States of America
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
- * E-mail:
| |
Collapse
|
138
|
Takezawa K, Ogawa T, Shimizu S, Shimizu T. Epidermal Growth Factor Receptor Inhibitor Ag1478 Inhibits Mucus Hypersecretion in Airway Epithelium. Am J Rhinol Allergy 2016; 30:1-6. [DOI: 10.2500/ajra.2016.30.4263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Mucus hypersecretion and neutrophil infiltration are important characteristics of airway inflammation. Epidermal growth factor receptor (EGFR) transactivation induces mucus and inflammatory cytokine secretion from airway epithelial cells. To elucidate the roles of EGFR in airway inflammation, the in vitro effects on mucin production and interleukin (IL) 8 secretion from cultured airway epithelial cells and the in vivo effects on mucus hypersecretion and neutrophil infiltration in rat nasal mucosa of the EGFR tyrosine kinase inhibitor AG1478 were examined. Methods The in vitro effects of AG1478 treatment of cultured NCI-H292 cells on lipopolysaccharide (LPS) induced or tumor necrosis factor (TNF) a induced MUC5AC mucin and IL-8 secretion were evaluated. Hypertrophic and metaplastic changes of goblet cells, mucus production and neutrophil infiltration in rat nasal epithelium were induced by intranasal instillation of LPS in vivo, and the inhibitory effects of AG1478 by intraperitoneal injection or intranasal instillation were examined. Results AG1478 (1-1000 nM) significantly inhibited both LPS-induced and TNF-α-induced secretion of MUC5AC and IL-8 from cultured NCI-H292 cells in a dose-dependent manner. The expression of MUC5AC and IL-8 messenger RNAs was also significantly inhibited. Intranasal instillation of AG1478 one hour after intranasal LPS instillation significantly inhibited LPS-induced goblet cell metaplasia, mucus production, and neutrophil infiltration in rat nasal epithelium, as did intraperitoneal injection of AG1478 one hour before LPS instillation. Conclusions These results indicated that EGFR transactivation plays an important role in mucin and IL-8 secretion from airway epithelial cells. Intranasal instillation of an EGFR tyrosine kinase inhibitor may be a new therapeutic approach for the treatment of upper airway inflammation.
Collapse
Affiliation(s)
- Kumiko Takezawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takao Ogawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
139
|
Chen X, Li YY, Zhang WQ, Zhang WM, Zhou H. House dust mite extract induces growth factor expression in nasal mucosa by activating the PI3K/Akt/HIF-1α pathway. Biochem Biophys Res Commun 2016; 469:1055-61. [DOI: 10.1016/j.bbrc.2015.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/24/2015] [Indexed: 11/29/2022]
|
140
|
Takyar S, Zhang Y, Haslip M, Jin L, Shan P, Zhang X, Lee PJ. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury. FASEB J 2015; 30:1317-27. [PMID: 26655705 DOI: 10.1096/fj.15-275024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023]
Abstract
TLR4 deficiency causes hypersusceptibility to oxidant-induced injury. We investigated the role of TLR4 in lung protection, using used bone marrow chimeras; cell-specific transgenic modeling; and lentiviral delivery in vivo to knock down or express TLR4 in various lung compartments; and lung-specific VEGF transgenic mice to investigate the effect of TLR4 on VEGF-mediated protection. C57/BL6 mice were exposed to 100% oxygen in an enclosed chamber and assessed for survival and lung injury. Primary endothelial cells were stimulated with recombinant VEGF and exposed to hyperoxia or hydrogen peroxide. Endothelium-specific expression of human TLR4 (as opposed to its expression in epithelium or immune cells) increased the survival of TLR4-deficent mice in hyperoxia by 24 h and decreased LDH release and lung cell apoptosis after 72 h of exposure by 30%. TLR4 expression was necessary and sufficient for the protective effect of VEGF in the lungs and in primary endothelial cells in culture. TLR4 knockdown inhibited VEGF signaling through VEGF receptor 2 (VEGFR2), Akt, and ERK pathways in lungs and primary endothelial cells and decreased the availability of VEGFR2 at the cell surface. These findings demonstrate a novel mechanism through which TLR4, an innate pattern receptor, interacts with an endothelial survival pathway.
