101
|
G-quadruplex Structures Contribute to Differential Radiosensitivity of the Human Genome. iScience 2019; 21:288-307. [PMID: 31678912 PMCID: PMC6838516 DOI: 10.1016/j.isci.2019.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/12/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
DNA, the fundamental unit of human cell, generally exists in Watson-Crick base-paired B-DNA form. Often, DNA folds into non-B forms, such as four-stranded G-quadruplexes. It is generally believed that ionizing radiation (IR) induces DNA strand-breaks in a random manner. Here, we show that regions of DNA enriched in G-quadruplex structures are less sensitive to IR compared with B-DNA in vitro and inside cells. Planar G-quartet of G4-DNA is shielded from IR-induced free radicals, unlike single- and double-stranded DNA. Whole-genome sequence analysis and real-time PCR reveal that genomic regions abundant in G4-DNA are protected from radiation-induced breaks and can be modulated by G4 stabilizers. Thus, our results reveal that formation of G4 structures contribute toward differential radiosensitivity of the human genome. G4 DNA contributes to genome-wide radioprotection and is modulated by G4 resolvases Radiation causes minimal damage at the G4 structures at telomeres Formation of G4 DNA contributes toward differential radiosensitivity of human genome Planar quartet of G4 DNA is shielded from IR-induced free radicals and thus DNA breaks
Collapse
|
102
|
Lv X, Zhao Y, Zhang L, Zhou S, Zhang B, Zhang Q, Jiang L, Li X, Wu H, Zhao L, Wei M, He M. Development of a novel gene signature in patients without Helicobacter pylori infection gastric cancer. J Cell Biochem 2019; 121:1842-1854. [PMID: 31633246 DOI: 10.1002/jcb.29419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most fatal common cancers in worldwide. Helicobacter pylori (H. pylori) infection is closely related to the development of GC, although the mechanism is still unclear. In our study, we aim to develop a robust messenger RNA (mRNA) signature associated with H. pylori (-) GC that can sensitively and efficiently predict the prognostic. The RNA-seq expression profile and corresponding clinical data of 598 gastric cancer samples and 63 normal samples obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Using gene set enrichment analysis H. pylori (+) GC and H. pylori (-) GC patients and normal samples to select certain genes for further analysis. Using univariate and multivariate Cox regression model to establish a gene signature for predicting the overall survival (OS). Finally, we identified G2/M related seven-mRNA signature (TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2, and CHAF1A) closely related to the prognosis of patients with H. pylori (-) GC. The seven-mRNA signature was identified to act as an independent prognostic biomarker by stratified analysis and multivariate Cox regression analysis. It was also validated on two test groups from TCGA and GSE15460 and shown that patients with high-risk scores based on the expression of the seven mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < .0001). In this study, we developed a seven-mRNA signature related to G2/M checkpoint from H. pylori (-) GCs that as an independent biomarker potentially with a good performance in predicting OS and might be valuable for the clinical management for patients with GC.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Shuqi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Bing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
103
|
Schoonen PM, Kok YP, Wierenga E, Bakker B, Foijer F, Spierings DCJ, van Vugt MATM. Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells. Mol Oncol 2019; 13:2422-2440. [PMID: 31529615 PMCID: PMC6822251 DOI: 10.1002/1878-0261.12573] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022] Open
Abstract
Poly(ADP‐ribose) polymerase (PARP) inhibitors are selectively cytotoxic in cancer cells with defects in homologous recombination (HR) (e.g., due to BRCA1/2 mutations). However, not all HR‐deficient tumors efficiently respond to PARP inhibition and often acquire resistance. It is therefore important to uncover how PARP inhibitors induce cytotoxicity and develop combination strategies to potentiate PARP inhibitor efficacy in HR‐deficient tumors. In this study, we found that forced mitotic entry upon ATR inhibition potentiates cytotoxic effects of PARP inhibition using olaparib in BRCA2‐depleted and Brca2 knockout cancer cell line models. Single DNA fiber analysis showed that ATR inhibition does not exacerbate replication fork degradation. Instead, we find ATR inhibitors accelerate mitotic entry, resulting in the formation of chromatin bridges and lagging chromosomes. Furthermore, using genome‐wide single‐cell sequencing, we show that ATR inhibition enhances genomic instability of olaparib‐treated BRCA2‐depleted cells. Inhibition of CDK1 to delay mitotic entry mitigated mitotic aberrancies and genomic instability upon ATR inhibition, underscoring the role of ATR in coordinating proper cell cycle timing in situations of DNA damage. Additionally, we show that olaparib treatment leads to increased numbers of micronuclei, which is accompanied by a cGAS/STING‐associated inflammatory response in BRCA2‐deficient cells. ATR inhibition further increased the numbers of cGAS‐positive micronuclei and the extent of cytokine production in olaparib‐treated BRCA2‐deficient cancer cells. Altogether, we show that ATR inhibition induces premature mitotic entry and mediates synergistic cytotoxicity with PARP inhibition in HR‐deficient cancer cells, which involves enhanced genomic instability and inflammatory signaling.
Collapse
Affiliation(s)
- Pepijn M Schoonen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Bjorn Bakker
- European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, The Netherlands
| | - Floris Foijer
- European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, The Netherlands
| | - Diana C J Spierings
- European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
104
|
Jette NR, Radhamani S, Arthur G, Ye R, Goutam S, Bolyos A, Petersen LF, Bose P, Bebb DG, Lees-Miller SP. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer 2019; 121:600-610. [PMID: 31481733 PMCID: PMC6889280 DOI: 10.1038/s41416-019-0565-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Up to 40% of lung adenocarcinoma have been reported to lack ataxia-telangiectasia mutated (ATM) protein expression. We asked whether ATM-deficient lung cancer cell lines are sensitive to poly-ADP ribose polymerase (PARP) inhibitors and determined the mechanism of action of olaparib in ATM-deficient A549 cells. Methods We analysed drug sensitivity data for olaparib and talazoparib in lung adenocarcinoma cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) project. We deleted ATM from A549 lung adenocarcinoma cells using CRISPR/Cas9 and determined the effects of olaparib and the ATM/Rad3-related (ATR) inhibitor VE-821 on cell viability. Results IC50 values for both olaparib and talazoparib positively correlated with ATM mRNA levels and gene amplification status in lung adenocarcinoma cell lines. ATM mutation was associated with a significant decrease in the IC50 for olaparib while a similar trend was observed for talazoparib. A549 cells with deletion of ATM were sensitive to ionising radiation and olaparib. Olaparib induced phosphorylation of DNA damage markers and reversible G2 arrest in ATM-deficient cells, while the combination of olaparib and VE-821 induced cell death. Conclusions Patients with tumours characterised by ATM-deficiency may benefit from treatment with a PARP inhibitor in combination with an ATR inhibitor.
Collapse
Affiliation(s)
- Nicholas R Jette
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Suraj Radhamani
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Greydon Arthur
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Siddhartha Goutam
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Anthony Bolyos
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lars F Petersen
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Pinaki Bose
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - D Gwyn Bebb
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada. .,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
105
|
Kim JY, Ohn J, Yoon JS, Kang BM, Park M, Kim S, Lee W, Hwang S, Kim JI, Kim KH, Kwon O. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat Commun 2019; 10:3694. [PMID: 31455775 PMCID: PMC6711970 DOI: 10.1038/s41467-019-11665-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
The maintenance of genetic integrity is critical for stem cells to ensure homeostasis and regeneration. Little is known about how adult stem cells respond to irreversible DNA damage, resulting in loss of regeneration in humans. Here, we establish a permanent regeneration loss model using cycling human hair follicles treated with alkylating agents: busulfan followed by cyclophosphamide. We uncover the underlying mechanisms by which hair follicle stem cells (HFSCs) lose their pool. In contrast to immediate destructive changes in rapidly proliferating hair matrix cells, quiescent HFSCs show unexpected massive proliferation after busulfan and then undergo large-scale apoptosis following cyclophosphamide. HFSC proliferation is activated through PI3K/Akt pathway, and depletion is driven by p53/p38-induced cell death. RNA-seq analysis shows that HFSCs experience mitotic catastrophe with G2/M checkpoint activation. Our findings indicate that priming mobilization causes stem cells to lose their resistance to DNA damage, resulting in permanent loss of regeneration after alkylating chemotherapy. Hair follicles (HFs) are sensitive to chemotherapy but recover from quiescent HF stem cells, although sometimes chemotherapy results in permanent loss. Here, Kim et al. establish a model of permanent chemotherapy-induced alopecia to uncover the underlying mechanisms depleting human HF stem cells.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji-Seon Yoon
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Minji Park
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sookyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | | | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea. .,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
106
|
Song L, Wang XY, He XF. A 5-Gene Prognostic Combination for Predicting Survival of Patients with Gastric Cancer. Med Sci Monit 2019; 25:6313-6320. [PMID: 31422414 PMCID: PMC6713029 DOI: 10.12659/msm.914815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The aim of the study was to identify a multigene prognostic factor in patients with gastric cancer (GC). Material/Methods Random survival forest (RSF) was performed to screen survival-related genes and develop a multigene combination based on the cumulative hazard function of each GC patient in TCGA-STAD and GSE15459. Kaplan-Meier curve and univariate and multivariable Cox proportional hazards regression model were applied to evaluate the prognostic performance of the 5-gene combination. C-index was used to compare the prognostic performance of the 5-gene combination and another 9-gene signature in GC. Gene set enrichment analysis (GSEA) was conducted. Results We obtained 19 survival-related genes through univariate Cox proportional hazards analysis in the training set, 5 of which were identified and were used to develop a 5-gene combination through RSF. Patients in the 5-gene combination low-risk group had better overall survival (OS) than those in the 5-gene combination high-risk group, and the 5-gene combination was demonstrated to be an independent prognostic factor in patients with GC. The 5-gene combination outperformed the 9-gene signature in predicting the OS of GC patients, and it might affect the prognosis of GC patients through E2F signaling, MYC signaling, and G2M checkpoint. Conclusions We introduce a 5-gene combination that can predict the survival of GC patients and might be an independent prognostic factor in GC.
