101
|
Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK. Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. Int J Mol Sci 2021; 22:8398. [PMID: 34445105 PMCID: PMC8395105 DOI: 10.3390/ijms22168398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.
Collapse
Affiliation(s)
- Yasmine S. Hezema
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
- Department of Horticulture, Damanhour University, Damanhour 22713, El-Beheira, Egypt
| | - Mukund R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Alok Goel
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Murali M. Ayyanath
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| |
Collapse
|
102
|
Sorkin ML, Nusinow DA. Time Will Tell: Intercellular Communication in the Plant Clock. TRENDS IN PLANT SCIENCE 2021; 26:706-719. [PMID: 33468432 DOI: 10.1016/j.tplants.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/17/2023]
Abstract
Multicellular organisms have evolved local and long-distance signaling mechanisms to synchronize development and response to stimuli among a complex network of cells, tissues, and organs. Biological timekeeping is one such activity that is suggested to be coordinated within an organism to anticipate and respond to daily and seasonal patterns in the environment. New research into the plant clock suggests circadian rhythms are communicated between cells and across long distances. However, further clarity is required on the nature of the signaling molecules and the mechanisms underlying signal translocation. Here we summarize the roles and properties of tissue-specific circadian rhythms, discuss the evidence for local and long-distance clock communication, and evaluate the potential signaling molecules and transport mechanisms involved in this system.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
103
|
Subhankar B, Yamaguchi K, Shigenobu S, Aoki K. Trans-species small RNAs move long distances in a parasitic plant complex. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:187-196. [PMID: 34393597 PMCID: PMC8329266 DOI: 10.5511/plantbiotechnology.21.0121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 05/13/2023]
Abstract
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant's parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.
Collapse
Affiliation(s)
- Bera Subhankar
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Koh Aoki
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
104
|
Fabres PJ, Anand L, Sai N, Pederson S, Zheng F, Stewart AA, Clements B, Lampugnani ER, Breen J, Gilliham M, Tricker P, Rodríguez López CM, David R. Tissue and regional expression patterns of dicistronic tRNA-mRNA transcripts in grapevine (Vitis vinifera) and their evolutionary co-appearance with vasculature in land plants. HORTICULTURE RESEARCH 2021; 8:137. [PMID: 34059643 PMCID: PMC8166872 DOI: 10.1038/s41438-021-00572-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 06/02/2023]
Abstract
Transfer RNAs (tRNA) are crucial adaptor molecules between messenger RNA (mRNA) and amino acids. Recent evidence in plants suggests that dicistronic tRNA-like structures also act as mobile signals for mRNA transcripts to move between distant tissues. Co-transcription is not a common feature in the plant nuclear genome and, in the few cases where polycistronic transcripts have been found, they include non-coding RNA species, such as small nucleolar RNAs and microRNAs. It is not known, however, the extent to which dicistronic transcripts of tRNA and mRNAs are expressed in field-grown plants, or the factors contributing to their expression. We analysed tRNA-mRNA dicistronic transcripts in the major horticultural crop grapevine (Vitis vinifera) using a novel pipeline developed to identify dicistronic transcripts from high-throughput RNA-sequencing data. We identified dicistronic tRNA-mRNA in leaf and berry samples from 22 commercial vineyards. Of the 124 tRNA genes that were expressed in both tissues, 18 tRNA were expressed forming part of 19 dicistronic tRNA-mRNAs. The presence and abundance of dicistronic molecules was tissue and geographic sub-region specific. In leaves, the expression patterns of dicistronic tRNA-mRNAs significantly correlated with tRNA expression, suggesting that their transcriptional regulation might be linked. We also found evidence of syntenic genomic arrangements of tRNAs and protein-coding genes between grapevine and Arabidopsis thaliana, and widespread prevalence of dicistronic tRNA-mRNA transcripts among vascular land plants but no evidence of these transcripts in non-vascular lineages. This suggests that the appearance of plant vasculature and tRNA-mRNA occurred concurrently during the evolution of land plants.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Na Sai
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Fei Zheng
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Alexander A Stewart
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Benjamin Clements
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Breen
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- ARC Industrial Transformation Training Centre in Innovative Wine Production, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Penny Tricker
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| | - Rakesh David
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
105
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
106
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
107
|
Lee CH, Hawker NP, Peters JR, Lonhienne TGA, Gursanscky NR, Matthew L, Brosnan CA, Mann CWG, Cromer L, Taochy C, Ngo QA, Sundaresan V, Schenk PM, Kobe B, Borges F, Mercier R, Bowman JL, Carroll BJ. DEFECTIVE EMBRYO AND MERISTEMS genes are required for cell division and gamete viability in Arabidopsis. PLoS Genet 2021; 17:e1009561. [PMID: 33999950 PMCID: PMC8158957 DOI: 10.1371/journal.pgen.1009561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1’s primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1. Up to half of the genes predicted from genome projects lack a known biological and biochemical function. Many of these genes are likely to play essential roles but it is difficult to reveal their function because minor changes in the genetic sequence can result in lethality and genetic redundancy can obscure analysis. Genome projects predict that flowering plants have at least two DEM genes that encode a protein of unknown cellular and biochemical function. In this paper, we use multiple combinations of dem mutants in Arabidopsis to show that DEM genes are essential for cell division and gamete viability. Interestingly, gamete viability depends not only on the number of functional copies of DEM genes in the gametes, but also on the number of functional copies of DEM genes in the parent plant that produces the gametes. We also show that DEM proteins interact with RAN, a highly conserved protein that controls cell division in all eukaryotic organisms.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nathaniel P. Hawker
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Jonathan R. Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Thierry G. A. Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nial R. Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Louisa Matthew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher A. Brosnan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Quy A. Ngo
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Venkatesan Sundaresan
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - John L. Bowman
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
- * E-mail: (JLB); (BJC)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- * E-mail: (JLB); (BJC)
