101
|
|
102
|
The role of sleep in emotional processing: insights and unknowns from rodent research. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
103
|
Sun Y, Liu M. Hypothalamic MCH Neuron Activity Dynamics during Cataplexy of Narcolepsy. eNeuro 2020; 7:ENEURO.0017-20.2020. [PMID: 32303567 PMCID: PMC7196720 DOI: 10.1523/eneuro.0017-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hypothalamic orexin (hypocretin, HCRT) deficiency causes sleep disorder narcolepsy with cataplexy in humans and murine. As another integral group of sleep/wake-regulating neurons in the same brain area, the melanin-concentrating hormone (MCH) neurons' involvement in cataplexy remains ambiguous. Here we used the live animal deep-brain calcium (Ca2+) imaging tool to record MCH neuron dynamics during cataplexy by expressing calcium sensor GCaMP6s into genetically defined MCH neurons in orexin knock-out mice, which are a model of human narcolepsy. Similar to wild-type mice, MCH neurons of the narcoleptic mice displayed significantly higher Ca2+ transient fluorescent intensity during rapid eye movement (REM) sleep and active waking (AW) episodes compared with non-REM (NREM) sleep. Moreover, MCH neurons displayed significantly lower Ca2+ signals during cataplexy. Importantly, a pre-cataplexy elevation of Ca2+ signals from MCH neurons was not a prerequisite for cataplexy initiation. Our results demonstrated the inactivation status of MCH neurons during cataplexy and suggested that MCH neurons are not involved in the initiation and maintenance of cataplexy in orexin knock-out mice.
Collapse
Affiliation(s)
- Ying Sun
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
104
|
Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 2020; 9:54275. [PMID: 32314734 PMCID: PMC7173968 DOI: 10.7554/elife.54275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Orexin/hypocretin-producing and melanin-concentrating hormone-producing (MCH) neurons are co-extensive in the hypothalamus and project throughout the brain to regulate sleep/wakefulness. Ablation of orexin neurons decreases wakefulness and results in a narcolepsy-like phenotype, whereas ablation of MCH neurons increases wakefulness. Since it is unclear how orexin and MCH neurons interact to regulate sleep/wakefulness, we generated transgenic mice in which both orexin and MCH neurons could be ablated. Double-ablated mice exhibited increased wakefulness and decreased both rapid eye movement (REM) and non-REM (NREM) sleep. Double-ablated mice showed severe cataplexy compared with orexin neuron-ablated mice, suggesting that MCH neurons normally suppress cataplexy. Double-ablated mice also showed frequent sleep attacks with elevated spectral power in the delta and theta range, a unique state that we call 'delta-theta sleep'. Together, these results indicate a functional interaction between orexin and MCH neurons in vivo that suggests the synergistic involvement of these neuronal populations in the sleep/wakefulness cycle.
Collapse
Affiliation(s)
- Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, United States
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|
105
|
Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Med Rev 2020; 50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
106
|
Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2020; 365:1308-1313. [PMID: 31604241 DOI: 10.1126/science.aax9238] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
The neural mechanisms underlying memory regulation during sleep are not yet fully understood. We found that melanin concentrating hormone-producing neurons (MCH neurons) in the hypothalamus actively contribute to forgetting in rapid eye movement (REM) sleep. Hypothalamic MCH neurons densely innervated the dorsal hippocampus. Activation or inhibition of MCH neurons impaired or improved hippocampus-dependent memory, respectively. Activation of MCH nerve terminals in vitro reduced firing of hippocampal pyramidal neurons by increasing inhibitory inputs. Wake- and REM sleep-active MCH neurons were distinct populations that were randomly distributed in the hypothalamus. REM sleep state-dependent inhibition of MCH neurons impaired hippocampus-dependent memory without affecting sleep architecture or quality. REM sleep-active MCH neurons in the hypothalamus are thus involved in active forgetting in the hippocampus.
Collapse
Affiliation(s)
- Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo 102-0083, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Toh Miyazaki
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo 102-0083, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo 102-0083, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Ryo Inoue
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroyuki Mizoguchi
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akira Terao
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
107
|
Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2020; 42:5239591. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep abnormalities are common among children with neurodevelopmental disorders. The human chr16p11.2 microdeletion is associated with a range of neurological and neurobehavioral abnormalities. Previous studies of a mouse model of human chr16p11.2 microdeletion (chr16p11.2df/+) have demonstrated pathophysiological changes at the synapses in the hippocampus and striatum; however, the impact of this genetic abnormality on system level brain functions, such as sleep and neural oscillation, has not been adequately investigated. Here, we show that chr16p11.2df/+ mice have altered sleep architecture, with increased wake time and reduced time in rapid eye movement (REM) and non-REM (NREM) sleep. Importantly, several measurements of REM sleep are significantly changed in deletion mice. The REM bout number and the bout number ratio of REM to NREM are decreased in mutant mice, suggesting a deficit in REM-NREM transition. The average REM bout duration is shorter in mutant mice, indicating a defect in REM maintenance. In addition, whole-cell patch clamp recording of the ventrolateral periaqueductal gray (vlPAG)-projecting gamma-aminobutyric acid (GABA)ergic neurons in the lateral paragigantocellular nucleus of ventral medulla of mutant mice reveal that these neurons, which are important for NREM-REM transition and REM maintenance, have hyperpolarized resting membrane potential and increased membrane resistance. These changes in intrinsic membrane properties suggest that these projection-specific neurons of mutant mice are less excitable, and thereby may play a role in deficient NREM-REM transition and REM maintenance. Furthermore, mutant mice exhibit changes in neural oscillation involving multiple frequency classes in several vigilance states. The most significant alterations occur in the theta frequency during wake and REM sleep.