Collapse
Affiliation(s)
- Liang Song
- Endoscopy Room, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Xiao-Yan Wang
- Department of Epidemiology and Health Statistics, Basic Medical College of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Xiao-Feng He
- Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| |
Collapse
|
107
|
Yao DW, Balanis NG, Eskin E, Graeber TG. A linear mixed model approach to gene expression-tumor aneuploidy association studies. Sci Rep 2019; 9:11944. [PMID: 31420589 PMCID: PMC6697733 DOI: 10.1038/s41598-019-48302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/02/2019] [Indexed: 11/09/2022] Open
Abstract
Aneuploidy, defined as abnormal chromosome number or somatic DNA copy number, is a characteristic of many aggressive tumors and is thought to drive tumorigenesis. Gene expression-aneuploidy association studies have previously been conducted to explore cellular mechanisms associated with aneuploidy. However, in an observational setting, gene expression is influenced by many factors that can act as confounders between gene expression and aneuploidy, leading to spurious correlations between the two variables. These factors include known confounders such as sample purity or batch effect, as well as gene co-regulation which induces correlations between the expression of causal genes and non-causal genes. We use a linear mixed-effects model (LMM) to account for confounding effects of tumor purity and gene co-regulation on gene expression-aneuploidy associations. When applied to patient tumor data across diverse tumor types, we observe that the LMM both accounts for the impact of purity on aneuploidy measurements and identifies a new association between histone gene expression and aneuploidy.
Collapse
Affiliation(s)
- Douglas W Yao
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
108
|
A Mathematical Model for the Effect of Low-Dose Radiation on the G2/M Transition. Bull Math Biol 2019; 81:3998-4021. [PMID: 31392576 DOI: 10.1007/s11538-019-00645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
We develop a mathematical model to study the immediate effect of low-dose radiation on the G2 checkpoint and the G2/M transition of the cell cycle via a radiation pathway (the ATM-Chk2 pathway) of an individual mammalian cell. The model consists of a system of nonlinear differential equations describing the dynamics of a network of regulatory proteins that play key roles in the G2/M transition, cell cycle oscillations, and the radiation pathway. We simulate the application of a single pulse of low-dose radiation at different intensities ([Formula: see text] 0-0.4 Gy) and times during the latter part of the G2-phase. We use bifurcation analysis to characterize the effect of radiation on the G2/M transition via the ATM-Chk2 pathway. We show that radiation between 0.1 and 0.3 Gy can delay the G2/M transition, and radiation higher than 0.3 Gy can fully activate the G2 checkpoint. Also, our results show that radiation can be low enough to neither delay the G2/M transition nor activate the G2 checkpoint ([Formula: see text] 0.1 Gy). Our model supports the idea that the cell response to radiation during G2-phase explains hyper-radiosensitivity and increased radioresistance (HRS/IRR) observed at low dose.
Collapse
|
109
|
Fraser DL, Stander BA, Steenkamp V. Cytotoxic activity of pentachlorophenol and its active metabolites in SH-SY5Y neuroblastoma cells. Toxicol In Vitro 2019; 58:118-125. [DOI: 10.1016/j.tiv.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
|
110
|
Cadmium disrupts the DNA damage response by destabilizing RNF168. Food Chem Toxicol 2019; 133:110745. [PMID: 31376412 DOI: 10.1016/j.fct.2019.110745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
Abstract
Cadmium (Cd) is a dispensable element for the human body and is usually considered a carcinogen. Occupational and environmental Cd exposure leads to sustained cellular proliferation in some tissues and tumorigenesis via an unclear mechanism. Here, we evaluated the role of Cd in the DNA damage response (DDR). We found that Cd exposure causes extensive DNA double-strand breaks (DSBs) and prevents accumulation of ubiquitination signals at these sites of DNA damage. Cd treatment compromises 53BP1 and BRCA1 recruitment to DSBs induced by itself or DNA damaging agents and partially inactivates the G2/M checkpoint. Mechanistically, Cd directly binds to the E3 ubiquitin ligase RNF168, induces the ubiquitin-proteasome pathway that mediates RNF168 degradation and suppresses RNF168 ubiquitin-ligase activity in vitro. Our study raises the possibility that Cd may target RNF168 to disrupt proper DSB signaling in cultured cells. This pathway may represent a novel mechanism for carcinogenesis induced by Cd.
Collapse
|
111
|
Co-Inhibition of the DNA Damage Response and CHK1 Enhances Apoptosis of Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20153700. [PMID: 31362335 PMCID: PMC6696225 DOI: 10.3390/ijms20153700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Checkpoint kinase 1 (CHK1) is a central mediator of the DNA damage response (DDR) at the S and G2/M cell cycle checkpoints, and plays a crucial role in preserving genomic integrity. CHK1 overexpression is thought to contribute to cancer aggressiveness, and several selective inhibitors of this kinase are in clinical development for various cancers, including neuroblastoma (NB). Here, we examined the sensitivity of MYCN-amplified NB cell lines to the CHK1 inhibitor PF-477736 and explored mechanisms to increase its efficacy. PF-477736 treatment of two sensitive NB cell lines, SMS-SAN and CHP134, increased the expression of two pro-apoptotic proteins, BAX and PUMA, providing a mechanism for the effect of the CHK1 inhibitor. In contrast, in NB-39-nu and SK-N-BE cell lines, PF-477736 induced DNA double-strand breaks and activated the ataxia telangiectasia mutated serine/threonine kinase (ATM)-p53-p21 axis of the DDR pathway, which rendered the cells relatively insensitive to the antiproliferative effects of the CHK1 inhibitor. Interestingly, combined treatment with PF-477736 and the ATM inhibitor Ku55933 overcame the insensitivity of NB-39-nu and SK-N-BE cells to CHK1 inhibition and induced mitotic cell death. Similarly, co-treatment with PF-477736 and NU7441, a pharmacological inhibitor of DNA-PK, which is also essential for the DDR pathway, rendered the cells sensitive to CHK1 inhibition. Taken together, our results suggest that synthetic lethality between inhibitors of CHK1 and the DDR drives G2/M checkpoint abrogation and could be a novel potential therapeutic strategy for NB.
Collapse
|
112
|
Shen L, Zhao K, Li H, Ning B, Wang W, Liu R, Zhang Y, Zhang A. Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo. Epigenomics 2019; 11:1283-1305. [PMID: 31355678 DOI: 10.2217/epi-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the effect of UBE2T gene on radiotherapy for osteosarcoma. Materials & methods: Gene Expression Omnibus database, RT-qPCR and immunohistochemical analysis were performed. Cell proliferation and cell cycle experiments were conducted after knockdown of UBE2T. Cell scratch, reactive oxygen species production and apoptosis experiments were conducted after the combination of radiotherapy and UBE2T silencing. Then the xenograft mode was further conducted. Results: UBE2T was highly expressed in human osteosarcoma. Suppression of UBE2T inhibited osteosarcoma cell proliferation and induced cell cycle arrest at the G2/M phase. Downregulation of UBE2T combined with radiation can substantially inhibit clonal formation and migration, and promote apoptosis of osteosarcoma cells in vitro and in vivo. Conclusion: UBE2T downregulation can enhance the radiosensitivity of osteosarcoma in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Shen
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Kai Zhao
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Han Li
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Wenzhao Wang
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ronghan Liu
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Yining Zhang
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
113
|
The low dose effects of human mammary epithelial cells induced by internal exposure to low radioactive tritiated water. Toxicol In Vitro 2019; 61:104608. [PMID: 31348984 DOI: 10.1016/j.tiv.2019.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/16/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Tritium is an important radioactive waste which needs to be monitored for radiation protection. Due to long biological half-life of organically bound tritium (OBT), the adverse consequence caused by chronic exposure of tritiated water (HTO) attracts concern. In this study, fibroblast cells were exposed to 2 × 106 Bq/ml HTO to investigate the cellular behaviors. The dose relationship of survival fraction and γH2AX foci was a "U-shaped" curve. And the results of γH2AX intensity produced by ICCM, which was obtained from different doses, demonstrated bystander signal accounted for the protective effects induced by intermediate dose of 100 mGy. The comparison of temporal kinetics and spatial dynamics of DNA repair between tritium β-rays and γ-rays showed longer time was need for the dephosphorylation of H2AX protein after HTO exposure. It indicated complex cluster DSBs induced by tritium β-rays at the low dose impaired efficient recovery of DNA damage, which bear responsibility for the persistence of residual foci after low dose expsoure. It suggests after exposed to low dose radiation cells prefer to eliminate damage population to avoid DNA damage increasing the mutation potential.