| |
Collapse
|
108
|
Annacondia ML, Markovic D, Reig-Valiente JL, Scaltsoyiannes V, Pieterse CMJ, Ninkovic V, Slotkin RK, Martinez G. Aphid feeding induces the relaxation of epigenetic control and the associated regulation of the defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:1185-1200. [PMID: 33475147 DOI: 10.1111/nph.17226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 05/23/2023]
Abstract
Environmentally induced changes in the epigenome help individuals to quickly adapt to fluctuations in the conditions of their habitats. We explored those changes in Arabidopsis thaliana plants subjected to multiple biotic and abiotic stresses, and identified transposable element (TE) activation in plants infested with the green peach aphid, Myzus persicae. We performed a genome-wide analysis mRNA expression, small RNA accumulation and DNA methylation Our results demonstrate that aphid feeding induces loss of methylation of hundreds of loci, mainly TEs. This loss of methylation has the potential to regulate gene expression and we found evidence that it is involved in the control of plant immunity genes. Accordingly, mutant plants deficient in DNA and H3K9 methylation (kyp) showed increased resistance to M. persicae infestation. Collectively, our results show that changes in DNA methylation play a significant role in the regulation of the plant transcriptional response and induction of defense response against aphid feeding.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, 78000, Bosnia and Herzegovina
| | - Juan Luis Reig-Valiente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Vassilis Scaltsoyiannes
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institut de Biologie de Moléculaire des Plantes, UPR 2357 du CNRS, Strasbourg University, Strasbourg, 67000, France
| | - Corné M J Pieterse
- Department of Biology, Science4Life, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65021, USA
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
109
|
Zhang J, Xu Y, Xie J, Zhuang H, Liu H, Shen G, Wu J. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. PLANT PHYSIOLOGY 2021; 185:1395-1410. [PMID: 33793912 PMCID: PMC8133666 DOI: 10.1093/plphys/kiaa004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Dodder (Cuscuta spp., Convolvulaceae) is a genus of parasitic plants with worldwide distribution. Dodders are able to simultaneously parasitize two or more adjacent hosts, forming dodder-connected plant clusters. Nitrogen (N) deficiency is a common challenge to plants. To date, it has been unclear whether dodder transfers N-systemic signals between hosts grown in N-heterogeneous soil. Transcriptome and methylome analyses were carried out to investigate whether dodder (Cuscuta campestris) transfers N-systemic signals between N-replete and N-depleted cucumber (Cucumis sativus) hosts, and it was found that N-systemic signals from the N-deficient cucumber plants were rapidly translocated through C. campestris to the N-replete cucumber plants. Unexpectedly, certain systemic signals were also transferred from the N-replete to N-depleted cucumber hosts. We demonstrate that these systemic signals are able to regulate large transcriptome and DNA methylome changes in the recipient hosts. Importantly, N stress also induced many long-distance mobile mRNA transfers between C. campestris and hosts, and the bilateral N-systemic signaling between N-replete and N-depleted hosts had a strong impact on the inter-plant mobile mRNAs. Our 15N labeling experiment indicated that under N-heterogeneous conditions, N-systemic signals from the N-deficient cucumber hosts did not obviously change the N-uptake activity of the N-replete cucumber hosts; however, in plant clusters comprising C. campestris-connected cucumber and soybean (Glycine max) plants, if the soybean plants were N-starved, the cucumber plants exhibited increased N-uptake activity. This study reveals that C. campestris facilitates plant-plant communications under N-stress conditions by enabling extensive bilateral N-systemic signaling between different hosts.
Collapse
Affiliation(s)
- Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Xie
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Author for communication:
| |
Collapse
|
110
|
Wang T, Li X, Zhang X, Wang Q, Liu W, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. RNA Motifs and Modification Involve in RNA Long-Distance Transport in Plants. Front Cell Dev Biol 2021; 9:651278. [PMID: 33869208 PMCID: PMC8047152 DOI: 10.3389/fcell.2021.651278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
A large number of RNA molecules have been found in the phloem of higher plants, and they can be transported to distant organelles through the phloem. RNA signals are important cues to be evolving in fortification strategies by long-distance transportation when suffering from various physiological challenges. So far, the mechanism of RNA selectively transportation through phloem cells is still in progress. Up to now, evidence have shown that several RNA motifs including Polypyrimidine (poly-CU) sequence, transfer RNA (tRNA)-related sequence, Single Nucleotide Mutation bound with specific RNA binding proteins to form Ribonucleotide protein (RNP) complexes could facilitate RNA mobility in plants. Furthermore, some RNA secondary structure such as tRNA-like structure (TLS), untranslation region (UTR) of mRNA, stem-loop structure of pre-miRNA also contributed to the mobility of RNAs. Latest researchs found that RNA methylation such as methylated 5′ cytosine (m5C) played an important role in RNA transport and function. These studies lay a theoretical foundation to uncover the mechanism of RNA transport. We aim to provide ideas and clues to inspire future research on the function of RNA motifs in RNA long-distance transport, furthermore to explore the underlying mechanism of RNA systematic signaling.
Collapse
Affiliation(s)
- Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
111
|
Meitha K, Esyanti RR, Iriawati, Hanisia RH, Rohyani. Green pesticide: Tapping to the promising roles of plant secreted small RNAs and responses towards extracellular DNA. Noncoding RNA Res 2021; 6:42-50. [PMID: 33778217 PMCID: PMC7970063 DOI: 10.1016/j.ncrna.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
The diverse roles of non-coding RNA and DNA in cross-species communication is yet to be revealed. Once thought to only involve intra-specifically in regulating gene expression, the evidence that these genetic materials can also modulate gene expression between species that belong to different kingdoms is accumulating. Plants send small RNAs to the pathogen or parasite when they are being attacked, targeting essential mRNAs for infection or parasitism of the hosts. However, the same survival mechanism is also deployed by the pathogen or parasite to destabilize plant immune responses. In plants, it is suggested that exposure to extracellular self-DNA impedes growth, while to extracellular non-self-DNA induces the modulation of reactive oxygen species, expression of resistance related genes, epigenetic mechanism, or suppression of disease severity. Exploring the potential of secreted RNA and extracellular DNA as a green pesticide could be a promising alternative if we are to provide food for the future global population without further damaging the environment. Hence, some studies on plant secreted RNA and responses towards extracellular DNA are discussed in this review. The precise mode of action of entry and the following cascade of signaling once the plant cell is exposed to secreted RNA or extracellular DNA could be an interesting topic for future research.