Collapse
Affiliation(s)
- Hung-Chi Lu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Harvey Pollack
- Department of Radiology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - John J Lefante
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Center for Cancer Research, Cold Spring Harbor, NY
| | - Di Tian
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
108
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
109
|
Regan MD, Flynn-Evans EE, Griko YV, Kilduff TS, Rittenberger JC, Ruskin KJ, Buck CL. Shallow metabolic depression and human spaceflight: a feasible first step. J Appl Physiol (1985) 2020; 128:637-647. [PMID: 31999524 DOI: 10.1152/japplphysiol.00725.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic torpor is an induced state of deep metabolic depression (MD) in an organism that does not naturally employ regulated and reversible MD. If applied to spaceflight crewmembers, this metabolic state may theoretically mitigate numerous biological and logistical challenges of human spaceflight. These benefits have been the focus of numerous recent articles where, invariably, they are discussed in the context of hypothetical deep MD states in which the metabolism of crewmembers is profoundly depressed relative to basal rates. However, inducing these deep MD states in humans, particularly humans aboard spacecraft, is currently impossible. Here, we discuss shallow MD as a feasible first step toward synthetic torpor during spaceflight and summarize perspectives following a recent NASA-hosted workshop. We discuss methods to safely induce shallow MD (e.g., sleep and slow wave enhancement via acoustic and photoperiod stimulation; moderate sedation via dexmedetomidine), which we define as an ~20% depression of metabolic rate relative to basal levels. We also discuss different modes of shallow MD application (e.g., habitual versus targeted, whereby shallow MD is induced routinely throughout a mission or only under certain circumstances, respectively) and different spaceflight scenarios that would benefit from its use. Finally, we propose a multistep development plan toward the application of synthetic torpor to human spaceflight, highlighting shallow MD's role. As space agencies develop missions to send humans further into space than ever before, shallow MD has the potential to confer health benefits for crewmembers, reduce demands on spacecraft capacities, and serve as a testbed for deeper MD technologies.
Collapse
Affiliation(s)
- Matthew D Regan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, California
| | - Yuri V Griko
- Countermeasure Development Laboratory, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park, California
| | - Jon C Rittenberger
- Guthrie Robert Packer Hospital Emergency Medicine Program, Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania
| | - Keith J Ruskin
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
110
|
Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, DeNardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020; 29:e12976. [DOI: 10.1111/jsr.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hyun‐Sook Lee
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
- Department of Anatomy School of Medicine Konkuk University Seoul Korea
- Research Institute of Medical Science School of Medicine Konkuk University Seoul Korea
| | - Risa Yamazaki
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Dianru Wang
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Sébastien Arthaud
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Patrice Fort
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Laura A. DeNardo
- Department of Physiology University of California LA Los Angeles CA USA
| | - Pierre‐Hervé Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| |
Collapse
|
111
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
112
|
Abstract
Food intake and energy homeostasis determine survival of the organism and species. Information on total energy levels and metabolic state are sensed in the periphery and transmitted to the brain, where it is integrated and triggers the animal to forage, prey, and consume food. Investigating circuitry and cellular mechanisms coordinating energy balance and feeding behaviors has drawn on many state-of-the-art techniques, including gene manipulation, optogenetics, virus tracing, and single-cell sequencing. These new findings provide novel insights into how the central nervous system regulates food intake, and shed the light on potential therapeutic interventions for eating-related disorders such as obesity and anorexia.
