101
|
Chhun A, Sousoni D, Aguiló‐Ferretjans MDM, Song L, Corre C, Christie‐Oleza JA. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb Biotechnol 2021; 14:291-306. [PMID: 33280260 PMCID: PMC7888443 DOI: 10.1111/1751-7915.13722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.
Collapse
Affiliation(s)
- Audam Chhun
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | - Lijiang Song
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Christophe Corre
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Joseph A. Christie‐Oleza
- School of Life SciencesUniversity of WarwickCoventryUK
- University of the Balearic IslandsPalmaSpain
- IMEDEA (CSIC‐UIB)EsporlesSpain
| |
Collapse
|
102
|
Dedman CJ, Newson GC, Davies GL, Christie-Oleza JA. Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141229. [PMID: 32777503 DOI: 10.1016/j.scitotenv.2020.141229] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Global demand for silver nanoparticles (AgNPs), and their inevitable release into the environment, is rapidly increasing. AgNPs display antimicrobial properties and have previously been recorded to exert adverse effects upon marine phytoplankton. However, ecotoxicological research is often compromised by the use of non-ecologically relevant conditions, and the mechanisms of AgNP toxicity under environmental conditions remains unclear. To examine the impact of AgNPs on natural marine communities, a natural assemblage was exposed to citrate-stabilised AgNPs. Here, investigation confirmed that the marine dominant cyanobacteria Prochlorococcus is particularly sensitive to AgNP exposure. Whilst Prochlorococcus represents the most abundant photosynthetic organism on Earth and contributes significantly to global primary productivity, little ecotoxicological research has been carried out on this cyanobacterium. To address this, Prochlorococcus was exposed to citrate-stabilised AgNPs, as well as silver in its ionic form (Ag2SO4), under simulated natural conditions. Both AgNPs and ionic silver were observed to reduce Prochlorococcus populations by over 90% at concentrations ≥10 μg L-1, representing the upper limit of AgNP concentrations predicted in the environment (10 μg L-1). Longer-term assessment revealed this to be a perturbation which was irreversible. Through use of quenching agents for superoxide and hydrogen peroxide, alongside incubations with ionic silver, it was revealed that AgNP toxicity likely arises from synergistic effects of toxic superoxide species generation and leaching of ionic silver. The extent of toxicity was strongly dependent on cell density, and completely mitigated in more cell-dense cultures. Hence, the calculation and reporting of the particle-to-cell ratio reveals that this parameter is effective for standardisation of experimental work, and allows for direct comparison between studies where cell density may vary. Given the key role that marine cyanobacteria play in global primary production and biogeochemical cycling, their higher susceptibility to AgNP exposure is a concern in hotspots of pollution.
Collapse
Affiliation(s)
- Craig J Dedman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom..
| | - Gabrielle C Newson
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7EQ, United Kingdom
| | - Gemma-Louise Davies
- University College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom..
| | - Joseph A Christie-Oleza
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom.; Department of Biology, University of the Balearic Islands, Ctra. Valldemossa, km 7.5, CP: 07122 Palma, Spain; IMEDEA (CSIC-UIB), CP: 07190 Esporles, Spain.
| |
Collapse
|
103
|
Zheng Q, Lin W, Wang Y, Xu D, Liu Y, Jiao N. Top-down controls on nutrient cycling and population dynamics in a model estuarine photoautotroph-heterotroph co-culture system. Mol Ecol 2020; 30:592-607. [PMID: 33226689 DOI: 10.1111/mec.15750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Viral lysis and protistan grazing are thought to be the major processes leading to microbial mortality in aquatic environments and thus regulate community diversity and biogeochemical cycling characteristics. Here, we studied nutrient cycling and bacterial responses to cyanophage-mediated photoautotroph lysis and ciliate predation in a model Synechococcus-heterotroph co-culture system. Both viral lysis and Euplotes grazing facilitated the transformation of organic carbon from biomass to dissolved organic matter with convention efficiencies of 20%-26%. The accumulation of ammonium after the addition of phages and ciliates suggested the importance of recycled NH4 + occurred in the interactions between Synechococcus growth and heterotrophic bacterial metabolism of photosynthate. The slower efficiency of P mineralization compared to N (primarily ammonium) indicated that P-containing organic matter was primarily integrated into bacterial biomass rather than being remineralized into inorganic phosphate under C-rich conditions. In the cyanophage addition treatment, both Fluviicola and Alteromonas exhibited rapid positive responses to Synechococcus lysing, while Marivita exhibited an apparent negative response. Further, the addition of Euplotes altered the incubation system from a Synechococcus-driven phycosphere to a ciliate-remodelled zoosphere that primarily constituted grazing-resistant bacteria and Euplotes symbionts. Top-down controls increased co-culture system diversity and resulted in a preference for free-living lifestyles of dominant populations, which was accompanied by the transfer of matter and energy. Our results indicate top-down control was particularly important for organic matter redistribution and inorganic nutrient regeneration between photoautotrophs and heterotrophs, and altered bacterial lifestyles. This study consequently sheds light on marine biogeochemical cycling and the interaction networks within these dynamic ecosystems.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Wenxin Lin
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Dapeng Xu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yanting Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
104
|
Co‐culture with
Synechococcus
facilitates growth of
Prochlorococcus
under ocean acidification conditions. Environ Microbiol 2020; 22:4876-4889. [DOI: 10.1111/1462-2920.15277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022]
|
105
|