Collapse
Affiliation(s)
- Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Rizkita Rachmi Esyanti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Ristag Hamida Hanisia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Rohyani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| |
Collapse
|
112
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
113
|
Sultana S, Fujiwara D, Aoki K. Epidermal cell-patterning genes of the stem parasitic plant Cuscuta campestris are involved in the development of holdfasts. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:47-56. [PMID: 34177324 PMCID: PMC8215460 DOI: 10.5511/plantbiotechnology.20.1116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 06/13/2023]
Abstract
Cuscuta campestris, a stem parasitic plant, commences its parasitic behavior by forming a specialized disk-like adhesive structure called a holdfast, which facilitates tight adhesion to the stem surface of the host plant. The morphology of epidermal cells in the holdfast is similar to that of the leaf trichome and root hairs of dicotyledonous plants. However, the regulatory network underlying the development of the holdfast has not been elucidated to date. In this study, we assessed the roles of epidermal cell-patterning genes in the development of a holdfast. Epidermal cell-patterning genes of C. campestris, including CcWER, CcGL3, CcTTG1, CcGL2, and CcJKD, were expressed slightly before the initiation of the outgrowth of stem epidermal cells. CcJKD-silencing repressed CcJKD, CcWER, CcGL3, CcTTG1, CcGL2; therefore, CcJKD is an upstream regulator of other epidermal cell-patterning genes. Unlike other genes, CcCPC was not upregulated after attachment to the host, and was not repressed by CcJKD-silencing. Protein interaction assays demonstrated that CcJKD interacted with CcTTG1 and CcCPC. Furthermore, CcJKD-silencing repressed the outgrowth of holdfast epidermal cells. Therefore, C. campestris invokes epidermal cell-patterning genes for the outgrowth of holdfast epidermal cells, and their regulatory mechanism is different from those for leaf trichome or root hairs.
Collapse
Affiliation(s)
- Sabrina Sultana
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
- Industrial Microbiology Division, Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Chittagong, Chittagong Cantonment, Chittagong 4220, Bangladesh
| | - Daiki Fujiwara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
114
|
Spatial Organization and Coordination of the Plant Circadian System. Genes (Basel) 2021; 12:genes12030442. [PMID: 33804638 PMCID: PMC8003751 DOI: 10.3390/genes12030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
The plant circadian clock has a pervasive influence on many aspects of plant biology and is proposed to function as a developmental manager. To do so, the circadian oscillator needs to be able to integrate a multiplicity of environmental signals and coordinate an extensive and diverse repertoire of endogenous rhythms accordingly. Recent studies on tissue-specific characteristics and spatial structure of the plant circadian clock suggest that such plasticity may be achieved through the function of distinct oscillators, which sense the environment locally and are then coordinated across the plant through both intercellular coupling and long-distance communication. This review summarizes the current knowledge on tissue-specific features of the clock in plants and their spatial organization and synchronization at the organismal level.
Collapse
|
115
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
116
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
117
|
Huang XQ, Wang LJ, Kong MJ, Huang N, Liu XY, Liang HY, Zhang JX, Lu S. At3g53630 encodes a GUN1-interacting protein under norflurazon treatment. PROTOPLASMA 2021; 258:371-378. [PMID: 33108535 DOI: 10.1007/s00709-020-01578-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.
Collapse
Affiliation(s)
- Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lin-Juan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng-Juan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Na Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin-Ya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Han-Yu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia-Xin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
118
|
Williams B, Ahsan MU, Frank MH. Getting to the root of grafting-induced traits. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101988. [PMID: 33388626 DOI: 10.1016/j.pbi.2020.101988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 05/12/2023]
Abstract
Grafting is an ancient technique that involves the physical joining of genotypically distinct shoot and root systems, in order to achieve a desirable compound plant. This practice is widely used in modern agriculture to improve biotic and abiotic stress tolerance, modify plant architecture, induce precocious flowering and rejuvenate old perennial varieties, boost yield, and more. Beneficial new rootstock-scion combinations are currently identified through an inefficient trial and error process, which presents a significant bottleneck for the application of grafting to combat new environmental challenges. Identifying the mechanisms that underlie beneficial grafting-induced traits will facilitate rapid breeding and genetic engineering of new rootstock x scion combinations that exhibit superior performance across varying agricultural environments.
Collapse
Affiliation(s)
- Brandon Williams
- Cornell University, School of Integrative Plant Sciences, Plant Biology Section, Ithaca, NY 14850, United States
| | - Muhammad Umair Ahsan
- Cornell University, School of Integrative Plant Sciences, Plant Biology Section, Ithaca, NY 14850, United States
| | - Margaret H Frank
- Cornell University, School of Integrative Plant Sciences, Plant Biology Section, Ithaca, NY 14850, United States.
| |
Collapse
|
119
|
Li S, Wang X, Xu W, Liu T, Cai C, Chen L, Clark CB, Ma J. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. NATURE PLANTS 2021; 7:50-59. [PMID: 33452489 DOI: 10.1038/s41477-020-00829-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Long-distance RNA movement is important for plant growth and environmental responses; however, the extent to which RNAs move between distant tissues, their relative magnitude and functional importance remain to be elucidated on a genomic scale. Using a soybean (Glycine max)-common bean (Phaseolus vulgaris) grafting system, we identified 100 shoot-root mobile microRNAs and 32 shoot-root mobile phased secondary small interfering RNAs (phasiRNAs), which were predominantly produced in shoots and transported to roots, and, in most cases, accumulated to a level similar to that observed in shoots. Many of these microRNAs or phasiRNAs enabled cleavage of their messenger RNA targets or phasiRNA precursors in roots. In contrast, most mobile-capable mRNAs were transcribed in both shoots and roots, with only small proportions transported to recipient tissues. These findings suggest that the regulatory mechanisms for small RNA movement are different from those for mRNA movement, and that the former is more strictly regulated and, probably, more functionally important than the latter.
