101
|
Norling LV, Sampaio ALF, Cooper D, Perretti M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J 2008; 22:682-90. [PMID: 17965266 DOI: 10.1096/fj.07-9268com] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Galectin-1 (Gal-1) is a beta-galactoside-binding protein, the expression of which is increased in endothelial cells on exposure to proinflammatory stimuli. Through binding of several receptors (CD7, CD45, and CD43) Gal-1 is known to induce apoptosis of activated T lymphocytes, an effect thought to mediate the beneficial effects it exerts in various inflammatory models. The data presented here highlights another function for Gal-1, that of a negative regulator of T-cell recruitment to the endothelium under both physiological and pathophysiological conditions. We have shown, using siRNA to knockdown Gal-1 in endothelial cells, that endogenous Gal-1 limits T-cell capture, rolling, and adhesion to activated endothelial cells under flow. Furthermore, the reverse effect is observed when exogenous human recombinant Gal-1 is added to activated endothelial monolayers whereby a dramatic reduction in lymphocyte recruitment is seen. These findings are corroborated by studies in Gal-1 null mice in which homing of wild-type (WT) T lymphocytes is significantly increased to mesenteric lymph nodes and to the inflamed paw in a model of delayed-type hypersensitivity. In conclusion, mimicking endothelial Gal-1 actions would be a novel strategy for controlling aberrant T-cell trafficking, hence for the development of innovative anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Lucy V Norling
- The William Harvey Research Institute, Barts, and The London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
102
|
van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CPM. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:953-63. [PMID: 18334229 DOI: 10.1016/j.bbamcr.2008.01.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 02/06/2023]
Abstract
In normal healthy cells phosphatidylserine is located in the inner leaflet of the plasma membrane. However, on activated platelets, dying cells and under specific circumstances also on various types of viable leukocytes phosphatidylserine is actively externalized to the outer leaflet of the plasma membrane. Annexin A5 has the ability to bind in a calcium-dependent manner to phosphatidylserine and to form a membrane-bound two-dimensional crystal lattice. Based on these abilities various functions for extracellular annexin A5 on the phosphatidylserine-expressing plasma membrane have been proposed. In this review we describe possible mechanisms for externalization of annexin A5 and various processes in which extracellular annexin A5 may play a role such as blood coagulation, apoptosis, phagocytosis and formation of plasma membrane-derived microparticles. We further highlight the recent discovery of internalization of extracellular annexin A5 by phosphatidylserine-expressing cells.
Collapse
Affiliation(s)
- Hugo O van Genderen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
103
|
Binet F, Chiasson S, Girard D. Arsenic trioxide induces de novo protein synthesis of annexin-1 in neutrophils: association with a heat shock-like response and not apoptosis. Br J Haematol 2008; 140:454-63. [DOI: 10.1111/j.1365-2141.2007.06941.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
104
|
Choi M, Salanova B, Rolle S, Wellner M, Schneider W, Luft FC, Kettritz R. Short-term heat exposure inhibits inflammation by abrogating recruitment of and nuclear factor-{kappa}B activation in neutrophils exposed to chemotactic cytokines. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:367-777. [PMID: 18187571 DOI: 10.2353/ajpath.2008.070532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines, such as granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-8 attract neutrophils into inflammatory sites. During emigration from the blood neutrophils interact with extracellular matrix proteins such as fibronectin. Fibronectin provides beta2-integrin co-stimulation, allowing GM-CSF and IL-8 to activate nuclear factor (NF)-kappaB, an effect that does not occur in suspension. We tested the hypothesis that exposure of mice to fever-like temperatures abrogates neutrophil recruitment and NF-kappaB activation in a mouse model of skin inflammation. Mice that were exposed to 40 degrees C for 1 hour showed strongly reduced GM-CSF- and IL-8-induced neutrophilic skin inflammation. In vitro heat exposure did not interfere with neutrophil adhesion or spreading on fibronectin but strongly inhibited migration toward both cytokines. Using specific inhibitors, we found that PI3-K/Akt was pivotal for neutrophil migration and that heat down-regulated this pathway. Furthermore, neutrophils on fibronectin showed abrogated NF-kappaB activation in response to GM-CSF and IL-8 after heat. In vivo heat exposure of mice followed by ex vivo stimulation of isolated bone marrow neutrophils confirmed these results. Finally, less NF-kappaB activation was seen in the inflammatory lesions of mice exposed to fever-like temperatures as demonstrated by in situ hybridization for IkappaBalpha mRNA. These new findings suggest that heat may have anti-inflammatory effects in neutrophil-dependent inflammation.
Collapse
Affiliation(s)
- Mira Choi
- HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Vong L, D'Acquisto F, Pederzoli-Ribeil M, Lavagno L, Flower RJ, Witko-Sarsat V, Perretti M. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J Biol Chem 2007; 282:29998-30004. [PMID: 17681950 PMCID: PMC2772024 DOI: 10.1074/jbc.m702876200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin 1 is an anti-inflammatory protein that plays a key role in innate immunity by modulating the activation of several types of cells, including neutrophils. Here we have developed a cleavage assay using tagged annexin 1 and observed marked activity in the membrane fraction of activated neutrophils. A combination of inhibitors, transfected cells, and proteomic analyses allowed us to identify proteinase 3 as the main enzyme responsible for this cleavage in the N terminus region of the protein, at least in the context of neutrophil activation. Because annexin 1 is an important endogenous anti-inflammatory mediator, blocking its cleavage by proteinase 3 would augment its homeostatic pro-resolving actions and could represent an opportunity for innovative anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Linda Vong
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | - Luisa Lavagno
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Roderick J. Flower
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Véronique Witko-Sarsat
- INSERM U845 and Paris V University, Necker Hospital, 161 Rue de Sèvres, 75015 Paris, France
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
106
|
Abstract
Annexins comprise a conserved family of proteins characterised by their ability to bind and order charged phospholipids in membranes, often in response to elevated intracellular calcium. The family members (there are at least 12 in humans) have become specialised over evolutionary time and are involved in a diverse range of cellular functions both inside the cell and extracellularly Although a mutation in an annexin has never been categorically proven to be the cause of a disease state, they have been implicated in pathologies as diverse as autoimmunity, infection, heart disease, diabetes and cancer. 'Annexinopathies' were first described by Jacob H. Rand to describe the pathological sequelae in two disease states, the overexpression of annexin 2 in a patients with a haemorrhagic form of acute promyelocytic leukaemia, and the under-expression of annexin 5 on placental trophoblasts in the antiphospholipid syndrome. In this chapter we will outline some of the more recent observations in regard to these conditions, and describe the involvement of annexins in some other major causes of human morbidity.
Collapse
Affiliation(s)
- M J Hayes
- Div of Cell Biology, University College London Institute of Ophthalmology, 11-43 Bath Street, London ECI V 9EL, UK
| | | | | | | |
Collapse
|
107
|
Damazo AS, Moradi-Bidhendi N, Oliani SM, Flower RJ. Role of annexin 1 gene expression in mouse craniofacial bone development. ACTA ACUST UNITED AC 2007; 79:524-32. [PMID: 17405164 DOI: 10.1002/bdra.20368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system.
Collapse
Affiliation(s)
- Amilcar Sabino Damazo
- Post-Graduation in Morphology, Federal University of São Paulo (UNIFESP)-Paulista School of Medicine (EPM), São Paulo, Brazil
| | | | | | | |
Collapse
|
108
|
Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, Maderna P. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:4595-605. [PMID: 17372018 DOI: 10.4049/jimmunol.178.7.4595] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The resolution of inflammation is a dynamically regulated process that may be subverted in many pathological conditions. Macrophage (Mphi) phagocytic clearance of apoptotic leukocytes plays an important role in the resolution of inflammation as this process prevents the exposure of tissues at the inflammatory site to the noxious contents of lytic cells. It is increasingly appreciated that endogenously produced mediators, such as lipoxins, act as potent regulators (nanomolar range) of the phagocytic clearance of apoptotic cells. In this study, we have investigated the intriguing possibility that apoptotic cells release signals that promote their clearance by phagocytes. We report that conditioned medium from apoptotic human polymorphonuclear neutrophils (PMN), Jurkat T lymphocytes, and human mesangial cells promote phagocytosis of apoptotic PMN by Mphi and THP-1 cells differentiated to a Mphi-like phenotype. This prophagocytic activity appears to be dose dependent, sensitive to the caspase inhibitor zVAD-fmk, and is associated with actin rearrangement and release of TGF-beta1, but not IL-8. The prophagocytic effect can be blocked by the formyl peptide receptor antagonist Boc2, suggesting that the prophagocytic factor(s) may interact with the lipoxin A(4) receptor, FPRL-1. Using nanoelectrospray liquid chromatography mass spectrometry and immunodepletion and immunoneutralization studies, we have ascertained that annexin-1 and peptide derivatives are putative prophagocytic factors released by apoptotic cells that promote phagocytosis of apoptotic PMN by M[phi] and differentiated THP-1 cells. These data highlight the role of annexin-1 and peptide derivatives in promoting the resolution of inflammation and expand on the therapeutic anti-inflammatory potential of annexin-1.