Collapse
|
114
|
Durante M, Formenti S. Harnessing radiation to improve immunotherapy: better with particles? Br J Radiol 2019; 93:20190224. [PMID: 31317768 DOI: 10.1259/bjr.20190224] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The combination of radiotherapy and immunotherapy is one of the most promising strategies for cancer treatment. Recent clinical results support the pre-clinical experiments pointing to a benefit for the combined treatment in metastatic patients. Charged particle therapy (using protons or heavier ions) is considered one of the most advanced radiotherapy techniques, but its cost remains higher than conventional X-ray therapy. The most important question to be addressed to justify a more widespread use of particle therapy is whether they can be more effective than X-rays in combination with immunotherapy. Protons and heavy ions have physical advantages compared to X-rays that lead to a reduced damage to the immune cells, that are required for an effective immune response. Moreover, densely ionizing radiation may have biological advantages, due to different cell death pathways and release of cytokine mediators of inflammation. We will discuss results in esophageal cancer patients showing that charged particles can reduce the damage to blood lymphocytes compared to X-rays, and preliminary in vitro studies pointing to an increased release of immune-stimulating cytokines after heavy ion exposure. Pre-clinical and clinical studies are ongoing to test these hypotheses.
Collapse
Affiliation(s)
- Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
115
|
Patel P, Sun L, Robbins Y, Clavijo PE, Friedman J, Silvin C, Van Waes C, Cook J, Mitchell J, Allen C. Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 2019; 8:e1638207. [PMID: 31646086 DOI: 10.1080/2162402x.2019.1638207] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor cells activate the G2/M cell cycle checkpoint in response to ionizing radiation (IR) and effector immune cell-derived granzyme B to facilitate repair and survival. Wee1 kinase inhibition reverses the ability of tumor cells to pause at G2/M. Here, we hypothesized that AZD1775, a small molecule inhibitor of Wee1 kinase, could sensitize tumor cells to IR and T-lymphocyte killing and improve responses to combination IR and programmed death (PD)-axis immune checkpoint blockade (ICB). Multiple models of head and neck carcinoma, lung carcinoma and melanoma were used in vitro and in vivo to explore this hypothesis. AZD1775 reversed G2/M cell cycle checkpoint activation following IR, inducing cell death. Combination IR and AZD1775 induced accumulation of DNA damage in M-phase cells and was rescued with nucleoside supplementation, indicating mitotic catastrophe. Combination treatment enhanced control of syngeneic MOC1 tumors in vivo, and on-target effects of systemic AZD1775 could be localized with targeted IR. Combination treatment enhanced granzyme B-dependent T-lymphocyte killing through reversal of additive G2/M cell cycle block induced by IR and granzyme B. Combination IR and AZ1775-enhanced CD8+ cell-dependent MOC1 tumor growth control and rate of complete rejection of established tumors in the setting of PD-axis ICB. Functional assays demonstrated increased tumor antigen-specific immune responses in sorted T-lymphocytes. The combination of IR and AZD1775 not only lead to enhanced tumor-specific cytotoxicity, it also enhanced susceptibility to T-lymphocyte killing and responses to PD-axis ICB. These data provide the pre-clinical rationale for the combination of these therapies in the clinical trial setting.
Collapse
Affiliation(s)
- Priya Patel
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Lily Sun
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul E Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Silvin
- Tumor Biology Section, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - John Cook
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
116
|
Halder S, Torrecilla I, Burkhalter MD, Popović M, Fielden J, Vaz B, Oehler J, Pilger D, Lessel D, Wiseman K, Singh AN, Vendrell I, Fischer R, Philipp M, Ramadan K. SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication. Nat Commun 2019; 10:3142. [PMID: 31316063 PMCID: PMC6637133 DOI: 10.1038/s41467-019-11095-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/21/2019] [Indexed: 01/07/2023] Open
Abstract
The SPRTN metalloprotease is essential for DNA-protein crosslink (DPC) repair and DNA replication in vertebrate cells. Cells deficient in SPRTN protease exhibit DPC-induced replication stress and genome instability, manifesting as premature ageing and liver cancer. Here, we provide a body of evidence suggesting that SPRTN activates the ATR-CHK1 phosphorylation signalling cascade during physiological DNA replication by proteolysis-dependent eviction of CHK1 from replicative chromatin. During this process, SPRTN proteolyses the C-terminal/inhibitory part of CHK1, liberating N-terminal CHK1 kinase active fragments. Simultaneously, CHK1 full length and its N-terminal fragments phosphorylate SPRTN at the C-terminal regulatory domain, which stimulates SPRTN recruitment to chromatin to promote unperturbed DNA replication fork progression and DPC repair. Our data suggest that a SPRTN-CHK1 cross-activation loop plays a part in DNA replication and protection from DNA replication stress. Finally, our results with purified components of this pathway further support the proposed model of a SPRTN-CHK1 cross-activation loop. Cells deficient in SPRTN protease activity exhibit severe DNA-protein crosslink induced replication stress and genome instability. Here the author reveal a functional link between the SPRTN protease and the CHK1 kinase during physiological DNA replication.
Collapse
Affiliation(s)
- Swagata Halder
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany
| | - Marta Popović
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Institute Ruder Boškovic, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - John Fielden
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Domenic Pilger
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Katherine Wiseman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Abhay Narayan Singh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Iolanda Vendrell
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.,TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
117
|
Sakita JY, Bader M, Santos ES, Garcia SB, Minto SB, Alenina N, Brunaldi MO, Carvalho MC, Vidotto T, Gasparotto B, Martins RB, Silva WA, Brandão ML, Leite CA, Cunha FQ, Karsenty G, Squire JA, Uyemura SA, Kannen V. Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. J Pathol 2019; 249:102-113. [PMID: 31038736 DOI: 10.1002/path.5285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
Abstract
Serotonin (5-HT) signaling pathways are thought to be involved in colorectal tumorigenesis (CRT), but the role of 5-HT synthesis in the early steps of this process is presently unknown. In this study, we used carcinogen treatment in the tryptophan hydroxylase 1 knockout (Tph1KO) and transgenic (Tph1fl/fl VillinCre ) mouse models defective in 5-HT synthesis to investigate the early mutagenic events associated with CRT. Our observations of the colonic crypt post-treatment followed a timeline designed to understand how disruption of 5-HT synthesis affects the initial steps leading to CRT. We found Tph1KO mice had decreased development of both allograft tumors and colitis-related CRT. Interestingly, carcinogenic exposure alone induced multiple colon tumors and increased cyclooxygenase-2 (Ptgs2) expression in Tph1KO mice. Deletion of interleukin 6 (Il6) in Tph1KO mice confirmed that inflammation was a part of the process. 5-HT deficiency increased colonic DNA damage but inhibited genetic repair of specific carcinogen-related damage, leading to CRT-related inflammatory reactions and dysplasia. To validate a secondary effect of 5-HT deficiency on another DNA repair pathway, we exposed Tph1KO mice to ionizing radiation and found an increase in DNA damage associated with reduced levels of ataxia telangiectasia and Rad3 related (Atr) gene expression in colonocytes. Restoring 5-HT levels with 5-hydroxytryptophan treatment decreased levels of DNA damage and increased Atr expression. Analysis of Tph1fl/fl VillinCre mice with intestine-specific loss of 5-HT synthesis confirmed that DNA repair was tissue specific. In this study, we report a novel protective role for 5-HT synthesis that promotes DNA repair activity during the early stages of colorectal carcinogenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Juliana Y Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Michael Bader
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Charité, University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Emerson S Santos
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sergio B Garcia
- Department of Pathology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stefania B Minto
- Department of Pathology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Natalia Alenina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Milene C Carvalho
- Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago Vidotto
- Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Bianca Gasparotto
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ronaldo B Martins
- Department of Cell and Molecular Biology, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson A Silva
- Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcus L Brandão
- Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirao Preto, Brazil
| | - Caio A Leite
- Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Jeremy A Squire
- Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
118
|