Collapse
|
113
|
Good CH, Brager AJ, Capaldi VF, Mysliwiec V. Sleep in the United States Military. Neuropsychopharmacology 2020; 45:176-191. [PMID: 31185484 PMCID: PMC6879759 DOI: 10.1038/s41386-019-0431-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The military lifestyle often includes continuous operations whether in training or deployed environments. These stressful environments present unique challenges for service members attempting to achieve consolidated, restorative sleep. The significant mental and physical derangements caused by degraded metabolic, cardiovascular, skeletomuscular, and cognitive health often result from insufficient sleep and/or circadian misalignment. Insufficient sleep and resulting fatigue compromises personal safety, mission success, and even national security. In the long-term, chronic insufficient sleep and circadian rhythm disorders have been associated with other sleep disorders (e.g., insomnia, obstructive sleep apnea, and parasomnias). Other physiologic and psychologic diagnoses such as post-traumatic stress disorder, cardiovascular disease, and dementia have also been associated with chronic, insufficient sleep. Increased co-morbidity and mortality are compounded by traumatic brain injury resulting from blunt trauma, blast exposure, and highly physically demanding tasks under load. We present the current state of science in human and animal models specific to service members during- and post-military career. We focus on mission requirements of night shift work, sustained operations, and rapid re-entrainment to time zones. We then propose targeted pharmacological and non-pharmacological countermeasures to optimize performance that are mission- and symptom-specific. We recognize a critical gap in research involving service members, but provide tailored interventions for military health care providers based on the large body of research in health care and public service workers.
Collapse
Affiliation(s)
- Cameron H. Good
- 0000 0001 2151 958Xgrid.420282.ePhysical Scientist, US Army Research Laboratory, Aberdeen Proving Ground, MD, 21005 USA
| | - Allison J. Brager
- 0000 0001 0036 4726grid.420210.5Sleep Research Center, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Vincent F. Capaldi
- 0000 0001 0036 4726grid.420210.5Department of Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Silver Spring, MD 20910 USA
| | - Vincent Mysliwiec
- 0000 0004 0467 8038grid.461685.8San Antonio Military Health System, Department of Sleep Medicine, JBSA, Lackland, TX 78234 USA
| |
Collapse
|
114
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
115
|
Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019; 39:9435-9452. [PMID: 31628177 DOI: 10.1523/jneurosci.0311-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Narcolepsy, characterized by excessive daytime sleepiness, is associated with dysfunction of the hypothalamic hypocretin/orexin (Hcrt) system, either due to extensive loss of Hcrt cells (Type 1, NT1) or hypothesized Hcrt signaling impairment (Type 2, NT2). Accordingly, efforts to recapitulate narcolepsy-like symptoms in mice have involved ablating these cells or interrupting Hcrt signaling. Here, we describe orexin/Arch mice, in which a modified archaerhodopsin-3 gene was inserted downstream of the prepro-orexin promoter, resulting in expression of the yellow light-sensitive Arch-3 proton pump specifically within Hcrt neurons. Histological examination along with ex vivo and in vivo electrophysiological recordings of male and female orexin/Arch mice demonstrated silencing of Hcrt neurons when these cells were photoilluminated. However, high expression of the Arch transgene affected cellular and physiological parameters independent of photoillumination. The excitability of Hcrt neurons was reduced, and both circadian and metabolic parameters were perturbed in a subset of orexin/Arch mice that exhibited high levels of Arch expression. Orexin/Arch mice also had increased REM sleep under baseline conditions but did not exhibit cataplexy, a sudden loss of muscle tone during wakefulness characteristic of NT1. These aberrations resembled some aspects of mouse models with Hcrt neuron ablation, yet the number of Hcrt neurons in orexin/Arch mice was not reduced. Thus, orexin/Arch mice may be useful to investigate Hcrt system dysfunction when these neurons are intact, as is thought to occur in narcolepsy without cataplexy (NT2). These results also demonstrate the utility of extended phenotypic screening of transgenic models when specific neural circuits have been manipulated.SIGNIFICANCE STATEMENT Optogenetics has become an invaluable tool for functional dissection of neural circuitry. While opsin expression is often achieved by viral injection, stably integrated transgenes offer some practical advantages. Here, we demonstrate successful transgenic expression of an inhibitory opsin in hypocretin/orexin neurons, which are thought to promote or maintain wakefulness. Both brief and prolonged illumination resulted in inhibition of these neurons and induced sleep. However, even in the absence of illumination, these cells exhibited altered electrical characteristics, particularly when transgene expression was high. These aberrant properties affected metabolism and sleep, resulting in a phenotype reminiscent of the narcolepsy Type 2, a sleep disorder for which no good animal model currently exists.
Collapse
|
116
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
117
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
118
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
119
|
Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019; 116:17061-17070. [PMID: 31375626 PMCID: PMC6708384 DOI: 10.1073/pnas.1902148116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.
Collapse
|
120
|
Abstract
Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.
Collapse
|
121
|
Abstract
REM sleep is a paradoxical state accompanied by suspended thermoregulation that is preferentially expressed under optimal ambient temperatures. Komagata and colleagues now demonstrate that activity in hypothalamic melanin concentrating hormone neurons is essential for the temperature-dependent modulation of REM sleep.
