101
|
Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V. Concise Review: Recent Advances in the In Vitro Derivation of Blood Cell Populations. Stem Cells Transl Med 2016; 5:1330-1337. [PMID: 27388244 PMCID: PMC5031184 DOI: 10.5966/sctm.2016-0039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
: Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. Embryonic stem cell-based directed differentiation and direct reprogramming of somatic cells provide excellent tools for the potential generation of hematopoietic stem cells usable in the clinic for cellular therapies. In addition to blood stem cell transplantation, mature blood cells such as red blood cells, platelets, and engineered T cells have also been increasingly used to treat several diseases. Besides cellular therapies, induced blood progenitor cells generated from autologous sources (either induced pluripotent stem cells or somatic cells) can be useful for disease modeling of bone marrow failures and acquired blood disorders. However, although great progress has been made toward these goals, we are still far from the use of in vitro-derived blood products in the clinic. We review the current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives. SIGNIFICANCE Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. The current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives is reviewed.
Collapse
Affiliation(s)
- Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Sara Menegatti
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Eva Garcia-Alegria
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
102
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
103
|
Dykstra B, Lee J, Mortensen LJ, Yu H, Wu ZL, Lin CP, Rossi DJ, Sackstein R. Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells 2016; 34:2501-2511. [PMID: 27335219 DOI: 10.1002/stem.2435] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (MSCs) hold great promise in cellular therapeutics for skeletal diseases but lack expression of E-selectin ligands that direct homing of blood-borne cells to bone marrow. Previously, we described a method to engineer E-selectin ligands on the MSC surface by exofucosylating cells with fucosyltransferase VI (FTVI) and its donor sugar, GDP-Fucose, enforcing transient surface expression of the potent E-selectin ligand HCELL with resultant enhanced osteotropism of intravenously administered cells. Here, we sought to determine whether E-selectin ligands created via FTVI-exofucosylation are distinct in identity and function to those created by FTVI expressed intracellularly. To this end, we introduced synthetic modified mRNA encoding FTVI (FUT6-modRNA) into human MSCs. FTVI-exofucosylation (i.e., extracellular fucosylation) and FUT6-modRNA transfection (i.e., intracellular fucosylation) produced similar peak increases in cell surface E-selectin ligand levels, and shear-based functional assays showed comparable increases in tethering/rolling on human endothelial cells expressing E-selectin. However, biochemical analyses revealed that intracellular fucosylation induced expression of both intracellular and cell surface E-selectin ligands and also induced a more sustained expression of E-selectin ligands compared to extracellular fucosylation. Notably, live imaging studies to assess homing of human MSC to mouse calvarium revealed more osteotropism following intravenous administration of intracellularly-fucosylated cells compared to extracellularly-fucosylated cells. This study represents the first direct analysis of E-selectin ligand expression programmed on human MSCs by FTVI-mediated intracellular versus extracellular fucosylation. The observed differential biologic effects of FTVI activity in these two contexts may yield new strategies for improving the efficacy of human MSCs in clinical applications. Stem Cells 2016;34:2501-2511.
Collapse
Affiliation(s)
- Brad Dykstra
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard University, Cambridge, Massachusetts, USA.,Program of Excellence in Glycosciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jungmin Lee
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard University, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Luke J Mortensen
- Regenerative Bioscience Center, Rhodes Center for Animal and Dairy Science and College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Haixiao Yu
- Bio-Techne, R&D Systems, Inc, Minneapolis, Massachusetts, USA
| | - Zhengliang L Wu
- Bio-Techne, R&D Systems, Inc, Minneapolis, Massachusetts, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard University, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard University, Cambridge, Massachusetts, USA. .,Program of Excellence in Glycosciences, Harvard University, Cambridge, Massachusetts, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
104
|
Reautschnig P, Vogel P, Stafforst T. The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biol 2016; 14:651-668. [PMID: 27415589 PMCID: PMC5449091 DOI: 10.1080/15476286.2016.1208323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current state, clinical trials, and developments in antisense therapy, including the classical approaches like RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference. Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs. Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-programming of point mutations, RNA modifications, and frame shift mutations directly on the endogenous mRNA.