Collapse
Affiliation(s)
- Michael Scannell
- Diabetes Research Centre, School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
109
|
Sena AAS, Provazzi PJS, Fernandes AM, Cury PM, Rahal P, Oliani SM. Spatial expression of two anti-inflammatory mediators, annexin 1 and galectin-1, in nasal polyposis. Clin Exp Allergy 2007; 36:1260-7. [PMID: 17014434 DOI: 10.1111/j.1365-2222.2006.02570.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND There is renewed interest in the role played by specific counter-regulatory mechanisms to control the inflammatory host response, poorly investigated in human pathology. Here, we monitored the expression of two anti-inflammatory mediators, annexin 1 and galectin-1, and assessed their potential link to glucocorticoids' (GCs) effective control of nasal polyposis (NP). METHODS Total patterns of mRNA and protein expression were analysed by quantitative real-time PCR (qPCR) and Western blotting analyses, whereas ultrastructural immunocytochemistry was used for spatial localization and quantification of each mediator, focusing on mast cells, eosinophils and epithelial cells. RESULTS Up-regulation of the annexin 1 gene, and down-regulation of galectin-1 gene, was detected in polypoid tissue compared with nasal mucosa. Patient treatment with betamethasone augmented galectin-1 protein expression in polyps. At the cellular level, control mast cells and eosinophils displayed higher annexin 1 expression, whereas marked galectin-1 immunolabelling was detected in the granule matrix of mast cells. Cells of glandular duct epithelium also displayed expression of both annexin 1 and galectin-1, augmented after treatment. CONCLUSION Mast cells and epithelial cells appeared to be pivotal cell types involved in the expression of both annexin 1 and galectin-1. It is possible that annexin 1 and galectin-1 could be functionally associated with a specific mechanism in NP and that GC exert at least part of their beneficial effects on the airway mucosa by up-regulating, in a specific cell target fashion, these anti-inflammatory agonists.
Collapse
Affiliation(s)
- A A S Sena
- Post-Graduation in Morphology, São Paulo School of Medicine, UNIFESP, SP, Brazil
| | | | | | | | | | | |
Collapse
|
110
|
Kim MK, Min DS, Park YJ, Kim JH, Ryu SH, Bae YS. Expression and functional role of formyl peptide receptor in human bone marrow-derived mesenchymal stem cells. FEBS Lett 2007; 581:1917-22. [PMID: 17442310 DOI: 10.1016/j.febslet.2007.03.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 01/16/2023]
Abstract
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair.
Collapse
Affiliation(s)
- Mi-Kyoung Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | | | |
Collapse
|
111
|
D'Acquisto F, Merghani A, Lecona E, Rosignoli G, Raza K, Buckley CD, Flower RJ, Perretti M. Annexin-1 modulates T-cell activation and differentiation. Blood 2007; 109:1095-102. [PMID: 17008549 PMCID: PMC1855438 DOI: 10.1182/blood-2006-05-022798] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Annexin-1 is an anti-inflammatory protein that plays an important homeostatic role in innate immunity; however, its potential actions in the modulation of adaptive immunity have never been explored. Although inactive by itself, addition of annexin-1 to stimulated T cells augmented anti-CD3/CD28-mediated CD25 and CD69 expression and cell proliferation. This effect was paralleled by increased nuclear factor-kappaB (NF-kappaB), nuclear factor of activated T cells (NFATs), and activator protein-1 (AP-1) activation and preceded by a rapid T-cell receptor (TCR)-induced externalization of the annexin-1 receptor. Interestingly, differentiation of naive T cells in the presence of annexin-1 increased skewing in Th1 cells; in the collagen-induced arthritis model, treatment of mice with annexin-1 during the immunization phase exacerbated signs and symptoms at disease onset. Consistent with these findings, blood CD4+ cells from patients with rheumatoid arthritis showed a marked up-regulation of annexin-1 expression. Together these results demonstrate that annexin-1 is a molecular "tuner" of TCR signaling and suggest this protein might represent a new target for the development of drugs directed to pathologies where an unbalanced Th1/Th2 response or an aberrant activation of T cells is the major etiologic factor.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Bart's and The London, Queen Mary School of Medicine and Dentistry, UK.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
113
|
Abstract
The annexin superfamily consists of 13 calcium or calcium and phospholipid binding proteins with a significant degree of biological and structural homology (40-60%). First described in the late 1970s and subsequently referred to as macrocortin, renocortin, lipomodulin, lipocortin-1, and more recently Annexin 1, this 37 kDa calcium and phospholipid binding protein is a strong inhibitor of glucocorticoid-induced eicosanoid synthesis and PLA2. Recent interest in the biological activity of this intriguing molecule has unraveled important functional attributes of Annexin 1 in a variety of inflammatory pathways, on cell proliferation machinery, in the regulation of cell death signaling, in phagocytic clearance of apoptosing cells, and most importantly in the process of carcinogenesis. Here we attempt to present a short review on these diverse biological activities of an interesting and important molecule, which could be a potential target for novel therapeutic intervention in a host of disease states.
Collapse
Affiliation(s)
- Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | |
Collapse
|
114
|
Giner RM, Mancini L, Kamal AM, Perretti M. Uneven modulation of the annexin 1 system in osteoblast-like cells by dexamethasone. Biochem Biophys Res Commun 2007; 354:414-9. [PMID: 17254556 PMCID: PMC1855436 DOI: 10.1016/j.bbrc.2006.12.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 12/29/2006] [Indexed: 11/16/2022]
Abstract
We tested whether glucocorticoids modulated osteoblast expression of the annexin 1 system, including the ligand and two G-coupled receptors termed formyl-peptide receptor (FPR) and FPR-like-1 (FPRL-1). In Saos-2 cells, rapid up-regulation of FPR mRNA upon cell incubation with dexamethasone (0.01–1 μM) was observed, with significant changes as early as 2 h and a more marked response at 24 h; annexin 1 and FPRL-1 mRNA changes were more subtle. At the protein level, dexamethasone provoked a rapid externalization of annexin 1 (maximal at 2 h) followed by delayed time-dependent changes in the cell cytosol. Saos-2 cell surface expression of FPR or FPRL-1 could not be detected, even when dexamethasone was added with the bone modelling cytokines interleukin-6 or interleukin-1. The uneven modulation of the annexin 1 system (mediator and its putative receptors) in osteoblasts might lead to a better understanding of how these complex biochemical pathways become operative in bone.
Collapse
Affiliation(s)
- Rosa M. Giner
- Departmento de Farmacologia, Universitat de Valéncia, València, Spain
- William Harvey Research Institute, Barts and The London, London, UK
| | - Lucia Mancini
- William Harvey Research Institute, Barts and The London, London, UK
| | - Ahmad M. Kamal
- William Harvey Research Institute, Barts and The London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London, London, UK
- Corresponding author. Fax: +44 207 8826076.
| |
Collapse
|
115
|
Morand EF, Hall P, Hutchinson P, Yang YH. Regulation of annexin I in rheumatoid synovial cells by glucocorticoids and interleukin-1. Mediators Inflamm 2007; 2006:73835. [PMID: 16883066 PMCID: PMC1592590 DOI: 10.1155/mi/2006/73835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The glucocorticoid (GC)-induced antiinflammatory
molecule annexin I is expressed in leukocytes and has
antiinflammatory effects in animal models of arthritis, but the
expression of annexin I in rheumatoid arthritis (RA)
fibroblast-like synoviocytes (FLS) is unknown. We report the
constitutive and dexamethasone (DEX)-inducible expression of
annexin I in RA FLS. DEX increased FLS annexin I protein
translocation and mRNA expression. Interleukin (IL)-1β
also induced annexin I translocation and mRNA but also increased
intracellular protein. DEX and IL-1 had additive effects on
annexin I mRNA, but DEX inhibited the inducing effect of
IL-1β on cell surface annexin I. These results indicate that
glucocorticoids and IL-1β upregulate the synthesis and translocation of annexin
I in RA FLS, but interdependent signalling pathways are involved.