Collapse
Affiliation(s)
- Gianina Ungurean
- CRNL, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, F-69372, France; Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 5, 82319 Seewiesen, Germany
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 5, 82319 Seewiesen, Germany.
| |
Collapse
|
122
|
Kosse C, Burdakov D. Natural hypothalamic circuit dynamics underlying object memorization. Nat Commun 2019; 10:2505. [PMID: 31175285 PMCID: PMC6555780 DOI: 10.1038/s41467-019-10484-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Brain signals that govern memory formation remain incompletely identified. The hypothalamus is implicated in memory disorders, but how its rapidly changing activity shapes memorization is unknown. During encounters with objects, hypothalamic melanin-concentrating hormone (MCH) neurons emit brief signals that reflect object novelty. Here we show that targeted optogenetic silencing of these signals, performed selectively during the initial object encounters (i.e. memory acquisition), prevents future recognition of the objects. We identify an upstream inhibitory microcircuit from hypothalamic GAD65 neurons to MCH neurons, which constrains the memory-promoting MCH cell bursts. Finally, we demonstrate that silencing the GAD65 cells during object memory acquisition improves future object recognition through MCH-receptor-dependent pathways. These results provide causal evidence that object-associated signals in genetically distinct but interconnected hypothalamic neurons differentially control whether the brain forms object memories. This gating of memory formation by hypothalamic activity establishes appropriate behavioral responses to novel and familiar objects.
Collapse
Affiliation(s)
- Christin Kosse
- The Francis Crick Institute, London, NW1 1AT, UK
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Denis Burdakov
- The Francis Crick Institute, London, NW1 1AT, UK.
- Neurobehavioural Dynamics Lab, Institute for Neuroscience, D-HEST, Swiss Federal Institute of Technology / ETH Zürich, Zürich, 8603, Switzerland.
| |
Collapse
|
123
|
Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019; 103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
A crucial step in understanding the sleep-control mechanism is to identify sleep neurons. Through systematic anatomical screening followed by functional testing, we identified two sleep-promoting neuronal populations along a thalamo-amygdala pathway, both expressing neurotensin (NTS). Rabies-mediated monosynaptic retrograde tracing identified the central nucleus of amygdala (CeA) as a major source of GABAergic inputs to multiple wake-promoting populations; gene profiling revealed NTS as a prominent marker for these CeA neurons. Optogenetic activation and inactivation of NTS-expressing CeA neurons promoted and suppressed non-REM (NREM) sleep, respectively, and optrode recording showed they are sleep active. Further tracing showed that CeA GABAergic NTS neurons are innervated by glutamatergic NTS neurons in a posterior thalamic region, which also promote NREM sleep. CRISPR/Cas9-mediated NTS knockdown in either the thalamic or CeA neurons greatly reduced their sleep-promoting effect. These results reveal a novel thalamo-amygdala circuit for sleep generation in which NTS signaling is essential for both the upstream glutamatergic and downstream GABAergic neurons.
Collapse
|
124
|
Komagata N, Latifi B, Rusterholz T, Bassetti CLA, Adamantidis A, Schmidt MH. Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System. Curr Biol 2019; 29:1976-1987.e4. [PMID: 31155350 DOI: 10.1016/j.cub.2019.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Ambient temperature (Ta) warming toward the high end of the thermoneutral zone (TNZ) preferentially increases rapid eye movement (REM) sleep over non-REM (NREM) sleep across species. The control and function of this temperature-induced REM sleep expression have remained unknown. Melanin-concentrating hormone (MCH) neurons play an important role in REM sleep control. We hypothesize that the MCH system may modulate REM sleep as a function of Ta. Here, we show that wild-type (WT) mice dynamically increased REM sleep durations specifically during warm Ta pulsing within the TNZ, compared to both the TNZ cool and baseline constant Ta conditions, without significantly affecting either wake or NREM sleep durations. However, genetically engineered MCH receptor-1 knockout (MCHR1-KO) mice showed no significant changes in REM sleep as a function of Ta, even with increased sleep pressure following a 4-h sleep deprivation. Using MCH-cre mice transduced with channelrhodopsin, we then optogenetically activated MCH neurons time locked with Ta warming, showing an increase in REM sleep expression beyond what Ta warming in yellow fluorescent protein (YFP) control mice achieved. Finally, in mice transduced with archaerhodopsin-T, semi-chronic optogenetic MCH neuronal silencing during Ta warming completely blocked the increase in REM sleep seen in YFP controls. These data demonstrate a previously unknown role for the MCH system in the dynamic output expression of REM sleep during Ta manipulation. These findings are consistent with the energy allocation hypothesis of sleep function, suggesting that endotherms have evolved neural circuits to opportunistically express REM sleep when the need for thermoregulatory defense is minimized.
