101
|
Acha B, Corroza J, Sánchez-Ruiz de Gordoa J, Cabello C, Robles M, Méndez-López I, Macías M, Zueco S, Roldan M, Urdánoz-Casado A, Jericó I, Erro ME, Alcolea D, Lleo A, Blanco-Luquin I, Mendioroz M. Association of Blood-Based DNA Methylation Markers With Late-Onset Alzheimer Disease: A Potential Diagnostic Approach. Neurology 2023; 101:e2434-e2447. [PMID: 37827850 PMCID: PMC10752644 DOI: 10.1212/wnl.0000000000207865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There is an urgent need to identify novel noninvasive biomarkers for Alzheimer disease (AD) diagnosis. Recent advances in blood-based measurements of phosphorylated tau (pTau) species are promising but still insufficient to address clinical needs. Epigenetics has been shown to be helpful to better understand AD pathogenesis. Epigenetic biomarkers have been successfully implemented in other medical disciplines, such as oncology. The objective of this study was to explore the diagnostic accuracy of a blood-based DNA methylation marker panel as a noninvasive tool to identify patients with late-onset Alzheimer compared with age-matched controls. METHODS A case-control study was performed. Blood DNA methylation levels at 46 cytosine-guanine sites (21 genes selected after a comprehensive literature search) were measured by bisulfite pyrosequencing in patients with "probable AD dementia" following National Institute on Aging and the Alzheimer's Association guidelines (2011) and age-matched and sex-matched controls recruited at Neurology Department-University Hospital of Navarre, Spain, selected by convenience sampling. Plasma pTau181 levels were determined by Simoa technology. Multivariable logistic regression analysis was performed to explore the optimal model to discriminate patients with AD from controls. Furthermore, we performed a stratified analysis by sex. RESULTS The final study cohort consisted of 80 patients with AD (age: median [interquartile range] 79 [11] years; 58.8% female) and 100 cognitively healthy controls (age 77 [10] years; 58% female). A panel including DNA methylation levels at NXN, ABCA7, and HOXA3 genes and plasma pTau181 significantly improved (area under the receiver operating characteristic curve 0.93, 95% CI 0.89-0.97) the diagnostic performance of a single pTau181-based model, adjusted for age, sex, and APOE ɛ4 genotype. The sensitivity and specificity of this panel were 83.30% and 90.00%, respectively. After sex-stratified analysis, HOXA3 DNA methylation levels showed consistent association with AD. DISCUSSION These results highlight the potential translational value of blood-based DNA methylation biomarkers for noninvasive diagnosis of AD. REGISTRATION INFORMATION Research Ethics Committee of the University Hospital of Navarre (PI17/02218).
Collapse
Affiliation(s)
- Blanca Acha
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Jon Corroza
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Carolina Cabello
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Maitane Robles
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Iván Méndez-López
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Mónica Macías
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Sara Zueco
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Miren Roldan
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Amaya Urdánoz-Casado
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Ivonne Jericó
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Maria Elena Erro
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Alberto Lleo
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Idoia Blanco-Luquin
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain
| | - Maite Mendioroz
- From the Navarrabiomed (B.A., J.S.-R.d.G., C.C., M. Robles, I.M.-L., M.M., S.Z., M. Roldan, A.U.-C., I.J., M.E.E., I.B.-L., M.M.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA); Departments of Neurology (J.C., J.S.-R.d.G., C.C., I.J., M.E.E., M.M.) and Internal Medicine (I.M.-L.), Hospital Universitario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona; Department of Neurology (D.A., A.L.), Institut d'Investigacions Biomèdiques Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalunya; and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain.
| |
Collapse
|
102
|
Bettencourt C, Skene N, Bandres-Ciga S, Anderson E, Winchester LM, Foote IF, Schwartzentruber J, Botia JA, Nalls M, Singleton A, Schilder BM, Humphrey J, Marzi SJ, Toomey CE, Kleifat AA, Harshfield EL, Garfield V, Sandor C, Keat S, Tamburin S, Frigerio CS, Lourida I, Ranson JM, Llewellyn DJ. Artificial intelligence for dementia genetics and omics. Alzheimers Dement 2023; 19:5905-5921. [PMID: 37606627 PMCID: PMC10841325 DOI: 10.1002/alz.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between dementia subtypes? Can high-dimensional omics data identify improved biomarkers? How can genetics inform our understanding of causal status of dementia risk factors? And which biological processes are altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning approaches give us powerful new tools in helping us to tackle these challenges, and we review possible solutions and examples of best practice. However, their limitations also need to be considered, as well as the need for coordinated multidisciplinary research and diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and omics data for precision dementia medicine. HIGHLIGHTS: We have identified five key challenges in dementia genetics and omics studies. AI can enable detection of undiscovered patterns in dementia genetics and omics data. Enhanced and more diverse genetics and omics datasets are still needed. Multidisciplinary collaborative efforts using AI can boost dementia research.
Collapse
Affiliation(s)
- Conceicao Bettencourt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Nathan Skene
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Anderson
- Department of Mental Health of Older People, Division of Psychiatry, University College London, London, UK
| | | | - Isabelle F Foote
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Schwartzentruber
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, California, USA
| | - Juan A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Mike Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Ahmad Al Kleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eric L Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, UK
| | - Cynthia Sandor
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Samuel Keat
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | - Carlo Sala Frigerio
- UK Dementia Research Institute, Queen Square Institute of Neurology, University College London, London, UK
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
103
|
Zhang B, Zhang X, Omorou M, Zhao K, Ruan Y, Luan H. Disco interacting protein 2 homolog A (DIP2A): A key component in the regulation of brain disorders. Biomed Pharmacother 2023; 168:115771. [PMID: 37897975 DOI: 10.1016/j.biopha.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Disco Interacting Protein 2 Homolog A (DIP2A) is expressed throughout the body and abundantly expressed in the brain tissue. It is activated by Follistatin-like 1 (FSTL1). Activated DIP2A interacts with several pathways, such as AMPK/mTOR and AKT pathways, to contribute to many biological processes, such as oxidative stress, transcriptional regulation, and apoptosis. Dysregulated DIP2A activation has been implicated in numerous processes in the brain. If the upstream pathways of DIP2A remain globally unexplored, many proteins, including cortactin, AMPK, and AKT, have been identified as its downstream targets in the literature. Recent studies have linked DIP2A to a variety of mechanisms in many types of brain disorders, suggesting that regulation of DIP2A could provide novel diagnostic and therapeutic approaches for brain disorders. In this review, we comprehensively summarized and discussed the current research on DIP2A in various brain disorders, such as stroke, autism spectrum disorders (ASD), Alzheimer's disease (AD), dyslexia, and glioma.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Xuesong Zhang
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Moussa Omorou
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Kai Zhao
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Yang Ruan
- The Central Hospital of Jiamusi City, Jiamusi, Heilongjiang, China.
| | - Haiyan Luan
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China.
| |
Collapse
|
104
|
Vinciguerra M. The Potential for Artificial Intelligence Applied to Epigenetics. MAYO CLINIC PROCEEDINGS. DIGITAL HEALTH 2023; 1:476-479. [PMID: 40206300 PMCID: PMC11975694 DOI: 10.1016/j.mcpdig.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Affiliation(s)
- Manlio Vinciguerra
- Correspondence: Address to Manlio Vinciguerra, MSc, PhD, Medical University of Varna, ul. “Professor Marin Drinov” 55, 9002 Varna, Bulgaria.