Collapse
Affiliation(s)
- Eric F. Morand
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, Monash Medical Centre,
Locked Bag No 29, Clayton Victoria 3168, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, Monash Medical Centre,
Locked Bag No 29, Clayton Victoria 3168, Australia
| | - Paul Hutchinson
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, Monash Medical Centre,
Locked Bag No 29, Clayton Victoria 3168, Australia
| | - Yuan H. Yang
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, Monash Medical Centre,
Locked Bag No 29, Clayton Victoria 3168, Australia
- *Yuan H. Yang:
| |
Collapse
|
116
|
Kamal AM, Hayhoe RPG, Paramasivam A, Cooper D, Flower RJ, Solito E, Perretti M. Antiflammin-2 activates the human formyl-peptide receptor like 1. ScientificWorldJournal 2006; 6:1375-84. [PMID: 17072491 PMCID: PMC1868079 DOI: 10.1100/tsw.2006.247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/19/2022] Open
Abstract
The anti-inflammatory actions of the nonapeptide antiflammin-2, identified by homology with uteroglobin and annexin-A1 sequences, have been described in some detail, yet its mechanisms of action remain elusive. Since recent data indicate an involvement of the formyl peptide receptor (FPR)-like 1 (or FPRL-1) in the effects of annexin-A1, we have tested here the effect of antiflammin-2 with respect to this receptor family. Using HEK-293 cells expressing either human FPR and FPRL-1, and an annexin-A1 peptide as tracer ([125I-Tyr]-Ac2-26), we found that antiflammin-2 competed for binding only at FPRL-1, and not FPR, with an approximate EC50 of 1 mM. In line with data produced for the full-length protein, genuine receptor activation by antiflammin-2 was confirmed by rapid phosphorylation of extracellular-regulated kinase 1 and 2. Finally, study of the neutrophil interaction with activated endothelium under flow demonstrated an inhibitory effect of antiflammin-2, thus providing functional support to a role for the antiflammin-2/FPRL-1 anti-inflammatory axis.
Collapse
Affiliation(s)
- Ahmad M Kamal
- The William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, U.K.
| | | | | | | | | | | | | |
Collapse
|
117
|
Rescher U, Goebeler V, Wilbers A, Gerke V. Proteolytic cleavage of annexin 1 by human leukocyte elastase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1320-4. [PMID: 17023068 DOI: 10.1016/j.bbamcr.2006.08.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/14/2006] [Accepted: 08/26/2006] [Indexed: 11/17/2022]
Abstract
Annexin 1 has been shown to participate through its unique N-terminal domain in the recruitment and activation of leukocytes at sites of inflammation. Peptides derived from this domain are true mimetics of the annexin 1 action in all inflammation models tested and most likely serve as the active entities generated at sites of inflammation. To elucidate mechanisms underlying peptide generation we used isolated blood leukocytes and endothelial cell monolayers. We show that following endothelial adhesion, annexin 1 was externalized from leukocytes and rapidly cleaved. Addition of purified annexin 1 to degranulating leukocytes resulted in the truncation of annexin 1, which seemed to depend on the proteolytic activity of human leukocyte elastase (HLE). The capacity of elastase to proteolytically cleave annexin 1 was confirmed using both purified annexin 1 and HLE. The identification of annexin 1 as a substrate for HLE supports the model in which annexin 1 participates in regulating leukocyte emigration into inflamed tissue through N-terminal peptides generated at inflammatory sites.
Collapse
Affiliation(s)
- Ursula Rescher
- Center for Molecular Biology of Inflammation, Institute for Medical Biochemistry, von Esmarch-Strasse 56, 48149 Münster, Germany
| | | | | | | |
Collapse
|
118
|
Babbin BA, Lee WY, Parkos CA, Winfree LM, Akyildiz A, Perretti M, Nusrat A. Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem 2006; 281:19588-99. [PMID: 16675446 DOI: 10.1074/jbc.m513025200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Annexin 1 (AnxA1) is a multifunctional phospholipid-binding protein associated with the development of metastasis in some invasive epithelial malignancies. However, the role of AnxA1 in the migration/invasion of epithelial cells is not known. In this study, experiments were performed to investigate the role of AnxA1 in the invasion of a model epithelial cell line, SKCO-15, derived from colorectal adenocarcinoma. Small interfering RNA-mediated knockdown of AnxA1 expression resulted in a significant reduction in invasion through Matrigel-coated filters. Localization studies revealed a translocation of AnxA1 to the cell surface upon the induction of cell migration, and functional inhibition of cell surface AnxA1 using antiserum (LCO1) significantly reduced cell invasion. Conversely, SKCO-15 cell invasion was increased by approximately 2-fold in the presence of recombinant full-length AnxA1 and the AnxA1 N-terminal-derived peptide mimetic, Ac2-26. Because extracellular AnxA1 has been shown to regulate leukocyte migratory events through interactions with n-formyl peptide receptors (nFPRs), we examined the expression of FPR-1, FPRL-1, and FPRL-2 in SKCO-15 cells by reverse transcriptase-PCR and identified expression of all three receptors in this cell line. Treatment of SKCO-15 cells with AnxA1, Ac2-26, and the classical nFPR agonist, formylmethionylleucylphenylalanine, induced intracellular calcium release consistent with nFPR activation. Furthermore, the nFPR antagonist, Boc2, abrogated the AnxA1 and Ac2-26-induced intracellular calcium release and increase in SKCO-15 cell invasion. Together, these results support an autocrine/paracrine role for membrane AnxA1 in stimulating SKCO-15 cell migration through nFPR activation. The findings in this study suggest that activation of nFPRs stimulates epithelial cell motility important in the development of metastasis as well as wound healing.
Collapse
Affiliation(s)
- Brian A Babbin
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
119
|
Damazo AS, Yona S, Flower RJ, Perretti M, Oliani SM. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:4410-8. [PMID: 16547279 PMCID: PMC1868080 DOI: 10.4049/jimmunol.176.7.4410] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The recent appreciation of the role played by endogenous counterregulatory mechanisms in controlling the outcome of the host inflammatory response requires specific analysis of their spatial and temporal profiles. In this study, we have focused on the glucocorticoid-regulated anti-inflammatory mediator annexin 1. Induction of peritonitis in wild-type mice rapidly (4 h) produced the expected signs of inflammation, including marked activation of resident cells (e.g., mast cells), migration of blood-borne leukocytes, mirrored by blood neutrophilia. These changes subsided after 48-96 h. In annexin 1(null) mice, the peritonitis response was exaggerated ( approximately 40% at 4 h), with increased granulocyte migration and cytokine production. In blood leukocytes, annexin 1 gene expression was activated at 4, but not 24, h postzymosan, whereas protein levels were increased at both time points. Locally, endothelial and mast cell annexin 1 gene expression was not detectable in basal conditions, whereas it was switched on during the inflammatory response. The significance of annexin 1 system plasticity in the anti-inflammatory properties of dexamethasone was assessed. Clear induction of annexin 1 gene in response to dexamethasone treatment was evident in the circulating and migrated leukocytes, and in connective tissue mast cells; this was associated with the steroid failure to inhibit leukocyte trafficking, cytokine synthesis, and mast cell degranulation in the annexin 1(null) mouse. In conclusion, understanding how inflammation is brought under control will help clarify the complex interplay between pro- and anti-inflammatory pathways operating during the host response to injury and infection.
Collapse
Affiliation(s)
- Amilcar S. Damazo
- Post-Graduation in Morphology, Federal University of São Paulo, São Paulo, Brazil
| | - Simon Yona
- William Harvey Research Institute, London, United Kingdom
| | | | - Mauro Perretti
- William Harvey Research Institute, London, United Kingdom
| | - Sonia M. Oliani
- Post-Graduation in Morphology, Federal University of São Paulo, São Paulo, Brazil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
120
|
Smyth T, Harris HJ, Brown A, Tötemeyer S, Farnfield BA, Maskell DJ, Matsumoto M, Plevin R, Alldridge LC, Bryant CE. Differential modulatory effects of annexin 1 on nitric oxide synthase induction by lipopolysaccharide in macrophages. Immunology 2006; 117:340-9. [PMID: 16476053 PMCID: PMC1782228 DOI: 10.1111/j.1365-2567.2005.02307.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Annexin-1 (ANXA1) is a glucocorticoid-regulated protein that modulates the effects of bacterial lipopolysaccharide (LPS) on macrophages. Exogenous administration of peptides derived from the N-terminus of ANXA1 reduces LPS-stimulated inducible nitric oxide synthase (iNOS) expression, but the effects of altering the endogenous expression of this protein are unclear. We transfected RAW264.7 murine macrophage-like cell lines to over-express constitutively ANXA1 and investigated whether this protein modulates the induction of iNOS, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-alpha) in response to LPS. In contrast to exogenous administration of N-terminal peptides, endogenous over-expression of ANXA1 results in up-regulation of LPS-induced iNOS protein expression and activity. However, levels of iNOS mRNA are unchanged. ANXA1 has no effect on COX-2 or TNF-alpha production in response to LPS. In experiments to investigate the mechanisms underlying these phenomena we observed that activation of signalling proteins classically associated with iNOS transcription was unaffected. Over-expression of ANXA1 constitutively activates extracellular signal regulated kinase (ERK)-1 and ERK-2, components of a signalling pathway not previously recognized as regulating LPS-induced iNOS expression. Inhibition of ERK activity, by the inhibitor U0126, reduced LPS-induced iNOS expression in our cell lines. Over-expression of ANXA1 also modified LPS-induced phosphorylation of the ERK-regulated translational regulation factor eukaryotic initiation factor 4E. Our data suggest that ANXA1 may modify iNOS levels by post-transcriptional mechanisms. Thus differential effects on iNOS expression in macrophages are seen when comparing acute administration of ANXA1 peptides versus the chronic endogenous over-expression of ANXA1.