Collapse
Affiliation(s)
- Philipp Reautschnig
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Paul Vogel
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Thorsten Stafforst
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| |
Collapse
|
105
|
Corritore E, Lee YS, Pasquale V, Liberati D, Hsu MJ, Lombard CA, Van Der Smissen P, Vetere A, Bonner-Weir S, Piemonti L, Sokal E, Lysy PA. V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Transl Med 2016; 5:1525-1537. [PMID: 27405779 DOI: 10.5966/sctm.2015-0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes. SIGNIFICANCE β-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of β-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce β-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with the potential to reverse diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentina Pasquale
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Mei-Ju Hsu
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Anne Lombard
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Amedeo Vetere
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Etienne Sokal
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe A Lysy
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
106
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
107
|
Pluripotent Stem Cell-Based Therapies in Combination with Substrate for the Treatment of Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2016; 32:261-71. [DOI: 10.1089/jop.2015.0153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
108
|
Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, Binder H, Arnold A, Stolzing A. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Res 2016; 16:662-72. [DOI: 10.1016/j.scr.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
|
109
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
110
|
Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation. Arch Immunol Ther Exp (Warsz) 2016; 64:349-70. [PMID: 26939778 PMCID: PMC5021740 DOI: 10.1007/s00005-016-0385-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.
Collapse
|
111
|
Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-37. [DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
|
112
|
Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method. Stem Cells Int 2016; 2016:6853081. [PMID: 27057175 PMCID: PMC4737460 DOI: 10.1155/2016/6853081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/29/2015] [Indexed: 02/05/2023] Open
Abstract
Human induced pluripotent stem cells (iPS cells) hold great promise in the field of regenerative medicine, especially immune-compatible cell therapy. The most important safety-related issues that must be resolved before the clinical use of iPS cells include the generation of “footprint-free” and “xeno-free” iPS cells. In this study, we sought to examine whether an extracellular matrix- (ECM-) based xeno-free culture system that we recently established could be used together with a microRNA-enhanced mRNA reprogramming method for the generation of clinically safe iPS cells. The notable features of this method are the use of a xeno-free/feeder-free culture system for the generation and expansion of iPS cells rather than the conventional labor-intensive culture systems using human feeder cells or human feeder-conditioned medium and the enhancement of mRNA-mediated reprogramming via the delivery of microRNAs. Strikingly, we observed the early appearance of iPS cell colonies (~11 days), substantial reprogramming efficiency (~0.2–0.3%), and a high percentage of ESC-like colonies among the total colonies (~87.5%), indicating enhanced kinetics and reprogramming efficiency. Therefore, the combined method established in this study provides a valuable platform for the generation and expansion of clinically safe (i.e., integration- and xeno-free) iPS cells, facilitating immune-matched cell therapy in the near future.
Collapse
|
113
|
Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci 2016; 1370:24-35. [PMID: 26748878 DOI: 10.1111/nyas.12989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine, New York, New York
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, New York
| | - Kateri Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
114
|
Rhoads RE. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. Methods Mol Biol 2016; 1428:3-27. [PMID: 27236789 DOI: 10.1007/978-1-4939-3625-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
115
|
Human iPSC for Therapeutic Approaches to the Nervous System: Present and Future Applications. Stem Cells Int 2015; 2016:4869071. [PMID: 26697076 PMCID: PMC4677260 DOI: 10.1155/2016/4869071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Many central nervous system (CNS) diseases including stroke, spinal cord injury (SCI), and brain tumors are a significant cause of worldwide morbidity/mortality and yet do not have satisfying treatments. Cell-based therapy to restore lost function or to carry new therapeutic genes is a promising new therapeutic approach, particularly after human iPSCs became available. However, efficient generation of footprint-free and xeno-free human iPSC is a prerequisite for their clinical use. In this paper, we will first summarize the current methodology to obtain footprint- and xeno-free human iPSC. We will then review the current iPSC applications in therapeutic approaches for CNS regeneration and their use as vectors to carry proapoptotic genes for brain tumors and review their applications for modelling of neurological diseases and formulating new therapeutic approaches. Available results will be summarized and compared. Finally, we will discuss current limitations precluding iPSC from being used on large scale for clinical applications and provide an overview of future areas of improvement. In conclusion, significant progress has occurred in deriving iPSC suitable for clinical use in the field of neurological diseases. Current efforts to overcome technical challenges, including reducing labour and cost, will hopefully expedite the integration of this technology in the clinical setting.