Collapse
Affiliation(s)
- Seyedtaghi Takyar
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Yi Zhang
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Maria Haslip
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Lei Jin
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Peiying Shan
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Xuchen Zhang
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| | - Patty J Lee
- *Section of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; and Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut, USA
| |
Collapse
|
141
|
Drug Signature-based Finding of Additional Clinical Use of LC28-0126 for Neutrophilic Bronchial Asthma. Sci Rep 2015; 5:17784. [PMID: 26626943 PMCID: PMC4667219 DOI: 10.1038/srep17784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
In recent decades, global pharmaceutical companies have suffered from an R&D innovation gap between the increased cost of a new drug’s development and the decreased number of approvals. Drug repositioning offers another opportunity to fill the gap because the approved drugs have a known safety profile for human use, allowing for a reduction of the overall cost of drug development by eliminating rigorous safety assessment. In this study, we compared the transcriptional profile of LC28-0126, an investigational drug for acute myocardial infarction (MI) at clinical trial, obtained from healthy male subjects with molecular activity profiles in the Connectivity Map. We identified dyphilline, an FDA-approved drug for bronchial asthma, as a top ranked connection with LC28-0126. Subsequently, we demonstrated that LC28-0126 effectively ameliorates the pathophysiology of neutrophilic bronchial asthma in OVALPS-OVA mice accompanied with a reduction of inflammatory cell counts in the bronchoalveolar lavage fluid (BALF), inhibition of the release of proinflammatory cytokines, relief of airway hyperactivity, and improvement of histopathological changes in the lung. Taken together, we suggest that LC28-0126 could be a potential therapeutic for bronchial asthma. In addition, this study demonstrated the potential general utility of computational drug repositioning using clinical profiles of the investigational drug.
Collapse
|
142
|
Zha W, Su M, Huang M, Cai J, Du Q. Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:161-9. [PMID: 26739410 PMCID: PMC4713880 DOI: 10.4168/aair.2016.8.2.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a recently discovered antiangiogenesis protein. PEDF possesses powerful anti-inflammatory, antioxidative, antiangiogenic, and antifibrosis properties. It has been reported that PEDF can regulate vascular endothelial growth factor (VEGF) expression. This study aimed to evaluate whether recombinant PEDF protein could attenuate allergic airway inflammation and airway remodeling via the negative regulation of VEGF using a murine model of chronic ovalbumin (OVA)-induced asthma and BEAS-2B human bronchial epithelial cells. Methods In an in vivo experiment, mice sensitized with OVA were chronically airway challenged with aerosolized 1% OVA solution for 8 weeks. Treated mice were given injections of recombinant PEDF protein (50 or 100 µg/kg body weight) via the tail vein. In an in vitro experiment, we investigated the effects of recombinant PEDF protein on VEGF release levels in BEAS-2B cells stimulated with IL-1β. Results Recombinant PEDF protein significantly inhibited eosinophilic airway inflammation, airway hyperresponsiveness, and airway remodeling, including goblet cell hyperplasia, subepithelial collagen deposition, and airway smooth muscle hypertrophy. In addition, recombinant PEDF protein suppressed the enhanced expression of VEGF protein in lung tissue and bronchoalveolar lavage fluid (BALF) in OVA-challenged chronically allergic mice. In the in vitro experiment, VEGF expression was increased after IL-1β stimulation. Pretreatment with 50 and 100 ng/mL of recombinant PEDF protein significantly attenuated the increase in VEGF release levels in a concentration-dependent manner in BEAS-2B cells stimulated by IL-1β. Conclusions These results suggest that recombinant PEDF protein may abolish the development of characteristic features of chronic allergic asthma via VEGF suppression, providing a potential treatment option for chronic airway inflammation diseases such as asthma.
Collapse
Affiliation(s)
- Wangjian Zha
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei Su
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiankang Cai
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Du
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
143
|
Lee HS, Hos D, Blanco T, Bock F, Reyes NJ, Mathew R, Cursiefen C, Dana R, Saban DR. Involvement of corneal lymphangiogenesis in a mouse model of allergic eye disease. Invest Ophthalmol Vis Sci 2015; 56:3140-8. [PMID: 26024097 DOI: 10.1167/iovs.14-16186] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. METHODS Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1-stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. RESULTS Confocal microscopy of LYVE-1-stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. CONCLUSIONS Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED.