Collapse
Affiliation(s)
- Tomoko Smyth
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Hayhoe RPG, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M. Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood 2005; 107:2123-30. [PMID: 16278303 DOI: 10.1182/blood-2005-08-3099] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have tested the effects of annexin 1 (ANXA1) and its N-terminal peptide Ac2-26 on polymorphonuclear leukocyte (PMN) recruitment under flow. Differential effects of the full-length protein and its peptide were observed; ANXA1 inhibited firm adhesion of human PMNs, while Ac2-26 significantly attenuated capture and rolling without effect on firm adhesion. Analysis of the effects of ANXA1 and Ac2-26 on PMN adhesion molecule expression supported the flow chamber results, with Ac2-26 but not ANXA1 causing l-selectin and PSGL-1 shedding. ANXA1 and its peptide act via the FPR family of receptors. This was corroborated using HEK-293 cells transfected with FPR or FPRL-1/ALX (the 2 members of this family expressed by human PMNs). While Ac2-26 bound both FPR and FPRL-1/ALX, ANXA1 bound FPRL-1/ALX only. ANXA1 and Ac2-26 acted as genuine agonists; Ac2-26 binding led to ERK activation in both FPR- and FPRL-1/ALX-transfected cells, while ANXA1 caused ERK activation only in cells transfected with FPRL-1/ALX. Finally, blockade of FPRL-1/ALX with a neutralizing monoclonal antibody was found to abrogate the effects of ANXA1 in the flow chamber but was without effect on Ac2-26-mediated inhibition of rolling. These findings demonstrate for the first time distinct mechanisms of action for ANXA1 and its N-terminal peptide Ac2-26.
Collapse
Affiliation(s)
- Richard P G Hayhoe
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
122
|
Gavins FNE, Sawmynaden P, Chatterjee BE, Perretti M. A twist in anti-inflammation: annexin 1 acts via the lipoxin A4 receptor. Prostaglandins Leukot Essent Fatty Acids 2005; 73:211-9. [PMID: 15982865 DOI: 10.1016/j.plefa.2005.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The inflammatory response is a life-saving protective process mounted by the body to overcome pathogen infection and injury; however, in chronic inflammatory pathologies this response can become deregulated. The existence of specialized anti-inflammatory pathways/mediators that operate in the body to down-regulate inflammation have now emerged. Thus, persistence of inflammation leading to pathology could be due to malfunctioning of one or more of these counter-regulatory pathways. Here we focus on one of them, the anti-inflammatory mediator annexin 1, and provide an update on its inhibitory effects upon the leukocyte trafficking process. In particular, recent evidence that receptors of the formyl-peptide family, which includes also the lipoxin A4 receptor, could be the annexin 1 receptor(s) in the context of anti-inflammation might provide new avenues for exploiting this pathway for drug discovery.
Collapse
Affiliation(s)
- F N E Gavins
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Bart's and The London, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
123
|
Damazo AS, Yona S, D'Acquisto F, Flower RJ, Oliani SM, Perretti M. Critical protective role for annexin 1 gene expression in the endotoxemic murine microcirculation. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1607-17. [PMID: 15920146 PMCID: PMC1602430 DOI: 10.1016/s0002-9440(10)62471-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counterregulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages--cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS.
Collapse
Affiliation(s)
- Amilcar S Damazo
- The William Harvey Research Institute, Centre of Biochemical Pharmacology, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | |
Collapse
|
124
|
Chatterjee BE, Yona S, Rosignoli G, Young RE, Nourshargh S, Flower RJ, Perretti M. Annexin 1-deficient neutrophils exhibit enhanced transmigration in vivo and increased responsiveness in vitro. J Leukoc Biol 2005; 78:639-46. [PMID: 16000391 DOI: 10.1189/jlb.0405206] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of the endogenous anti-inflammatory mediator annexin 1 (AnxA1) in controlling polymorphonuclear leukocyte (PMN) trafficking and activation was addressed using the recently generated AnxA1 null mouse. In the zymosan peritonitis model, AnxA1 null mice displayed a higher degree (50-70%) of PMN recruitment compared with wild-type littermate mice, and this was associated with reduced numbers of F4/80+ cells. Intravital microscopy analysis of the cremaster microcirculation inflamed by zymosan (6 h time-point) indicated a greater extent of leukocyte emigration, but not rolling or adhesion, in AnxA1 null mice. Real-time analysis of the cremaster microcirculation did not show spontaneous activation in the absence of AnxA1; however, superfusion with a direct-acting PMN activator (1 nM platelet-activating factor) revealed a subtle yet significant increase in leukocyte emigration, but not rolling or adhesion, in this genotype. Changes in the microcirculation were not secondary to alterations in hemodynamic parameters. The phenotype of the AnxA1 null PMN was investigated in two in vitro assays of cell activation (CD11b membrane expression and chemotaxis): the data obtained indicated a higher degree of cellular responses irrespective of the stimulus used. In conclusion, we have used a combination of inflammatory protocols and in vitro assays to address the specific counter-regulatory role of endogenous AnxA1, demonstrating its inhibitory control on PMN activation and the consequent impact on the inflamed microcirculation.
Collapse
Affiliation(s)
- Bristi E Chatterjee
- Bart's and The London, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | |
Collapse
|
125
|
Kamal AM, Flower RJ, Perretti M. An overview of the effects of annexin 1 on cells involved in the inflammatory process. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:39-47. [PMID: 15962097 DOI: 10.1590/s0074-02762005000900008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.
Collapse
Affiliation(s)
- Ahmad M Kamal
- The William Harvey Research Institute, Bart's and the London Quee Mary School of Medicine and Dentistry, London EC1M 6BQ, UK
| | | | | |
Collapse
|
126
|
Cuzzocrea S, Rossi A, Mazzon E, Di Paola R, Genovese T, Muià C, Caputi AP, Sautebin L. 5-Lipoxygenase modulates colitis through the regulation of adhesion molecule expression and neutrophil migration. J Transl Med 2005; 85:808-22. [PMID: 15821759 DOI: 10.1038/labinvest.3700276] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leukotrienes play a part in inflammatory response. The unique role of the enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it as therapeutic target for inflammatory conditions like inflammatory bowel disease (IBD). In the present study, by comparing the responses in wild-type mice (5-LOWT) and mice lacking the 5-lipoxygenase (5-LOKO), we investigated the role played by this enzyme in the development of experimental colitis. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). When compared to DNBS-treated 5-LOWT mice, DNBS-treated 5-LOKO mice experienced a reduced rate of the extent and severity of the histological signs of colon injury. After administration of DNBS 5-LOWT mice showed hemorrhagic diarrhea, weight loss and large areas of necrosis in the mucosa of the colon. Neutrophil infiltration was associated with the expression of ICAM-1, VCAM-1, P-selectin, E-selectin that were mainly localized around vessels. Absence of a functional 5-LO resulted in a significant reduction of all the above-described parameters. In particular, we have observed a significant reduction of: (i) the degree of colon injury, (ii) the rise in myeloperoxidase (MPO) activity (mucosa), (iii) the increase in staining (immunohistochemistry) for ICAM-1, VCAM-1, P-selectin, E-selectin caused by DNBS in the colon. Similarly, the treatment of 5-LOWT with zileuton (50 mg/kg per os twice a day) resulted in a significant reduction of all the above-described parameters. In addition, in in vitro study a significantly reduced chemotactic response to IL-8 was observed in peripheral blood leukocytes from 5-LOKO in comparison to 5-LOWT polymorphonuclear leukocyte. Similar results were obtained when we analyzed the chemotactic response of 5-LOWT cell incubated for 15 min with zileuton (50 microg/ml). Taken together, our results clearly demonstrate that 5-LO modulates neutrophil infiltration in experimental colitis through the expression of adhesion molecules.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina Torre Biologica, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Maderna P, Yona S, Perretti M, Godson C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2-26). THE JOURNAL OF IMMUNOLOGY 2005; 174:3727-33. [PMID: 15749912 DOI: 10.4049/jimmunol.174.6.3727] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phagocytic clearance of apoptotic leukocytes plays an important role in the resolution of inflammation. The glucocorticoid-inducible protein annexin 1 and annexin 1-derived peptides show potent anti-inflammatory responses in acute and chronic inflammation. In this study, we report that the annexin 1-derived peptide (Ac(2-26)) significantly stimulates nonphlogistic phagocytosis of apoptotic polymorphonuclear leukocytes (PMNs) by human monocyte-derived macrophages (Mphi). Peptide Ac(2-26)-stimulated phagocytosis is accompanied by rearrangement of the Mphi actin cytoskeleton. To investigate the potential role of endogenous annexin on clearance of apoptotic cells, Mphi were cultured for 5 days in the presence of dexamethasone. Supernatants collected from dexamethasone-treated Mphi significantly enhanced the ability of naive Mphi to engulf apoptotic PMNs. This effect was blocked by an annexin blocking Ab, by immunodepletion of the supernatants, and by the formyl peptide receptor/lipoxin receptor antagonist Boc1. In addition, we show that bone marrow-derived Mphi from annexin 1-null mice present a 40% decreased phagocytosis of apoptotic PMNs compared with cells taken from littermate controls. In conclusion, these results emphasize the pivotal role of annexin 1 as mediator for clearance of apoptotic cells and expand its potential therapeutic role in controlling inflammatory diseases.