Mladenov E, Fan X, Dueva R, Soni A, Iliakis G. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G 2-phase. Sci Rep 2019; 9:8255. [PMID: 31164689 PMCID: PMC6547644 DOI: 10.1038/s41598-019-44771-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Using data generated with cells exposed to ionizing-radiation (IR) in G2-phase of the cell cycle, we describe dose-dependent interactions between ATM, ATR and DNA-PKcs revealing unknown mechanistic underpinnings for two key facets of the DNA damage response: DSB end-resection and G2-checkpoint activation. At low IR-doses that induce low DSB-numbers in the genome, ATM and ATR regulate epistatically the G2-checkpoint, with ATR at the output-node, interfacing with the cell-cycle predominantly through Chk1. Strikingly, at low IR-doses, ATM and ATR epistatically regulate also resection, and inhibition of either activity fully suppresses resection. At high IR-doses that induce high DSB-numbers in the genome, the tight ATM/ATR coupling relaxes and independent outputs to G2-checkpoint and resection occur. Consequently, both kinases must be inhibited to fully suppress checkpoint activation and resection. DNA-PKcs integrates to the ATM/ATR module by regulating resection at all IR-doses, with defects in DNA-PKcs causing hyper-resection and G2-checkpoint hyper-activation. Notably, hyper-resection is absent from other c-NHEJ mutants. Thus, DNA-PKcs specifically regulates resection and adjusts the activation of the ATM/ATR module. We propose that selected DSBs are shepherd by DNA-PKcs from c-NHEJ to resection-dependent pathways for processing under the regulatory supervision of the ATM/ATR module.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Xiaoxiang Fan
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
119
|
Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review. Curr Neuropharmacol 2019; 17:201-213. [PMID: 30081786 PMCID: PMC6425079 DOI: 10.2174/1570159x16666180803164238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sar-coma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline expo-sure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is corre-lated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mito-gen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen tox-icity and neurotoxicity.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mojtaba Limoee
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
120
|
Tao SM, Zhou F, Schoepf UJ, Johnson AA, Lin ZX, Zhou CS, Lu GM, Zhang LJ. The effect of abdominal contrast-enhanced CT on DNA double-strand breaks in peripheral blood lymphocytes: an in vitro and in vivo study. Acta Radiol 2019; 60:687-693. [PMID: 30200772 DOI: 10.1177/0284185118799513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND As abdominal computed tomography (CT) radiation dose can be higher compared with other organ systems, monitoring the radiation exposure from this exam type is especially important. PURPOSE To evaluate the effect of abdominal contrast-enhanced CT (CE-CT) on levels of DNA double-strand breaks (DSBs) in peripheral blood lymphocytes. MATERIAL AND METHODS This study was performed in two parts: (i) an in vitro study: venous blood samples from 12 volunteers were divided into four groups. Samples in group A did not undergo radiation exposure, while groups B, C, and D received one CT scan with 1-3 times the radiation dose equivalent to abdominal CE-CT scan, respectively; and (ii) an in vivo study: blood was taken before CT and 5 min after CT in 30 patients. Lymphocytes were isolated and stained by immunofluorescence of γ-H2AX protein. DSB levels were compared by variance analysis or paired t-test. The relationship between radiation dose and γ-H2AX focus increase was analyzed using Pearson correlation analysis. RESULTS In the in vitro study, DSBs levels in groups B, C, and D were 49.4%, 96.6%, and 149.4% higher than those in Group A, respectively (all P < 0.001). Radiation dose in the four subgroups had a linear correlation to DSB levels ( P < 0.001). In the in vivo study, the DSB level was 43.5% higher after CT ( P < 0.001). CONCLUSION Abdominal CE-CT significantly increased DSB levels in both in vitro and in vivo experiments. A positive linear correlation of CT radiation dose with intracellular DSBs levels was observed in the in vitro study.
Collapse
Affiliation(s)
- Shu Min Tao
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
- Medical Imaging Center, Affiliated Hospital of Nantong University, Nantong, PR China
| | - Fan Zhou
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Addison A Johnson
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zhu Xiao Lin
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chang Sheng Zhou
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
121
|
Musa AE, Shabeeb D. Radiation-Induced Heart Diseases: Protective Effects of Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E126. [PMID: 31075882 PMCID: PMC6572037 DOI: 10.3390/medicina55050126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) account for the majority of deaths worldwide. Radiation-induced heart diseases (RIHD) is one of the side effects following exposure to ionizing radiation (IR). Exposure could be from various forms such as diagnostic imaging, radiotherapy for cancer treatment, as well as nuclear disasters and nuclear accidents. RIHD is mostly observed after radiotherapy for thoracic malignancies, especially left breast cancer. RIHD may affect the supply of blood to heart muscles, leading to an increase in the risk of heart attacks to irradiated persons. Due to its dose-limiting consequence, RIHD has a negative effect on the therapeutic efficacy of radiotherapy. Several methods have been proposed for protection against RIHD. In this paper, we review the use of natural products, which have shown promising results for protection against RIHD.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (TUMS), International Campus, Tehran 1416753955, Iran.
- Research Center for Molecular and Cellular Imaging, TUMS, Tehran 1416753955, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq.
| |
Collapse
|
122
|
Rodríguez A, Naveja JJ, Torres L, García de Teresa B, Juárez-Figueroa U, Ayala-Zambrano C, Azpeitia E, Mendoza L, Frías S. WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Front Genet 2019; 10:411. [PMID: 31130988 PMCID: PMC6509935 DOI: 10.3389/fgene.2019.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/15/2019] [Indexed: 02/01/2023] Open
Abstract
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - J Jesús Naveja
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Benilde García de Teresa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ulises Juárez-Figueroa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
123
|
Soni A, Murmann-Konda T, Magin S, Iliakis G. A method for the cell-cycle-specific analysis of radiation-induced chromosome aberrations and breaks. Mutat Res 2019; 815:10-19. [PMID: 30999232 DOI: 10.1016/j.mrfmmm.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The classical G2-assay is widely used to assess cell-radiosensitivity and cancer phenotype: Cells are exposed to low doses of ionizing-radiation (IR) and collected for cytogenetic- analysis ˜1.5 h later. In this way, chromosome-damage is measured in cells irradiated in G2-phase, without retrieving information regarding kinetics of chromosome-break-repair. Modification of the assay to include analysis at multiple time-points after IR, has enabled kinetic-analysis of chromatid-break-repair and assessment of damage in a larger proportion of G2-phase cells. This modification, however, increases the probability that at later time points not only cells irradiated in G2-phase, but also cells irradiated in S-phase will reach metaphase. However, the response of cells irradiated in G2-phase can be mechanistically different from that of cells irradiated in S-phase. Therefore, indiscriminate analysis may confound the interpretation of experiments designed to elucidate mechanisms of chromosome-break-repair and the contributions of the different DSB-repair-pathways in this response. Here we report an EdU based modification of the assay that enables S- and G2-phase specific analysis of chromatid break repair. Our results show that the majority of metaphases captured during the first 2 h after IR originate from cells irradiated in G2-phase (EdU- metaphases) in both rodent and human cells. Metaphases originating from cells irradiated in S-phase (EdU+ metaphases) start appearing at 2 h and 4 h after IR in rodent and human cells, respectively. The kinetics of chromatid-break-repair are similar in cells irradiated in G2- and S-phase of the cell-cycle, both in rodent and human cells. The protocol is applicable to classical-cytogenetic experiments and allows the cell-cycle specific analysis of chromosomal-aberrations. Finally, the protocol can be applied to the kinetic analysis of chromosome-breaks in prematurely-condensed-chromosomes of G2-phase cells. In summary, the developed protocol provides means to enhance the analysis of IR-induced-cytogenetic-damage by providing information on the cell-cycle phase where DNA damage is inflicted.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Tamara Murmann-Konda
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Simon Magin
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
124
|
Skalka G, Hall H, Somers J, Bushell M, Willis A, Malewicz M. Leucine zipper and ICAT domain containing (LZIC) protein regulates cell cycle transitions in response to ionizing radiation. Cell Cycle 2019; 18:963-975. [PMID: 30973299 PMCID: PMC6527300 DOI: 10.1080/15384101.2019.1601476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 01/18/2023] Open
Abstract
Common hallmarks of cancer include the dysregulation of cell cycle progression and the acquisition of genome instability. In tumors, G1 cell cycle checkpoint induction is often lost. This increases the reliance on a functional G2/M checkpoint to prevent progression through mitosis with damaged DNA, avoiding the introduction of potentially aberrant genetic alterations. Treatment of tumors with ionizing radiation (IR) utilizes this dependence on the G2/M checkpoint. Therefore, identification of factors which regulate this process could yield important biomarkers for refining this widely used cancer therapy. Leucine zipper and ICAT domain containing (LZIC) downregulation has been associated with the development of IR-induced tumors. However, despite LZIC being highly conserved, it has no known molecular function. We demonstrate that LZIC knockout (KO) cell lines show a dysregulated G2/M cell cycle checkpoint following IR treatment. In addition, we show that LZIC deficient cells competently activate the G1 and early G2/M checkpoint but fail to maintain the late G2/M checkpoint after IR exposure. Specifically, this defect was found to occur downstream of PIKK signaling. The LZIC KO cells demonstrated severe aneuploidy indicative of genomic instability. In addition, analysis of data from cancer patient databases uncovered a strong correlation between LZIC expression and poor prognosis in several cancers. Our findings suggest that LZIC is functionally involved in cellular response to IR, and its expression level could serve as a biomarker for patient stratification in clinical cancer practice.