Collapse
Affiliation(s)
- Shuai Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Wenying Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tong Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | | | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
120
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
121
|
Peña EJ, Robles Luna G, Heinlein M. In vivo imaging of tagged mRNA in plant tissues using the bacterial transcriptional antiterminator BglG. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:271-282. [PMID: 33098198 DOI: 10.1111/tpj.15035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.
Collapse
Affiliation(s)
- Eduardo J Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| |
Collapse
|
122
|
Yoshida T, Fernie AR, Shinozaki K, Takahashi F. Long-distance stress and developmental signals associated with abscisic acid signaling in environmental responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:477-488. [PMID: 33249671 DOI: 10.1111/tpj.15101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Flowering plants consist of highly differentiated organs, including roots, leaves, shoots and flowers, which have specific roles: root system for water and nutrient uptake, leaves for photosynthesis and gas exchange and reproductive organs for seed production. The communication between organs through the vascular system, by which water, nutrient and signaling molecules are transported, is essential for coordinated growth and development of the whole plant, particularly under adverse conditions. Here, we highlight recent progress in understanding how signaling pathways of plant hormones are associated with long-distance stress and developmental signals, with particular focus on environmental stress responses. In addition to the root-to-shoot peptide signal that induces abscisic acid accumulation in leaves under drought stress conditions, we summarize the diverse stress-responsive peptide signals reported to date to play a role in environmental responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
123
|
Bassal M, Abukhalaf M, Majovsky P, Thieme D, Herr T, Ayash M, Tabassum N, Al Shweiki MR, Proksch C, Hmedat A, Ziegler J, Lee J, Neumann S, Hoehenwarter W. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. MOLECULAR PLANT 2020; 13:1709-1732. [PMID: 33007468 DOI: 10.1016/j.molp.2020.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 05/21/2023]
Abstract
Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis.Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Collapse
Affiliation(s)
- Mona Bassal
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohammad Abukhalaf
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Petra Majovsky
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Domenika Thieme
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Tobias Herr
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohamed Ayash
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Naheed Tabassum
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mhd Rami Al Shweiki
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Carsten Proksch
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Ali Hmedat
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Jörg Ziegler
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Wolfgang Hoehenwarter
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany.
| |
Collapse
|
124
|
Isolation of Lineage Specific Nuclei Based on Distinct Endoreduplication Levels and Tissue-Specific Markers to Study Chromatin Accessibility Landscapes. PLANTS 2020; 9:plants9111478. [PMID: 33153046 PMCID: PMC7692515 DOI: 10.3390/plants9111478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
The capacity for achieving immense specificity and resolution in science increases day to day. Fluorescence-activated nuclear sorting (FANS) offers this great precision, enabling one to count and separate distinct types of nuclei from specific cells of heterogeneous mixtures. We developed a workflow to collect nuclei from Arabidopsis thaliana by FANS according to cell lineage and endopolyploidy level with high efficiency. We sorted GFP-labeled nuclei with different ploidy levels from the epidermal tissue layer of three-day, dark-grown hypocotyls followed by a shift to light for one day and compared them to plants left in the dark. We then accessed early chromatin accessibility patterns associated with skotomorphogenesis and photomorphogenesis by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) within primarily stomatal 2C and fully endoreduplicated 16C nuclei. Our quantitative analysis shows that dark- and light-treated samples in 2C nuclei do not exhibit any different chromatin accessibility landscapes, whereas changes in 16C can be linked to transcriptional changes involved in light response.
Collapse
|
125
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
126
|
Maizel A, Markmann K, Timmermans M, Wachter A. To move or not to move: roles and specificity of plant RNA mobility. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:52-60. [PMID: 32634685 DOI: 10.1016/j.pbi.2020.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions. Understanding the specificity determinants of RNA mobility and the physiological relevance of this phenomenon are areas of active research. Here, we highlight the recent progress in our knowledge of small RNA and messenger RNA movement. Particular emphasis is given to novel insight into the specificity determinants of messenger RNA mobility, the role of small RNA movement in development, and the specificity of RNA exchange in plant-plant and plant-microbe interactions.
Collapse
Affiliation(s)
- Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Katharina Markmann
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Marja Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von Müller-Weg 6, 55128 Mainz, Germany
| |
Collapse
|
127
|
Shen G, Liu N, Zhang J, Xu Y, Baldwin IT, Wu J. Cuscuta australis (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proc Natl Acad Sci U S A 2020; 117:23125-23130. [PMID: 32868415 PMCID: PMC7502711 DOI: 10.1073/pnas.2009445117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many plants use environmental cues, including seasonal changes of day length (photoperiod), to control their flowering time. Under inductive conditions, FLOWERING LOCUS T (FT) protein is synthesized in leaves, and FT protein is a mobile signal, which is able to travel to the shoot apex to induce flowering. Dodders (Cuscuta, Convolvulaceae) are root- and leafless plants that parasitize a large number of autotrophic plant species with varying flowering time. Remarkably, some dodder species, e.g., Cuscuta australis, are able to synchronize their flowering with the flowering of their hosts. Detailed sequence inspection and expression analysis indicated that the FT gene in dodder C. australis very likely does not function in activating flowering. Using soybean host plants cultivated under inductive and noninductive photoperiod conditions and soybean and tobacco host plants, in which FT was overexpressed and knocked out, respectively, we show that FT-induced flowering of the host is likely required for both host and parasite flowering. Biochemical analysis revealed that host-synthesized FT signals are able to move into dodder stems, where they physically interact with a dodder FD transcription factor to activate dodder flowering. This study demonstrates that FTs can function as an important interplant flowering signal in host-dodder interactions. The unique means of flowering regulation of dodder illustrates how regressive evolution, commonly found in parasites, may facilitate the physiological synchronization of parasite and host, here allowing the C. australis parasite to time reproduction exactly with that of their hosts, likely optimizing parasite fitness.