Collapse
Affiliation(s)
- Paola Maderna
- Department of Medicine and Therapeutics, The Conway Institute of Biomolecular and Biomedical Research, The Dublin Molecular Medicine Centre, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
128
|
Chung YW, Oh HY, Kim JY, Kim JH, Kim IY. Allergen-induced proteolytic cleavage of annexin-1 and activation of cytosolic phospholipase A2 in the lungs of a mouse model of asthma. Proteomics 2005; 4:3328-34. [PMID: 15378764 DOI: 10.1002/pmic.200400895] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To identify proteins that might play an important role in allergen-induced asthma, we analyzed lung extracts prepared from allergen (ovalbumin)-challenged animals in a mouse model of this condition. The combination of two-dimensional gel electrophoresis and mass spectrometry revealed that annexin-1, a 37 kDa anti-inflammatory protein that inhibits the activity of cytosolic phospholipase A(2) (cPLA(2)), was down-regulated by allergen challenge in the lungs of ovalbumin-sensitized mice. Immunoblot analysis showed that this effect of ovalbumin challenge was attributable to proteolytic cleavage of annexin-1. The ovalbumin-induced degradation of annexin-1 was blocked by pretreatment of mice with the antioxidant N-acetylcysteine (NAC) or with sodium selenite, both of which have previously been shown to exert anti-inflammatory effects in this asthma model. Ovalbumin challenge also both increased the expression of cPLA(2) in lung tissue and reduced the extent of the interaction between cPLA(2) and annexin-1, and these effects were inhibited by NAC or selenite. Moreover, the concentrations of cysteinyl leukotrienes in bronchoalveolar lavage fluid and of leukotriene B(4) in lung tissue were increased by ovalbumin challenge in a NAC- or selenite-sensitive manner. Together, these results suggest that allergen-induced oxidative stress results in proteolysis of annexin-1 and consequent up-regulation of cPLA(2) activity and leukotriene production in this mouse model of asthma, and that the anti-inflammatory effects of selenite may provide a basis for the development of new antiasthmatic drugs.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
129
|
Basoni C, Nobles M, Grimshaw A, Desgranges C, Davies D, Perretti M, Kramer IM, Genot E. Inhibitory control of TGF-beta1 on the activation of Rap1, CD11b, and transendothelial migration of leukocytes. FASEB J 2005; 19:822-4. [PMID: 15746186 DOI: 10.1096/fj.04-3085fje] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beta2-integrins are a family of dimeric adhesion molecules expressed on leukocytes. Their capacity to bind ligand is regulated by their state of activation. CD11b, an alphaMbeta2 integrin, is implicated in a number of physiological and pathological events such as inflammation, thrombosis, or atherosclerosis. The GTPase Rap1 is essential for its activation and could therefore play a strategic role in the regulation of leukocyte functioning. Because low levels of circulating TGF-beta have been linked with severe atherosclerosis, we have assessed the role of this cytokine in the regulation of Rap1 and CD11b activation in differentiated U937 cells and in human peripheral blood monocytes. TGF-beta1 caused a significant reduction in the expression of CD11b but not in the expression of other integrins tested. More importantly, TGF-beta1 greatly reduced the capacity of PMA or chemokines to activate CD11b and Rap1, a phenomenon paralleled by a loss of the Epac transcript and a reduction in 8-pCPT-2'-O-Me-cAMP-mediated activation of Rap1. This inhibition diminished the capacity of monocytes to migrate across a monolayer of endothelial cells. The inhibitory effect of TGF-beta1 on Rap1 activity may exert a general protective influence against aberrant transendothelial migration, thereby holding inflammatory responses in check.
Collapse
|
130
|
Zanardo RCO, Perretti M, Wallace JL. Annexin-1 is an endogenous gastroprotective factor against indomethacin-induced damage. Am J Physiol Gastrointest Liver Physiol 2005; 288:G481-6. [PMID: 15472012 DOI: 10.1152/ajpgi.00299.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adherence of neutrophils to the vascular endothelium is an early and critical event in the pathogenesis of gastric injury induced by NSAIDs. Pretreatment with glucocorticoids has been shown to prevent NSAID-induced neutrophil adherence and, in turn, to protect the stomach from injury. Some of the anti-inflammatory effects of glucocorticoids, including inhibition of neutrophil adherence, are mediated via the release of annexin-1. In this study, we assessed the contribution of annexin-1 to the protective actions of a glucocorticoid (dexamethasone) against indomethacin-induced gastric damage. Dexamethasone pretreatment markedly reduced the extent of indomethacin-induced gastric damage in rats. Immunoneutralization of annexin-1 resulted in a reversal of the gastroprotective actions of dexamethasone. Similarly, pretreatment with either of two antagonists of the formyl peptide receptor family, to which annexin-1 binds, reversed the gastroprotective effects of dexamethasone. The inhibitory effects of dexamethasone on indomethacin-induced leukocyte adherence in the mesenteric microcirculation were abolished by pretreatment with an antibody directed against annexin-1 or with an antagonist of the formyl peptide receptors. These results demonstrate that annexin-1 mediates the gastroprotective effects of a glucocorticoid against NSAID-induced damage. We propose that in some circumstances, annexin-1 plays an important role as an endogenous mediator of mucosal defense.
Collapse
Affiliation(s)
- Renata C O Zanardo
- Mucosal Inflammation Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
131
|
Yona S, Ward B, Buckingham JC, Perretti M, Flower RJ. Macrophage biology in the Anx-A1-/- mouse. Prostaglandins Leukot Essent Fatty Acids 2005; 72:95-103. [PMID: 15626592 DOI: 10.1016/j.plefa.2004.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Historical data suggested that a soluble protein, since identified as annexin-A1 (Anx-A1) was released from macrophages following glucocorticoid stimulation and could modulate eicosanoid production and other functions of these cells. Here, we review some recent findings using a line of Anx-A1(-/-) mice to explore the impact of Anx-A1 gene deletion on macrophage biology. The absence of Anx-A1 selectively alters phagocytic capacity of rodent resident peritoneal macrophages apparently through changes in surface adhesion molecule expression. Anx-A1 is also apparently important in the tonic down-regulation of other macrophage functions such as COX-2 induction, PGE(2) release and the production of reactive oxygen species.
Collapse
Affiliation(s)
- S Yona
- Biochemical Pharmacology Group, William Harvey Research Institute, Queen Mary Charterhouse Square, University of London, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
132
|
Abstract
Annexins are a well-known multigene family of Ca(2+)-regulated phospholipid-binding and membrane-binding proteins. Recent work employing annexin-knockdown or - knockout models has provided new insights into the biological functions of different annexin proteins. Transient annexin depletion by RNA interference and the expression of dominant-negative mutant proteins has revealed roles for the proteins in membrane processes ranging from the control of membrane structure to certain membrane transport phenomena. Although such functions correlate well with the ability of annexins to interact with cellular membranes in a reversible and regulated manner, some activities are membrane independent, probably because annexins can also engage in specific protein-protein interactions. Among other things, this is evident in annexin A1- and A2-knockout mice, which show impaired regulation of neutrophil extravasation and defects in plasmin generation, respectively.