Enteromorpha prolifera Diet Drives Intestinal Microbiome Composition in Siganus oramin. Curr Microbiol 2020; 78:229-237. [PMID: 33034768 DOI: 10.1007/s00284-020-02218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Enteromorpha prolifera (E. prolifera) contains complex sulfated polysaccharides that are resistant to biological degradation. Most organisms cannot digest biomass of E. prolifera, except Siganus oramin (S. oramin). This study was conducted to identify the bacteria in the intestine of S. oramin facilitating the digestion of E. prolifera polysaccharides (EPP). Metagenomic sequencing analysis of the S. oramin intestinal microbiota revealed that E. prolifera diet increased the number of Firmicutes, replacing Proteobacteria to be the dominant bacteria. The proportion of Firmicutes increased from 38.8 to 58.6%, with Bacteroidetes increasing nearly fivefold from 5 to 23.7%. 16S rDNA high-throughput sequencing showed that EPP-induced Bacteroidetes increased significantly in the intestinal flora of S. oramin cultivated in vitro. Metatranscriptome analysis showed that EPP induced more transferase, polysaccharide hydrolase, glycoside hydrolase, and esterases expressed in vitro, and most of them were taxonomically annotated to Bacteroidetes. Compared with the aggregation of GH family genes in metagenomic sequencing analysis in vivo, EPP induced more CBM32, GH2, GT2, GT30, and GH30 families gene expression in vitro. In general, We found that the bacteria in intestinal tract of S. oramin responsible for digestion of E. prolifera were Firmicutes and Bacteroidetes, while Bacteroidetes was the dominant bacteria involved in EPP degradation in vitro cultures. Compared with in vivo experiments, only GH family genes were mostly involved, we detected a more complete and complex EPP degradation pathway in vitro. The results may benefit the further study of biodegradation of E. prolifera and has potential implications for the utilization of E. prolifera for biotechnology.
Collapse
|
106
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|
107
|
Loftus SE, Hunt DE, Johnson ZI. Reused cultivation water from a self-inhibiting alga does not inhibit other algae but alters their microbiomes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
108
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
109
|
Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME JOURNAL 2020; 14:3106-3119. [PMID: 32814868 DOI: 10.1038/s41396-020-00743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/14/2023]
Abstract
A drop of seawater contains numerous microspatial niches at the scale relevant to microbial activities. Examples are abiotic niches such as detrital particles that show different sizes and organic contents, and biotic niches resulting from bacteria-phage and bacteria-phytoplankton interactions. A common practice to investigate the impact of microenvironments on bacterial evolution is to separate the microenvironments physically and compare the bacterial inhabitants from each. It remains poorly understood, however, which microenvironment primarily drives bacterioplankton evolution in the pelagic ocean. By applying a dilution cultivation approach to an undisturbed coastal water sample, we isolate a bacterial population affiliated with the globally dominant Roseobacter group. Although varying at just a few thousand nucleotide sites across the whole genomes, members of this clonal population are diverging into two genetically separated subspecies. Genes underlying speciation are not unique to subspecies but instead clustered at the shared regions that represent ~6% of the genomic DNA. They are primarily involved in vitamin synthesis, motility, oxidative defense, carbohydrate, and amino acid utilization, consistent with the known strategies that roseobacters take to interact with phytoplankton and particles. Physiological assays corroborate that one subspecies outcompetes the other in these traits. Our results indicate that the microenvironments in the pelagic ocean represented by phytoplankton and organic particles are likely important niches that drive the cryptic speciation of the Roseobacter population, though microhabitats contributed by other less abundant pelagic hosts cannot be ruled out.
Collapse
|
110
|
Prochlorococcus Cells Rely on Microbial Interactions Rather than on Chlorotic Resting Stages To Survive Long-Term Nutrient Starvation. mBio 2020; 11:mBio.01846-20. [PMID: 32788385 PMCID: PMC7439483 DOI: 10.1128/mbio.01846-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability of microorganisms to withstand long periods of nutrient starvation is key to their survival and success under highly fluctuating conditions that are common in nature. Therefore, one would expect this trait to be prevalent among organisms in the nutrient-poor open ocean. Here, we show that this is not the case for Prochlorococcus, a globally abundant and ecologically important marine cyanobacterium. Instead, Prochlorococcus relies on co-occurring heterotrophic bacteria to survive extended phases of nutrient and light starvation. Our results highlight the power of microbial interactions to drive major biogeochemical cycles in the ocean and elsewhere with consequences at the global scale. Many microorganisms produce resting cells with very low metabolic activity that allow them to survive phases of prolonged nutrient or energy stress. In cyanobacteria and some eukaryotic phytoplankton, the production of resting stages is accompanied by a loss of photosynthetic pigments, a process termed chlorosis. Here, we show that a chlorosis-like process occurs under multiple stress conditions in axenic laboratory cultures of Prochlorococcus, the dominant phytoplankton linage in large regions of the oligotrophic ocean and a global key player in ocean biogeochemical cycles. In Prochlorococcus strain MIT9313, chlorotic cells show reduced metabolic activity, measured as C and N uptake by Nanoscale secondary ion mass spectrometry (NanoSIMS). However, unlike many other cyanobacteria, chlorotic Prochlorococcus cells are not viable and do not regrow under axenic conditions when transferred to new media. Nevertheless, cocultures with a heterotrophic bacterium, Alteromonas macleodii HOT1A3, allowed Prochlorococcus to survive nutrient starvation for months. We propose that reliance on co-occurring heterotrophic bacteria, rather than the ability to survive extended starvation as resting cells, underlies the ecological success of Prochlorococcus.