Collapse
Affiliation(s)
- Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China;
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
128
|
Wulf KE, Reid JB, Foo E. What drives interspecies graft union success? Exploring the role of phylogenetic relatedness and stem anatomy. PHYSIOLOGIA PLANTARUM 2020; 170:132-147. [PMID: 32385889 DOI: 10.1111/ppl.13118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The underlying mechanisms that determine whether two species can form a successful graft union (graft compatibility) remain obscure. Two prominent hypotheses are (1) the more closely related species are, the higher the graft success and (2) the vascular anatomy at the graft junction influences graft success. In this paper these two hypotheses are examined in a systematic way using graft combinations selected from a range of (a) phylogenetically close and more distant legume species, (b) species displaying different germination patterns and (c) scions and rootstocks possessing contrasting stem tissues and vascular patterns. Relatedness of species was not a good predictor of graft compatibility, as vascular reconnection can occur between distantly related species and can fail to occur in some more closely related species. Similarly, neither the stem tissues present at the graft junction nor the vascular anatomy correlated with the success of vascular reconnection. Relatedness and stem anatomy therefore do not appear to be the determining factors in successful vascular reconnection after grafting in legumes. These results are discussed in conjunction with other hypotheses such as the role of auxin.
Collapse
Affiliation(s)
- Kate E Wulf
- School of Natural Sciences, University of Tasmania, Hobart, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Hobart, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Hobart, 7001, Australia
| |
Collapse
|
129
|
Zhang C, Qi M, Zhang X, Wang Q, Yu Y, Zhang Y, Kong Z. Rhizobial infection triggers systemic transport of endogenous RNAs between shoots and roots in soybean. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1213-1226. [PMID: 32221813 DOI: 10.1007/s11427-019-1608-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 10/24/2022]
Abstract
Legumes have evolved a symbiotic relationship with rhizobial bacteria and their roots form unique nitrogen-fixing organs called nodules. Studies have shown that abiotic and biotic stresses alter the profile of gene expression and transcript mobility in plants. However, little is known about the systemic transport of RNA between roots and shoots in response to rhizobial infection on a genome-wide scale during the formation of legume-rhizobia symbiosis. In our study, we found that two soybean (Glycine max) cultivars, Peking and Williams, show a high frequency of single nucleotide polymorphisms; this allowed us to characterize the origin and mobility of transcripts in hetero-grafts of these two cultivars. We identified 4,552 genes that produce mobile RNAs in soybean, and found that rhizobial infection triggers mass transport of mRNAs between shoots and roots at the early stage of nodulation. The majority of these mRNAs are of relatively low abundance and their transport occurs in a selective manner in soybean plants. Notably, the mRNAs that moved from shoots to roots at the early stage of nodulation were enriched in many nodule-related responsive processes. Moreover, the transcripts of many known symbiosis-related genes that are induced by rhizobial infection can move between shoots and roots. Our findings provide a deeper understanding of endogenous RNA transport in legume-rhizobia symbiotic processes.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yijing Zhang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
130
|
Identification of Long-Distance Transmissible mRNA between Scion and Rootstock in Cucurbit Seedling Heterografts. Int J Mol Sci 2020; 21:ijms21155253. [PMID: 32722102 PMCID: PMC7432352 DOI: 10.3390/ijms21155253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Grafting has been widely used to improve plant growth and tolerance in crop production, as well as for clarifying systemic mRNA signaling from donor to recipient tissues in organ-to-organ communication. In this study, we investigated graft partner interaction mechanisms of Cucumis sativus (Csa) and Cucurbita moschata (Cmo) using a large-scale endogenous mRNA transport. The results indicated that most mobile transcripts followed an allocation pathway from source to sink. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that mRNA mobility functions are universally common and individually specific. Identification of mRNA mobility between distant tissues in heterografts with RT-PCR (reverse transcription PCR), RT-qPCR (reverse transcriptional quantitative real time PCR), and clone sequencing were used to estimate 78.75% of selected mobile transcripts. Integration of bioinformatic analysis and RT-qPCR identification allowed us to hypothesize a scion-to-rootstock-to-scion feedback signal loop of Csa move-down and Cmo move-up mRNAs, where Csa scion move-down mRNAs were involved in carbon fixation and biosynthesis of amino acid pathways, and Cmo root received Csa move-down mRNA and then delivered the corresponding Cmo upward mRNA to scion to improve photosynthesis of cucumber scion. This formed a feedback signal loop of scion-to-rootstock-to scion to explain why pumpkin rootstock enhanced cucumber production in the industry, which was utilized for organ communication and mediates photosynthesis processes in heterograft cucurbit crops.
Collapse
|
131
|
Long-Distance Movement of Mineral Deficiency-Responsive mRNAs in Nicotiana Benthamiana/Tomato Heterografts. PLANTS 2020; 9:plants9070876. [PMID: 32664315 PMCID: PMC7412313 DOI: 10.3390/plants9070876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the adaptive alterations in roots, in response to mineral deficiency. mRNAs are one group of molecules with systemic signaling functions in response to intrinsic and environmental cues; however, the importance of shoot-to-root mobile mRNAs stimulated by low mineral levels is not fully understood. In this study, we established a Nicotiana benthamiana/tomato heterograft system to identify shoot-to-root mobile mRNAs that are produced in response to low N, P or Fe. Multiple long-distance mobile mRNAs were identified to be associated with low mineral levels and a few of them may play important roles in hormonal metabolism and root architecture alteration. A comparison of the mobile mRNAs from our study with those identified from previous studies showed that very few transcripts are conserved among different species.