Collapse
Affiliation(s)
- George Skalka
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Holly Hall
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Joanna Somers
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Martin Bushell
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Anne Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | |
Collapse
|
125
|
Ruprecht N, Hungerbühler MN, Böhm IB, Heverhagen JT. Improved identification of DNA double strand breaks: γ-H2AX-epitope visualization by confocal microscopy and 3D reconstructed images. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:295-302. [PMID: 30799523 DOI: 10.1007/s00411-019-00778-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Currently, in the context of radiology, irradiation-induced and other genotoxic effects are determined by visualizing DSB-induced DNA repair through γ-H2AX immunofluorescence and direct counting of the foci by epifluorescence microscopy. This procedure, however, neglects the 3D nature of the nucleus. The aim of our study was to use confocal microscopy and 3D reconstructed images to improve documentation and analysis of γ-H2AX fluorescence signals after diagnostic examinations. Confluent, non-dividing MRC-5 lung fibroblasts were irradiated in vitro with a Cs-137 source and exposed to radiation doses up to 1000 mGy before fixation and staining with an antibody recognizing the phosphorylated histone variant γ-H2AX. The 3D distribution of γ-H2AX foci was visualized using confocal laser scanning microscopy. 3D reconstruction of the optical slices and γ-H2AX foci counting were performed using Imaris Image Analysis software. In parallel, γ-H2AX foci were counted visually by epifluorescence microscopy. In addition, whole blood was exposed ex vivo to the radiation doses from 200 to 1600 mGy. White blood cells (WBCs) were isolated and stained for γ-H2AX. In fibroblasts, epifluorescence microscopy alone visualized the entirety of fluorescence signals as integral, without correct demarcation of single foci, and at 1000 mGy yielded on average 11.1 foci by manual counting of 2D images in comparison to 36.1 foci with confocal microscopy and 3D reconstruction (p < 0.001). The procedure can also be applied for studies on WBCs. In contrast to epifluorescence microscopy, confocal microscopy and 3D reconstruction enables an improved identification of DSB-induced γ-H2AX foci, allowing for an unbiased, ameliorated quantification.
Collapse
Affiliation(s)
- Nico Ruprecht
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Martin N Hungerbühler
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ingrid B Böhm
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Johannes T Heverhagen
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
126
|
Hirakawa T, Nasu K, Aoyagi Y, Takebayashi K, Zhu R, Narahara H. ATM expression is attenuated by promoter hypermethylation in human ovarian endometriotic stromal cells. Mol Hum Reprod 2019; 25:295-304. [DOI: 10.1093/molehr/gaz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/06/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kanetoshi Takebayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
127
|
Situ Y, Chung L, Lee CS, Ho V. MRN (MRE11-RAD50-NBS1) Complex in Human Cancer and Prognostic Implications in Colorectal Cancer. Int J Mol Sci 2019; 20:E816. [PMID: 30769804 PMCID: PMC6413120 DOI: 10.3390/ijms20040816] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex has been studied in multiple cancers. The identification of MRN complex mutations in mismatch repair (MMR)-defective cancers has sparked interest in its role in colorectal cancer (CRC). To date, there is evidence indicating a relationship of MRN expression with reduced progression-free survival, although the significance of the MRN complex in the clinical setting remains controversial. In this review, we present an overview of the function of the MRN complex, its role in cancer progression, and current evidence in colorectal cancer. The evidence indicates that the MRN complex has potential utilisation as a biomarker and as a putative treatment target to improve outcomes of colorectal cancer.
Collapse
Affiliation(s)
- Yiling Situ
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Liping Chung
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia.
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia.
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Camperdown, NSW 2050, Australia.
| | - Vincent Ho
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
128
|
Wang Z, Zuo W, Zeng Q, Qian Y, Li Y, Liu C, Wang J, Zhong S, Bu Y, Hu G. Loss of NFBD1/MDC1 disrupts homologous recombination repair and sensitizes nasopharyngeal carcinoma cells to PARP inhibitors. J Biomed Sci 2019; 26:14. [PMID: 30717758 PMCID: PMC6360700 DOI: 10.1186/s12929-019-0507-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC), a highly invasive tumor, exhibits a distinctive racial and geographic distribution. As options of agents for effective combination chemoradiotherapy for advanced NPC are limited, novel therapeutic approaches are desperately needed. Here the potential of silencing NFBD1 in combination with PARP inhibition as a novel therapeutic strategy for NPC was investigated. METHODS To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines via lentivirus mediated shRNA, and the colony formation, MTS assay, comet assay and apoptosis analysis were used to evaluate the sensitivity of NFBD1 knockdown on PARP inhibition. The signaling change was assessed by western blot, Immunofluorescence and flow cytometry. Furthermore, Xenografts model was used to evaluate the role of silencing NFBD1 in combination with PARP inhibition. RESULTS We find that silencing NFBD1 in combination with PARP inhibition significantly inhibits the cell proliferation and cell cycle checkpoint activity, and increases the apoptosis and DNA damage. Mechanistic studies reveal that NFBD1 loss blocks olaparib-induced homologous recombination repair by decreasing the formation of BRCA1, BRCA2 and RAD51 foci. Furthermore, the xenograft tumor model demonstrated significantly increases sensitivity towards PARP inhibition under NFBD1 deficiency. CONCLUSIONS We show that NFBD1 depletion may possess sensitizing effects of PARP inhibitor, and consequently offers novel therapeutic options for a significant subset of patients.
Collapse
Affiliation(s)
- Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Quan Zeng
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Qian
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jue Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
129
|
Cancer risk from low dose radiation in Ptch1/ mice with inactive DNA repair systems: Therapeutic implications for medulloblastoma. DNA Repair (Amst) 2019; 74:70-79. [DOI: 10.1016/j.dnarep.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
|
130
|
Barazzuol L, Hopkins SR, Ju L, Jeggo PA. Distinct response of adult neural stem cells to low versus high dose ionising radiation. DNA Repair (Amst) 2019; 76:70-75. [PMID: 30822688 DOI: 10.1016/j.dnarep.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Radiosusceptibility is the sensitivity of a biological organism to ionising radiation (IR)-induced carcinogenesis, an outcome of IR exposure relevant following low doses. The tissue response is strongly influenced by the DNA damage response (DDR) activated in stem and progenitor cells. We previously reported that in vivo exposure to 2 Gy X-rays activates apoptosis, proliferation arrest and premature differentiation in neural progenitor cells (transit amplifying cells and neuroblasts) but not in neural stem cells (NSCs) of the largest neurogenic region of the adult brain, the subventricular zone (SVZ). These responses promote adult quiescent NSC (qNSC) activation after 2 Gy. In contrast, neonatal (P5) SVZ neural progenitors continue proliferating and do not activate qNSCs. Significantly, the human and mouse neonatal brain is radiosusceptible. Here, we examine the response of stem and progenitor cells in the SVZ to low IR doses (50-500 mGy). We observe a linear dose-response for apoptosis but, in contrast, proliferation arrest and neuroblast differentiation require a threshold dose of 200 or 500 mGy, respectively. Importantly, qNSCs were not activated at doses below 500 mGy. Thus, full DDR activation in the neural stem cell compartment in vivo necessitates a threshold dose, which can be considered of significance when evaluating IR-induced cancer risk and dose extrapolation.
Collapse
Affiliation(s)
- Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands.
| | - Suzanna R Hopkins
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Limei Ju
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
131
|
Shibata A, Jeggo P. A historical reflection on our understanding of radiation-induced DNA double strand break repair in somatic mammalian cells; interfacing the past with the present. Int J Radiat Biol 2019; 95:945-956. [PMID: 30608893 DOI: 10.1080/09553002.2018.1564083] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose: The International Journal of Radiation Biology (IJRB) is celebrating 60 years of publishing in 2019. IJRB has made an enormous contribution to publishing papers that have enhanced our understanding of the DNA damage response (DDR) activated following exposure to ionizing radiation (IR). The IR-induced DDR field has a rich history but many outstanding papers pass unread by young scientists overwhelmed by the current literature. We provide a historical reflection on key advances in the DDR field and interface them with current knowledge. Conclusions: DNA double strand breaks (DSBs) were identified as the major biological lesion induced by IR. But early studies on cells from IR-sensitive ataxia telangiectasia patients showed that DSB repair was not sufficient to prevent IR hypersensitivity. Subsequently, the ATM-dependent signal transduction process was revealed, with the breadth of the response being slowly unearthed. Early studies demonstrated at least two processes of DSB repair and revealed that mis-repair causes translocation formation. Recent studies, however, are unraveling more complexity in the repair process, including the specific processing of DSBs within transcriptionally active regions, and the significance of the chromatin environment. Despite the quality of these early and current studies, many questions remain to be addressed.