Collapse
|
111
|
Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, Harder T. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. THE ISME JOURNAL 2020; 14:1614-1625. [PMID: 32203123 PMCID: PMC7242391 DOI: 10.1038/s41396-020-0631-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
With each cell division, phytoplankton create new space for primary colonization by marine bacteria. Although this surface microenvironment is available to all planktonic bacterial colonizers, we show the assembly of bacterial consortia on a cosmopolitan marine diatom to be highly specific and reproducible. While phytoplankton-bacteria interactions play fundamental roles in marine ecosystems, namely primary production and the carbon cycle, the ecological paradigm behind epiphytic microbiome assembly remains poorly understood. In a replicated and repeated primary colonization experiment, we exposed the axenic diatom Thalassiosira rotula to several complex and compositionally different bacterial inocula derived from phytoplankton species of varying degrees of relatedness to the axenic Thalassiosira host or natural seawater. This revealed a convergent assembly of diverse and compositionally different bacterial inocula, containing up to 2071 operational taxonomic units (OTUs), towards a stable and reproducible core community. Four of these OTUs already accounted for a cumulative abundance of 60%. This core community was dominated by Rhodobacteraceae (30.5%), Alteromonadaceae (27.7%), and Oceanospirillales (18.5%) which was qualitatively and quantitatively most similar to its conspecific original. These findings reject a lottery assembly model of bacterial colonization and suggest selective microhabitat filtering. This is likely due to diatom host traits such as surface properties and different levels of specialization resulting in reciprocal stable-state associations.
Collapse
Affiliation(s)
- Julian Mönnich
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359, Bremen, Germany
| | - Jan Tebben
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Jennifer Bergemann
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359, Bremen, Germany
| | - Rebecca Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Sylke Wohlrab
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, 23129, Oldenburg, Germany
| | - Tilmann Harder
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359, Bremen, Germany.
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany.
| |
Collapse
|
112
|
Inomura K, Omta AW, Talmy D, Bragg J, Deutsch C, Follows MJ. A Mechanistic Model of Macromolecular Allocation, Elemental Stoichiometry, and Growth Rate in Phytoplankton. Front Microbiol 2020; 11:86. [PMID: 32256456 PMCID: PMC7093025 DOI: 10.3389/fmicb.2020.00086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
We present a model of the growth rate and elemental stoichiometry of phytoplankton as a function of resource allocation between and within broad macromolecular pools under a variety of resource supply conditions. The model is based on four, empirically-supported, cornerstone assumptions: that there is a saturating relationship between light and photosynthesis, a linear relationship between RNA/protein and growth rate, a linear relationship between biosynthetic proteins and growth rate, and a constant macromolecular composition of the light-harvesting machinery. We combine these assumptions with statements of conservation of carbon, nitrogen, phosphorus, and energy. The model can be solved algebraically for steady state conditions and constrained with data on elemental stoichiometry from published laboratory chemostat studies. It interprets the relationships between macromolecular and elemental stoichiometry and also provides quantitative predictions of the maximum growth rate at given light intensity and nutrient supply rates. The model is compatible with data sets from several laboratory studies characterizing both prokaryotic and eukaryotic phytoplankton from marine and freshwater environments. It is conceptually simple, yet mechanistic and quantitative. Here, the model is constrained only by elemental stoichiometry, but makes predictions about allocation to measurable macromolecular pools, which could be tested in the laboratory.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Anne Willem Omta
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - David Talmy
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jason Bragg
- National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
113
|
Zadjelovic V, Chhun A, Quareshy M, Silvano E, Hernandez-Fernaud JR, Aguilo-Ferretjans MM, Bosch R, Dorador C, Gibson MI, Christie-Oleza JA. Beyond oil degradation: enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters. Environ Microbiol 2020; 22:1356-1369. [PMID: 32079039 PMCID: PMC7187450 DOI: 10.1111/1462-2920.14947] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Pristine marine environments are highly oligotrophic ecosystems populated by well‐established specialized microbial communities. Nevertheless, during oil spills, low‐abundant hydrocarbonoclastic bacteria bloom and rapidly prevail over the marine microbiota. The genus Alcanivorax is one of the most abundant and well‐studied organisms for oil degradation. While highly successful under polluted conditions due to its specialized oil‐degrading metabolism, it is unknown how they persist in these environments during pristine conditions. Here, we show that part of the Alcanivorax genus, as well as oils, has an enormous potential for biodegrading aliphatic polyesters thanks to a unique and abundantly secreted alpha/beta hydrolase. The heterologous overexpression of this esterase proved a remarkable ability to hydrolyse both natural and synthetic polyesters. Our findings contribute to (i) better understand the ecology of Alcanivorax in its natural environment, where natural polyesters such as polyhydroxyalkanoates (PHA) are produced by a large fraction of the community and, hence, an accessible source of carbon and energy used by the organism in order to persist, (ii) highlight the potential of Alcanivorax to clear marine environments from polyester materials of anthropogenic origin as well as oils, and (iii) the discovery of a new versatile esterase with a high biotechnological potential.