Collapse
|
132
|
Chen Z, Ai F, Zhang J, Ma X, Yang W, Wang W, Su Y, Wang M, Yang Y, Mao K, Wang Q, Lascoux M, Liu J, Ma T. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (Populus ilicifolia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:430-442. [PMID: 32168389 DOI: 10.1111/tpj.14744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 05/16/2023]
Abstract
Species are becoming extinct at unprecedented rates as a consequence of human activity. Hence it is important to understand the evolutionary dynamics of species with already small population sizes. Populus ilicifolia is a vulnerable poplar species that is isolated from other poplar species and is uniquely adapted to the Tropics. It has a very limited size, reproduces partly clonally and is therefore an excellent case study for conservation genomics. We present here the first annotated draft genome of P. ilicifolia, characterize genome-wide patterns of polymorphisms and compare those to other poplar species with larger natural ranges. P. ilicifolia experienced a more prolonged and severe decline of effective population size (Ne ) and signs of genetic erosion than any other poplar species with which it was compared. At present, the species has the lowest genome-wide genetic diversity, the highest abundance of long runs of homozygosity, high inbreeding levels as well as a high overall accumulation of deleterious variants. However, more effective purging of severely deleterious variants and adaptation to the Tropics may have contributed to its survival. Hence, in spite of its limited genetic variation, it is certainly worth pursuing the conservation efforts of this unique species.
Collapse
Affiliation(s)
- Zeyuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Fandi Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Junlin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yutao Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18D 75326, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
133
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
134
|
Long-Distance Movement of mRNAs in Plants. PLANTS 2020; 9:plants9060731. [PMID: 32531920 PMCID: PMC7356335 DOI: 10.3390/plants9060731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/28/2023]
Abstract
Long-distance transport of information molecules in the vascular tissues could play an important role in regulating plant growth and enabling plants to cope with adverse environments. Various molecules, including hormones, proteins, small peptides and small RNAs have been detected in the vascular system and proved to have systemic signaling functions. Sporadic studies have shown that a number of mRNAs produced in the mature leaves leave their origin cells and move to distal tissues to exert important physiological functions. In the last 3-5 years, multiple heterograft systems have been developed to demonstrate that a large quantity of mRNAs are mobile in plants. Further comparison of the mobile mRNAs identified from these systems showed that the identities of these mRNAs are very diverse. Although species-specific mRNAs may regulate the unique physiological characteristic of the plant, mRNAs with conserved functions across multiple species are worth more effort in identifying universal physiological mechanisms existing in the plant kingdom.
Collapse
|
135
|
Garg V, Kühn C. What determines the composition of the phloem sap? Is there any selectivity filter for macromolecules entering the phloem sieve elements? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:284-291. [PMID: 32248039 DOI: 10.1016/j.plaphy.2020.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
In view of recent findings, it is still a matter of debate whether the composition of the phloem sap of higher plants is specific and based on a plasmodesmal selectivity filter for macromolecular transport, or whether simply related to size, abundance and half-life of the macromolecules within the phloem sap. A range of reports indicates specific function of phloem-mobile signaling molecules such as the florigen making it indispensable to discriminate specific macromolecules entering the phloem from others which cannot cross this selectivity filter. Nevertheless, several findings have discussed for a non-selective transport via plasmodesmata, or contamination of the phloem sap by degradation products coming from immature still developing young sieve elements undergoing differentiation. Here, we discuss several possibilities, and raise the question how selectivity of the phloem sap composition could be achieved thereby focusing on mobility and dynamics of sucrose transporter mRNA and proteins.
Collapse
Affiliation(s)
- Varsha Garg
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Christina Kühn
- Institute of Biology, Department of Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany.
| |
Collapse
|
136
|
Zhang H, Zhang H, Lin J. Systemin-mediated long-distance systemic defense responses. THE NEW PHYTOLOGIST 2020; 226:1573-1582. [PMID: 32083726 DOI: 10.1111/nph.16495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
137
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
138
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
139
|
Sunitha S, Rock CD. CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res 2020; 29:355-367. [PMID: 32328868 PMCID: PMC7283210 DOI: 10.1007/s11248-020-00196-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Pierce’s disease (PD) of grapevine (Vitis vinifera) is caused by the bacterium Xylella fastidiosa and is vectored by xylem sap-sucking insects, whereas Grapevine Red Blotch Virus (GRBV) causes Red Blotch Disease and is transmitted in the laboratory by alfalfa leafhopper Spissistilus festinus. The significance of anthocyanin accumulations in distinct tissues of grapevine by these pathogens is unknown, but vector feeding preferences and olfactory cues from host anthocyanins may be important for these disease etiologies. Phosphate, sugar, and UV light are known to regulate anthocyanin accumulation via miR828 and Trans-Acting Small-interfering locus4 (TAS4), specifically in grape by production of phased TAS4a/b/c small-interfering RNAs that are differentially expressed and target MYBA5/6/7 transcription factor transcripts for post-transcriptional slicing and antisense-mediated silencing. To generate materials that can critically test these genes’ functions in PD and GRBV disease symptoms, we produced transgenic grape plants targeting TAS4b and MYBA7 using CRISPR/Cas9 technology. We obtained five MYBA7 lines all with bi-allelic editing events and no off-targets detected at genomic loci with homology to the guide sequence. We obtained two independent edited TAS4b lines; one bi-allelic, the other heterozygous while both had fortuitous evidences of bi-allelic TAS4a off-target editing events at the paralogous locus. No visible anthocyanin accumulation phenotypes were observed in regenerated plants, possibly due to the presence of genetically redundant TAS4c and MYBA5/6 loci or absence of inductive environmental stress conditions. The editing events encompass single base insertions and di/trinucleotide deletions of Vvi-TAS4a/b and Vvi-MYBA7 at expected positions 3 nt upstream from the guideRNA proximal adjacent motifs NGG. We also identified evidences of homologous recombinations of TAS4a with TAS4b at the TAS4a off-target in one of the TAS4b lines, resulting in a chimeric locus with a bi-allelic polymorphism, supporting independent recombination events in transgenic plants associated with apparent high Cas9 activities. The lack of obvious visible pigment phenotypes in edited plants precluded pathogen challenge tests of the role of anthocyanins in host PD and GRBV resistance/tolerance mechanisms. Nonetheless, we demonstrate successful genome-editing of non-coding RNA and MYB transcription factor loci which can serve future characterizations of the functions of TAS4a/b/c and MYBA7 in developmental, physiological, and environmental biotic/abiotic stress response pathways important for value-added nutraceutical synthesis and pathogen responses of winegrape.