Collapse
|
116
|
Poleganov MA, Eminli S, Beissert T, Herz S, Moon JI, Goldmann J, Beyer A, Heck R, Burkhart I, Barea Roldan D, Türeci Ö, Yi K, Hamilton B, Sahin U. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Hum Gene Ther 2015; 26:751-66. [DOI: 10.1089/hum.2015.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marco Alexander Poleganov
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie Herz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johanna Goldmann
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Arianne Beyer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Rosario Heck
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Burkhart
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Diana Barea Roldan
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kevin Yi
- Stemgent, Cambridge, Massachusetts
| | | | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
117
|
Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, Kazemi Ashtiani M, Farrokhi A, Aghdami N, Sadr Hashemi Nejad A, Larijani MB, De Leu N, Heimberg H, Luo X, Baharvand H. THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol 2015; 173:R165-83. [PMID: 26036437 DOI: 10.1530/eje-15-0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Over the past decades, tremendous efforts have been made to establish pancreatic islet transplantation as a standard therapy for type 1 diabetes. Recent advances in islet transplantation have resulted in steady improvements in the 5-year insulin independence rates for diabetic patients. Here we review the key challenges encountered in the islet transplantation field which include islet source limitation, sub-optimal engraftment of islets, lack of oxygen and blood supply for transplanted islets, and immune rejection of islets. Additionally, we discuss possible solutions for these challenges.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Leila Montazeri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Keynoosh Khalooghi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad-Bagher Larijani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nico De Leu
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Harry Heimberg
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Xunrong Luo
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| |
Collapse
|
118
|
Daniel MG, Pereira CF, Lemischka IR, Moore KA. Making a Hematopoietic Stem Cell. Trends Cell Biol 2015; 26:202-214. [PMID: 26526106 DOI: 10.1016/j.tcb.2015.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA; The Graduate School of Biomedical Science, Icahn School of Medicine, New York, NY, USA
| | - Carlos-Filipe Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
119
|
Brouwer M, Zhou H, Nadif Kasri N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Rev Rep 2015. [PMID: 26424535 DOI: 10.1007/s12015‐015‐9622‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands.
| |
Collapse
|
120
|
Elangovan S, Khorsand B, Do AV, Hong L, Dewerth A, Kormann M, Ross RD, Sumner DR, Allamargot C, Salem AK. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release 2015; 218:22-8. [PMID: 26415855 DOI: 10.1016/j.jconrel.2015.09.050] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/11/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
There exists a dire need for improved therapeutics to achieve predictable bone regeneration. Gene therapy using non-viral vectors that are safe and efficient at transfecting target cells is a promising approach to overcoming the drawbacks of protein delivery of growth factors. Here, we investigated the transfection efficiency, cytotoxicity, osteogenic potential and in vivo bone regenerative capacity of chemically modified ribonucleic acid (cmRNA) (encoding BMP-2) complexed with polyethylenimine (PEI) and made comparisons with PEI complexed with conventional plasmid DNA (encoding BMP-2). The polyplexes were fabricated at an amine (N) to phosphate (P) ratio of 10 and characterized for transfection efficiency using human bone marrow stromal cells (BMSCs). The osteogenic potential of BMSCs treated with these polyplexes was validated by determining the expression of bone-specific genes, osteocalcin and alkaline phosphatase as well as through the detection of bone matrix deposition. Using a calvarial bone defect model in rats, it was shown that PEI-cmRNA (encoding BMP-2)-activated matrices promoted significantly enhanced bone regeneration compared to PEI-plasmid DNA (BMP-2)-activated matrices. Our proof of concept study suggests that scaffolds loaded with non-viral vectors harboring cmRNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, United States.
| | - Behnoush Khorsand
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - Liu Hong
- Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, IA, United States
| | - Alexander Dewerth
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Wilhelstr. 56, 72074 Tübingen, Germany
| | - Michael Kormann
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Wilhelstr. 56, 72074 Tübingen, Germany
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, IL, United States
| | - D Rick Sumner
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, IL, United States
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Aliasger K Salem
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, United States; Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States.