| |
Collapse
|
105
|
Zhang J, Wang Y, Zhang Y, Yao J. Genome-wide association study in Alzheimer's disease: a bibliometric and visualization analysis. Front Aging Neurosci 2023; 15:1290657. [PMID: 38094504 PMCID: PMC10716290 DOI: 10.3389/fnagi.2023.1290657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Thousands of research studies concerning genome-wide association studies (GWAS) in Alzheimer's disease (AD) have been published in the last decades. However, a comprehensive understanding of the current research status and future development trends of GWAS in AD have not been clearly shown. In this study, we tried to gain a systematic overview of GWAS in AD by bibliometric and visualization analysis. METHODS The literature search terms are: ("genome-wide analysis" or "genome-wide association study" or "whole-genome analysis") AND ("Alzheimer's Disease" or "Alzheimer Disease"). Relevant publications were extracted from the Web of Science Core Collection (WoSCC) database. Collected data were further analyzed using VOSviewer, CiteSpace and R package Bibliometrix. The countries, institutions, authors and scholar collaborations were investigated. The co-citation analysis of publications was visualized. In addition, research hotspots and fronts were examined. RESULTS A total of 1,350 publications with 59,818 citations were identified. The number of publications and citations presented a significant rising trend since 2013. The United States was the leading country with an overwhelming number of publications (775) and citations (42,237). The University of Washington and Harvard University were the most prolific institutions with 101 publications each. Bennett DA was the most influential researcher with the highest local H-index. Neurobiology of Aging was the journal with the highest number of publications. Aβ, tau, immunity, microglia and DNA methylation were research hotspots. Disease and causal variants were research fronts. CONCLUSION The most frequently studied AD pathogenesis and research hotspots are (1) Aβ and tau, (2) immunity and microglia, with TREM2 as a potential immunotherapy target, and (3) DNA methylation. The research fronts are (1) looking for genetic similarities between AD and other neurological diseases and syndromes, and (2) searching for causal variants of AD. These hotspots suggest noteworthy directions for future studies on AD pathogenesis and genetics, in which basic research regarding immunity is promising for clinical conversion. The current under-researched directions are (1) GWAS in AD biomarkers based on large sample sizes, (2) studies of causal variants of AD, and (3) GWAS in AD based on non-European populations, which need to be strengthened in the future.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
106
|
Macías M, Acha B, Corroza J, Urdánoz-Casado A, Roldan M, Robles M, Sánchez-Ruiz de Gordoa J, Erro ME, Jericó I, Blanco-Luquin I, Mendioroz M. Liquid Biopsy in Alzheimer's Disease Patients Reveals Epigenetic Changes in the PRLHR Gene. Cells 2023; 12:2679. [PMID: 38067107 PMCID: PMC10705731 DOI: 10.3390/cells12232679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer's disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients' lifetimes. In a previous methylome performed in the hippocampus of 26 AD patients and 12 controls, we found higher methylation levels in AD patients in the promoter region of PRLHR, a gene involved in energy balance regulation. Our aim was to further characterize PRLHR's role in AD and to evaluate if the liquid biopsy technique would provide life access to this brain information in a non-invasive way. First, we extended the methylation mapping of PRLHR and validated previous methylome results via bisulfite cloning sequencing. Next, we observed a positive correlation between PRLHR methylation levels and AD-related neuropathological changes and a decreased expression of PRLHR in AD hippocampus. Then, we managed to replicate the hippocampal methylation differences in plasma cfDNA from an additional cohort of 35 AD patients and 35 controls. The isolation of cfDNA from the plasma of AD patients may constitute a source of potential epigenetic biomarkers to aid AD clinical management.
Collapse
Affiliation(s)
- Mónica Macías
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Blanca Acha
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Jon Corroza
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Amaya Urdánoz-Casado
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Miren Roldan
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Maitane Robles
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Javier Sánchez-Ruiz de Gordoa
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - María Elena Erro
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Ivonne Jericó
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Idoia Blanco-Luquin
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Maite Mendioroz
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| |
Collapse
|
107
|
Chen Q, Aguirre L, Zhao H, Borrego F, de Rojas I, Su L, Li PP, Zhang B, Kokovay E, Lechleiter JD, Göring HH, De Jager PL, Kleinman JE, Hyde TM, Ruiz A, Weinberger DR, Seshadri S, Ma L. Identification of a specific APOE transcript and functional elements associated with Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.30.23297431. [PMID: 37961425 PMCID: PMC10635228 DOI: 10.1101/2023.10.30.23297431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION The APOE gene is the strongest genetic risk factor for late-onset Alzheimer's Disease (LOAD). However, the gene regulatory mechanisms at this locus have not been fully characterized. METHODS To identify novel AD-linked functional elements within the APOE locus, we integrated SNP variants with RNA-seq, DNA methylation, and ChIP-seq data from human postmortem brains. RESULTS We identified an AD-linked APOE transcript (jxn1.2.2) observed in the dorsolateral prefrontal cortex (DLPFC). The APOE jxn1.2.2 transcript is associated with brain neuropathological features in DLPFC. We prioritized an independent functional SNP, rs157580, significantly associated with jxn1.2.2 transcript abundance and DNA methylation levels. rs157580 is located within active chromatin regions and predicted to affect brain-related transcriptional factors binding affinity. rs157580 shared the effects on the jxn1.2.2 transcript between European and African ethnic groups. DISCUSSION The novel APOE functional elements provide potential therapeutic targets with mechanistic insight into the disease's etiology.
Collapse
|
108
|
Sarnowski C, Huan T, Ma Y, Joehanes R, Beiser A, DeCarli CS, Heard-Costa NL, Levy D, Lin H, Liu CT, Liu C, Meigs JB, Satizabal CL, Florez JC, Hivert MF, Dupuis J, De Jager PL, Bennett DA, Seshadri S, Morrison AC. Multi-tissue epigenetic analysis identifies distinct associations underlying insulin resistance and Alzheimer's disease at CPT1A locus. Clin Epigenetics 2023; 15:173. [PMID: 37891690 PMCID: PMC10612362 DOI: 10.1186/s13148-023-01589-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Alexa Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Nancy L Heard-Costa
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel Levy
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia L Satizabal
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Harvard University, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Josée Dupuis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
109
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Kunkle B, Martin ER, Wang L. Critical evaluation of the reliability of DNA methylation probes on the Illumina MethylationEPIC BeadChip microarrays. RESEARCH SQUARE 2023:rs.3.rs-3068938. [PMID: 37461726 PMCID: PMC10350239 DOI: 10.21203/rs.3.rs-3068938/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC arrays. We conducted a comprehensive assessment of the EPIC array probe reliability using 138 duplicated blood DNAm samples generated by the Alzheimer's Disease Neuroimaging Initiative study. We introduced a novel statistical measure, the modified intraclass correlation, to better account for the disagreement in duplicate measurements. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliable information for probes on the EPIC array, will serve as a valuable resource for future DNAm studies.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
110
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Kunkle B, Martin ER, Wang L. Critical evaluation of the reliability of DNA methylation probes on the Illumina MethylationEPIC BeadChip microarrays. RESEARCH SQUARE 2023:rs.3.rs-3068938. [PMID: 37461726 PMCID: PMC10350239 DOI: 10.21203/rs.3.rs-3068938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC arrays. We conducted a comprehensive assessment of the EPIC array probe reliability using 138 duplicated blood DNAm samples generated by the Alzheimer's Disease Neuroimaging Initiative study. We introduced a novel statistical measure, the modified intraclass correlation, to better account for the disagreement in duplicate measurements. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliable information for probes on the EPIC array, will serve as a valuable resource for future DNAm studies.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
111
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
112
|
Signal B, Pérez Suárez TG, Taberlay PC, Woodhouse A. Cellular specificity is key to deciphering epigenetic changes underlying Alzheimer's disease. Neurobiol Dis 2023; 186:106284. [PMID: 37683959 DOI: 10.1016/j.nbd.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Different cell types in the brain play distinct roles in Alzheimer's disease (AD) progression. Late onset AD (LOAD) is a complex disease, with a large genetic component, but many risk loci fall in non-coding genome regions. Epigenetics implicates the non-coding genome with control of gene expression. The epigenome is highly cell-type specific and dynamically responds to the environment. Therefore, epigenetic mechanisms are well placed to explain genetic and environmental factors that are associated with AD. However, given this cellular specificity, purified cell populations or single cells need to be profiled to avoid effect masking. Here we review the current state of cell-type specific genome-wide profiling in LOAD, covering DNA methylation (CpG, CpH, and hydroxymethylation), histone modifications, and chromatin changes. To date, these data reveal that distinct cell types contribute and react differently to AD progression through epigenetic alterations. This review addresses the current gap in prior bulk-tissue derived work by spotlighting cell-specific changes that govern the complex interplay of cells throughout disease progression and are critical in understanding and developing effective treatments for AD.