Collapse
Affiliation(s)
| | - Audam Chhun
- School of Life Sciences, University of Warwick, Warwick, UK
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Warwick, UK
| | | | - Juan R Hernandez-Fernaud
- School of Life Sciences, University of Warwick, Warwick, UK.,Unidad de investigación-HUC, La Laguna-Tenerife, Spain
| | - María M Aguilo-Ferretjans
- School of Life Sciences, University of Warwick, Warwick, UK.,Department of Biology, University of the Balearic Islands, Spain
| | - Rafael Bosch
- Department of Biology, University of the Balearic Islands, Spain.,IMEDEA (CSIC-UIB), Esporles, Spain
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Biotecnología, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Warwick, UK.,Warwick Medical School, University of Warwick, Warwick, UK
| | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Warwick, UK.,Department of Biology, University of the Balearic Islands, Spain.,IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
114
|
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio 2020; 11:mBio.03261-19. [PMID: 32071270 PMCID: PMC7029141 DOI: 10.1128/mbio.03261-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The high complexity of in situ ecosystems renders it difficult to study marine microbial photoautotroph-heterotroph interactions. Two-member coculture systems of picocyanobacteria and single heterotrophic bacterial strains have been thoroughly investigated. However, in situ interactions comprise far more diverse heterotrophic bacterial associations with single photoautotrophic organisms. In the present study, combined metagenomic and metaproteomic data supplied the metabolic potentials and activities of uncultured dominant bacterial populations in the coculture system. The results of this study shed light on the nature of interactions between photoautotrophs and heterotrophs, improving our understanding of the complexity of in situ environments. Microbial photoautotroph-heterotroph interactions underlie marine food webs and shape ecosystem diversity and structure in upper ocean environments. Here, bacterial community composition, lifestyle preference, and genomic- and proteomic-level metabolic characteristics were investigated for an open ocean Synechococcus ecotype and its associated heterotrophs over 91 days of cocultivation. The associated heterotrophic bacterial assembly mostly constituted five classes, including Flavobacteria, Bacteroidetes, Phycisphaerae, Gammaproteobacteria, and Alphaproteobacteria. The seven most abundant taxa/genera comprised >90% of the total heterotrophic bacterial community, and five of these displayed distinct lifestyle preferences (free-living or attached) and responses to Synechococcus growth phases. Six high-quality genomes, including Synechococcus and the five dominant heterotrophic bacteria, were reconstructed. The only primary producer of the coculture system, Synechococcus, displayed metabolic processes primarily involved in inorganic nutrient uptake, photosynthesis, and organic matter biosynthesis and release. Two of the flavobacterial populations, Muricauda and Winogradskyella, and an SM1A02 population, displayed preferences for initial degradation of complex compounds and biopolymers, as evinced by high abundances of TonB-dependent transporters (TBDTs), glycoside hydrolase, and peptidase proteins. Polysaccharide utilization loci present in the flavobacterial genomes influence their lifestyle preferences and close associations with phytoplankton. In contrast, the alphaproteobacterium Oricola sp. population mainly utilized low-molecular-weight dissolved organic carbon (DOC) through ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), and tripartite tricarboxylate transporter (TTT) transport systems. The heterotrophic bacterial populations exhibited complementary mechanisms for degrading Synechococcus-derived organic matter and driving nutrient cycling. In addition to nutrient exchange, removal of reactive oxygen species and vitamin trafficking might also contribute to the maintenance of the Synechococcus-heterotroph coculture system and the interactions shaping the system.
Collapse
|
115
|
Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, Yvon-Durocher G. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett 2020; 23:722-733. [PMID: 32059265 PMCID: PMC7078849 DOI: 10.1111/ele.13469] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 12/01/2022]
Abstract
The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short‐term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long‐term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short‐term increases in temperature. Long‐term experimental evolution under high temperature reversed the short‐term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump.
Collapse
Affiliation(s)
- Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - James Jenkins
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - C-Elisa Schaum
- Institute for Hydrobiology and Fisheries, Section Oceanography, Hamburg University, 22767, Hamburg, Germany
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building University of Exeter, Exeter, EX4 4QD, UK
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
116
|
Yao X, Li S, He S. DUAL-MODE HYPERSPECTRAL BIO-IMAGER WITH A CONJUGATED CAMERA FOR QUICK OBJECT-SELECTION AND FOCUSING. ACTA ACUST UNITED AC 2020. [DOI: 10.2528/pier20080308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
117
|
Zhang L, Chen L, Diao J, Song X, Shi M, Zhang W. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO 2. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:82. [PMID: 32391082 PMCID: PMC7201998 DOI: 10.1186/s13068-020-01720-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cyanobacterial carbohydrates, such as sucrose, have been considered as potential renewable feedstock to support the production of fuels and chemicals. However, the separation and purification processes of these carbohydrates will increase the production cost of chemicals. Co-culture fermentation has been proposed as an efficient and economical way to utilize these cyanobacterial carbohydrates. However, studies on the application of co-culture systems to achieve green biosynthesis of platform chemicals are still rare. RESULTS In this study, we successfully achieved one-step conversion of sucrose derived from cyanobacteria to fine chemicals by constructing a microbial consortium consisting of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 and Escherichia coli to sequentially produce sucrose and then the platform chemical 3-hydroxypropionic acid (3-HP) from CO2 under photoautotrophic growth conditions. First, efforts were made to overexpress the sucrose permease-coding gene cscB under the strong promoter P cpc560 in S. elongatus UTEX 2973 for efficient sucrose secretion. Second, the sucrose catabolic pathway and malonyl-CoA-dependent 3-HP biosynthetic pathway were introduced into E. coli BL21 (DE3) for heterologous biosynthesis of 3-HP from sucrose. By optimizing the cultivation temperature from 37 to 30 °C, a stable artificial consortium system was constructed with the capability of producing 3-HP at up to 68.29 mg/L directly from CO2. In addition, cell growth of S. elongatus UTEX 2973 in the consortium was enhanced, probably due to the quick quenching of reactive oxygen species (ROS) in the system by E. coli, which in turn improved the photosynthesis of cyanobacteria. CONCLUSION The study demonstrated the feasibility of the one-step conversion of sucrose to fine chemicals using an artificial consortium system. The study also confirmed that heterotrophic bacteria could promote the cell growth of cyanobacteria by relieving oxidative stress in this microbial consortium, which further suggests the potential value of this system for future industrial applications.