| |
Collapse
|
121
|
Pratico ED, Feger BJ, Watson MJ, Sullenger BA, Bowles DE, Milano CA, Nair SK. RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells. Stem Cells Dev 2015; 24:2622-33. [PMID: 26176491 DOI: 10.1089/scd.2015.0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the United States. Heart failure is a common, costly, and potentially fatal condition that is inadequately managed by pharmaceuticals. Cardiac repair therapies are promising alternative options. A potential cardiac repair therapy involves reprogramming human fibroblasts toward an induced cardiac progenitor-like state. We developed a clinically useful and safer reprogramming method by nonintegrative delivery of a cocktail of cardiac transcription factor-encoding mRNAs into autologous human dermal fibroblasts obtained from skin biopsies. Using this method, adult and neonatal dermal fibroblasts were reprogrammed into cardiac progenitor cells (CPCs) that expressed c-kit, Isl-1, and Nkx2.5. Furthermore, these reprogrammed CPCs differentiated into cardiomyocytes (CMs) in vitro as judged by increased expression of cardiac troponin T, α-sarcomeric actinin, RyR2, and SERCA2 and displayed enhanced caffeine-sensitive calcium release. The ability to reprogram patient-derived dermal fibroblasts into c-kit(+) CPCs and differentiate them into functional CMs provides clinicians with a potential new source of CPCs for cardiac repair from a renewable source and an alternative therapy in the treatment of heart failure.
Collapse
Affiliation(s)
- Elizabeth D Pratico
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Bryan J Feger
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Michael J Watson
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Dawn E Bowles
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Carmelo A Milano
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
122
|
Devoldere J, Dewitte H, De Smedt SC, Remaut K. Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discov Today 2015. [PMID: 26210957 DOI: 10.1016/j.drudis.2015.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the field of nonviral gene therapy, in vitro transcribed (IVT) mRNA has emerged as a promising tool for the delivery of genetic information. Over the past few years it has become widely known that the introduction of IVT mRNA into mammalian cells elicits an innate immune response that has favored mRNA use toward immunotherapeutic vaccination strategies. However, for non-immunotherapy-related applications this intrinsic immune-stimulatory activity directly interferes with the aimed therapeutic outcome, because it can seriously compromise the expression of the desired protein. This review presents an overview of the immune-related obstacles that limit mRNA advance for non-immunotherapy-related applications.
Collapse
Affiliation(s)
- Joke Devoldere
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
123
|
Uchida S, Kataoka K, Itaka K. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity. Pharmaceutics 2015. [PMID: 26213960 PMCID: PMC4588190 DOI: 10.3390/pharmaceutics7030137] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes.
Collapse
Affiliation(s)
- Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Keiji Itaka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
124
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
125
|
Hirsch CL, Coban Akdemir Z, Wang L, Jayakumaran G, Trcka D, Weiss A, Hernandez JJ, Pan Q, Han H, Xu X, Xia Z, Salinger AP, Wilson M, Vizeacoumar F, Datti A, Li W, Cooney AJ, Barton MC, Blencowe BJ, Wrana JL, Dent SYR. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes Dev 2015; 29:803-16. [PMID: 25877919 PMCID: PMC4403257 DOI: 10.1101/gad.255109.114] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Abstract
Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Hirsch et al. performed a functional RNAi screen and identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. In mouse pluripotent stem cells, Gcn5 strongly associates with Myc, and, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc–SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming.
Collapse
Affiliation(s)
- Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Zeynep Coban Akdemir
- Program in Genes and Development, Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Wang
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA; Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Gowtham Jayakumaran
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dan Trcka
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Alexander Weiss
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - J Javier Hernandez
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qun Pan
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Hong Han
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xueping Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andrew P Salinger
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Marenda Wilson
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Frederick Vizeacoumar
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Alessandro Datti
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle C Barton
- Program in Genes and Development, Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| | - Sharon Y R Dent
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA;
| |
Collapse
|
126
|
Broccoli V, Rubio A, Taverna S, Yekhlef L. Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons. Exp Biol Med (Maywood) 2015; 240:787-94. [PMID: 25790823 DOI: 10.1177/1535370215577585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons.