Collapse
Affiliation(s)
- Atsushi Shibata
- a Education and Research Support Center , Gunma University Graduate School of Medicine , Gunma , Maebashi , Japan
| | - Penny Jeggo
- b Genome Damage and Stability Centre, School of Life Sciences , University of Sussex , Brighton , UK
| |
Collapse
|
132
|
Schoonen PM, Guerrero Llobet S, van Vugt MATM. Replication stress: Driver and therapeutic target in genomically instable cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:157-201. [PMID: 30798931 DOI: 10.1016/bs.apcsb.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomically instable cancers are characterized by progressive loss and gain of chromosomal fragments, and the acquisition of complex genomic rearrangements. Such cancers, including triple-negative breast cancers and high-grade serous ovarian cancers, typically show aggressive behavior and lack actionable driver oncogenes. Increasingly, oncogene-induced replication stress or defective replication fork maintenance is considered an important driver of genomic instability. Paradoxically, while replication stress causes chromosomal instability and thereby promotes cancer development, it intrinsically poses a threat to cellular viability. Apparently, tumor cells harboring high levels of replication stress have evolved ways to cope with replication stress. As a consequence, therapeutic targeting of such compensatory mechanisms is likely to preferentially target cancers with high levels of replication stress and may prove useful in potentiating chemotherapeutic approaches that exert their effects by interfering with DNA replication. Here, we discuss how replication stress drives chromosomal instability, and the cell cycle-regulated mechanisms that cancer cells employ to deal with replication stress. Importantly, we discuss how mechanisms involving DNA structure-specific resolvases, cell cycle checkpoint kinases and mitotic processing of replication intermediates offer possibilities in developing treatments for difficult-to-treat genomically instable cancers.
Collapse
Affiliation(s)
- Pepijn M Schoonen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
133
|
Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, Di C, Gan L, Sun C, Zhang H. microRNA‐16‐5p enhances radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway in prostate cancer cells. J Cell Physiol 2018; 234:13182-13190. [DOI: 10.1002/jcp.27989] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Aihong Mao
- Institute of Gansu Medical Science Research Lanzhou People's Republic of China
| | - Jinzhou Tang
- School of Life Science, Lanzhou University Lanzhou People's Republic of China
| | - Qianjing Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- Gansu Wuwei Tumor Hospital Wuwei People's Republic of China
| |
Collapse
|
134
|
Wang H, Qiu Z, Liu B, Wu Y, Ren J, Liu Y, Zhao Y, Wang Y, Hao S, Li Z, Peng B, Xu X. PLK1 targets CtIP to promote microhomology-mediated end joining. Nucleic Acids Res 2018; 46:10724-10739. [PMID: 30202980 PMCID: PMC6237753 DOI: 10.1093/nar/gky810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Proper DNA double-strand break (DSB) repair is essential for maintaining genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism, which introduces mutations at break sites and contributes to chromosomal translocations and telomere fusions, thus driving carcinogenesis. Mitotic kinases PLK1, CDK1 and Aurora A are important for supporting MMEJ and are often overexpressed in various tumors. However, the functional interplay between these kinases and MMEJ has not been explored. Here, we found that MMEJ is preferentially employed to fix DSBs in cells arrested in mitosis following nocodazole treatment. We further showed that the DSB repair factor CtIP is jointly phosphorylated by CDK1/Aurora A and PLK1. CDK1/Aurora A-mediated CtIP phosphorylation at serine 327 triggers CtIP binding to the PLK1 polo-box domain, which in turn facilitates PLK1 to phosphorylate CtIP mainly at serine 723. A PLK1 phosphor-mimic CtIP mutant fails to initiate extended end resection and is thus unable to mediate homologous recombination and the G2/M checkpoint but can mediate MMEJ. These data imply that PLK1 may target CtIP to promote error-prone MMEJ and inactivate the G2/M checkpoint. These findings have helped elucidate the oncogenic roles of these factors.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhiyu Qiu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bo Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Wu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jianping Ren
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaqing Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zheng Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
135
|
van den Berg J, G. Manjón A, Kielbassa K, Feringa FM, Freire R, Medema R. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res 2018; 46:10132-10144. [PMID: 30184135 PMCID: PMC6212793 DOI: 10.1093/nar/gky786] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
DNA damaging agents cause a variety of lesions, of which DNA double-strand breaks (DSBs) are the most genotoxic. Unbiased approaches aimed at investigating the relationship between the number of DSBs and outcome of the DNA damage response have been challenging due to the random nature in which damage is induced by classical DNA damaging agents. Here, we describe a CRISPR/Cas9-based system that permits us to efficiently introduce DSBs at defined sites in the genome. Using this system, we show that a guide RNA targeting only a single site in the human genome can trigger a checkpoint response that is potent enough to delay cell cycle progression. Abrogation of this checkpoint leads to DNA breaks in mitosis which gives rise to aneuploid progeny.
Collapse
Affiliation(s)
- Jeroen van den Berg
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anna G. Manjón
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karoline Kielbassa
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Femke M Feringa
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
136
|
Simhadri S, Vincelli G, Huo Y, Misenko S, Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF, Xia B. PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene 2018; 38:1585-1596. [PMID: 30337689 PMCID: PMC6408219 DOI: 10.1038/s41388-018-0535-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
The G2/M checkpoint inhibits mitotic entry upon DNA damage thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA double strand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance. Here we show that all 3 proteins can play a significant role in both checkpoint activation and checkpoint maintenance, depending on cell type and context, and that PALB2 links BRCA1 and BRCA2 in checkpoint response. The BRCA1-PALB2 interaction can be important for checkpoint activation, whereas the PALB2-BRCA2 complex formation appears to be more critical for checkpoint maintenance. Interestingly, the function of PALB2 in checkpoint response appears to be independent of CHK1 and CHK2 phosphorylation. Following ionizing radiation, cells with disengaged BRCA1-PALB2 interaction show greatly increased chromosomal abnormalities due apparently to combined defects in HR and checkpoint control. These findings provide new insights into DNA damage checkpoint control and further underscore the critical importance of the proper cooperation of the BRCA and PALB2 proteins in genome maintenance.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Gabriele Vincelli
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Sarah Misenko
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Johanna Ahlskog
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA. .,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
137
|
Kantidze OL, Velichko AK, Luzhin AV, Petrova NV, Razin SV. Synthetically Lethal Interactions of ATM, ATR, and DNA-PKcs. Trends Cancer 2018; 4:755-768. [PMID: 30352678 DOI: 10.1016/j.trecan.2018.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Synthetic lethality occurs when simultaneous perturbations of two genes or molecular processes result in a loss of cell viability. The number of known synthetically lethal interactions is growing steadily. We review here synthetically lethal interactions of ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These kinases are appropriate for synthetic lethal therapies because their genes are frequently mutated in cancer, and specific inhibitors are currently in clinical trials. Understanding synthetically lethal interactions of a particular gene or gene family can facilitate predicting new synthetically lethal interactions, therapy toxicity, and mechanisms of resistance, as well as defining the spectrum of tumors amenable to these therapeutic approaches.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France.
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France; Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
138
|
Brand M, Sommer M, Jermusek F, Fahl WE, Uder M. Reduction of X-ray-induced DNA damage in normal human cells treated with the PrC-210 radioprotector. Biol Open 2018; 7:bio.035113. [PMID: 30135082 PMCID: PMC6215412 DOI: 10.1242/bio.035113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of our study was to determine the protective efficacy of the PrC-210 aminothiol radioprotector against X-ray-induced DNA damage in normal human cells and to establish dose- and time-effect models for future PrC-210 use in humans. The PrC-210 structure has a branched structure which enables scavenging of reactive oxygen species (ROS) away from DNA. Normal human blood lymphocytes, fibroblasts and naked genomic DNA were exposed to PrC-210 seconds to hours prior to irradiation. Biological (γ-H2AX foci), chemical (8-oxo-deoxyguanosine) and physical (genomic DNA electrophoretic migration) DNA damage endpoints were scored to determine the ability of PrC-210 to suppress radiation-induced DNA damage. X-ray-induced γ-H2AX foci in blood lymphocytes were reduced by 80% after irradiation with 10, 50 and 100 mGy, and DNA double-strand breaks in fibroblasts were reduced by 60% after irradiation with 20 Gy. Additionally, we observed a reduction of 8-oxo-deoxyguanosine (an ROS-mediated, DNA damage marker) in human genomic DNA to background in a PrC-210 dose-dependent manner. PrC-210 also eliminated radiation-induced cell death in colony formation assays after irradiation with 1 Gy. The protective efficacy of PrC-210 in each of these assay systems supports its development as a radioprotector for humans in multiple radiation exposure settings. Summary: A new strategy is decribed, using a new radioprotector (PrC-210) to significantly reduce radiation-induced DNA damage.