Collapse
Affiliation(s)
- Li Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
118
|
Haro-Moreno JM, Rodriguez-Valera F, López-Pérez M. Prokaryotic Population Dynamics and Viral Predation in a Marine Succession Experiment Using Metagenomics. Front Microbiol 2019; 10:2926. [PMID: 31921085 PMCID: PMC6931264 DOI: 10.3389/fmicb.2019.02926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
We performed an incubation experiment of seawater confined in plastic bottles with samples collected at three depths (15, 60, and 90 m) after retrieval from a single offshore location in the Mediterranean Sea, from a late summer stratified water column. Two samples representative of each depth were collected and stored in opaque bottles after two periods of 7 h. We took advantage of the "bottle effect" to investigate changes in the natural microbial communities (abundant and rare). We recovered 94 metagenome-assembled genomes (MAGs) and 1089 metagenomic viral contigs and examined their abundance using metagenomic recruitment. We detected a significant fast growth of copiotrophic bacteria such as Alteromonas or Erythrobacter throughout the entire water column with different dynamics that we assign to "clonal," "polyclonal," or "multispecies" depending on the recruitment pattern. Results also showed a marked ecotype succession in the phototropic picocyanobacteria that were able to grow at all the depths in the absence of light, highlighting the importance of their mixotrophic potential. In addition, "wall-chain-reaction" hypothesis based on the study of phage-host dynamics showed the higher impact of viral predation on archaea in deeper waters, evidencing their prominent role during incubations. Our results provide a step forward in understanding the mechanisms underlying dynamic patterns and ecology of the marine microbiome and the importance of processing the samples immediately after collection to avoid changes in the community structure.
Collapse
Affiliation(s)
- Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain.,Laboratory for Theoretical and Computer Research on Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
119
|
Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium - A case study. Sci Rep 2019; 9:15064. [PMID: 31636357 PMCID: PMC6803696 DOI: 10.1038/s41598-019-51378-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
Unicellular nitrogen fixer Crocosphaera contributes substantially to nitrogen fixation in oligotrophic subtropical gyres. They fix nitrogen even when significant amounts of ammonium are available. This has been puzzling since fixing nitrogen is energetically inefficient compared with using available ammonium. Here we show that by fixing nitrogen, Crocosphaera can increase their population and expand their niche despite the presence of ammonium. We have developed a simple but mechanistic model of Crocosphaera based on their growth in steady state culture. The model shows that the growth of Crocosphaera can become nitrogen limited despite their capability to fix nitrogen. When they fix nitrogen, the population increases by up to 78% relative to the case without nitrogen fixation. When we simulate a simple ecological situation where Crocosphaera exists with non-nitrogen-fixing phytoplankton, the relative abundance of Crocosphaera increases with nitrogen fixation, while the population of non-nitrogen-fixing phytoplankton decreases since a larger fraction of fixed nitrogen is consumed by Crocosphaera. Our study quantitatively supports the benefit of nitrogen fixation despite the high electron/energy costs, even when an energetically efficient alternative is available. It demonstrates a competitive aspect of Crocosphaera, permitting them to be regionally significant nitrogen fixers.
Collapse
|
120
|
Wright RJ, Gibson MI, Christie-Oleza JA. Understanding microbial community dynamics to improve optimal microbiome selection. MICROBIOME 2019; 7:85. [PMID: 31159875 PMCID: PMC6547603 DOI: 10.1186/s40168-019-0702-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Artificial selection of microbial communities that perform better at a desired process has seduced scientists for over a decade, but the method has not been systematically optimised nor the mechanisms behind its success, or failure, determined. Microbial communities are highly dynamic and, hence, go through distinct and rapid stages of community succession, but the consequent effect this may have on artificially selected communities is unknown. RESULTS Using chitin as a case study, we successfully selected for microbial communities with enhanced chitinase activities but found that continuous optimisation of incubation times between selective transfers was of utmost importance. The analysis of the community composition over the entire selection process revealed fundamental aspects in microbial ecology: when incubation times between transfers were optimal, the system was dominated by Gammaproteobacteria (i.e. main bearers of chitinase enzymes and drivers of chitin degradation), before being succeeded by cheating, cross-feeding and grazing organisms. CONCLUSIONS The selection of microbiomes to enhance a desired process is widely used, though the success of artificially selecting microbial communities appears to require optimal incubation times in order to avoid the loss of the desired trait as a consequence of an inevitable community succession. A comprehensive understanding of microbial community dynamics will improve the success of future community selection studies.