Collapse
Affiliation(s)
- Vania Broccoli
- Stem cells and Neurogenesis, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alicia Rubio
- Stem cells and Neurogenesis, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Latefa Yekhlef
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
127
|
Debowski K, Warthemann R, Lentes J, Salinas-Riester G, Dressel R, Langenstroth D, Gromoll J, Sasaki E, Behr R. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS One 2015; 10:e0118424. [PMID: 25785453 PMCID: PMC4365012 DOI: 10.1371/journal.pone.0118424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Collapse
Affiliation(s)
- Katharina Debowski
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (KD); (RB)
| | - Rita Warthemann
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jana Lentes
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Germany
| | - Daniel Langenstroth
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan, Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- * E-mail: (KD); (RB)
| |
Collapse
|
128
|
Revilla A, González C, Iriondo A, Fernández B, Prieto C, Marín C, Liste I. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med 2015; 10:893-907. [PMID: 25758460 DOI: 10.1002/term.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana Revilla
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Clara González
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Amaia Iriondo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Bárbara Fernández
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Cristina Prieto
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Carlos Marín
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
129
|
Lee K, Yu P, Lingampalli N, Kim HJ, Tang R, Murthy N. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int J Nanomedicine 2015; 10:1841-54. [PMID: 25834424 PMCID: PMC4358644 DOI: 10.2147/ijn.s75124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA ; UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA
| | - Pengzhi Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Nithya Lingampalli
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Hyun Jin Kim
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Richard Tang
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA, USA ; UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA
| |
Collapse
|
130
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
131
|
Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci Rep 2015; 5:8081. [PMID: 25628230 PMCID: PMC4308704 DOI: 10.1038/srep08081] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.
Collapse
|
132
|
Abstract
Reprogramming of somatic cells, such as skin fibroblasts, to pluripotency was first achieved by forced expression of four transcription factors using integrating retroviral or lentiviral vectors, which result in integration of exogenous DNA into cellular genome and present a formidable barrier to therapeutic application of induced pluripotent stem cells (iPSCs). To facilitate the translation of iPSC technology to clinical practice, mRNA reprogramming method that generates transgene-free iPSCs is a safe and efficient method, eliminating bio-containment concerns associated with viral vectors, as well as the need for weeks of screening of cells to confirm that viral material has been completely eliminated during cell passaging.
Collapse
Affiliation(s)
- Jun Liu
- Stem Cell and Genetic Engineering Group, Department of Materials Engineering, Faculty of Engineering, Monash University-Clayton Campus, Wellington Road, Clayton, VIC, 3800, Australia.
| | - Paul J Verma
- Stem Cell and Genetic Engineering Group, Department of Materials Engineering, Faculty of Engineering, Monash University, Clayton, VIC, 3800, Australia.,South Australian Research and Development Institute (SARDI), Turretfield Research Centre, Rosedale, SA, Australia
| |
Collapse
|
133
|
Abstract
With the recent advances in regenerative medicine, nanotechnology has created a niche for itself as a promising avenue in this field. Innumerable studies have been carried out by researchers using virus-based methodologies for the purpose of epigenetic reprogramming. Although this method is ostensibly safe, nonetheless, they are tagged with the risk of viral genome integration into the host genome or insertional mutagenesis. Transient transfection by the use of nanocarriers is the best way to overcome these problems. This review focuses on some of the significant works carried out by researchers utilizing nanocarrier systems that have shown promising results and thus created a landmark in the epigenetic reprogramming.
Collapse
|
134
|
Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci 2014; 15:21840-64. [PMID: 25437916 PMCID: PMC4284681 DOI: 10.3390/ijms151221840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.
Collapse
|
135
|
Avci-Adali M, Behring A, Steinle H, Keller T, Krajeweski S, Schlensak C, Wendel HP. In vitro synthesis of modified mRNA for induction of protein expression in human cells. J Vis Exp 2014:e51943. [PMID: 25489992 DOI: 10.3791/51943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The exogenous delivery of coding synthetic messenger RNA (mRNA) for induction of protein synthesis in desired cells has enormous potential in the fields of regenerative medicine, basic cell biology, treatment of diseases, and reprogramming of cells. Here, we describe a step by step protocol for generation of modified mRNA with reduced immune activation potential and increased stability, quality control of produced mRNA, transfection of cells with mRNA and verification of the induced protein expression by flow cytometry. Up to 3 days after a single transfection with eGFP mRNA, the transfected HEK293 cells produce eGFP. In this video article, the synthesis of eGFP mRNA is described as an example. However, the procedure can be applied for production of other desired mRNA. Using the synthetic modified mRNA, cells can be induced to transiently express the desired proteins, which they normally would not express.