Collapse
Affiliation(s)
- Noëmie Komagata
- Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland
| | - Blerina Latifi
- Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland
| | - Claudio L A Bassetti
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Antoine Adamantidis
- Center for Experimental Neurology, Department of Neurology, Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland; Department of Biomedical Research (DBMR), Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland
| | - Markus H Schmidt
- Center for Experimental Neurology, Department of Neurology, Bern University Hospital (Inselspital), University of Bern, 3010 Bern, Switzerland; Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA.
| |
Collapse
|
125
|
Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2019. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lateral hypothalamus (LH) is a relatively large hypothalamic structure containing several neurochemically different, but spatially intermingled, neuronal populations. While the role of these neurons in the homeostatic regulation of diverse physiological and behavioral functions such as sleep/wake cycle has been studied extensively, the impact of sleep history on the electrophysiology of the LH and whether this effect is homogenous across LH is unknown. By combining multiunit activity (MUA) recordings in different regions of LH with electroencephalogram recordings in freely moving rats, we unravelled a heterogeneity of neural-activity patterns within different subregions of LH. This heterogeneity was evident in both the circadian and the vigilance state-dependent modulation of MUA. Interestingly, and consistent with this heterogeneity under baseline conditions, the magnitude of MUA suppression following 6 hr of sleep deprivation (SD) was also different within different locations of LH. Unlike the cortex and in contrast to the predictions of the synaptic homeostatic hypothesis, no correlation was found between the magnitude of activity increase during SD and the percentage of suppression of MUA during recovery sleep. These data provide in vivo evidence of a functional heterogeneity in the circadian and homeostatic modulation of neuronal activity in LH.
Collapse
Affiliation(s)
- Marjolein Schoonakker
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karim Fifel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
126
|
Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Auton Neurosci 2019; 218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
127
|
Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019; 39:4986-4998. [PMID: 31036764 DOI: 10.1523/jneurosci.0305-19.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/08/2019] [Accepted: 04/06/2019] [Indexed: 11/21/2022] Open
Abstract
Most brain neurons are active in waking, but hypothalamic neurons that synthesize the neuropeptide melanin-concentrating hormone (MCH) are claimed to be active only during sleep, particularly rapid eye movement (REM) sleep. Here we use deep-brain imaging to identify changes in fluorescence of the genetically encoded calcium (Ca2+) indicator GCaMP6 in individual hypothalamic neurons that contain MCH. An in vitro electrophysiology study determined a strong relationship between depolarization and Ca2+ fluorescence in MCH neurons. In 10 freely behaving MCH-cre mice (male and female), the highest fluorescence occurred in all recorded neurons (n = 106) in REM sleep relative to quiet waking or non-REM sleep. Unexpectedly, 70% of the MCH neurons had strong fluorescence activity when the mice explored novel objects. Spatial and temporal mapping of the change in fluorescence between pairs of MCH neurons revealed dynamic activation of MCH neurons during REM sleep and activation of a subset of the same neurons during exploratory behavior. Functional network activity maps will facilitate comparisons of not only single-neuron activity, but also network responses in different conditions and disease.SIGNIFICANCE STATEMENT Functional activity maps identify brain circuits responding to specific behaviors, including rapid eye movement sleep (REM sleep), a sleep phase when the brain is as active as in waking. To provide the first activity map of individual neurons during REM sleep, we use deep-brain calcium imaging in unrestrained mice to map the activity of hypothalamic melanin-concentrating hormone (MCH) neurons. MCH neurons were found to be synchronously active during REM sleep, and also during the exploration of novel objects. Spatial mapping revealed dynamic network activation during REM sleep and activation of a subset of the neurons during exploratory behavior. Functional activity maps at the cellular level in specific behaviors, including sleep, are needed to establish a brain connectome.
Collapse
|
128
|
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019; 177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/04/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Collapse
Affiliation(s)
- Zhe Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peng Zhong
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fei Hu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zeke Barger
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yulan Ren
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Franz Weber
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shinjae Chung
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
129
|
Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019; 102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vincent Prevosto
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
130
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
131
|
Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019; 406:314-324. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
Abstract
Neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamic area (LH) have been shown to promote rapid eye movement sleep (REMs) in mice. However, the downstream neural pathways through which MCH neurons influence REMs remained unclear. Because MCH neurons are considered to be primarily inhibitory, we hypothesized that these neurons inhibit the midbrain 'REMs-suppressing' region consisting of the ventrolateral periaqueductal gray and the lateral pontine tegmentum (vlPAG/LPT) to promote REMs. To test this hypothesis, we optogenetically inhibited MCH terminals in the vlPAG/LPT under baseline conditions as well as with simultaneous chemogenetic activation of MCH soma. We found that inhibition of MCH terminals in the vlPAG/LPT significantly reduced transitions into REMs during spontaneous sleep-wake cycles and prevented the increase in REMs transitions observed after chemogenetic activation of MCH neurons. These results strongly suggest that the vlPAG/LPT may be an essential relay through which MCH neurons modulate REMs.
Collapse
Affiliation(s)
- Daniel Kroeger
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Sathyajit S Bandaru
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Ramalingam Vetrivelan
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| |
Collapse
|
132
|
Abstract
The functions of sleep remain a mystery. Yet they must be important since sleep is highly conserved, and its chronic disruption is associated with various metabolic, psychiatric, and neurodegenerative disorders. This review will cover our evolving understanding of the mechanisms by which sleep is controlled and the complex relationship between sleep and disease states.