Collapse
Affiliation(s)
- Sukumaran Sunitha
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA.
| |
Collapse
|
140
|
Paterlini A, Helariutta Y. Cuscuta, the Merchant of Proteins. MOLECULAR PLANT 2020; 13:533-535. [PMID: 31978515 DOI: 10.1016/j.molp.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Affiliation(s)
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
141
|
Liu N, Shen G, Xu Y, Liu H, Zhang J, Li S, Li J, Zhang C, Qi J, Wang L, Wu J. Extensive Inter-plant Protein Transfer between Cuscuta Parasites and Their Host Plants. MOLECULAR PLANT 2020; 13:573-585. [PMID: 31812691 DOI: 10.1016/j.molp.2019.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
Cuscuta species (dodders) are holoparasites that totally rely on host plants to survive. Although various mobile proteins have been identified to travel within a plant, whether and to what extent protein transfer between Cuscuta and host plants remain unclear. We found that hundreds to more than 1500 proteins were transferred between Cuscuta and the host plants Arabidopsis and soybean, and hundreds of inter-plant mobile proteins were even detected in the seeds of Cuscuta and the host soybean. Different hosts bridge-connected by dodder were also found to exchange hundreds of proteins. Quantitatively, the mobile proteins represent a few to more than 10% of the proteomes of foreign plants. Using Arabidopsis plants expressing different reporter proteins, we further showed that these reporter proteins could travel between plants and, importantly, retained their activity in the foreign plants. Comparative analysis between the inter-plant mobile proteins and mRNAs indicated that the majority of mobile proteins were not de novo synthesized from the translocated mRNAs, but bona fide mobile proteins. We propose that large-scale inter-plant protein translocation may play an important role in the interactions between host plants and dodder and even among the dodder bridge-connected hosts.
Collapse
Affiliation(s)
- Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shalan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
142
|
Hao L, Zhang Y, Wang S, Zhang W, Wang S, Xu C, Yu Y, Li T, Jiang F, Li W. A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110419. [PMID: 32081266 DOI: 10.1016/j.plantsci.2020.110419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/03/2023]
Abstract
Pear is one of the most commercially important fruit trees worldwide and is widely cultivated in temperate zones. Drought stress can greatly limit pear fruit yield and quality. Pyrus betulaefolia Bunge, a drought-resistant pear rootstock that is commonly used in northern China, confers favourable characteristics to pear scions, allowing them to respond rapidly to drought stress via the transport of macromolecules such as phloem-mobile mRNAs. How drought-responsive mRNAs function as phloem-mobile signals remains unknown, however. Here, we used RNA sequencing (RNA-seq) combined with SNP analysis to identify mobile mRNAs in P. betulaefolia. We focused on mobile mRNAs that respond to drought stress and found that the abundance of a novel mRNA named PbDRM (P. betulaefoliaDROUGHT-RESPONSIVE MOBILE GENE) significantly increased in several different scion cultivars when they were grafted onto P. betulaefolia rootstock under drought conditions. In addition, downregulating PbDRM by virus-induced gene silencing (VIGS) increased the drought sensitivity of P. betulaefolia. CAPS RT-PCR analysis confirmed that PbDRM mRNA moves from rootstock to scion in micrografting systems. Therefore, PbDRM mRNA acts as a phloem-mobile signal in pear under drought stress.
Collapse
Affiliation(s)
- Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
143
|
Abstract
Large numbers of mRNAs move in the phloem and some may function as signals to exert important physiological functions in the distal recipient organs. Generating an authentic list of phloem mobile mRNA is a prerequisite for elucidating their physiological functions. Nicotiana benthamiana can be used as a scion to graft on a tomato (Solanum lycopersicum) rootstock. Thereby, shoot-to-root mobile N. benthamiana mRNAs transported via the phloem can be identified from the root of the tomato rootstock. Due to the close relationship and similar genome sequences of the two species, stringent informatics procedures should be applied to avoid false identification. This heterograft system can be used to study physiological processes associated with mRNAs that are mobile under either normal or adverse growth condition.