Collapse
Affiliation(s)
- Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, von-Esmarch-Strasse 56, Münster 48149, Germany
| | | |
Collapse
|
133
|
Franchimont D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann N Y Acad Sci 2004; 1024:124-37. [PMID: 15265777 DOI: 10.1196/annals.1321.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucocorticoids have been used for over 50 years in the treatment of inflammatory and autoimmune diseases and in preventing graft rejection. Today, knowledge of their molecular, cellular, and pharmacological properties allows a better understanding of glucocorticoid-mediated immunosuppression. Glucocorticoids exert both negative and positive effects with a dynamic and bi-directional spectrum of activities on various limbs and components of the immune response. They modulate genes involved in the priming of the innate immune response, while their actions on the adaptive immune response are to suppress cellular (Th1) immunity and promote humoral (Th2) immunity. Interestingly, glucocorticoids can also induce tolerance to specific antigens by influencing dendritic cell maturation and function and promoting the development of regulatory high IL-10-producing T cells. The ex vivo therapeutic use of glucocorticoids could therefore represent an adjuvant treatment to cell therapy in autoimmune diseases, avoiding the long-term deleterious adverse effects of glucocorticoids. Thus, the panoramic view of glucocorticoid actions on the immune system provides an interesting model for characterizing important biological pathways of immunosuppression.
Collapse
Affiliation(s)
- D Franchimont
- Department of Gastroenterology, Erasme University Hospital, Free University of Brussels, 808, Lennik Road, 1070 Brussels, Belgium.
| |
Collapse
|
134
|
Abstract
Recent studies have proposed a functional link between annexin 1 (ANXA1), an endogenous anti-inflammatory mediator, and receptors of the formyl-peptide family. In particular, exogenous and endogenous ANXA1 and its peptidomimetics interact with one member of this family, the formyl-peptide-receptor-like 1. Further analyses of the interactions between ANXA1 and this and other members of this receptor family, and a better characterization of the ANXA1 receptor systems in models of inflammation, might clarify their mechanism of anti-inflammatory effects. This line of research will facilitate the development of ANXA1 mimetics and take advantage of >20 years of biological research into the functions of this glucocorticoid-modulated protein.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, Bart's and The London, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
135
|
Yona S, Buckingham JC, Perretti M, Flower RJ. Stimulus-specific defect in the phagocytic pathways of annexin 1 null macrophages. Br J Pharmacol 2004; 142:890-8. [PMID: 15197108 PMCID: PMC1575068 DOI: 10.1038/sj.bjp.0705858] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The role of the glucocorticoid-regulated protein annexin 1 during the process of phagocytosis has been studied using annexin 1 null peritoneal macrophages. Wild type and annexin 1 null macrophages were incubated with several distinct phagocytic targets. No differences were observed in rate or the maximal response with respect to IgG complexes or opsonised zymosan phagocytosis, as assessed by monitoring the production of reactive oxygen species. When annexin 1 null macrophages were incubated with non-opsonised zymosan particles, they exhibited impaired generation of reactive oxygen species, which was linked to a defect in binding of cells to the particles, as determined with fluorescent zymosan. This phenomenon was further confirmed by electron microscopy analysis, where annexin 1 null macrophages internalised fewer non-opsonised zymosan particles. Specific alterations in macrophage plasma membrane markers were observed in the annexin 1 null cells. Whereas no differences in dectin-1 and FcgammaR II/III expression were measured between the two genotypes, decreased membrane CD11b and F4/80 levels were measured selectively in macrophages lacking annexin 1. These cells also responded with an enhanced release of PGE(2) and COX-2 protein expression following addition of the soluble stimulants, LPS and heat-activated IgG. In conclusion, these results suggest that participation of endogenous annexin 1 during zymosan phagocytosis is critical and that this protein plays a tonic inhibitory role during macrophage activation.
Collapse
Affiliation(s)
- Simon Yona
- Department of Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, EC1 M 6BQ.
| | | | | | | |
Collapse
|
136
|
Yang YH, Morand EF, Getting SJ, Paul-Clark M, Liu DL, Yona S, Hannon R, Buckingham JC, Perretti M, Flower RJ. Modulation of inflammation and response to dexamethasone by Annexin 1 in antigen-induced arthritis. ACTA ACUST UNITED AC 2004; 50:976-84. [PMID: 15022342 DOI: 10.1002/art.20201] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Annexin 1 (Anx-1) is a putative mediator of the antiinflammatory actions of glucocorticoids (GCs). This study investigated the role of Anx-1 in experimental arthritis and in GC-mediated inhibition of inflammation, using antigen-induced arthritis (AIA) in Anx-1 knockout (Anx-1(-/-)) mice. METHODS Arthritis was induced by intraarticular injection of methylated BSA (mBSA) in mice preimmunized with mBSA. Disease was assessed after 7 days by histologic examination of the knee joints. Serum levels of anti-mBSA IgG were determined by enzyme-linked immunosorbent assay. Cytokine messenger RNA (mRNA) expression was detected by real-time polymerase chain reaction. RESULTS A significant exacerbation of arthritis was observed in the Anx-1(-/-) mice compared with wild-type (WT) mice. This was associated with increased mRNA expression of synovial interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, and macrophage migration inhibitory factor. Dexamethasone significantly reduced the histologic severity of synovitis and bone damage in the WT mice, but exerted no inhibitory effects in the Anx-1(-/-) mice, and also significantly reduced the serum levels of anti-mBSA IgG and the numbers of peripheral blood neutrophils and lymphocytes in WT mice, but had no such effect in Anx-1(-/-) mice. CONCLUSION Anx-1 exerts endogenous antiinflammatory effects on AIA via the regulation of cytokine gene expression, and also mediates the antiinflammatory actions of dexamethasone in AIA.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
This overview will focus on one aspect of neutrophil biology, which is the selective activation of the annexin 1 system in relation to the process of cell extravasation. Besides the current view about the biochemistry of annexin 1 and annexin 1 receptor(s) up-regulation within the microenvironment of the adherent neutrophils, we will also comment on the final result achieved by activation of the system, which is inhibition of neutrophil recruitment. In view of the historical link between annexin 1 and glucocorticoids, the potential for the annexin 1 system in mediating at least some of the anti-inflammatory actions of these powerful drugs is also discussed.
Collapse
Affiliation(s)
- Mauro Perretti
- Bart's and the London Queen Mary School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
138
|
La M, Cao TV, Cerchiaro G, Chilton K, Hirabayashi J, Kasai KI, Oliani SM, Chernajovsky Y, Perretti M. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1505-15. [PMID: 14507657 PMCID: PMC1868297 DOI: 10.1016/s0002-9440(10)63507-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Galectin-1 (Gal-1), the prototype of a family of beta-galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 micro g equivalent to 20 pmol) inhibited interleukin-1beta-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and postadherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.
Collapse
Affiliation(s)
- Mylinh La
- Department of Biochemical Pharmacology and the Bone and Joint Research Unit, The William Harvey Research Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ferlazzo V, D'Agostino P, Milano S, Caruso R, Feo S, Cillari E, Parente L. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis. Int Immunopharmacol 2003; 3:1363-9. [PMID: 12946433 DOI: 10.1016/s1567-5769(03)00133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Annexin-1 (ANX-1) is an anti-inflammatory protein induced by glucocorticoids. Like glucocorticoids, ANX-1 and derived peptides inhibit eicosanoid synthesis, block leukocyte migration and induce apoptosis of inflammatory cells. Cytokines may possess either pro-inflammatory, i.e. interleukin(IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12 or anti-inflammatory properties, i.e. IL-4, IL-10. The experiments described in the present study have been performed to answer the question whether the anti-inflammatory action of ANX-1 may be mediated, at least in part, by the release of IL-10. In macrophage (J774) cell line cultures primed with lipolysaccharide (LPS), recombinant ANX-1 stimulated IL-10 release in a dose- and time-dependent manner. In the same cells, the protein and its derived N-terminal peptide (amino acids 2-26) dose-dependently inhibited the release of nitric oxide (NO). Furthermore, both the whole protein and the peptide down-regulated the mRNA expression of the inducible nitric oxide sythase (iNOS). The peptide was also able to inhibit the expression of IL-12 mRNA. These results suggest that some of the anti-inflammatory effects of ANX-1 may be mediated by the release of IL-10, which, in turn, inhibits iNOS mRNA expression and, hence, NO release. In addition, ANX-1-stimulated IL-10 release may also be responsible for the inhibition of IL-12 mRNA expression and, consequently, IL-12 synthesis.