Collapse
Affiliation(s)
- Robyn J. Wright
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Medical School, University of Warwick, Coventry, UK
| | | |
Collapse
|
121
|
Bouma-Gregson K, Olm MR, Probst AJ, Anantharaman K, Power ME, Banfield JF. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. THE ISME JOURNAL 2019; 13:1618-1634. [PMID: 30809011 PMCID: PMC6776057 DOI: 10.1038/s41396-019-0374-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/14/2022]
Abstract
Blooms of planktonic cyanobacteria have long been of concern in lakes, but more recently, harmful impacts of riverine benthic cyanobacterial mats been recognized. As yet, we know little about how various benthic cyanobacteria are distributed in river networks, or how environmental conditions or other associated microbes in their consortia affect their biosynthetic capacities. We performed metagenomic sequencing for 22 Oscillatoriales-dominated (Cyanobacteria) microbial mats collected across the Eel River network in Northern California and investigated factors associated with anatoxin-a producing cyanobacteria. All microbial communities were dominated by one or two cyanobacterial species, so the key mat metabolisms involve oxygenic photosynthesis and carbon oxidation. Only a few metabolisms fueled the growth of the mat communities, with little evidence for anaerobic metabolic pathways. We genomically defined four cyanobacterial species, all which shared <96% average nucleotide identity with reference Oscillatoriales genomes and are potentially novel species in the genus Microcoleus. One of the Microcoleus species contained the anatoxin-a biosynthesis genes, and we describe the first anatoxin-a gene cluster from the Microcoleus clade within Oscillatoriales. Occurrence of these four Microcoleus species in the watershed was correlated with total dissolved nitrogen and phosphorus concentrations, and the species that contains the anatoxin-a gene cluster was found in sites with higher nitrogen concentrations. Microbial assemblages in mat samples with the anatoxin-a gene cluster consistently had a lower abundance of Burkholderiales (Betaproteobacteria) species than did mats without the anatoxin-producing genes. The associations of water nutrient concentrations and certain co-occurring microbes with anatoxin-a producing Microcoleus motivate further exploration for their roles as potential controls on the distributions of toxigenic benthic cyanobacteria in river networks.
Collapse
Affiliation(s)
- Keith Bouma-Gregson
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Matthew R Olm
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Group for Aquatic Microbial Ecology, Biofilm Center, Department for Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Karthik Anantharaman
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Mary E Power
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
122
|
Loftus SE, Johnson ZI. Reused Cultivation Water Accumulates Dissolved Organic Carbon and Uniquely Influences Different Marine Microalgae. Front Bioeng Biotechnol 2019; 7:101. [PMID: 31157215 PMCID: PMC6528441 DOI: 10.3389/fbioe.2019.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 11/26/2022] Open
Abstract
Reusing growth medium (water supplemented with nutrients) for microalgae cultivation is required for economical and environmentally sustainable production of algae bioproducts (fuels, feed, and food). However, reused medium often contains microbes and dissolved organic matter that may affect algae growth. While the accumulation of dissolved organic carbon (DOC) in reused medium has been demonstrated, it is unclear whether DOC concentrations affect algae growth or subsequent rates of algal DOC release. To address these questions, lab-scale experiments were conducted with three marine microalgae strains, Navicula sp. SFP, Staurosira sp. C323, and Chlorella sp. D046, grown in medium reused up to four times. Navicula sp. and Chlorella sp. grew similarly in reused medium as in fresh medium, while Staurosira sp. became completely inhibited in reused medium. Across the three algae, there was no broad trend between initial DOC concentration in reused medium and algae growth response. Navicula sp. released less DOC overall in reused medium than in fresh medium, but DOC release rates did not decrease proportionally with increased DOC concentrations. Net DOC accumulation was much lower than gross DOC released by Navicula sp. and Staurosira sp., indicating the majority of released DOC was degraded. Additionally, biodegradation experiments with reused media showed no further net decrease in DOC, suggesting the accumulated DOC was recalcitrant to the associated bacteria. Overall, these results suggest that taxa-specific factors may be responsible for algae growth response in reused medium, and that DOC release and accumulation are insensitive to prior cultivation rounds. Choosing an algae strain that is uninhibited by accumulated DOC is therefore critical to ensure successful water reuse in the algae industry.
Collapse
Affiliation(s)
- Sarah E. Loftus
- Duke University Marine Lab, Nicholas School of the Environment, Beaufort, NC, United States
| | - Zackary I. Johnson
- Duke University Marine Lab, Nicholas School of the Environment, Beaufort, NC, United States
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
123
|
Abstract
Photosynthesis, the process of converting solar energy into stored chemical bonds, represents the primary mechanism by which biological organisms utilize photons. Light can also be used to activate a number of photosensory compounds and proteins designed to carry out tasks, such as DNA repair, gene regulation, and synchronization with the diurnal cycle. Given that sunlight is incident upon many environments, it is not farfetched to think that life may have evolved other as-yet-undetected mechanisms to profit from solar irradiation. In this issue, Maresca and coworkers detail their observations of light-enhanced growth of several nonphotosynthetic actinobacteria, as well as describe the potential photosensitizer responsible for this phenotype and discuss the regulatory networks involved (J. A. Maresca, J. L. Keffer, P. P. Hempel, S. W. Polson, et al., J Bacteriol 201:e00740-18, 2019, https://doi.org/10.1128/JB.00740-18). This study opens the door to many intriguing questions about the use of light as information in nonphotosynthetic biological systems.