Collapse
Affiliation(s)
- Michael Brand
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| | - Matthias Sommer
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| | - Frank Jermusek
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705 USA
| | - William E Fahl
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705 USA
| | - Michael Uder
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
139
|
Venkei ZG, Yamashita YM. Emerging mechanisms of asymmetric stem cell division. J Cell Biol 2018; 217:3785-3795. [PMID: 30232100 PMCID: PMC6219723 DOI: 10.1083/jcb.201807037] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
Venkei and Yamashita summarize recent advances in our understanding of asymmetric stem cell division in tissue homeostasis. The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI .,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
140
|
Johnson TI, Costa ASH, Ferguson AN, Frezza C. Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis 2018; 9:913. [PMID: 30190474 PMCID: PMC6127199 DOI: 10.1038/s41419-018-0912-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
An altered response to DNA damage is commonly associated with genomic instability, a hallmark of cancer. Fumarate hydratase (FH) was recently characterised as a DNA repair factor required in non-homologous end-joining (NHEJ) through the local production of fumarate. Inactivating germline mutations in FH cause hereditary leiomyomatosis and renal cell cancer (HLRCC), a cancer syndrome characterised by accumulation of fumarate. Recent data indicate that, in FH-deficient cells, fumarate suppresses homologous recombination DNA repair upon DNA double-strand breaks, compromising genome integrity. Here, we show that FH loss confers resistance to DNA damage caused by ionising radiation (IR), and promotes early mitotic entry after IR in a fumarate-specific manner, even in the presence of unrepaired damage, by suppressing checkpoint maintenance. We also showed that higher levels of DNA damage foci are detectable in untreated FH-deficient cells. Overall, these data indicate that FH loss and fumarate accumulation lead to a weakened G2 checkpoint that predisposes to endogenous DNA damage and confers resistance to IR.
Collapse
Affiliation(s)
- Timothy I Johnson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Ashley N Ferguson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
141
|
Nagle PW, Hosper NA, Barazzuol L, Jellema AL, Baanstra M, van Goethem MJ, Brandenburg S, Giesen U, Langendijk JA, van Luijk P, Coppes RP. Lack of DNA Damage Response at Low Radiation Doses in Adult Stem Cells Contributes to Organ Dysfunction. Clin Cancer Res 2018; 24:6583-6593. [PMID: 30135147 DOI: 10.1158/1078-0432.ccr-18-0533] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy for head and neck cancer may result in serious side effects, such as hyposalivation, impairing the patient's quality of life. Modern radiotherapy techniques attempt to reduce the dose to salivary glands, which, however, results in low-dose irradiation of the tissue stem cells. Here we assess the low-dose sensitivity of tissue stem cells and the consequences for tissue function. EXPERIMENTAL DESIGN Postirradiation rat salivary gland secretory function was determined after pilocarpine induction. Murine and patient-derived salivary gland and thyroid gland organoids were irradiated and clonogenic survival was assessed. The DNA damage response (DDR) was analyzed in organoids and modulated using different radiation modalities, chemical inhibition, and genetic modification. RESULTS Relative low-dose irradiation to the high-density stem cell region of rat salivary gland disproportionally impaired function. Hyper-radiosensitivity at doses <1 Gy, followed by relative radioresistance at doses ≥1 Gy, was observed in salivary gland and thyroid gland organoid cultures. DDR modulation resulted in diminished, or even abrogated, relative radioresistance. Furthermore, inhibition of the DDR protein ATM impaired DNA repair after 1 Gy, but not 0.25 Gy. Irradiation of patient-derived salivary gland organoid cells showed similar responses, whereas a single 1 Gy dose to salivary gland-derived stem cells resulted in greater survival than clinically relevant fractionated doses of 4 × 0.25 Gy. CONCLUSIONS We show that murine and human glandular tissue stem cells exhibit a dose threshold in DDR activation, resulting in low-dose hyper-radiosensitivity, with clinical implications in radiotherapy treatment planning. Furthermore, our results from patient-derived organoids highlight the potential of organoids to study normal tissue responses to radiation.
Collapse
Affiliation(s)
- Peter W Nagle
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nynke A Hosper
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne L Jellema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mirjam Baanstra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,KVI Center for Advanced Radiation Technology, University of Groningen, Groningen, the Netherlands
| | - Sytze Brandenburg
- KVI Center for Advanced Radiation Technology, University of Groningen, Groningen, the Netherlands
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob P Coppes
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
142
|
Li XQ, Bai YL, Zhang DL, Jiao HS, He RX. Euphornin reduces proliferation of human cervical adenocarcinoma HeLa cells through induction of apoptosis and G2/M cell cycle arrest. Onco Targets Ther 2018; 11:4395-4405. [PMID: 30100745 PMCID: PMC6067796 DOI: 10.2147/ott.s166018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The plant Euphorbia helioscopia L. has been used in traditional Chinese medicine for treating various disorders such as tuberculosis and edema. The aim of this study was to investigate the effect of euphornin, a bioactive compound isolated from E. helioscopia, on proliferation of human cervical adenocarcinoma HeLa cells by analyzing cell viability, rate of apoptosis, and cell cycle progression. Materials and methods The sulforhodamine B assay was used to study the effect of euphornin on the proliferation of HeLa cells. Morphological changes to cell nuclei were identified after Hoechst 33342 staining. Mitochondrial membrane depolarization (MMP) was analyzed after staining with JC-1 dye. The influence of euphornin on the apoptosis rate was analyzed by Annexin V/propidium iodide double staining. Fluorescence-activated cell sorting was applied to investigate the influence of euphornin on cell cycle progression. Proteins were obtained from HeLa cells and analyzed by Western blots. Results A cell viability assay showed that euphornin inhibited proliferation of HeLa cells in a dose-dependent and time-dependent manner. Euphornin also induced apoptosis in a concentration-dependent manner, with the rates of apoptosis ranging from 25.3% to 52.6%. A high concentration of euphornin was found to block HeLa cells at the G2/M stage. A Western blot analysis suggested that euphornin might exhibit antitumor activity by inducing apoptosis. Euphornin treatment altered the ratio of Bax/Bcl-2 in HeLa cells, which led to the release of cytochrome complex. The levels of cleaved caspase-3, caspase-8, caspase-9, and caspase-10 were also markedly increased by euphornin treatment. Analysis of cell cycles indicated that euphornin induced cell cycle arrest by increasing the level of the phospho-CDK1 (Tyr15) protein. The various assays demonstrated that euphornin treatment resulted in a significant suppression of cell growth accompanied by G2/M cell cycle arrest and increased rate of apoptosis via mitochondrial and caspase pathways. Conclusion Our findings suggest that euphornin has the potential to be used as a cancer therapeutic agent against human cervical adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yin-Liang Bai
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - De-Li Zhang
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hai-Sheng Jiao
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Rong-Xia He
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou 730030, China,
| |
Collapse
|
143
|
Lee Y, Okayasu R. Strategies to Enhance Radiosensitivity to Heavy Ion Radiation Therapy. Int J Part Ther 2018; 5:114-121. [DOI: 10.14338/ijpt-18-00014.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Ryuichi Okayasu
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology/National Institute of Radiological Sciences, Japan
| |
Collapse
|
144
|
Luna ACDL, Saraiva GKV, Chierice GO, Hesse H, Maria DA. Antiproliferative and proapoptotic effects of DODAC/synthetic phosphoethanolamine on hepatocellular carcinoma cells. BMC Pharmacol Toxicol 2018; 19:44. [PMID: 29996919 PMCID: PMC6042440 DOI: 10.1186/s40360-018-0225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/20/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Current studies have demonstrated that DODAC/PHO-S (Dioctadecyldimethylammonium Chloride/Synthetic phosphoethanolamine) liposomes induces cytotoxicity in Hepa1c1c7 and B16F10 murine tumor cells, with a higher proportion than PHO-S. Therefore, our aim was to evaluate the potential of DODAC/PHO-S to elucidate the mechanism of cell death whereby the liposomes induces cytotoxicity in hepatocellular carcinoma Hepa1c1c7, compared to the PHO-S alone. METHODS Liposomes (DODAC/PHO-S) were prepared by ultrasonication. The cell cycle phases, protein expression and types of cell's death on Hepa1c1c7 were analyzed by flow cytometry. The internalisation of liposomes, mitochondrial electrical potential and lysosomal stability were also evaluated by confocal laser scanning microscopy. RESULTS After treatment with liposomes (DODAC/PHO-S), we observed a significant increase in the population of Hepa1c1c7 cells experiencing cell cycle arrest in the S and G2/M phases, and this treatment was significantly more effective to promote cell death by apoptosis. There also was a decrease in the mitochondrial electrical potential; changes in the lysosomes; nuclear fragmentation and catastrophic changes in Hepa1c1c7 cells. The liposomes additionally promoted increases in the expression of DR4 receptor, caspases 3 and 8, cytochrome c, p53, p21, p27 and Bax. There was also a decrease in the expression of Bcl-2, cyclin D1, CD90 and CD44 proteins. CONCLUSION The overall results showed that DODAC/PHO-S liposomes were more effective than PHO-S alone, in promoting cytotoxicity Hepa1c1c7 tumor cells, activating the intrinsic and extrinsic pathways of programmed cell death.