Collapse
Affiliation(s)
- William J Joiner
- Department of Pharmacology, Biomedical Sciences Graduate Program, Neurosciences Graduate Program, and Center for Circadian Biology, University of California San Diego , La Jolla, California
| |
Collapse
|
133
|
Abstract
Wakefulness, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep are characterized by distinct electroencephalogram (EEG), electromyogram (EMG), and autonomic profiles. The circuit mechanism coordinating these changes during sleep-wake transitions remains poorly understood. The past few years have witnessed rapid progress in the identification of REM and NREM sleep neurons, which constitute highly distributed networks spanning the forebrain, midbrain, and hindbrain. Here we propose an arousal-action circuit for sleep-wake control in which wakefulness is supported by separate arousal and action neurons, while REM and NREM sleep neurons are part of the central somatic and autonomic motor circuits. This model is well supported by the currently known sleep and wake neurons. It can also account for the EEG, EMG, and autonomic profiles of wake, REM, and NREM states and several key features of their transitions. The intimate association between the sleep and autonomic/somatic motor control circuits suggests that a primary function of sleep is to suppress motor activity.
Collapse
Affiliation(s)
- Danqian Liu
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA;
| | - Yang Dan
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
134
|
Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2019; 12:117. [PMID: 30728768 PMCID: PMC6352749 DOI: 10.3389/fncir.2018.00117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that neurons contain and release multiple transmitter substances. However, we still have only limited insight into the regulation and functional effects of this co-transmission. Given that there are 200 or more neurotransmitters, the chemical complexity of the nervous system is daunting. This is made more-so by the fact that their interacting effects can generate diverse non-linear and novel consequences. The relatively poor history of pharmacological approaches likely reflects the fact that manipulating a transmitter system will not necessarily mimic its roles within the normal chemical environment of the nervous system (e.g., when it acts in parallel with co-transmitters). In this article, co-transmission is discussed in a range of systems [from invertebrate and lower vertebrate models, up to the mammalian peripheral and central nervous system (CNS)] to highlight approaches used, degree of understanding, and open questions and future directions. Finally, we offer some outlines of what we consider to be the general principles of co-transmission, as well as what we think are the most pressing general aspects that need to be addressed to move forward in our understanding of co-transmission.
Collapse
Affiliation(s)
- Erik Svensson
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - John Apergis-Schoute
- Department of Neurosciences, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Parker
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Helgi B Schiöth
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
135
|
Abstract
In the present chapter, hypotheses on the mechanisms responsible for the genesis of the three vigilance states, namely, waking, non-rapid eye movement (non-REM) also called slow-wave sleep (SWS), and REM sleep also called paradoxical sleep (PS), are presented. A huge number of studies first indicate that waking is induced by the activation of multiple waking systems, including the serotonergic, noradrenergic, cholinergic, and hypocretin systems. At the onset of sleep, the SWS-active neurons would be activated by the circadian clock localized in the suprachiasmatic nucleus and a hypnogenic factor, adenosine, which progressively accumulates in the brain during waking. A number of studies support the hypothesis that SWS results from the activation of GABAergic neurons localized in the ventrolateral preoptic nucleus (VLPO). However, new GABAergic systems recently described localized in the parafacial, accumbens, and reticular thalamic nuclei will be also presented. In addition, we will show that a large body of data strongly suggests that the switch from SWS to PS is due to the interaction of multiple populations of glutamatergic and GABAergic neurons localized in the posterior hypothalamus and the brainstem.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Lyon, France.
- University Lyon 1, Lyon, France.
| | - Patrice Fort
- Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
136
|
Saito Y, Hamamoto A, Kobayashi Y. [Selective signaling pathway via feeding-related ciliary GPCR, melanin-concentrating hormone receptor 1]. Nihon Yakurigaku Zasshi 2019; 154:179-185. [PMID: 31597896 DOI: 10.1254/fpj.154.