Collapse
|
124
|
Zheng Q, Lu J, Wang Y, Jiao N. Genomic reconstructions and potential metabolic strategies of generalist and specialist heterotrophic bacteria associated with an estuarySynechococcusculture. FEMS Microbiol Ecol 2019; 95:5303724. [DOI: 10.1093/femsec/fiz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiayao Lu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
125
|
Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, Li G, Zhang YZ, Chan W, Hess WR, Zeng Q. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol 2019; 21:2015-2028. [PMID: 30585375 DOI: 10.1111/1462-2920.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Viral infection of marine phytoplankton releases a variety of dissolved organic matter (DOM). The impact of viral DOM (vDOM) on the uninfected co-occurring phytoplankton remains largely unknown. Here, we conducted transcriptomic analyses to study the effects of vDOM on the cyanobacterium Prochlorococcus, which is the most abundant photosynthetic organism on Earth. Using Prochlorococcus MIT9313, we showed that its growth was not affected by vDOM, but many tRNAs increased in abundance. We tested tRNA-gly and found that its abundance increased upon addition of glycine. The decreased transcript abundances of N metabolism genes also suggested that Prochlorococcus responded to organic N compounds in vDOM. Addition of vDOM to Prochlorococcus reduced the maximum photochemical efficiency of photosystem II and CO2 fixation while increasing its respiration rate, consistent with differentially abundant transcripts related to photosynthesis and respiration. One of the highest positive fold-changes was observed for the 6S RNA, a noncoding RNA functioning as a global transcriptional regulator in bacteria. The high level of 6S RNA might be responsible for some of the observed transcriptional responses. Taken together, our results revealed the transcriptional regulation of Prochlorococcus in response to viral lysis products and suggested its metabolic potential to utilize organic N compounds.
Collapse
Affiliation(s)
- Xiaoting Fang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yaxin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Riyue Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Long Qin
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology (CAS), Guangzhou, China
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Germany
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
126
|
McGenity TJ. 2038 – When microbes rule the Earth. Environ Microbiol 2018; 20:4213-4220. [DOI: 10.1111/1462-2920.14449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Terry J. McGenity
- School of Biological SciencesUniversity of Essex Colchester United Kingdom
| |
Collapse
|
127
|
Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 2018; 20:2671-2685. [PMID: 30028074 DOI: 10.1111/1462-2920.14302] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/20/2023]
Abstract
Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.
Collapse
Affiliation(s)
- Marco Mühlenbruch
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Hans-Peter Grossart
- Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.,Potsdam University, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
128
|
Zinser ER. Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:399-411. [PMID: 29411546 DOI: 10.1111/1758-2229.12625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 01/27/2017] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (HOOH) is a reactive oxygen species, derived from molecular oxygen, that is capable of damaging microbial cells. Surprisingly, the HOOH defence systems of some aerobes in the oxygenated marine environments are critically depleted, relative to model aerobes. For instance, the gene encoding catalase is absent in the numerically dominant photosynthetic cyanobacterium, Prochlorococcus. Accordingly, Prochlorococcus is highly susceptible to HOOH when exposed as pure cultures. Pure cultures do not exist in the marine environment, however. Catalase-positive community members can remove HOOH from the seawater medium, thus lowering the threat to Prochlorococcus and any other member that likewise lacks their own catalase. This cross-protection may constitute a loosely defined symbiosis, whereby the catalase-positive helper cells may benefit through the acquisition of nutrients released by the beneficiaries such as Prochlorococcus. Other members of the community that may be helped by the catalase-positive cells may include some lineages of Synechococcus - the sister genus of Prochlorococcus - as well as some lineages of SAR11 and ammonia oxidizing archaea and bacteria. The co-occurrence of catalase-positive and -negative members suggests that cross-protection from HOOH-mediated oxidative stress may play an important role in the construction of the marine microbial community.
Collapse
Affiliation(s)
- Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
129
|
Cornet L, Meunier L, Van Vlierberghe M, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D. Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS One 2018; 13:e0200323. [PMID: 30044797 PMCID: PMC6059444 DOI: 10.1371/journal.pone.0200323] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Publicly available genomes are crucial for phylogenetic and metagenomic studies, in which contaminating sequences can be the cause of major problems. This issue is expected to be especially important for Cyanobacteria because axenic strains are notoriously difficult to obtain and keep in culture. Yet, despite their great scientific interest, no data are currently available concerning the quality of publicly available cyanobacterial genomes. As reliably detecting contaminants is a complex task, we designed a pipeline combining six methods in a consensus strategy to assess the contamination level of 440 genome assemblies of Cyanobacteria. Two methods are based on published reference databases of ribosomal genes (SSU rRNA 16S and ribosomal proteins), one is indirectly based on a reference database of marker genes (CheckM), and three are based on complete genome analysis. Among those genome-wide methods, Kraken and DIAMOND blastx share the same reference database that we derived from Ensembl Bacteria, whereas CONCOCT does not require any reference database, instead relying on differences in DNA tetramer frequencies. Given that all the six methods appear to have their own strengths and limitations, we used the consensus of their rankings to infer that >5% of cyanobacterial genome assemblies are highly contaminated by foreign DNA (i.e., contaminants were detected by 5 or 6 methods). Our results will help researchers to check the quality of publicly available genomic data before use in their own analyses. Moreover, we argue that journals should make mandatory the submission of raw read data along with genome assemblies in order to facilitate the detection of contaminants in sequence databases.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- UR Geology–Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Loïc Meunier