Collapse
Affiliation(s)
- Meltem Avci-Adali
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen;
| | - Andreas Behring
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| | - Heidrun Steinle
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| | - Timea Keller
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| | - Stefanie Krajeweski
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| | - Christian Schlensak
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| | - Hans P Wendel
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen
| |
Collapse
|
136
|
Gazdhar A, Grad I, Tamò L, Gugger M, Feki A, Geiser T. The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 2014; 5:123. [PMID: 25384638 PMCID: PMC4445988 DOI: 10.1186/scrt513] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. Methods IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. Results iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and α-smooth muscle actin (α-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. Conclusion iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/scrt513) contains supplementary material, which is available to authorized users.
Collapse
|
137
|
Wang XL, Hu P, Guo XR, Yan D, Yuan Y, Yan SR, Li DS. Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro –synthesized pancreatic-duodenal homebox 1 messenger RNA. Cytotherapy 2014; 16:1519-1527. [DOI: 10.1016/j.jcyt.2014.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/10/2014] [Accepted: 05/18/2014] [Indexed: 02/03/2023]
|
138
|
Lui KO, Zangi L, Chien KR. Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Res 2014; 13:693-704. [DOI: 10.1016/j.scr.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/14/2023] Open
|
139
|
Chien KR, Zangi L, Lui KO. Synthetic chemically modified mRNA (modRNA): toward a new technology platform for cardiovascular biology and medicine. Cold Spring Harb Perspect Med 2014; 5:a014035. [PMID: 25301935 DOI: 10.1101/cshperspect.a014035] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past two decades, a host of new molecular pathways have been uncovered that guide mammalian heart development and disease. The ability to genetically manipulate these pathways in vivo have largely been dependent on the generation of genetically engineered mouse model systems or the transfer of exogenous genes in a variety of DNA vectors (plasmid, adenoviral, adeno-associated viruses, antisense oligonucleotides, etc.). Recently, a new approach to manipulate the gene program of the adult mammalian heart has been reported that will quickly allow the high-efficiency expression of virtually any protein in the intact heart of mouse, rat, porcine, nonhuman primate, and human heart cells via the generation of chemically modified mRNA (modRNA). The technology platform has important implications for delineating the specific paracrine cues that drive human cardiogenesis, and the pathways that might trigger heart regeneration via the rapid generation of modRNA libraries of paracrine factors for direct in vivo administration. In addition, the strategy can be extended to a variety of other cardiovascular tissues and solid organs across multiple species, and recent improvements in the core technology have supported moving toward the first human studies of modRNA in the next 2 years. These recent advances are reviewed along with projections of the potential impact of the technology for a host of other biomedical problems in the cardiovascular system.
Collapse
Affiliation(s)
- Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Kathy O Lui
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
140
|
Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J 2014; 202:416-24. [PMID: 25457267 DOI: 10.1016/j.tvjl.2014.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/23/2023]
Abstract
There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies. Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed.
Collapse
Affiliation(s)
- Deanne J Whitworth
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia.