Collapse
Affiliation(s)
- Hyun-Soo Lee
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Tomas Blanco
- Duke University School of Medicine, Department of Ophthalmology, Durham, North Carolina, United States
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Nancy J Reyes
- Duke University School of Medicine, Department of Ophthalmology, Durham, North Carolina, United States
| | - Rose Mathew
- Duke University School of Medicine, Department of Ophthalmology, Durham, North Carolina, United States
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Reza Dana
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Daniel R Saban
- Duke University School of Medicine, Department of Ophthalmology, Durham, North Carolina, United States 4Duke University School of Medicine, Department of Immunology, Durham, North Carolina, United States
| |
Collapse
|
144
|
Avdalovic M. Pulmonary vasculature and critical asthma syndromes: a comprehensive review. Clin Rev Allergy Immunol 2015; 48:97-103. [PMID: 24752370 PMCID: PMC7101667 DOI: 10.1007/s12016-014-8420-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the important factors and consequences in persistent asthma is the change in the vasculature of the airways and lung parenchyma. These changes could contribute to worsening asthma control and predispose asthmatics to critical asthma syndromes. For many years, the contribution of vasculature to severe asthma was limited to discussion of small and medium vessel vasculitis commonly referred to as Churg − Strauss syndrome. This comprehensive review will explore the known mechanisms that are associated with remodeling of the vasculature in a variety of critical asthma presentations. Inflammation of pulmonary and bronchial small blood vessels may contribute significantly but silently to asthma pathobiology. Inflammation in the vasculature of the lung parenchyma can decrease lung capacity while inflammation in airway vasculature can decrease airflow. This review will provide a modern perspective on Churg–Strauss syndromes with a focus on phenotyping, mechanism, and ultimately modern therapeutic approaches. Vascular remodeling and airway remodeling are not mutually exclusive concepts in understanding the progression of asthma and frequency of acute exacerbations. Furthermore, the contribution of vascular leak, particularly in the parenchymal vasculature, has become an increasingly recognized component of certain presentations of poorly controlled, severe persistent asthmatic and during exacerbations. We highlight how these mechanisms can contribute to some the severe presentations of influenza infection in patients with a history of asthma. The ultimate aim of this review is to summarize the current literature concerning vasculitis and the contribution of airway and parenchymal vascular remodeling to presentation of persistent asthma and its consequences during acute exacerbations and critical asthma syndromes.
Collapse
Affiliation(s)
- Mark Avdalovic
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, School of Medicine, Davis, CA, USA,
| |
Collapse
|
145
|
Ge A, Liu Y, Zeng X, Kong H, Ma Y, Zhang J, Bai F, Huang M. Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochim Biophys Sin (Shanghai) 2015; 47:604-11. [PMID: 26033789 DOI: 10.1093/abbs/gmv052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/17/2015] [Indexed: 11/14/2022] Open
Abstract
Bronchial asthma, one of the most common allergic diseases, is characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. The anti-oxidant flavone aglycone diosmetin ameliorates the inflammation in pancreatitis, but little is known about its impact on asthma. In this study, the effects of diosmetin on chronic asthma were investigated with an emphasis on the modulation of airway remodeling in BALB/c mice challenged with ovalbumin (OVA). It was found that diosmetin significantly relieved inflammatory cell infiltration, goblet cell hyperplasia, and collagen deposition in the lungs of asthmatic mice and notably reduced AHR in these animals. The OVA-induced increases in total cell and eosinophil counts in bronchoalveolar lavage fluid were reversed, and the level of OVA-specific immunoglobulin E in serum was attenuated by diosmetin administration, implying an anti-Th2 activity of diosmetin. Furthermore, diosmetin remarkably suppressed the expression of smooth muscle actin alpha chain, indicating a potent anti-proliferative effect of diosmetin on airway smooth muscle cells (ASMCs). Matrix metallopeptidase-9, transforming growth factor-β1, and vascular endothelial growth factor levels were also alleviated by diosmetin, suggesting that the remission of airway remodeling might be attributed to the decline of these proteins. Taken together, our findings provided a novel profile of diosmetin with anti-remodeling therapeutic benefits, highlighting a new potential of diosmetin in remitting the ASMC proliferation in chronic asthma.
Collapse
Affiliation(s)
- Ai Ge
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanan Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Kong
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Ma
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaxiang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fangfang Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mao Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
146
|
Cho KS, Lee JH, Park MK, Park HK, Yu HS, Roh HJ. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells. PLoS One 2015; 10:e0131813. [PMID: 26176545 PMCID: PMC4503681 DOI: 10.1371/journal.pone.0131813] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/07/2015] [Indexed: 12/14/2022] Open
Abstract
Background The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs) remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2) inhibitor or transforming growth factor-β (TGF-β) neutralizing antibodies. Methods and Findings Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF), eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL)-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ) and regulatory cytokines (IL-10 and TGF-β) in the BALF and lung draining lymph nodes (LLNs). ASCs engraftment caused significant increases in the regulatory T cell (Treg) and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation. Conclusions ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.