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Mick Van Vlierberghe
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Raphaël R. Léonard
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS–CIP, Macromolecular Crystallography, University of Liège, Liège, Belgium
| | - Benoit Durieu
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Agnieszka Misztak
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland
| | - Damien Sirjacobs
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Emmanuelle J. Javaux
- UR Geology–Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, Moulis, France
| | - Annick Wilmotte
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
130
|
Richter LV, Mansfeldt CB, Kuan MM, Cesare AE, Menefee ST, Richardson RE, Ahner BA. Altered Microbiome Leads to Significant Phenotypic and Transcriptomic Differences in a Lipid Accumulating Chlorophyte. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6854-6863. [PMID: 29750518 DOI: 10.1021/acs.est.7b06581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Given the challenges facing the economically favorable production of products from microalgae, understanding factors that might impact productivity rates including growth rates and accumulation of desired products, for example, triacylglycerols (TAG) for biodiesel feedstock, remains critical. Although operational parameters such as media composition and reactor design can clearly effect growth rates, the role of microbe-microbe interactions is just beginning to be elucidated. In this study an oleaginous marine algae Chlorella spp. C596 culture is shown to be better described as a microbial community. Perturbations to this microbial community showed a significant impact on phenotypes including sustained differences in growth rate and TAG accumulation of 2.4 and 2.5 fold, respectively. Characterization of the associated community using Illumina 16S rRNA amplicon and random shotgun transcriptomic analyses showed that the fast growth rate correlated with two specific bacterial species ( Ruegeria and Rhodobacter spp). The transcriptomic response of the Chlorella species revealed that the slower growing algal consortium C596-S1 upregulated genes associated with photosynthesis and resource scavenging and decreased the expression of genes associated with transcription and translation relative to the initial C596-R1. Our studies advance the appreciation of the effects microbiomes can have on algal growth in bioreactors and suggest that symbiotic interactions are involved in a range of critical processes including nitrogen, carbon cycling, and oxidative stress.
Collapse
Affiliation(s)
- Lubna V Richter
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Michael M Kuan
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Alexandra E Cesare
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen T Menefee
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Ruth E Richardson
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Beth A Ahner
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
131
|
Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. ISME JOURNAL 2018; 12:2039-2050. [PMID: 29849169 PMCID: PMC6052044 DOI: 10.1038/s41396-018-0148-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022]
Abstract
Spirochaetes are frequently detected in anoxic hydrocarbon- and organohalide-polluted groundwater, but their role in such ecosystems has remained unclear. To address this, we studied a sulfate-reducing, naphthalene-degrading enrichment culture, mainly comprising the sulfate reducer Desulfobacterium N47 and the rod-shaped Spirochete Rectinema cohabitans HM. Genome sequencing and proteome analysis suggested that the Spirochete is an obligate fermenter that catabolizes proteins and carbohydrates, resulting in acetate, ethanol, and molecular hydrogen (H2) production. Physiological experiments inferred that hydrogen is an important link between the two bacteria in the enrichment culture, with H2 derived from fermentation by R. cohabitans used as reductant for sulfate reduction by Desulfobacterium N47. Differential proteomics and physiological experiments showed that R. cohabitans utilizes biomass (proteins and carbohydrates) released from dead cells of Desulfobacterium N47. Further comparative and community genome analyses indicated that other Rectinema phylotypes are widespread in contaminated environments and may perform a hydrogenogenic fermentative lifestyle similar to R. cohabitans. Together, these findings indicate that environmental Spirochaetes scavenge detrital biomass and in turn drive necromass recycling at anoxic hydrocarbon-contaminated sites and potentially other habitats.
Collapse
|
132
|
Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness. mSystems 2018; 3:mSystems00040-18. [PMID: 29854954 PMCID: PMC5974335 DOI: 10.1128/msystems.00040-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness-a condition that cells would experience when mixed below the ocean's euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCEProchlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs-contrary to the canonical autotroph-to-heterotroph trophic paradigm.
Collapse
|
133
|
Kaur A, Hernandez-Fernaud JR, Aguilo-Ferretjans MDM, Wellington EM, Christie-Oleza JA. 100 Days of marine Synechococcus-Ruegeria pomeroyi interaction: A detailed analysis of the exoproteome. Environ Microbiol 2017; 20:785-799. [PMID: 29194907 PMCID: PMC5839243 DOI: 10.1111/1462-2920.14012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/03/2022]
Abstract
Marine phototroph and heterotroph interactions are vital in maintaining the nutrient balance in the oceans as essential nutrients need to be rapidly cycled before sinking to aphotic layers. The aim of this study was to highlight the molecular mechanisms that drive these interactions. For this, we generated a detailed exoproteomic time‐course analysis of a 100‐day co‐culture between the model marine picocyanobacterium Synechococcus sp. WH7803 and the Roseobacter strain Ruegeria pomeroyi DSS‐3, both in nutrient‐enriched and natural oligotrophic seawater. The proteomic data showed a transition between the initial growth phase and stable‐state phase that, in the case of the heterotroph, was caused by a switch in motility attributed to organic matter availability. The phototroph adapted to seawater oligotrophy by reducing its selective leakiness, increasing the acquisition of essential nutrients and secreting conserved proteins of unknown function. We also report a surprisingly high abundance of extracellular superoxide dismutase produced by Synechococcus and a dynamic secretion of potential hydrolytic enzyme candidates used by the heterotroph to cleave organic groups and hydrolase polymeric organic matter produced by the cyanobacterium. The time course dataset we present here will become a reference for understanding the molecular processes underpinning marine phototroph‐heterotroph interactions.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|