Collapse
Affiliation(s)
- Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | | | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
113
|
Campos-Martin R, Bey K, Elsner B, Reuter B, Klawohn J, Philipsen A, Kathmann N, Wagner M, Ramirez A. Epigenome-wide analysis identifies methylome profiles linked to obsessive-compulsive disorder, disease severity, and treatment response. Mol Psychiatry 2023; 28:4321-4330. [PMID: 37587247 PMCID: PMC10827661 DOI: 10.1038/s41380-023-02219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent mental disorder affecting ~2-3% of the population. This disorder involves genetic and, possibly, epigenetic risk factors. The dynamic nature of epigenetics also presents a promising avenue for identifying biomarkers associated with symptom severity, clinical progression, and treatment response in OCD. We, therefore, conducted a comprehensive case-control investigation using Illumina MethylationEPIC BeadChip, encompassing 185 OCD patients and 199 controls recruited from two distinct sites in Germany. Rigorous clinical assessments were performed by trained raters employing the Structured Clinical Interview for DSM-IV (SCID-I). We performed a robust two-step epigenome-wide association study that led to the identification of 305 differentially methylated CpG positions. Next, we validated these findings by pinpointing the optimal set of CpGs that could effectively classify individuals into their respective groups. This approach identified a subset comprising 12 CpGs that overlapped with the 305 CpGs identified in our EWAS. These 12 CpGs are close to or in genes associated with the sweet-compulsive brain hypothesis which proposes that aberrant dopaminergic transmission in the striatum may impair insulin signaling sensitivity among OCD patients. We replicated three of the 12 CpGs signals from a recent independent study conducted on the Han Chinese population, underscoring also the cross-cultural relevance of our findings. In conclusion, our study further supports the involvement of epigenetic mechanisms in the pathogenesis of OCD. By elucidating the underlying molecular alterations associated with OCD, our study contributes to advancing our understanding of this complex disorder and may ultimately improve clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Björn Elsner
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Reuter
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
114
|
Qian XH, Chen SY, Liu XL, Tang HD. ABCA7-Associated Clinical Features and Molecular Mechanisms in Alzheimer's Disease. Mol Neurobiol 2023; 60:5548-5556. [PMID: 37322288 DOI: 10.1007/s12035-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aβ production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aβ is destroyed by ABCA7 deficiency, leading to reduced clearance of Aβ. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
115
|
Lynch MT, Taub MA, Farfel JM, Yang J, Abadir P, De Jager PL, Grodstein F, Bennett DA, Mathias RA. Evaluating genomic signatures of aging in brain tissue as it relates to Alzheimer's disease. Sci Rep 2023; 13:14747. [PMID: 37679407 PMCID: PMC10484923 DOI: 10.1038/s41598-023-41400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number (mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with Alzheimer's dementia, cognitive function, and pathologic Alzheimer's disease (AD). Epigenetic age and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined dementia, MCI, and level of and change in cognition, pathologic AD, and three quantitative AD traits, as well as measures of other neurodegenerative diseases and cerebrovascular diseases (CVD). We previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic features of AD. Here, we show that those associations are independent of TL. We found TL to be associated with β-amyloid levels (beta = - 0.15, p = 0.023), hippocampal sclerosis (OR = 0.56, p = 0.0015) and cerebral atherosclerosis (OR = 1.44, p = 0.0007). We found strong associations between mtDNAcn and clinical measures of AD. The strongest associations with pathologic measures of AD were with cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles. Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration, accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure alone. These findings highlight for the first time that age acceleration determined on multiple genomic measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD) pathogenesis than single measures.
Collapse
Affiliation(s)
- Megan T Lynch
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter Abadir
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
116
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
117
|
Mahzarnia A, Lutz MW, Badea A. A Continuous Extension of Gene Set Enrichment Analysis using the Likelihood Ratio Test Statistics Identifies VEGF as a Candidate Pathway for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554319. [PMID: 37662249 PMCID: PMC10473614 DOI: 10.1101/2023.08.22.554319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Alzheimer's disease involves brain pathologies such as amyloid plaque depositions and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand the disease etiology and devise therapies. Objective Our objective was to identify molecular pathways associated with AD biomarkers (Amyloid-β and tau) and cognitive status (MMSE) accounting for variables such as age, sex, education, and APOE genotype. Methods We introduce a novel pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (Amyloid-β, tau, cognition), using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved a large sample size with data available for all three phenotypes, allowing for the identification of common pathways. Results We identified 14 pathways significantly associated with Amyloid-β, 5 associated with tau, and 174 associated with MMSE. Surprisingly, the MMSE outcome showed a larger number of significant pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited significant associations with all three phenotypes. Conclusions The study's findings highlight the importance of the VEGF signaling pathway in aging in AD. The complex interactions within the VEGF signaling family offer valuable insights for future therapeutic interventions.
Collapse
|
118
|
Cai M, Zhou J, McKennan C, Wang J. scMD: cell type deconvolution using single-cell DNA methylation references. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551733. [PMID: 37577715 PMCID: PMC10418231 DOI: 10.1101/2023.08.03.551733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The proliferation of single-cell RNA sequencing data has led to the widespread use of cellular deconvolution, aiding the extraction of cell type-specific information from extensive bulk data. However, those advances have been mostly limited to transcriptomic data. With recent development in single-cell DNA methylation (scDNAm), new avenues have been opened for deconvolving bulk DNAm data, particularly for solid tissues like the brain that lack cell-type references. Due to technical limitations, current scDNAm sequences represent a small proportion of the whole genome for each single cell, and those detected regions differ across cells. This makes scDNAm data ultra-high dimensional and ultra-sparse. To deal with these challenges, we introduce scMD (single cell Methylation Deconvolution), a cellular deconvolution framework to reliably estimate cell type fractions from tissue-level DNAm data. To analyze large-scale complex scDNAm data, scMD employs a statistical approach to aggregate scDNAm data at the cell cluster level, identify cell-type marker DNAm sites, and create a precise cell-type signature matrix that surpasses state-of-the-art sorted-cell or RNA-derived references. Through thorough benchmarking in several datasets, we demonstrate scMD's superior performance in estimating cellular fractions from bulk DNAm data. With scMD-estimated cellular fractions, we identify cell type fractions and cell type-specific differentially methylated cytosines associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Manqi Cai
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA
| | - Chris McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
119
|
Wang E, Wang M, Guo L, Fullard JF, Micallef C, Bendl J, Song WM, Ming C, Huang Y, Li Y, Yu K, Peng J, Bennett DA, De Jager PL, Roussos P, Haroutunian V, Zhang B. Genome-wide methylomic regulation of multiscale gene networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3472-3495. [PMID: 36811307 PMCID: PMC10440222 DOI: 10.1002/alz.12969] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.