Collapse
Affiliation(s)
- Kyu-Sup Cho
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung-Hoon Lee
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Mi-Kyung Park
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hye-Kyung Park
- Department of Internal Medicine, Pusan National University Hospital, Busan, South Korea
| | - Hak-Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hwan-Jung Roh
- Department of Otorhinolaryngology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
147
|
Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L237-49. [PMID: 26047642 DOI: 10.1152/ajplung.00390.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production.
Collapse
Affiliation(s)
- Karl Deacon
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham
| | - Alan J Knox
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham
| |
Collapse
|
148
|
Yılmaz I, Bayraktar N, Ceyhan K, Seçil D, Yüksel S, Mısırlıgil Z, Bavbek S. Evaluation of vascular endothelial growth factor-A and Endostatin levels in induced sputum and relationship to bronchial hyperreactivity in patients with persistent allergic rhinitis monosensitized to house dust. REVISTA PORTUGUESA DE PNEUMOLOGIA 2015; 21:S2173-5115(15)00094-9. [PMID: 26051834 DOI: 10.1016/j.rppnen.2015.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Studies about the pathogenesis of bronchial hyperreactivity (BHR) in patients with persistent allergic rhinitis (PAR) and its relationship with lower airway remodeling are extremely limited. OBJECTIVE This study evaluated bronchial vascular remodeling via the measurement of angiogenic factor, vascular endothelial growth factor-A (VEGF-A), and anti-angiogenic factor, Endostatin, and evaluated their relationship with BHR in patients with PAR. METHODS The study group consisted of 30 patients with PAR monosensitized to house dust mites and 14 non-allergic healthy controls. All subjects underwent induced sputum and methacholine (M) bronchial provocation tests. VEGF-A and Endostatin levels were measured by ELISA in induced sputum supernatants. RESULTS The percentages of eosinophils in induced sputum were significantly increased in patients with PAR compared with healthy controls. There were no significant differences between patients with PAR and healthy controls in terms of levels of VEGF (37.9pg/ml, min-max: 5-373pg/ml vs. 24.9, min-max: 8-67pg/ml, p=0.8 respectively), Endostatin (532.5pg/ml, min-max: 150-2125pg/ml vs. 644, min-max: 223-1123pg/ml, p=0.2 respectively) and VEGF/Endostatin ratio (0.057 vs. 0.045, p=0.8 respectively). In addition, there were no significant differences between patients who are BHR positive (n=8), or negative to M (n=22) in terms of levels of VEGF, Endostatin and VEGF/Endostatin ratio and no correlations among value of PD20 to M and levels of VEGF, Endostatin and VEGF/Endostatin ratio. CONCLUSION We conclude that VEGF-A and Endostatin did not differ between patients with PAR and healthy controls regardless of BHR to M.
Collapse
Affiliation(s)
- I Yılmaz
- Ankara University, School of Medicine, Department of Chest Diseases, Division of Immunology and Allergic Diseases, Ankara, Turkey.
| | - N Bayraktar
- Baskent University, Department of Biochemistry, Ankara, Turkey
| | - K Ceyhan
- Ankara University, School of Medicine, Department of Pathology, Division of Clinical Cytology, Ankara, Turkey
| | - D Seçil
- Ankara University, School of Medicine, Department of Chest Diseases, Division of Immunology and Allergic Diseases, Ankara, Turkey
| | - S Yüksel
- Ankara University, Department of Biostatistics, Ankara, Turkey
| | - Z Mısırlıgil
- Ankara University, School of Medicine, Department of Chest Diseases, Division of Immunology and Allergic Diseases, Ankara, Turkey
| | - S Bavbek
- Ankara University, School of Medicine, Department of Chest Diseases, Division of Immunology and Allergic Diseases, Ankara, Turkey
| |
Collapse
|
149
|
Grotz TE, Jakub JW, Mansfield AS, Goldenstein R, Enninga EAL, Nevala WK, Leontovich AA, Markovic SN. Evidence of Th2 polarization of the sentinel lymph node (SLN) in melanoma. Oncoimmunology 2015; 4:e1026504. [PMID: 26405583 PMCID: PMC4570120 DOI: 10.1080/2162402x.2015.1026504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/20/2023] Open
Abstract