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-protein-coupled receptors (GPCRs), which constitute a highly diverse family of seven transmembrane receptors, respond to external signals and regulate a variety of cellular and physiological processes. GPCRs are encoded by about 800 different genes in human and they represent the largest family of drug targets in clinical trials, which accounts for about 30% of approved drugs acting on 108 unique GPCRs. Signaling through GPCRs can be optimized by enriching receptors, selective binding partners, and downstream effectors in discrete cellular environment. The primary cilium is a ubiquitous organelle that functions as a sensory antenna for surrounding physical and chemical stimuli. Primary cilium's compartment is as little as 1/10,000th of the total cell volume. Therefore, the ciliary membrane is highly enriched for specific signaling molecules, allowing the primary cilium to organize signaling in a highly ordered microenvironment. Recently, a set of non-olfactory GPCRs such as somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1) have been found to be selectively targeted to cilia on several mammalian cell types including neuronal cells both in vitro and in vivo approaches. Moreover, investigations into the pathophysiology have implicated GPCR ciliary signaling in a number of developmental and cellular pathways. Thus, cilia are now considered as an increasingly important connection for GPCR signaling. This review summarizes our current understanding of the signaling pathways though ciliary GPCR, especially feeding- and mood-related GPCR MCHR1, along with specific biological phenomenon as cilia length shortening.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
137
|
Hypocretin and the Regulation of Sleep-Wake Transitions. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
138
|
|
139
|
Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018; 120:12-20. [PMID: 30149182 PMCID: PMC6195361 DOI: 10.1016/j.nbd.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
The lateral hypothalamus contains neurons producing orexins that promote wakefulness and suppress REM sleep as well as neurons producing melanin-concentrating hormone (MCH) that likely promote REM sleep. Narcolepsy with cataplexy is caused by selective loss of the orexin neurons, and the MCH neurons appear unaffected. As the orexin and MCH systems exert opposing effects on REM sleep, we hypothesized that imbalance in this REM sleep-regulating system due to activity in the MCH neurons may contribute to the striking REM sleep dysfunction characteristic of narcolepsy. To test this hypothesis, we chemogenetically activated the MCH neurons and pharmacologically blocked MCH signaling in a murine model of narcolepsy and studied the effects on sleep-wake behavior and cataplexy. To chemoactivate MCH neurons, we injected an adeno-associated viral vector containing the hM3Dq stimulatory DREADD into the lateral hypothalamus of orexin null mice that also express Cre recombinase in the MCH neurons (MCH-Cre::OX-KO mice) and into control MCH-Cre mice with normal orexin expression. In both lines of mice, activation of MCH neurons by clozapine-N-oxide (CNO) increased rapid eye movement (REM) sleep without altering other states. In mice lacking orexins, activation of the MCH neurons also increased abnormal intrusions of REM sleep manifest as cataplexy and short latency transitions into REM sleep (SLREM). Conversely, a MCH receptor 1 antagonist, SNAP 94847, almost completely eliminated SLREM and cataplexy in OX-KO mice. These findings affirm that MCH neurons promote REM sleep under normal circumstances, and their activity in mice lacking orexins likely triggers abnormal intrusions of REM sleep into non-REM sleep and wake, resulting in the SLREM and cataplexy characteristic of narcolepsy.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA.
| |
Collapse
|
140
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
141
|
In vivo cell type-specific CRISPR gene editing for sleep research. J Neurosci Methods 2018; 316:99-102. [PMID: 30439390 DOI: 10.1016/j.jneumeth.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
Abstract
Sleep is an innate behavior conserved in all animals and, in vertebrates, is regulated by neuronal circuits in the brain. The conventional techniques of forward and reverse genetics have enabled researchers to investigate the molecular mechanisms that regulate sleep and arousal. However, functional interrogation of genes in specific cell subtypes in the brain remains a challenge. Here, we review the background of newly developed gene-editing technologies using engineered CRISPR/Cas9 system and describe the application to interrogate gene functions within genetically-defined brain cell populations in sleep research.
Collapse
|
142
|
Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018; 91:958-966. [PMID: 30355703 DOI: 10.1212/wnl.0000000000006537] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
143
|
Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 2018; 9:4129. [PMID: 30297727 PMCID: PMC6175893 DOI: 10.1038/s41467-018-06590-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
The preoptic area (POA) is necessary for sleep, but the fundamental POA circuits have remained elusive. Previous studies showed that galanin (GAL)- and GABA-producing neurons in the ventrolateral preoptic nucleus (VLPO) express cFos after periods of increased sleep and innervate key wake-promoting regions. Although lesions in this region can produce insomnia, high frequency photostimulation of the POAGAL neurons was shown to paradoxically cause waking, not sleep. Here we report that photostimulation of VLPOGAL neurons in mice promotes sleep with low frequency stimulation (1-4 Hz), but causes conduction block and waking at frequencies above 8 Hz. Further, optogenetic inhibition reduces sleep. Chemogenetic activation of VLPOGAL neurons confirms the increase in sleep, and also reduces body temperature. In addition, chemogenetic activation of VLPOGAL neurons induces short-latency sleep in an animal model of insomnia. Collectively, these findings establish a causal role of VLPOGAL neurons in both sleep induction and heat loss.
Collapse
|
144
|
Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018; 9:790. [PMID: 30344503 PMCID: PMC6183196 DOI: 10.3389/fneur.2018.00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling.