Collapse
Affiliation(s)
- Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Courtney Micallef
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yong Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, New York, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
120
|
Bazan N, Bhattacharjee S, Kala-Bhattacharjee S, Ledet A, Mukherjee P. Elovanoids are neural resiliency epigenomic regulators targeting histone modifications, DNA methylation, tau phosphorylation, telomere integrity, senescence programming, and dendrite integrity. RESEARCH SQUARE 2023:rs.3.rs-3185942. [PMID: 37502897 PMCID: PMC10371143 DOI: 10.21203/rs.3.rs-3185942/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cellular identity, developmental reorganization, genomic structure modulation, and susceptibility to diseases are determined by epigenomic regulation by multiple signaling interplay. Here we demonstrate that elovanoids (ELVs), mediators derived from very-long-chain polyunsaturated fatty acids (VLC-PUFAs, n-3, C > 28), and their precursors in neurons in culture overcome the damage triggered by oligomeric amyloid-beta (OAβ), erastin (ferroptosis-dependent cell death), or other insults that target epigenomic signaling. We uncover that ELVs counteract damage targeting histones H3K9 and H3K27 methylation and acetylation; tau hyperphosphorylation (pThr181, pThr217, pThr231, and pSer202/pThr205 (AT8)); senescence gene programming (p16INK4a, p27KIP, p21CIP1, and p53); DNA methylation (DNAm) modifying enzymes: TET (DNA hydroxymethylase), DNA methyltransferase, DNA demethylase, and DNAm (5mC) phenotype. Moreover, ELVs revert OAβ-triggered telomere length (TL) attrition as well as upregulation of telomerase reverse transcriptase (TERT) expression fostering dendrite protection and neuronal survival. Thus, ELVs modulate epigenomic resiliency by pleiotropic interrelated signaling.
Collapse
|
121
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
122
|
Luckett ES, Zielonka M, Kordjani A, Schaeverbeke J, Adamczuk K, De Meyer S, Van Laere K, Dupont P, Cleynen I, Vandenberghe R. Longitudinal APOE4- and amyloid-dependent changes in the blood transcriptome in cognitively intact older adults. Alzheimers Res Ther 2023; 15:121. [PMID: 37438770 PMCID: PMC10337180 DOI: 10.1186/s13195-023-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Gene expression is dysregulated in Alzheimer's disease (AD) patients, both in peripheral blood and post mortem brain. We investigated peripheral whole-blood gene (co)expression to determine molecular changes prior to symptom onset. METHODS RNA was extracted and sequenced for 65 cognitively healthy F-PACK participants (65 (56-80) years, 34 APOE4 non-carriers, 31 APOE4 carriers), at baseline and follow-up (interval: 5.0 (3.4-8.6) years). Participants received amyloid PET at both time points and amyloid rate of change derived. Accumulators were defined with rate of change ≥ 2.19 Centiloids. We performed differential gene expression and weighted gene co-expression network analysis to identify differentially expressed genes and networks of co-expressed genes, respectively, with respect to traits of interest (APOE4 status, amyloid accumulation (binary/continuous)), and amyloid positivity status, followed by Gene Ontology annotation. RESULTS There were 166 significant differentially expressed genes at follow-up compared to baseline in APOE4 carriers only, whereas 12 significant differentially expressed genes were found only in APOE4 non-carriers, over time. Among the significant genes in APOE4 carriers, several had strong evidence for a pathogenic role in AD based on direct association scores generated from the DISQOVER platform: NGRN, IGF2, GMPR, CLDN5, SMIM24. Top enrichment terms showed upregulated mitochondrial and metabolic pathways, and an exacerbated upregulation of ribosomal pathways in APOE4 carriers compared to non-carriers. Similarly, there were 33 unique significant differentially expressed genes at follow-up compared to baseline in individuals classified as amyloid negative at baseline and positive at follow-up or amyloid positive at both time points and 32 unique significant differentially expressed genes over time in individuals amyloid negative at both time points. Among the significant genes in the first group, the top five with the highest direct association scores were as follows: RPL17-C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. Top enrichment terms included upregulated metabolism and focal adhesion pathways. Baseline and follow-up gene co-expression networks were separately built. Seventeen baseline co-expression modules were derived, with one significantly negatively associated with amyloid accumulator status (r2 = - 0.25, p = 0.046). This was enriched for proteasomal protein catabolic process and myeloid cell development. Thirty-two follow-up modules were derived, with two significantly associated with APOE4 status: one downregulated (r2 = - 0.27, p = 0.035) and one upregulated (r2 = 0.26, p = 0.039) module. Top enrichment processes for the downregulated module included proteasomal protein catabolic process and myeloid cell homeostasis. Top enrichment processes for the upregulated module included cytoplasmic translation and rRNA processing. CONCLUSIONS We show that there are longitudinal gene expression changes that implicate a disrupted immune system, protein removal, and metabolism in cognitively intact individuals who carry APOE4 or who accumulate in cortical amyloid. This provides insight into the pathophysiology of AD, whilst providing novel targets for drug and therapeutic development.
Collapse
Affiliation(s)
- Emma S Luckett
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Magdalena Zielonka
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven, KU Leuven, Leuven, 3000, Belgium
| | - Amine Kordjani
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory of Neuropathology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | | | - Steffi De Meyer
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
- Laboratory of Molecular Neurobiomarker Research, KU Leuven, Leuven, 3000, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, UZ Leuven, Leuven, 3000, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, 3000, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium
| | - Isabelle Cleynen
- Laboratory for Complex Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, Leuven, 3000, Belgium.
- Neurology Department, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
123
|
Kraus TFJ, Langwieder CK, Hölzl D, Hutarew G, Schlicker HU, Alinger-Scharinger B, Schwartz C, Sotlar K. Dissecting the Methylomes of EGFR-Amplified Glioblastoma Reveals Altered DNA Replication and Packaging, and Chromatin and Gene Silencing Pathways. Cancers (Basel) 2023; 15:3525. [PMID: 37444635 DOI: 10.3390/cancers15133525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma IDH wildtype is the most frequent brain tumor in adults. It shows a highly malignant behavior and devastating outcomes. To date, there is still no targeted therapy available; thus, patients' median survival is limited to 12-15 months. Epithelial growth factor receptor (EGFR) is an interesting targetable candidate in advanced precision medicine for brain tumor patients. In this study, we performed integrated epigenome-wide DNA-methylation profiling of 866,895 methylation specific sites in 50 glioblastoma IDH wildtype samples, comparing EGFR amplified and non-amplified glioblastomas. We found 9849 significantly differentially methylated CpGs (DMCGs) with Δβ ≥ 0.1 and p-value < 0.05 in EGFR amplified, compared to EGFR non-amplified glioblastomas. Of these DMCGs, 2380 were annotated with tiling (2090), promoter (117), gene (69) and CpG islands (104); 7460 are located at other loci. Interestingly, the list of differentially methylated genes allocated eleven functionally relevant RNAs: five miRNAs (miR1180, miR1255B1, miR126, miR128-2, miR3125), two long non-coding RNAs (LINC00474, LINC01091), and four antisense RNAs (EPN2-AS1, MNX1-AS2, NKX2-2-AS1, WWTR1-AS1). Gene ontology (GO) analysis showed enrichment of "DNA replication-dependent nucleosome assembly", "chromatin silencing at rDNA", "regulation of gene silencing by miRNA", "DNA packaging", "posttranscriptional gene silencing", "gene silencing by RNA", "negative regulation of gene expression, epigenetic", "regulation of gene silencing", "protein-DNA complex subunit organization", and "DNA replication-independent nucleosome organization" pathways being hypomethylated in EGFR amplified glioblastomas. In summary, dissecting the methylomes of EGFR amplified and non-amplified glioblastomas revealed altered DNA replication, DNA packaging, chromatin silencing and gene silencing pathways, opening potential novel targets for future precision medicine.