Collapse
Affiliation(s)
- Viviana Ferlazzo
- Department of Bio-Pathology and Bio-Medical Methodologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
140
|
de Coupade C, Solito E, Levine JD. Dexamethasone enhances interaction of endogenous annexin 1 with L-selectin and triggers shedding of L-selectin in the monocytic cell line U-937. Br J Pharmacol 2003; 140:133-45. [PMID: 12967943 PMCID: PMC1574011 DOI: 10.1038/sj.bjp.0705413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
(1) L-selectin, constitutively expressed by leukocytes, is involved in the initial binding of leukocytes to activated endothelium. Anti-inflammatory drugs like glucocorticoids can induce shedding of L-selectin, but the mechanism is still unknown. Annexin 1, a protein whose synthesis and externalization/secretion are induced during the inflammatory response, has been proposed as a mediator of the anti-inflammatory actions of glucocorticoids. (2) The monocytic cell line U-937 strongly expresses Annexin 1 after 24 h of phorbol 12-myristate 13-acetate (PMA, 1 nm) treatment and externalizes/releases the protein after additional 16 h of dexamethasone (1 microm) treatment. (3) This study investigated the possible regulation of cell surface L-selectin shedding by endogenous Annexin 1, and its role in glucocorticoid-induced L-selectin shedding in the U-937 cell line. (4) PMA- and dexamethasone treatment-induced L-selectin shedding was potentially mediated by Annexin 1, since neutralizing antibodies against Annexin 1 reduced dexamethasone- and Annexin 1-induced shedding. (5) Immunoprecipitation and binding assays provided support for the suggestion that this effect could be mediated by an interaction between externalized Annexin 1 and L-selectin. Such interaction involved the N-terminal domain of Annexin 1 and was calcium-dependent. Confocal microscopy studies demonstrated increased colocalization of Annexin 1 and L-selectin on the cell surface. (6) Overall, our study provides new insights into the potential role of endogenous ANXA1 as a mediator of dexamethasone-induced L-selectin shedding, which may contribute to the anti-inflammatory activity of glucocorticoids.
Collapse
Affiliation(s)
- Catherine de Coupade
- Department of Medicine and Oral and Maxillofacial Surgery, NIH Pain Center, Box 0440, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, U.S.A
| | - Egle Solito
- Department of Neuroendocrinology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN
| | - Jon D Levine
- Department of Medicine and Oral and Maxillofacial Surgery, NIH Pain Center, Box 0440, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, U.S.A
- Author for correspondence:
| |
Collapse
|
141
|
Solito E, Kamal A, Russo-Marie F, Buckingham JC, Marullo S, Perretti M. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J 2003; 17:1544-6. [PMID: 12824302 DOI: 10.1096/fj.02-0941fje] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glucocorticoid-inducible protein annexin (ANXA) 1 is an anti-inflammatory mediator that down-regulates the host response. Endogenously, ANXA1 is released in large amounts from adherent polymorphonuclear neutrophils (PMN) and binds to their cell surface to inhibit their extravasation into inflamed tissues. The present study determined the effects of exogenous ANXA1 on several functions of human PMN in vitro. Addition of 0.1-1 microM human recombinant ANXA1 to the PMN provoked rapid and transient changes in intracellular Ca2+ concentrations that were blocked by the Ca2+ channel inhibitor SKF-96365. Although ANXA1 did not affect oxidant production and only minimally affected PMN chemotactic properties, the ANXA1-promoted Ca2+ influx was associated with two important functional effects: shedding of L-selectin and acceleration of PMN apoptosis. The latter effect was confirmed using three distinct technical procedures, namely, cell cycle, Hoechst staining, and ANXA5 binding assay. ANXA1-induced PMN apoptosis was insensitive to inhibitors of L-selectin shedding, whereas it appeared to be associated with dephosphorylation of the proapoptotic intracellular mediator BAD. In conclusion, exogenous ANXA1 displayed selective actions on human PMN. We propose that the new proapoptotic effect reported here may be part of the spectrum of ANXA1-mediated events involved in the resolution of acute inflammation.
Collapse
Affiliation(s)
- Egle Solito
- Department of Neuroendocrinology, Imperial College London, Hammersmith Campus, Commonwealth Building, Du Cane Rd., London W12 ONN, London, UK. E-mail:
| | | | | | | | | | | |
Collapse
|
142
|
Gavins FNE, Yona S, Kamal AM, Flower RJ, Perretti M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 2003; 101:4140-7. [PMID: 12560218 DOI: 10.1182/blood-2002-11-3411] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent investigations conducted with human neutrophils have indicated an involvement for the receptor for formylated peptides, termed FPR, and its analog FPRL1 (or ALXR because it is the receptor for the endogenous ligand lipoxin A(4)) in the in vitro inhibitory actions of the glucocorticoid-regulated protein annexin 1 and its peptidomimetics. To translate these findings in in vivo settings, we have used an ischemia/reperfusion (I/R) procedure to promote leukocyte-endothelium interactions in the mouse mesenteric microcirculation. In naive mice, the annexin 1 mimetic peptide Ac2-26 (20 to 100 microg administered intravenously prior to reperfusion) abolished I/R-induced cell adhesion and emigration, but not cell rolling. In FPR-deficient mice, peptide Ac2-26 retained significant inhibitory actions (about 50% of the effects in naive mice), and these were blocked by an FPR antagonist, termed butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe, or Boc2. In vitro, neutrophils taken from these animals could be activated at high concentrations of formyl-Met-Leu-Phe (30 microM; fMLP), and this effect was blocked by cell incubation with peptide Ac2-26 (66 microM) or Boc2 (100 microM). FPR-deficient neutrophils expressed ALXR mRNA and protein. Both ALXR agonists, lipoxin A(4) and peptide Ac2-26, provoked detachment of adherent leukocytes in naive as well as in FPR-deficient mice, whereas the CXC chemokine KC or fMLP were inactive. The present findings demonstrate that endogenous regulatory autocoids such as lipoxin A(4) and annexin 1-derived peptides function to disengage adherent cells during cell-cell interactions.
Collapse
MESH Headings
- Animals
- Annexin A1/physiology
- Cell Adhesion/physiology
- Crosses, Genetic
- Humans
- Inflammation/physiopathology
- Inflammation/prevention & control
- Leukocytes/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/physiology
- Receptors, Formyl Peptide
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Lipoxin
- Receptors, Peptide/deficiency
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
Collapse
Affiliation(s)
- Felicity N E Gavins
- William Harvey Research Institute, Bart's and the Royal London, Queen Mary School of Medicine and Dentistry, Charterhouse Square, London, United Kingdom
| | | | | | | | | |
Collapse
|
143
|
Croxtall JD, Gilroy DW, Solito E, Choudhury Q, Ward BJ, Buckingham JC, Flower RJ. Attenuation of glucocorticoid functions in an Anx-A1-/- cell line. Biochem J 2003; 371:927-35. [PMID: 12553880 PMCID: PMC1223334 DOI: 10.1042/bj20021856] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Revised: 01/22/2003] [Accepted: 01/28/2003] [Indexed: 11/17/2022]
Abstract
The Ca(2+)- and phospholipid-binding protein Anx-A1 (annexin 1; lipocortin 1) has been described both as an inhibitor of phospholipase A(2) (PLA(2)) activity and as a mediator of glucocorticoid-regulated cell growth and eicosanoid generation. Here we show that, when compared with Anx-A1(+/+) cells, lung fibroblast cell lines derived from the Anx-A1(-/-) mouse exhibit an altered morphology characterized by a spindle-shaped appearance and an accumulation of intracellular organelles. Unlike their wild-type counterparts, Anx-A1(-/-) cells also overexpress cyclo-oxygenase 2 (COX 2), cytosolic PLA(2) and secretory PLA(2) and in response to fetal calf serum, exhibit an exaggerated release of eicosanoids, which is insensitive to dexamethasone (10(-8)- 10(-6) M) inhibition. Proliferation and serum-induced progression of Anx-A1(+/+) cells from G(0)/G(1) into S phase, and the associated expression of extracellular signal-regulated kinase 2 (ERK2), cyclin-dependent kinase 4 (cdk4) and COX 2, is strongly inhibited by dexamethasone, whereas Anx-A1(-/-) cells are refractory to the drug. Loss of the response to dexamethasone in Anx-A1(-/-) cells occurs against a background of no apparent change in glucocorticoid receptor expression or sensitivity to non-steroidal anti-inflammatory drugs. Taken together, these observations suggest strongly that Anx-A1 functions as an inhibitor of signal-transduction pathways that lead to cell proliferation and may help to explain how glucocorticoids regulate these processes.