Collapse
|
144
|
Wang Y, Wang L, Xing N, Wu X, Wu X, Wang B, Lu Z, Xu P, Tao Y, Li G, Wang Y. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress. HORTICULTURE RESEARCH 2020; 7:13. [PMID: 32025316 PMCID: PMC6994652 DOI: 10.1038/s41438-019-0236-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
Heterografting has long been used to enhance the chilling tolerance of temperature-sensitive crops, including watermelon, whose mechanism is known to involve bidirectional long-distance mRNA movements. Despite several studies reporting on mobile mRNA (mb-mRNA) profiles in plants, accurate identification of mb-mRNAs is challenging owing to an array of technical problems. Here, we developed a bioinformatical pipeline that took most of the known technical concerns into consideration and is considered to be a universal tool for mb-mRNA detection in heterografts. By applying this pipeline to a commercial watermelon-bottle gourd heterografting system, we detected 130 and 1144 mb-mRNAs upwardly and 167 and 1051 mb-mRNAs downwardly transmitted under normal and chilling-stress conditions, respectively. Quantitative real-time PCR indicated a high accuracy rate (88.2%) of mb-mRNA prediction with our pipeline. We further revealed that the mobility of mRNAs was not associated with their abundance. Functional annotation and classification implied that scions may convey the stress signal to the rootstock, subsequently triggering energy metabolism reprogramming and abscisic acid-mediated stress responses by upward movement of effective mRNAs, ultimately leading to enhanced chilling tolerance. This study provides a universal tool for mb-mRNA detection in plant heterografting systems and novel insights into heterografting advantages under chilling stress.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Lingping Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- Present Address: College of Life Sciences, China Jiliang University, Hangzhou, 310018 China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd., Shanghai, 201800 China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| |
Collapse
|
145
|
Greenwood M, Locke JC. The circadian clock coordinates plant development through specificity at the tissue and cellular level. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:65-72. [PMID: 31783323 DOI: 10.1016/j.pbi.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 05/27/2023]
Abstract
The circadian clock is a genetic circuit that allows organisms to anticipate daily events caused by the rotation of the Earth. The plant clock regulates physiology at multiple scales, from cell division to ecosystem-scale interactions. It is becoming clear that rather than being a single perfectly synchronised timer throughout the plant, the clock can be sensitive to different cues, run at different speeds, and drive distinct processes in different cell types and tissues. This flexibility may help the plant clock to regulate such a range of developmental and physiological processes. In this review, using examples from the literature, we describe how the clock regulates development at multiple scales and discuss how the clock might allow local flexibility in regulation whilst remaining coordinated across the plant.
Collapse
Affiliation(s)
- Mark Greenwood
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - James Cw Locke
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK.
| |
Collapse
|
146
|
Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, Gerrard Wheeler MC. Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:653-665. [PMID: 31626366 DOI: 10.1111/tpj.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 05/29/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H2 O2 content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.
Collapse
Affiliation(s)
- Mariana Beatriz Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Verónica Graciela Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Cintia Lucía Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Ayelén Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Carlos Santiago Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariel Claudia Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
147
|
Detection and in vitro studies of Cucurbita maxima phloem serpin-1 RNA-binding properties. Biochimie 2020; 170:118-127. [PMID: 31935442 DOI: 10.1016/j.biochi.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 11/22/2022]
Abstract
Apart from being a conduit for photoassimilate transport in plants, the phloem serves as a pathway for transport of proteins and RNAs from sites of their synthesis to distant plant parts. As demonstrated for mRNAs and small RNAs such as miRNA and siRNA, their phloem transport is largely involved in responses to environmental cues including stresses and pathogen attacks. RNA molecules are believed to be transported in the phloem in the form of complexes with RNA-binding proteins; however, proteins forming such complexes are generally poorly studied. Here, we demonstrate that the Cucurbita maxima phloem serpin-1 (CmPS1), which has been previously described as a functional protease inhibitor capable of long-distance transport via the phloem, is able to bind RNA in vitro. Among different RNAs tested, CmPS1 exhibits a preference for imperfect RNA duplexes and the highest affinity to tRNA. A characteristic complex formed by CmPS1 with tRNA is not observed upon CmPS1 binding to tRNA-like structures of plant viruses. Mutational analysis demonstrates that the CmPS1 N-terminal region is not involved in RNA binding. Since antithrombin-III, the human protease inhibitor of serpin family most closely sequence-related to CmPS1, is found to be unable to bind RNA, one can suggest that, in its evolution, CmPS1 has gained the RNA binding capability as an additional function likely relevant to its specific activities in the plant phloem.
Collapse
|
148
|
Abstract
Mobility assays coupled with RNA profiling have revealed the presence of hundreds of full-length non-cell-autonomous messenger RNAs that move through the whole plant via the phloem cell system. Monitoring the movement of these RNA signals can be difficult and time consuming. Here we describe a simple, virus-based system for surveying RNA movement by replacing specific sequences within the viral RNA genome of potato virus X (PVX) that are critical for movement with other sequences that facilitate movement. PVX is a RNA virus dependent on three small proteins that facilitate cell-to-cell transport and a coat protein (CP) required for long-distance spread of PVX. Deletion of the CP blocks movement, whereas replacing the CP with phloem-mobile RNA sequences reinstates mobility. Two experimental models validating this assay system are discussed. One involves the movement of the flowering locus T RNA that regulates floral induction and the second involves movement of StBEL5, a long-distance RNA signal that regulates tuber formation in potato.
Collapse
Affiliation(s)
- Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick, UK.
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, Institute of Science and the Environment, University of Worcester, Worcester, UK.
| | | |
Collapse
|
149
|
Abstract
Multicellular organisms rely on systemic signals to orchestrate diverse developmental and physiological programs. To transmit environmental stimuli that perceived in the leaves, plants recruit many mobile molecules including mobile mRNAs as systemic signals for interorgan communication. The mobile mRNAs provide an efficient and specific remote control system for plants to cope with environmental dynamics. Upon being transcribed in local tissues, mobile mRNAs are selectively targeted to plasmodesmata for cell-to-cell and long-distance translocation. The mRNA labeling system based on the RNA-binding protein MS2 provides a useful tool to investigate intracellular trafficking of mobile mRNAs in plants. Here we describe the detailed protocol to visualize intracellular trafficking of plant mobile mRNAs by using the MS2 live-cell imaging system.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
150
|
Cuello C, Baldy A, Brunaud V, Joets J, Delannoy E, Jacquemot MP, Botran L, Griveau Y, Guichard C, Soubigou-Taconnat L, Martin-Magniette ML, Leroy P, Méchin V, Reymond M, Coursol S. A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize. PLoS One 2019; 14:e0227011. [PMID: 31891625 PMCID: PMC6938352 DOI: 10.1371/journal.pone.0227011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.
Collapse
Affiliation(s)
- Clément Cuello
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aurélie Baldy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
| | - Johann Joets
- Génétique Quantitative et Evolution—Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
| | - Marie-Pierre Jacquemot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Lucy Botran
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Cécile Guichard
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | | | - Valérie Méchin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvie Coursol
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|