Collapse
Affiliation(s)
- Arthur Cássio de Lima Luna
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil. .,Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Henrique Hesse
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil
| | - Durvanei Augusto Maria
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil. .,Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
145
|
Wang M, Gao Q, Teng X, Pan M, Lin T, Zhou G, Xu B, Yue Z. Ionizing radiation, but not ultraviolet radiation, induces mitotic catastrophe in mouse epidermal keratinocytes with aberrant cell cycle checkpoints. Exp Dermatol 2018; 27:791-794. [PMID: 29672918 DOI: 10.1111/exd.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 01/03/2023]
Abstract
Ultraviolet radiation (UVR) and ionizing radiation (IR) are common genotoxic stresses that damage human skin, although the specific damages to the genomic DNA are different. Here, we show that in the mouse glabrous skin, both UVR and IR induce DNA damage, cell cycle arrest, and condensed cell nuclei. However, only IR induces mitotic catastrophe (MC) in the epidermis. This is because UVR induces a complete blockage of pRB phosphorylation and cell cycle arrest in the G1 phase, whereas pRB phosphorylation remains positive in a significant portion of the epidermal keratinocytes following IR exposure. Furthermore, Cyclin B1 expression is significantly downregulated only by IR but not UVR. Finally, there are more MC cells in the epidermis of p53-/- mice after IR exposure as compared to wild-type mice. Our results suggest that although both IR and UVR are genotoxic, they show distinct impacts on the cell cycle machinery and thus damage the epidermal keratinocytes via different mechanisms.
Collapse
Affiliation(s)
- Ming Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China.,College of Chemistry, Fuzhou University, Fuzhou, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Xu Teng
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - MeiPing Pan
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - TianMiao Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - BenHua Xu
- Department of Radiation Oncology, Union Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - ZhiCao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| |
Collapse
|
146
|
Hayashi Y, Fujimura A, Kato K, Udagawa R, Hirota T, Kimura K. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry. SCIENCE ADVANCES 2018; 4:eaap7777. [PMID: 29881774 PMCID: PMC5990311 DOI: 10.1126/sciadv.aap7777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G2/M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Rina Udagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
147
|
Jermusek F, Benedict C, Dreischmeier E, Brand M, Uder M, Jeffery JJ, Ranallo FN, Fahl WE. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector. Radiat Res 2018; 190:133-141. [PMID: 29781766 DOI: 10.1667/rr14928.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an •OH pulse reduced to background the •OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.
Collapse
Affiliation(s)
| | | | | | - Michael Brand
- d Department of Radiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- d Department of Radiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Frank N Ranallo
- c Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
148
|
Sutcu HH, Ricchetti M. Loss of heterogeneity, quiescence, and differentiation in muscle stem cells. Stem Cell Investig 2018; 5:9. [PMID: 29780813 DOI: 10.21037/sci.2018.03.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022]
Abstract
Skeletal muscle stem cells in the adult display heterogeneity that has been functionally linked to their behavior, self-renewal capacity, and resistance to stress in hostile environments. Behavioral heterogeneity emerges also during developmental myogenesis. Muscle stem cell diversity may be functionally linked to the changing needs of skeletal muscle regeneration. Intriguingly, dramatic reduction of stem cell diversity, the "clonal drift", that implies loss of stem cells and related expansion of clonally related stem cells has been reported for tissue replacement in several adult tissues and suggested in the zebrafish embryo. A recent study shows clonal drift of muscle stem cells in the zebrafish embryo caused by inhibition of the cell cycle and directed by the homeobox protein Meox1. Although stem cell quiescence is associated with inhibition of the transition phase G0/G1 of the cell cycle, Meox1 triggers the muscle stem cell fate by an arrest in G2 phase. Why efficient muscle growth in the zebrafish embryo requires sacrificing stem cell heterogeneity in favor of a small number of dominant clones has not been elucidated. The significance of G2-halted stem cells, which are generally associated with robust regeneration capacity, is also intriguing. These processes are relevant for understanding organ growth and the mechanisms that govern stem cell quiescence.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Stem Cells and Development, Team "Stability of Nuclear and Mitochondrial DNA", Institut Pasteur, Paris, France.,CNRS UMR3738, Paris, France.,University Pierre and Marie Curie (Sorbonne Universities, ED515), Paris, France
| | - Miria Ricchetti
- Stem Cells and Development, Team "Stability of Nuclear and Mitochondrial DNA", Institut Pasteur, Paris, France.,CNRS UMR3738, Paris, France
| |
Collapse
|
149
|
Jin Y, Chen S, Li N, Liu Y, Cheng G, Zhang C, Wang S, Zhang J. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways. SCIENCE CHINA-LIFE SCIENCES 2018; 61:464-475. [PMID: 29623549 DOI: 10.1007/s11427-017-9258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
When orthopedic joints coated by hydroxyapatite (HA) were implanted in the human body, they release wear debris into the surrounding tissues. The generation and accumulation of wear particles will induce aseptic loosening. However, the potential bioeffect and mechanism of HA-coated orthopedic implants on bone cells are poorly understood. In this study, defect-related luminescent bur-like hydroxyapatite (BHA) microspheres with the average diameter of 7-9 μm which are comparable to that of the wear-debris particles from aseptically loosened HA implants or HA debris have been synthesized by hydrothermal synthesis and the MC3T3-E1 cells were set as a cells model to study the potential bioeffect and mechanism of BHA microspheres. The studies demonstrated that BHA microspheres could be taken into MC3T3-E1 cells via endocytosis involved in micropinocytosis- and clathrin-mediated endocytosis process, and exert cytotoxicity effect. BHA microspheres could induce the cell apoptosis by intracellular production of reactive oxygen species (ROS), which led to not only an increase in the permeability of lysosome and release of cathepsins B, but also mitochondrial dysfunction and DNA damage. Our results provide novel evidence to elucidate their toxicity mechanisms and might be helpful for more reasonable applications of HA-based orthopaedic implants in the future.
Collapse
Affiliation(s)
- Yi Jin
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
- Medical College of Hebei University, Baoding, 071000, China
| | - Shizhu Chen
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Nan Li
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yajing Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Gong Cheng
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Cuimiao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
150
|
Zeng R, Liu Y, Jiang ZJ, Huang JP, Wang Y, Li XF, Xiong WB, Wu XC, Zhang JR, Wang QE, Zheng YF. EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell carcinoma. Int J Oncol 2018; 52:1443-1454. [PMID: 29568917 PMCID: PMC5873871 DOI: 10.3892/ijo.2018.4316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Although there have been reports about the role of erythrocyte membrane protein band 4.1 like 3 (EPB41L3) in several types of cancer, primarily in non-small-cell lung carcinoma, the molecular function and modulatory mechanisms of EPB41L3 remain unclear. In specific, the functional and clinical significance of EPB41L3 in esophageal squamous cell carcinoma (ESCC) has not been explored to date. In the present study, reduced EPB41L3 expression was demonstrated in ESCC cell lines and tissues, which was due to its high methylation rate. Ectopic expression of EPB41L3 in ESCC cells inhibited cell proliferation in vivo and in vitro. In addition, EPB41L3 overexpression induced apoptosis and G2/M cell cycle arrest by activating Caspase-3/8/9 and Cyclin-dependent kinase 1/Cyclin B1 signaling, respectively. Notably, patients with higher EPB41L3 expression had markedly higher overall survival rates compared with patients with lower EPB41L3 expression. In summary, the present results suggest that EPB41L3 may be a tumor suppressor gene in ESCC development, representing a potential therapeutic target and a prognostic indicator for ESCC.
Collapse
Affiliation(s)
- Rong Zeng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhao-Jing Jiang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jun-Peng Huang
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xu-Feng Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Bin Xiong
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao-Cong Wu
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ji-Ren Zhang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|