Melanoma has a propensity for lymphatogenous metastasis. Improved understanding of the sentinel lymph node (SLN) immunological environment may improve outcomes. The immune phenotype of fresh melanoma SLNs (n = 13) were compared to fresh control lymph nodes (n = 13) using flow cytometry. RNA was isolated from CD4+ T cells of the SLN and control lymph node and assessed for Th1/Th2 gene expression pathways using qRT-PCR. In addition, VEGF expression was compared between primary melanoma (n = 6) and benign nevi (n = 6) using immunohistochemistry. Melanoma SLNs had fewer CD8+ T cells compared to controls (9.2% vs. 19.5%, p = 0.0005). The CD8+ T cells within the SLN appeared to have an exhausted phenotype demonstrated by increased PD-1 mRNA expression (2.2% vs. 0.8%, p = 0.004) and a five-fold increase in CTLA-4 mRNA expression. The SLN also contained an increased number of CD14 (22.7% vs. 7.7%, p = 0.009) and CD68 (9.3% vs. 2.7%, p = 0.001) macrophages, and CD20 B cells (31.1% vs. 20.7%, p = 0.008), suggesting chronic inflammation. RT-PCR demonstrated a significant Th2 bias within the SLN. In vitro studies demonstrated a similar Th2 polarization with VEGF treatment of control lymph nodes. The primary melanoma demonstrated strong VEGF expression and an increase in VEGFR1 within the SLN. Melanoma is associated with Th2-mediated “chronic inflammation,” fewer cytotoxic T cells, and an exhausted T cell phenotype within the SLN combined with VEGF overproduction by the primary melanoma. These immunologic changes precede nodal metastasis and suggests consideration of VEGF inhibitors in future immunotherapy studies.
Collapse
Affiliation(s)
| | - James W Jakub
- Department of Surgery; Mayo Clinic ; Rochester MN USA
| | | | | | | | | | - Alexey A Leontovich
- Department of Health Sciences Research at the Mayo Clinic ; Rochester MN USA
| | | |
Collapse
|
150
|
Suojalehto H, Kinaret P, Kilpeläinen M, Toskala E, Ahonen N, Wolff H, Alenius H, Puustinen A. Level of Fatty Acid Binding Protein 5 (FABP5) Is Increased in Sputum of Allergic Asthmatics and Links to Airway Remodeling and Inflammation. PLoS One 2015; 10:e0127003. [PMID: 26020772 PMCID: PMC4447257 DOI: 10.1371/journal.pone.0127003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/09/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The inflammatory processes in the upper and lower airways in allergic rhinitis and asthma are similar. Induced sputum and nasal lavage fluid provide a non-invasive way to examine proteins involved in airway inflammation in these conditions. OBJECTIVES We conducted proteomic analyses of sputum and nasal lavage fluid samples to reveal differences in protein abundances and compositions between the asthma and rhinitis patients and to investigate potential underlying mechanisms. METHODS Induced sputum and nasal lavage fluid samples were collected from 172 subjects with 1) allergic rhinitis, 2) asthma combined with allergic rhinitis, 3) nonallergic rhinitis and 4) healthy controls. Proteome changes in 21 sputum samples were analysed with two-dimensional difference gel electrophoresis (2D-DIGE), and the found differentially regulated proteins identified with mass spectrometry. Immunological validation of identified proteins in the sputum and nasal lavage fluid samples was performed with Western blot and ELISA. RESULTS Altogether 31 different proteins were identified in the sputum proteome analysis, most of these were found also in the nasal lavage fluid. Fatty acid binding protein 5 (FABP5) was up-regulated in the sputum of asthmatics. Immunological validation in the whole study population confirmed the higher abundance levels of FABP5 in asthmatic subjects in both the sputum and nasal lavage fluid samples. In addition, the vascular endothelial growth factor (VEGF) level was increased in the nasal lavage fluid of asthmatics and there were positive correlations between FABP5 and VEGF levels (r=0.660, p<0.001) and concentrations of FABP5 and cysteinyl leukotriene (CysLT) (r=0.535, p<0.001) in the nasal lavage fluid. CONCLUSIONS FABP5 may contribute to the airway remodeling and inflammation in asthma by fine-tuning the levels of CysLTs, which induce VEGF production.
Collapse
Affiliation(s)
- Hille Suojalehto
- Occupational Medicine Team, Finnish Institute of Occupational Health, Helsinki, Finland
- * E-mail:
| | - Pia Kinaret
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Maritta Kilpeläinen
- Department of Pulmonary Diseases and Allergology, University of Turku, Turku, Finland
| | - Elina Toskala
- Department of Otolaryngology- Head and Neck Surgery, Temple University, Philadelphia, United States of America
| | - Niina Ahonen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Henrik Wolff
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Anne Puustinen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|