Collapse
Affiliation(s)
- Theo F J Kraus
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Celina K Langwieder
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Dorothee Hölzl
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Georg Hutarew
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Hans U Schlicker
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Beate Alinger-Scharinger
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Christoph Schwartz
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020 Salzburg, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| |
Collapse
|
124
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
125
|
Fodder K, de Silva R, Warner TT, Bettencourt C. The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration. Acta Neuropathol Commun 2023; 11:106. [PMID: 37386505 PMCID: PMC10311741 DOI: 10.1186/s40478-023-01607-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rohan de Silva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
126
|
Wu S, Yang F, Chao S, Wang B, Wang W, Li H, Yu L, He L, Li X, Sun L, Qin S. Altered DNA methylome profiles of blood leukocytes in Chinese patients with mild cognitive impairment and Alzheimer's disease. Front Genet 2023; 14:1175864. [PMID: 37388929 PMCID: PMC10300350 DOI: 10.3389/fgene.2023.1175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Objective: DNA methylation plays a potential role in the pathogenesis of Alzheimer's disease (AD). However, little is known about the global changes of blood leukocyte DNA methylome profiles from Chinese patients with mild cognitive impairment (MCI) and with AD, or the specific DNA methylation-based signatures associated with MCI and AD. In this study, we sought to dissect the characteristics of blood DNA methylome profiles in MCI- and AD-affected Chinese patients with the aim of identifying novel DNA methylation biomarkers for AD. Methods: In this study, we profiled the DNA methylome of peripheral blood leukocytes from 20 MCI- and 20 AD-affected Chinese patients and 20 cognitively healthy controls (CHCs) with the Infinium Methylation EPIC BeadChip array. Results: We identified significant alterations of the methylome profiles in MCI and AD blood leukocytes. A total of 2,582 and 20,829 CpG sites were significantly and differentially methylated in AD and MCI compared with CHCs (adjusted p < 0.05), respectively. Furthermore, 441 differentially methylated positions (DMPs), aligning to 213 unique genes, were overlapped by the three comparative groups of AD versus CHCs, MCI versus CHCs, and AD versus MCI, of which 6 and 5 DMPs were continuously hypermethylated and hypomethylated in MCI and AD relative to CHCs (adjusted p < 0.05), respectively, such as FLNC cg20186636 and AFAP1 cg06758191. The DMPs with an area under the curve >0.900, such as cg18771300, showed high potency for predicting MCI and AD. In addition, gene ontology and pathway enrichment results showed that these overlapping genes were mainly involved in neurotransmitter transport, GABAergic synaptic transmission, signal release from synapse, neurotransmitter secretion, and the regulation of neurotransmitter levels. Furthermore, tissue expression enrichment analysis revealed a subset of potentially cerebral cortex-enriched genes associated with MCI and AD, including SYT7, SYN3, and KCNT1. Conclusion: This study revealed a number of potential biomarkers for MCI and AD, also highlighted the presence of epigenetically dysregulated gene networks that may engage in the underlying pathological events resulting in the onset of cognitive impairment and AD progression. Collectively, this study provides prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Fan Yang
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Shan Chao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Bo Wang
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wuqian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - He Li
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
- Shanghai Mental Health Center, Editorial Office, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
127
|
Li J, Capuano AW, Agarwal P, Arvanitakis Z, Wang Y, De Jager PL, Schneider JA, Tasaki S, de Paiva Lopes K, Hu FB, Bennett DA, Liang L, Grodstein F. The MIND diet, brain transcriptomic alterations, and dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291263. [PMID: 37398494 PMCID: PMC10312892 DOI: 10.1101/2023.06.12.23291263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Identifying novel mechanisms underlying dementia is critical to improving prevention and treatment. As an approach to mechanistic discovery, we investigated whether MIND diet (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay), a consistent risk factor for dementia, is correlated with a specific profile of cortical gene expression, and whether such a transcriptomic profile is associated with dementia, in the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP). RNA sequencing (RNA-Seq) was conducted in postmortem dorsolateral prefrontal cortex tissue from 1,204 deceased participants; neuropsychological assessments were performed annually prior to death. In a subset of 482 participants, diet was assessed ~6 years before death using a validated food-frequency questionnaire; in these participants, using elastic net regression, we identified a transcriptomic profile, consisting of 50 genes, significantly correlated with MIND diet score (P=0.001). In multivariable analysis of the remaining 722 individuals, higher transcriptomic score of MIND diet was associated with slower annual rate of decline in global cognition (β=0.011 per standard deviation increment in transcriptomic profile score, P=0.003) and lower odds of dementia (odds ratio [OR] =0.76, P=0.0002). Cortical expression of several genes appeared to mediate the association between MIND diet and dementia, including TCIM, whose expression in inhibitory neurons and oligodendrocytes was associated with dementia in a subset of 424 individuals with single-nuclei RNA-seq data. In a secondary Mendelian randomization analysis, genetically predicted transcriptomic profile score was associated with dementia (OR=0.93, P=0.04). Our study suggests that associations between diet and cognitive health may involve brain molecular alterations at the transcriptomic level. Investigating brain molecular alterations related to diet may inform the identification of novel pathways underlying dementia.
Collapse
Affiliation(s)
- Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
- Department of Nutrition, Harvard T.H. Chan School of Public Health
| | - Ana W. Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Puja Agarwal
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Internal Medicine, Rush University Medical Center
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
- Department of Pathology, Rush University Medical Center
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health
- Department of Epidemiology, Harvard T.H. Chan School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Neurological Sciences, Rush University Medical Center
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health
- Department of Biostatistics, Harvard T.H. Chan School of Public Health
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center
- Department of Internal Medicine, Rush University Medical Center
| |
Collapse
|
128
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
129
|
Gilder D, Bernert R, Karriker-Jaffe K, Ehlers C, Peng Q. Genetic Factors Associated with Suicidal Behaviors and Alcohol Use Disorders in an American Indian Population. RESEARCH SQUARE 2023:rs.3.rs-2950284. [PMID: 37398076 PMCID: PMC10312956 DOI: 10.21203/rs.3.rs-2950284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
American Indians (AI) demonstrate the highest rates of both suicidal behaviors (SB) and alcohol use disorders (AUD) among all ethnic groups in the US. Rates of suicide and AUD vary substantially between tribal groups and across different geographical regions, underscoring a need to delineate more specific risk and resilience factors. Using data from over 740 AI living within eight contiguous reservations, we assessed genetic risk factors for SB by investigating: (1) possible genetic overlap with AUD, and (2) impacts of rare and low frequency genomic variants. Suicidal behaviors included lifetime history of suicidal thoughts and acts, including verified suicide deaths, scored using a ranking variable for the SB phenotype (range 0-4). We identified five loci significantly associated with SB and AUD, two of which are intergenic and three intronic on genes AACSP1, ANK1, and FBXO11. Nonsynonymous rare mutations in four genes including SERPINF1 (PEDF), ZNF30, CD34, and SLC5A9, and non-intronic rare mutations in genes OPRD1, HSD17B3 and one lincRNA were significantly associated with SB. One identified pathway related to hypoxia-inducible factor (HIF) regulation, whose 83 nonsynonymous rare variants on 10 genes were significantly linked to SB as well. Four additional genes, and two pathways related to vasopressin-regulated water metabolism and cellular hexose transport, also were strongly associated with SB. This study represents the first investigation of genetic factors for SB in an American Indian population that has high risk for suicide. Our study suggests that bivariate association analysis between comorbid disorders can increase statistical power; and rare variant analysis in a high-risk population enabled by whole-genome sequencing has the potential to identify novel genetic factors. Although such findings may be population specific, rare functional mutations relating to PEDF and HIF regulation align with past reports and suggest a biological mechanism for suicide risk and a potential therapeutic target for intervention.