Collapse
Affiliation(s)
- Blerina Latifi
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH, United States
| |
Collapse
|
145
|
Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2018; 224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Neurons containing melanin-concentrating hormone (MCH) in the posterior lateral hypothalamus play an integral role in rapid eye movement sleep (REMs) regulation. As MCH neurons also contain a variety of other neuropeptides [e.g., cocaine- and amphetamine-regulated transcript (CART) and nesfatin-1] and neurotransmitters (e.g., glutamate), the specific neurotransmitter responsible for REMs regulation is not known. We hypothesized that glutamate, the primary fast-acting neurotransmitter in MCH neurons, is necessary for REMs regulation. To test this hypothesis, we deleted vesicular glutamate transporter (Vglut2; necessary for synaptic release of glutamate) specifically from MCH neurons by crossing MCH-Cre mice (expressing Cre recombinase in MCH neurons) with Vglut2flox/flox mice (expressing LoxP-modified alleles of Vglut2), and studied the amounts, architecture and diurnal variation of sleep-wake states during baseline conditions. We then activated the MCH neurons lacking glutamate neurotransmission using chemogenetic methods and tested whether these MCH neurons still promoted REMs. Our results indicate that glutamate in MCH neurons contributes to normal diurnal variability of REMs by regulating the levels of REMs during the dark period, but MCH neurons can promote REMs even in the absence of glutamate.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA.
| |
Collapse
|
146
|
Abstract
The regulated alternations between wakefulness and sleep states reflect complex behavioral processes, orchestrated by distinct neurochemical changes in brain parenchyma. No single neurotransmitter or neuromodulator controls the sleep-wake states in isolation. Rather, fine-tuned interactions within organized neuronal circuits regulate waking and sleep states and drive their transitions. Structural or functional dysregulation and medications interfering with these ensembles can lead to sleep-wake disorders and exert wanted or unwanted pharmacological actions on sleep-wake states. Knowledge of the neurochemical bases of sleep-wake states, which will be discussed in this article, provides the conceptual framework for understanding pharmacological effects on sleep and wake.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 28 Juliane Maries Vej 6931, Copenhagen 2100, Denmark.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
147
|
Sabetghadam A, Grabowiecka-Nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018; 139:238-256. [DOI: 10.1016/j.neuropharm.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
|
148
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
149
|
Fortin GM, Ducrot C, Giguère N, Kouwenhoven WM, Bourque MJ, Pacelli C, Varaschin RK, Brill M, Singh S, Wiseman PW, Trudeau LÉ. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB J 2018; 33:400-417. [PMID: 30011230 DOI: 10.1096/fj.201800713rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dopamine (DA) is a key regulator of circuits controlling movement and motivation. A subset of midbrain DA neurons has been shown to express the vesicular glutamate transporter (VGLUT)2, underlying their capacity for glutamate release. Glutamate release is found mainly by DA neurons of the ventral tegmental area (VTA) and can be detected at terminals contacting ventral, but not dorsal, striatal neurons, suggesting the possibility that target-derived signals regulate the neurotransmitter phenotype of DA neurons. Whether glutamate can be released from the same terminals that release DA or from a special subset of axon terminals is unclear. Here, we provide in vitro and in vivo data supporting the hypothesis that DA and glutamate-releasing terminals in mice are mostly segregated and that striatal neurons regulate the cophenotype of midbrain DA neurons and the segregation of release sites. Our work unveils a fundamental feature of dual neurotransmission and plasticity of the DA system.-Fortin, G. M., Ducrot, C., Giguère, N., Kouwenhoven, W. M., Bourque, M.-J., Pacelli, C., Varaschin, R. K., Brill, M., Singh, S., Wiseman, P. W., Trudeau, L.-E. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells.
Collapse
Affiliation(s)
- Guillaume M Fortin
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Consiglia Pacelli
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | | | - Marion Brill
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Sherdeep Singh
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; and
| | - Paul W Wiseman
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; and
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
150
|
Li S, Yip A, Bird J, Seok BS, Chan A, Godden KE, Tam LD, Ghelardoni S, Balaban E, Martinez-Gonzalez D, Pompeiano M. Melanin-concentrating hormone (MCH) neurons in the developing chick brain. Brain Res 2018; 1700:19-30. [PMID: 30420052 DOI: 10.1016/j.brainres.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
The present study was undertaken because no previous developmental studies exist on MCH neurons in any avian species. After validating a commercially-available antibody for use in chickens, immunohistochemical examinations first detected MCH neurons around embryonic day (E) 8 in the posterior hypothalamus. This population increased thereafter, reaching a numerical maximum by E20. MCH-positive cell bodies were found only in the posterior hypothalamus at all ages examined, restricted to a region showing very little overlap with the locations of hypocretin/orexin (H/O) neurons. Chickens had fewer MCH than H/O neurons, and MCH neurons also first appeared later in development than H/O neurons (the opposite of what has been found in rodents). MCH neurons appeared to originate from territories within the hypothalamic periventricular organ that partially overlap with the source of diencephalic serotonergic neurons. Chicken MCH fibers developed exuberantly during the second half of embryonic development, and they became abundant in the same brain areas as in rodents, including the hypothalamus (by E12), locus coeruleus (by E12), dorsal raphe nucleus (by E20) and septum (by E20). These observations suggest that MCH cells may play different roles during development in chickens and rodents; but once they have developed, MCH neurons exhibit similar phenotypes in birds and rodents.
Collapse
Affiliation(s)
- SiHan Li
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jaimie Bird
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bong Soo Seok
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Aimee Chan
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Kyle E Godden
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Laurel D Tam
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Evan Balaban
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|