| | - Tania A Banks
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
141
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1405] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
142
|
Diecke S, Jung SM, Lee J, Ju JH. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 2014; 29:547-57. [PMID: 25228828 PMCID: PMC4164716 DOI: 10.3904/kjim.2014.29.5.547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Sebastian Diecke
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaecheol Lee
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
143
|
Stem cells and gliomas: past, present, and future. J Neurooncol 2014; 119:547-55. [DOI: 10.1007/s11060-014-1498-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/14/2023]
|
144
|
Mormone E, D'Sousa S, Alexeeva V, Bederson MM, Germano IM. "Footprint-free" human induced pluripotent stem cell-derived astrocytes for in vivo cell-based therapy. Stem Cells Dev 2014; 23:2626-36. [PMID: 24914471 DOI: 10.1089/scd.2014.0151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSC) from somatic cells has enabled the possibility to provide patient-specific hiPSC for cell-based therapy, drug discovery, and other translational applications. Two major obstacles in using hiPSC for clinical application reside in the risk of genomic modification when they are derived with viral transgenes and risk of teratoma formation if undifferentiated cells are engrafted. In this study, we report the generation of "footprint-free" hiPSC-derived astrocytes. These are efficiently generated, have anatomical and physiological characteristics of fully differentiated astrocytes, maintain homing characteristics typical of stem cells, and do not give rise to teratomas when engrafted in the brain. Astrocytes can be obtained in sufficient numbers, aliquoted, frozen, thawed, and used when needed. Our results show the feasibility of differentiating astrocytes from "footprint-free" iPSC. These are suitable for clinical cell-based therapies as they can be induced from patients' specific cells, do not require viral vectors, and are fully differentiated. "Footprint-free" hiPSC-derived astrocytes represent a new potential source for therapeutic use for cell-based therapy, including treatment of high-grade human gliomas, and drug discovery.
Collapse
Affiliation(s)
- Elisabetta Mormone
- 1 Department of Neurosurgery, Icahn School of Medicine at Mount Sinai , New York, New York
| | | | | | | | | |
Collapse
|
145
|
Li J, Song W, Pan G, Zhou J. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol 2014; 7:50. [PMID: 25037625 PMCID: PMC4445637 DOI: 10.1186/s13045-014-0050-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023] Open
Abstract
Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Weiqi Road, Jinan, 250021, P.R. China.
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Weiqi Road, Jinan, 250021, P.R. China.
| | - Guangjin Pan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, P.R. China.
| | - Jun Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Weiqi Road, Jinan, 250021, P.R. China.
| |
Collapse
|
146
|
Kallen KJ, Theß A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:10-31. [PMID: 24757523 DOI: 10.1177/2051013613508729] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances strongly suggest that mRNA rather than DNA will be the nucleotide basis for a new class of vaccines and drugs. Therapeutic cancer vaccines against a variety of targets have been developed on this basis and initial clinical experience suggests that preclinical activity can be successfully translated to human application. Likewise, prophylactic vaccines against viral pathogens and allergens have demonstrated their activity in animal models. These successes could be extended preclinically to mRNA protein and gene replacement therapy as well as the induction of pluripotent stem cells by mRNA encoded transcription factors. The production of mRNA-based vaccines and drugs is highly flexible, scalable and cost competitive, and eliminates the requirement of a cold chain. mRNA-based drugs and vaccines offer all the advantages of a nucleotide-based approach at reduced costs and represent a truly disruptive technology that may start a revolution in medicine.
Collapse
|
147
|
McKnight H, Kelsey WP, Hooper DA, Hart TC, Mariotti A. Proteomic Analyses of Human Gingival and Periodontal Ligament Fibroblasts. J Periodontol 2014; 85:810-8. [DOI: 10.1902/jop.2013.130161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
148
|
Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, Gia Nguyen K, Kim Phan N. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 2014; 87:200-8. [DOI: 10.1016/j.diff.2014.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023]
|
149
|
Quabius ES, Krupp G. Synthetic mRNAs for manipulating cellular phenotypes: an overview. N Biotechnol 2014; 32:229-35. [PMID: 24816460 DOI: 10.1016/j.nbt.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/25/2022]
Abstract
Availability of high quality synthetic mRNAs (syn-mRNAs) has enabled progress in their applications. Important structural features and quality requirements are discussed. Developments in the application of mRNA-mediated manipulation of cells are presented (i) mRNA-directed expression of antigens in dendritic cells for vaccination projects in oncogenesis, infectious disease and allergy prevention; (ii) reprogramming of human fibroblasts to induced pluripotent stem cells with their subsequent differentiation to the desired cell type; (iii) applications in gene therapy.
Collapse
Affiliation(s)
- Elgar Susanne Quabius
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel, Germany; Institute of Immunology, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Guido Krupp
- AmpTec GmbH, Königstr. 4A, 22767 Hamburg, Germany.
| |
Collapse
|
150
|
Development of a novel semi-quantitative analysis system for ultramicroscale samples by fluorescent capillary isoelectric focusing. Biosens Bioelectron 2014; 54:656-60. [DOI: 10.1016/j.bios.2013.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022]
|