Collapse
|
130
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
131
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
132
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Sabet SS, Wesse T, Fuß J, Franzenburg S, Franke A, Parkkinen L, Lill CM, Bertram L. Entorhinal cortex epigenome-wide association study highlights four novel loci showing differential methylation in Alzheimer's disease. Alzheimers Res Ther 2023; 15:92. [PMID: 37149695 PMCID: PMC10163801 DOI: 10.1186/s13195-023-01232-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies on DNA methylation (DNAm) in Alzheimer's disease (AD) have recently highlighted several genomic loci showing association with disease onset and progression. METHODS Here, we conducted an epigenome-wide association study (EWAS) using DNAm profiles in entorhinal cortex (EC) from 149 AD patients and control brains and combined these with two previously published EC datasets by meta-analysis (total n = 337). RESULTS We identified 12 cytosine-phosphate-guanine (CpG) sites showing epigenome-wide significant association with either case-control status or Braak's tau-staging. Four of these CpGs, located in proximity to CNFN/LIPE, TENT5A, PALD1/PRF1, and DIRAS1, represent novel findings. Integrating DNAm levels with RNA sequencing-based mRNA expression data generated in the same individuals showed significant DNAm-mRNA correlations for 6 of the 12 significant CpGs. Lastly, by calculating rates of epigenetic age acceleration using two recently proposed "epigenetic clock" estimators we found a significant association with accelerated epigenetic aging in the brains of AD patients vs. controls. CONCLUSION In summary, our study represents the hitherto most comprehensive EWAS in AD using EC and highlights several novel differentially methylated loci with potential effects on gene expression.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
- Ageing Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany.
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
133
|
Kim JP, Kim BH, Bice PJ, Seo SW, Bennett DA, Saykin AJ, Nho K. Integrative Co-methylation Network Analysis Identifies Novel DNA Methylation Signatures and Their Target Genes in Alzheimer's Disease. Biol Psychiatry 2023; 93:842-851. [PMID: 36150909 PMCID: PMC9789210 DOI: 10.1016/j.biopsych.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND DNA methylation is a key epigenetic marker, and its alternations may be involved in Alzheimer's disease (AD). CpGs sharing similar biological functions or pathways tend to be co-methylated. METHODS We performed an integrative network-based DNA methylation analysis on 2 independent cohorts (N = 941) using brain DNA methylation profiles and RNA-sequencing as well as AD pathology data. RESULTS Weighted co-methylation network analysis identified 6 modules as significantly associated with neuritic plaque burden. In total, 15 hub CpGs including 3 novel CpGs were identified and replicated as being significantly associated with AD pathology. Furthermore, we identified and replicated 4 target genes (ATP6V1G2, VCP, RAD52, and LST1) as significantly regulated by DNA methylation at hub CpGs. In particular, VCP gene expression was also associated with AD pathology in both cohorts. CONCLUSIONS This integrative network-based multiomics study provides compelling evidence for a potential role of DNA methylation alternations and their target genes in AD.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Paula J Bice
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
134
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
135
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. Alzheimers Res Ther 2023; 15:78. [PMID: 37038196 PMCID: PMC10088180 DOI: 10.1186/s13195-023-01216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. METHODS We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ42, phosphorylated tau181 (pTau181), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. RESULTS We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. CONCLUSIONS Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michael A Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
136
|
Yang M, Matan-Lithwick S, Wang Y, De Jager PL, Bennett DA, Felsky D. Multi-omic integration via similarity network fusion to detect molecular subtypes of ageing. Brain Commun 2023; 5:fcad110. [PMID: 37082508 PMCID: PMC10110975 DOI: 10.1093/braincomms/fcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Molecular subtyping of brain tissue provides insights into the heterogeneity of common neurodegenerative conditions, such as Alzheimer's disease. However, existing subtyping studies have mostly focused on single data modalities and only those individuals with severe cognitive impairment. To address these gaps, we applied similarity network fusion, a method capable of integrating multiple high-dimensional multi-omic data modalities simultaneously, to an elderly sample spanning the full spectrum of cognitive ageing trajectories. We analyzed human frontal cortex brain samples characterized by five omic modalities: bulk RNA sequencing (18 629 genes), DNA methylation (53 932 CpG sites), histone acetylation (26 384 peaks), proteomics (7737 proteins) and metabolomics (654 metabolites). Similarity network fusion followed by spectral clustering was used for subtype detection, and subtype numbers were determined by Eigen-gap and rotation cost statistics. Normalized mutual information determined the relative contribution of each modality to the fused network. Subtypes were characterized by associations with 13 age-related neuropathologies and cognitive decline. Fusion of all five data modalities (n = 111) yielded two subtypes (n S1 = 53, n S2 = 58), which were nominally associated with diffuse amyloid plaques; however, this effect was not significant after correction for multiple testing. Histone acetylation (normalized mutual information = 0.38), DNA methylation (normalized mutual information = 0.18) and RNA abundance (normalized mutual information = 0.15) contributed most strongly to this network. Secondary analysis integrating only these three modalities in a larger subsample (n = 513) indicated support for both three- and five-subtype solutions, which had significant overlap, but showed varying degrees of internal stability and external validity. One subtype showed marked cognitive decline, which remained significant even after correcting for tests across both three- and five-subtype solutions (p Bonf = 5.9 × 10-3). Comparison to single-modality subtypes demonstrated that the three-modal subtypes were able to uniquely capture cognitive variability. Comprehensive sensitivity analyses explored influences of sample size and cluster number parameters. We identified highly integrative molecular subtypes of ageing derived from multiple high dimensional, multi-omic data modalities simultaneously. Fusing RNA abundance, DNA methylation, and histone acetylation measures generated subtypes that were associated with cognitive decline. This work highlights the potential value and challenges of multi-omic integration in unsupervised subtyping of post-mortem brain.
Collapse
Affiliation(s)
- Mu Yang
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Stuart Matan-Lithwick
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
| | - Philip L De Jager
- The Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10033, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
| | - Daniel Felsky
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
137
|
Oveisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023; 100:e1474-e1487. [PMID: 36697247 PMCID: PMC10104608 DOI: 10.1212/wnl.0000000000206833] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Jingyun Yang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Dominika Burba
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Woojeong Bang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Shinya Tasaki
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Fran Grodstein
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yanling Wang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Jinying Zhao
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
138
|
PerezGrovas-Saltijeral A, Rajkumar AP, Knight HM. Differential expression of m 5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer's disease and traumatic brain injury. Mol Neurobiol 2023; 60:2223-2235. [PMID: 36646969 PMCID: PMC9984329 DOI: 10.1007/s12035-022-03195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.