Collapse
Affiliation(s)
- Jamie D Croxtall
- Department of Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
A hallmark of inflammation is the mobilization of blood-borne leukocytes across microvessels to kill and remove the invading pathogen. For its damaging potential, leukocyte movement is finely regulated, and endogenous pathways exist to ensure the time dependency of this process. Annexin 1 and its receptor(s) are one example of these pathways.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, London EC1M 6BQ, United Kingdom
| | | |
Collapse
|
145
|
Hannon R, Croxtall JD, Getting SJ, Roviezzo F, Yona S, Paul-Clark MJ, Gavins FNE, Perretti M, Morris JF, Buckingham JC, Flower RJ. Aberrant inflammation and resistance to glucocorticoids in annexin 1-/- mouse. FASEB J 2003; 17:253-5. [PMID: 12475898 DOI: 10.1096/fj.02-0239fje] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The 37-kDa protein annexin 1 (Anx-1; lipocortin 1) has been implicated in the regulation of phagocytosis, cell signaling, and proliferation and is postulated to be a mediator of glucocorticoid action in inflammation and in the control of anterior pituitary hormone release. Here, we report that mice lacking the Anx-1 gene exhibit a complex phenotype that includes an altered expression of other annexins as well as of COX-2 and cPLA2. In carrageenin- or zymosan-induced inflammation, Anx-1-/- mice exhibit an exaggerated response to the stimuli characterized by an increase in leukocyte emigration and IL-1beta generation and a partial or complete resistance to the antiinflammatory effects of glucocorticoids. Anx-1-/- polymorphonuclear leucocytes exhibited increased spontaneous migratory behavior in vivo whereas in vitro, leukocytes from Anx-1-/- mice had reduced cell surface CD 11b (MAC-1) but enhanced CD62L (L-selectin) expression and Anx-1-/- macrophages exhibited anomalies in phagocytosis. There are also gender differences in activated leukocyte behavior in the Anx-1-/- mice that are not seen in the wild-type animals, suggesting an interaction between sex hormones and inflammation in Anx-1-/- animals.
Collapse
Affiliation(s)
- Robert Hannon
- Department of Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hong SH, Won JH, Yoo SA, Auh CK, Park YM. Effect of annexin I on insulin secretion through surface binding sites in rat pancreatic islets. FEBS Lett 2002; 532:17-20. [PMID: 12459455 DOI: 10.1016/s0014-5793(02)03613-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates the effect of extracellular annexin I (Anx I) on regulating insulin secretion in isolated rat pancreatic islets. Results show that Anx I stimulates insulin release in pancreatic islets regardless of the presence or absence of extracellular Ca2+. In particular, confocal microscopy shows that Anx I binds to the surface of islet cells in the absence of extracellular Ca2+. However, insulin secretion through Anx I significantly decreases in trypsin-treated islets. Likewise, there is minimal binding of Anx I to the surface of trypsin-treated islets. Anti-Anx I polyclonal antibody also inhibits the stimulating effect of Anx I on insulin secretion. These results indicate that Anx I is capable of binding to the cell surface receptor, in order to regulate the stimulation of insulin release in rat pancreatic islets.
Collapse
Affiliation(s)
- Shin-Hee Hong
- Department of Biological Sciences, SungKyunKwan University, Suwon 440-746, South Korea
| | | | | | | | | |
Collapse
|
147
|
Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 2002; 8:1296-302. [PMID: 12368905 PMCID: PMC2777269 DOI: 10.1038/nm786] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 09/18/2002] [Indexed: 02/02/2023]
Abstract
Aspirin (ASA) and dexamethasone (DEX) are widely used anti-inflammatory agents yet their mechanism(s) for blocking polymorphonuclear neutrophil (PMN) accumulation at sites of inflammation remains unclear. Here, we report that inhibition of PMN infiltration by ASA and DEX is a property shared by aspirin-triggered lipoxins (ATL) and the glucocorticoid-induced annexin 1 (ANXA1)-derived peptides that are both generated in vivo and act at the lipoxin A(4) receptor (ALXR/FPRL1) to halt PMN diapedesis. These structurally diverse ligands specifically interact directly with recombinant human ALXR demonstrated by specific radioligand binding and function as well as immunoprecipitation of PMN receptors. In addition, the combination of both ATL and ANXA1-derived peptides limited PMN infiltration and reduced production of inflammatory mediators (that is, prostaglandins and chemokines) in vivo. Together, these results indicate functional redundancies in endogenous lipid and peptide anti-inflammatory circuits that are spatially and temporally separate, where both ATL and specific ANXA1-derived peptides act in concert at ALXR to downregulate PMN recruitment to inflammatory loci.
Collapse
Affiliation(s)
- Mauro Perretti
- [1] Department of Biochemical Pharmacology, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK [2] M.P. and N.C. contributed equally to this paper
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Oliani SM, Damazo AS, Perretti M. Annexin 1 localisation in tissue eosinophils as detected by electron microscopy. Mediators Inflamm 2002; 11:287-92. [PMID: 12467520 PMCID: PMC1781677 DOI: 10.1080/09629350210000015683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Human and rodent leukocytes express high levels of the glucocorticoid-inducible protein annexin 1 (ANXA1) (previously referred to as lipocortin 1). Neutrophils and monocytes have abundant ANXA1 levels. AIM We have investigated, for the first time, ANXA1 ultrastructural expression in rat eosinophils and compared it with that of extravasated neutrophils. The effect of inflammation (carrageenin peritonitis) was also monitored. METHODS Electron microscopy was used to define the sub-cellular localisation of ANXA1 in rat eosinophils and neutrophils extravasated in the mesenteric tissue. A pair of antibodies raised against the ANXA1 N-terminus (i.e. able to recognise intact ANXA1, termed LCPS1) or the whole protein (termed LCS3) was used to perform the ultrastructural analysis. RESULTS The majority of ANXA1 was localised in the eosinophil cytosol (approximately 60%) and nucleus (30-40%), whereas a small percentage was found on the plasma membrane (< 10%). Within the cytosol, the protein was equally distributed in the matrix and in the granules, including those containing the typical crystalloid. The two anti-ANXA1 antibodies gave similar results, with the exception that LCPS1 gave a lower degree of immunoreactivity in the plasma membrane. Inflammation (i.e. carrageenin injection) produced a modest increase in eosinophil-associated ANXA1 reactivity (significant only in the cytoplasm compartment). Extravasated neutrophils, used for comparative purposes, displayed a much higher degree of immunoreactivity for the protein. CONCLUSION We describe for the first time ANXA1 distribution in rat eosinophil by ultrastructural analysis, and report a different protein mobilisation from extravasated neutrophils, at least in this acute model of peritonitis.
Collapse
Affiliation(s)
- Sonia M Oliani
- Department of Biology, IBILCE-UNESP, São José do Rio Preto, SP, Brazil
| | | | | |
Collapse
|
149
|
Perretti M, Ingegnoli F, Wheller SK, Blades MC, Solito E, Pitzalis C. Annexin 1 modulates monocyte-endothelial cell interaction in vitro and cell migration in vivo in the human SCID mouse transplantation model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2085-92. [PMID: 12165536 PMCID: PMC4340507 DOI: 10.4049/jimmunol.169.4.2085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; approximately 50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1alpha (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
150
|
Blades MC, Manzo A, Ingegnoli F, Taylor PR, Panayi GS, Irjala H, Jalkanen S, Haskard DO, Perretti M, Pitzalis C. Stromal cell-derived factor 1 (CXCL12) induces human cell migration into human lymph nodes transplanted into SCID mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4308-17. [PMID: 11970972 DOI: 10.4049/jimmunol.168.9.4308] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1; CXCL12), a CXC chemokine, has a primary role in signaling the recruitment of hemopoietic stem cell precursors to the bone marrow during embryonic development. In postnatal life, SDF-1 is widely expressed and is induced in chronically inflamed tissues such as psoriatic skin and the rheumatoid synovium, but has also been implicated in the migration of lymphocytes to lymphoid organs. To investigate the role of SDF-1 in recirculation and homing in vivo, we have developed a model in which human peripheral lymph nodes (huPLN) are transplanted into SCID mice. We have shown that huPLN transplants are viable, vascularized by the murine circulation that forms functional anastomoses with transplant vessels. In addition, grafts retain some features of the pretransplantation tissue, such as lymphoid follicles, lymphatic and high endothelial venule markers. We also show that SDF-1 is capable of inducing the migration of a SDF-1-responsive cell line (U937) and human PBLs from the murine circulation into the grafts in a dose-dependent manner, inhibitable by CXCR4 blockade. The mechanism of action of SDF-1 in this model is independent from that of TNF-alpha and does not rely on the up-regulation of adhesion molecules (such as ICAM-1) on the graft vascular endothelium. This is the first description of huPLN transplantation into SCID mice and of the functional effects of SDF-1 in regard to the migration of human cells into huPLN in vivo. This model provides a powerful tool to investigate the pathways involved in cell migration into lymphoid organs and potentially to target them for therapeutic purposes.
Collapse
Affiliation(s)
- Mark C Blades
- Rheumatology Unit, Guy's, King's and St. Thomas', School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|