Collapse
Affiliation(s)
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK.,Mental Health Services for Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
139
|
Palma-Gudiel H, Yu L, Huo Z, Yang J, Wang Y, Gu T, Gao C, De Jager PL, Jin P, Bennett DA, Zhao J. Fine-mapping and replication of EWAS loci harboring putative epigenetic alterations associated with AD neuropathology in a large collection of human brain tissue samples. Alzheimers Dement 2023; 19:1216-1226. [PMID: 35959851 PMCID: PMC9922334 DOI: 10.1002/alz.12761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Our previous epigenome-wide association study (EWAS) of Alzheimer's disease (AD) in human brain identified 71 CpGs associated with AD pathology. However, due to low coverage of the Illumina platform, many important CpGs might have been missed. METHODS In a large collection of human brain tissue samples (N = 864), we fine-mapped previous EWAS loci by targeted bisulfite sequencing and examined their associations with AD neuropathology. DNA methylation was also linked to gene expression of the same brain cortex. RESULTS Our targeted sequencing captured 130 CpGs (∼1.2 kb), 93 of which are novel. Of the 130 CpGs, 57 sites (only 17 included in previous EWAS) and 12 gene regions (e.g., ANK1, BIN1, RHBDF2, SPG7, PODXL) were significantly associated with amyloid load. DNA methylation in some regions was associated with expression of nearby genes. DISCUSSION Targeted methylation sequencing can validate previous EWAS loci and discover novel CpGs associated with AD pathology.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Cheng Gao
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
140
|
Mabondzo A, Harati R, Broca-Brisson L, Guyot AC, Costa N, Cacciante F, Putignano E, Baroncelli L, Skelton MR, Saab C, Martini E, Benech H, Joudinaud T, Gaillard JC, Armengaud J, Hamoudi R. Dodecyl creatine ester improves cognitive function and identifies key protein drivers including KIF1A and PLCB1 in a mouse model of creatine transporter deficiency. Front Mol Neurosci 2023; 16:1118707. [PMID: 37063368 PMCID: PMC10103630 DOI: 10.3389/fnmol.2023.1118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 04/03/2023] Open
Abstract
Creatine transporter deficiency (CTD), a leading cause of intellectual disability is a result of the mutation in the gene encoding the creatine transporter SLC6A8, which prevents creatine uptake into the brain, causing mental retardation, expressive speech and language delay, autistic-like behavior and epilepsy. Preclinical in vitro and in vivo data indicate that dodecyl creatine ester (DCE) which increases the creatine brain content, might be a therapeutic option for CTD patients. To gain a better understanding of the pathophysiology and DCE treatment efficacy in CTD, this study focuses on the identification of biomarkers related to cognitive improvement in a Slc6a8 knockout mouse model (Slc6a8−/y) engineered to mimic the clinical features of CTD patients which have low brain creatine content. Shotgun proteomics analysis of 4,035 proteins in four different brain regions; the cerebellum, cortex, hippocampus (associated with cognitive functions) and brain stem, and muscle as a control, was performed in 24 mice. Comparison of the protein abundance in the four brain regions between DCE-treated intranasally Slc6a8−/y mice and wild type and DCE-treated Slc6a8−/y and vehicle group identified 14 biomarkers, shedding light on the mechanism of action of DCE. Integrative bioinformatics and statistical modeling identified key proteins in CTD, including KIF1A and PLCB1. The abundance of these proteins in the four brain regions was significantly correlated with both the object recognition and the Y-maze tests. Our findings suggest a major role for PLCB1, KIF1A, and associated molecules in the pathogenesis of CTD.
Collapse
Affiliation(s)
- Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif sur Yvette, France
- *Correspondence: Aloïse Mabondzo,
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharja, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Léa Broca-Brisson
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif sur Yvette, France
| | - Anne-Cécile Guyot
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif sur Yvette, France
| | - Narciso Costa
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif sur Yvette, France
| | | | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Matthew R. Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States
| | - Cathy Saab
- Université de Paris and Université Paris Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay aux Roses, France
| | - Emmanuelle Martini
- Université de Paris and Université Paris Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay aux Roses, France
| | | | | | - Jean-Charles Gaillard
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (MTS), INRAE, Bagnol sur Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (MTS), INRAE, Bagnol sur Cèze, France
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
141
|
Wang C, Zou Q, Pu Y, Cai Z, Tang Y. Berberine Rescues D-Ribose-Induced Alzheimer's Pathology via Promoting Mitophagy. Int J Mol Sci 2023; 24:ijms24065896. [PMID: 36982968 PMCID: PMC10055824 DOI: 10.3390/ijms24065896] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondrial dysfunction is considered an early event of Alzheimer disease (AD). D-ribose is a natural monosaccharide that exists in cells, especially in mitochondria, and can lead to cognitive dysfunction. However, the reason for this is unclear. Berberine (BBR) is an isoquinoline alkaloid that can target mitochondria and has great prospect in the treatment of AD. The methylation of PINK1 reinforces the burden of Alzheimer's pathology. This study explores the role of BBR and D-ribose in the mitophagy and cognitive function of AD related to DNA methylation. APP/PS1 mice and N2a cells were treated with D-ribose, BBR, and mitophagy inhibitor Mdivi-1 to observe their effects on mitochondrial morphology, mitophagy, neuron histology, AD pathology, animal behavior, and PINK1 methylation. The results showed that D-ribose induced mitochondrial dysfunction, mitophagy damage, and cognitive impairment. However, BBR inhibition of PINK1 promoter methylation can reverse the above effects caused by D-ribose, improve mitochondrial function, and restore mitophagy through the PINK1-Parkin pathway, thus reducing cognitive deficits and the burden of AD pathology. This experiment puts a new light on the mechanism of action of D-ribose in cognitive impairment and reveals new insights in the use of BBR for AD treatment.
Collapse
Affiliation(s)
- Chuanling Wang
- Department of Histology and Embryology, School of Basic Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
- Department of Neurology, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
- Department of Neurology, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
- Department of Neurology, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
142
|
Peng X, Zhang W, Cui W, Ding B, Lyu Q, Wang J. ADmeth: A Manually Curated Database for the Differential Methylation in Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:843-851. [PMID: 35617175 DOI: 10.1109/tcbb.2022.3178087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. More and more evidence show that DNA methylation is closely related to the pathological mechanism of AD. Many AD-associated differentially methylated genes, regions and CpG sites have been identified in recent researches, which may have great potential in clinical research. However, there is no dedicated database to collect AD-related differential methylation up to now. To provide a reference to researchers, we design a database named ADmeth by manually curating relevant articles, which contains a total of 16,709 AD-related differentially methylated items identified from different brain regions and different cell types in the blood, involving 209 genes, 2,229 regions and 14,271 CpG sites. The ADmeth database provides user-friendly pages to search, submit and download data. We hope that the ADmeth database can facilitate researchers to select candidate AD-associated methylation markers in revealing the pathological mechanism of AD and promote the cell-free DNA based non-invasive diagnosis of AD. The ADmeth database is available at http://www.biobdlab.cn/ADmeth.
Collapse
|
143
|
Pramio DT, Vieceli FM, Varella-Branco E, Goes CP, Kobayashi GS, da Silva Pelegrina DV, de Moraes BC, El Allam A, De Kumar B, Jara G, Farfel JM, Bennett DA, Kundu S, Viapiano MS, Reis EM, de Oliveira PSL, Dos Santos E Passos-Bueno MR, Rothlin CV, Ghosh S, Schechtman D. DNA methylation of the promoter region at the CREB1 binding site is a mechanism for the epigenetic regulation of brain-specific PKMζ. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194909. [PMID: 36682583 PMCID: PMC10037092 DOI: 10.1016/j.bbagrm.2023.194909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Carolina Purcell Goes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil; Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | | | | - Aicha El Allam
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Gabriel Jara
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | - José Marcelo Farfel
- Traumatology and Orthopedy Department, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Health Sciences Program, Instituto de Assistência Medica ao Servidor Público do Estado (IAMSPE), SP, Brazil
| | - David Alan Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Somanath Kundu
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | | | - Carla V Rothlin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
144
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. RESEARCH SQUARE 2023:rs.3.rs-2391364. [PMID: 36865230 PMCID: PMC9980279 DOI: 10.21203/rs.3.rs-2391364/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Background Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. Methods We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ 42 , phosphorylated tau 181 (pTau 181 ), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. Results We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau 181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. Conclusions Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- University of Miami, Miller School of Medicine
| | - Juan I Young
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | - Michael A Schmidt
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | | | | | - Eden R Martin
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | - Lily Wang
- University of Miami, Miller School of Medicine
| |
Collapse
|
145
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
146
|
Histone Modifications in Alzheimer's Disease. Genes (Basel) 2023; 14:genes14020347. [PMID: 36833274 PMCID: PMC9956192 DOI: 10.3390/genes14020347] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.
Collapse
|
147
|
Three-dimensional chromatin architecture datasets for aging and Alzheimer's disease. Sci Data 2023; 10:51. [PMID: 36693875 PMCID: PMC9873630 DOI: 10.1038/s41597-023-01948-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Recently, increasing studies are indicating a close association between dysregulated enhancers and neurodegenerative diseases, such as Alzheimer's disease (AD). However, their contributions were poorly defined for lacking direct links to disease genes. To bridge this gap, we presented the Hi-C datasets of 4 AD patients, 4 dementia-free aged and 3 young subjects, including 30 billion reads. As applications, we utilized them to link the AD risk SNPs and dysregulated epigenetic marks to the target genes. Combining with epigenetic data, we observed more detailed interactions among regulatory regions and found that many known AD risk genes were under long-distance promoter-enhancer interactions. For future AD and aging studies, our datasets provide a reference landscape to better interpret findings of association and epigenetic studies for AD and aging process.
Collapse
|
148
|
Ma X, Feng Y, Quan X, Geng B, Li G, Fu X, Zeng L. Multi-omics analysis revealed the role of CCT2 in the induction of autophagy in Alzheimer's disease. Front Genet 2023; 13:967730. [PMID: 36704351 PMCID: PMC9871314 DOI: 10.3389/fgene.2022.967730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer's disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in Alzheimer's disease. First, bioinformatics database analysis revealed that CCT2 was significantly downregulated in patients with Alzheimer's disease and associated with autophagic clearance of β-amyloid. The 789 differentially expressed genes overlapped in AD-group and CCT2-low/high group, and the CCT2-high-associated genes screened by Pearson coefficients were enriched in protein folding, autophagy, and messenger RNA stability regulation pathways. These results suggest that CCT2 is significantly and positively associated with multiple pathways linked to autophagy and negatively associated with neuronal death. The logistic prediction model with 13 key genes, such as CCT2, screened in this study better predicts Alzheimer's disease occurrence (AUC = 0.9671) and is a favorable candidate for predicting potential biological targets of Alzheimer's disease. Additionally, this study predicts reciprocal micro RNAs and small molecule drugs for hub genes. Our findings suggest that low CCT2 expression may be responsible for the autophagy suppression in Alzheimer's disease, providing an accurate explanation for its pathogenesis and new targets and small molecule inhibitors for its treatment.
Collapse
Affiliation(s)
- Xueting Ma
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Feng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Quan
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Bingyu Geng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Guodong Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Zeng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Linlin Zeng,
| |
Collapse
|
149
|
Piras IS, Brokaw D, Kong Y, Weisenberger DJ, Krate J, Delvaux E, Mahurkar S, Blattler A, Siegmund KD, Sue L, Serrano GE, Beach TG, Laird PW, Huentelman MJ, Coleman PD. Integrated DNA Methylation/RNA Profiling in Middle Temporal Gyrus of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-022-01307-3. [PMID: 36596913 DOI: 10.1007/s10571-022-01307-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder clinically defined by gradual cognitive impairment and alteration in executive function. We conducted an epigenome-wide association study (EWAS) of a clinically and neuropathologically characterized cohort of 296 brains, including Alzheimer's disease (AD) and non-demented controls (ND), exploring the relationship with the RNA expression from matched donors. We detected 5246 CpGs and 832 regions differentially methylated, finding overlap with previous EWAS but also new associations. CpGs previously identified in ANK1, MYOC, and RHBDF2 were differentially methylated, and one of our top hits (GPR56) was not previously detected. ANK1 was differentially methylated at the region level, along with APOE and RHBDF2. Only a small number of genes showed a correlation between DNA methylation and RNA expression statistically significant. Multiblock partial least-squares discriminant analysis showed several CpG sites and RNAs discriminating AD and ND (AUC = 0.908) and strongly correlated with each other. Furthermore, the CpG site cg25038311 was negatively correlated with the expression of 22 genes. Finally, with the functional epigenetic module analysis, we identified a protein-protein network characterized by inverse RNA/DNA methylation correlation and enriched for "Regulation of insulin-like growth factor transport", with IGF1 as the hub gene. Our results confirm and extend the previous EWAS, providing new information about a brain region not previously explored in AD DNA methylation studies. The relationship between DNA methylation and gene expression is not significant for most of the genes in our sample, consistently with the complexities in the gene expression regulation.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Danielle Brokaw
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Yinfei Kong
- Department of Information Systems and Decision Sciences, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, University of South California, Los Angeles, CA, 90033, USA
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- UnityPoint Clinic, Waterloo, IA, USA
| | - Elaine Delvaux
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Swapna Mahurkar
- UCLA Division of Digestive Diseases, University of California, Los Angeles, CA, 90024, USA
| | - Adam Blattler
- Department of Biochemistry and Molecular Biology, University of South California, Los Angeles, CA, 90033, USA
- Genetics Graduate Group, University of California, Davis, CA, 95616, USA
| | - Kimberly D Siegmund
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089-9175, USA
| | - Lucia Sue
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Paul D Coleman
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
150
|
Abraham Daniel A, Silzer T, Sun J, Zhou Z, Hall C, Phillips N, Barber R. Hypermethylation at CREBBP Is Associated with Cognitive Impairment in a Mexican American Cohort. J Alzheimers Dis 2023; 92:1229-1239. [PMID: 36872777 PMCID: PMC10200223 DOI: 10.3233/jad-221031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND The aging Mexican American (MA) population is the fastest growing ethnic minority group in the US. MAs have a unique metabolic-related risk for Alzheimer's disease (AD) and mild cognitive impairment (MCI), compared to non-Hispanic whites (NHW). This risk for cognitive impairment (CI) is multifactorial involving genetics, environmental, and lifestyle factors. Changes in environment and lifestyle can alter patterns and even possibly reverse derangement of DNA methylation (a form of epigenetic regulation). OBJECTIVE We sought to identify ethnicity-specific DNA methylation profiles that may be associated with CI in MAs and NHWs. METHODS DNA obtained from peripheral blood of 551 participants from the Texas Alzheimer's Research and Care Consortium was typed on the Illumina Infinium® MethylationEPIC chip array, which assesses over 850K CpG genomic sites. Within each ethnic group (N = 299 MAs, N = 252 NHWs), participants were stratified by cognitive status (control versus CI). Beta values, representing relative degree of methylation, were normalized using the Beta MIxture Quantile dilation method and assessed for differential methylation using the Chip Analysis Methylation Pipeline (ChAMP), limma and cate packages in R. RESULTS Two differentially methylated sites were significant: cg13135255 (MAs) and cg27002303 (NHWs) based on an FDR p < 0.05. Three suggestive sites obtained were cg01887506 (MAs) and cg10607142 and cg13529380 (NHWs). Most methylation sites were hypermethylated in CI compared to controls, except cg13529380 which was hypomethylated. CONCLUSION The strongest association with CI was at cg13135255 (FDR-adjusted p = 0.029 in MAs), within the CREBBP gene. Moving forward, identifying additional ethnicity-specific methylation sites may be useful to discern CI risk in MAs.
Collapse
Affiliation(s)
- Ann Abraham Daniel
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jie Sun
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Courtney Hall
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nicole Phillips
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Robert Barber
- Department of Family and Manipulative Medicine, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|