101
|
Cheng Z, Chen Y, Schnabl B, Chu H, Yang L. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets. J Adv Res 2024; 59:173-187. [PMID: 37356804 PMCID: PMC11081971 DOI: 10.1016/j.jare.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yixiong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
102
|
Habib M, Croyal M, Kaeffer B, Grit I, Castellano B, Gourdel M, Le May C, Thorin C, Nazih H, Ouguerram K. Gestational cholestyramine treatment protects adult offspring of ApoE-deficient mice against maternal-hypercholesterolemia-induced atherosclerosis. Acta Physiol (Oxf) 2024; 240:e14133. [PMID: 38546340 DOI: 10.1111/apha.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 04/24/2024]
Abstract
AIM Perinatal hypercholesterolemia exacerbates the development of atherosclerotic plaques in adult offspring. Here, we aimed to study the effect of maternal treatment with cholestyramine, a lipid-lowering drug, on atherosclerosis development in adult offspring of hypercholesterolemic ApoE-deficient (ApoE-/-) mice. METHODS ApoE-/- mice were treated with 3% cholestyramine (CTY) during gestation (G). After weaning, offspring (CTY-G) were fed control diet until sacrificed at 25weeks of age. Atherosclerosis development in the aortic root of offspring was assessed after oil-red-o staining, along with some of predefined atherosclerosis regulators such as LDL and HDL by high-performance liquid chromatography (HPLC), and bile acids (BA) and trimethylamine N-oxide (TMAO) by liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS In pregnant dams, cholestyramine treatment resulted in significantly lower plasma total- and LDL-cholesterol as well as gallbladder total BA levels. In offspring, both males and females born to treated dams displayed reduced atherosclerotic plaques areas along with less lipid deposition in the aortic root. No significant change in plasma total cholesterol or triglycerides was measured in offspring, but CTY-G males had increased HDL-cholesterol and decreased apolipoproteins B100 to A-I ratio. This latter group also showed reduced gallbladder total and specifically tauro-conjugated bile acid pools, whereas for CTY-G females, hydrophilic plasma tauro-conjugated BA pool was significantly higher. They also benefited from lower plasma TMAO. CONCLUSION Prenatal cholestyramine treatment reduces atherosclerosis development in adult offspring of ApoE-/- mice along with modulating the plaques' composition as well as some related biomarkers such as HDL-C, bile acids and TMAO.
Collapse
Affiliation(s)
- Marina Habib
- UMR1280 Pathophysiology of Nutritional Adaptations, Nantes Université, INRAE, Nantes, France
| | - Mikael Croyal
- Mass Spectrometry Core Facility, CRNH-Ouest, Nantes, France
- Institut du thorax, Nantes Université, CNRS, INSERM, Nantes, France
- UMS 016, UMS 3556, Nantes Université, Inserm, CNRS, Nantes, France
| | - Bertrand Kaeffer
- UMR1280 Pathophysiology of Nutritional Adaptations, Nantes Université, INRAE, Nantes, France
| | - Isabelle Grit
- UMR1280 Pathophysiology of Nutritional Adaptations, Nantes Université, INRAE, Nantes, France
| | - Blandine Castellano
- UMR1280 Pathophysiology of Nutritional Adaptations, Nantes Université, INRAE, Nantes, France
| | - Mathilde Gourdel
- Institut du thorax, Nantes Université, CNRS, INSERM, Nantes, France
| | - Cédric Le May
- UMS 016, UMS 3556, Nantes Université, Inserm, CNRS, Nantes, France
| | - Chantal Thorin
- UMR0703 PAnTher, École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes, France
| | - Hassan Nazih
- UR2160 ISOMer, Nantes Université, Nantes, France
| | - Khadija Ouguerram
- UMR1280 Pathophysiology of Nutritional Adaptations, Nantes Université, INRAE, Nantes, France
| |
Collapse
|
103
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
104
|
Wang X, Jin Y, Di C, Zeng Y, Zhou Y, Chen Y, Pan Z, Li Z, Ling W. Supplementation of Silymarin Alone or in Combination with Salvianolic Acids B and Puerarin Regulates Gut Microbiota and Its Metabolism to Improve High-Fat Diet-Induced NAFLD in Mice. Nutrients 2024; 16:1169. [PMID: 38674860 PMCID: PMC11053752 DOI: 10.3390/nu16081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Can Di
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition and Health, Guangzhou 510663, China;
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China; (X.W.); (Y.J.); (Y.Z.); (Y.Z.); (Y.C.); (Z.P.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
105
|
Wu H, Ma W, Wang Y, Wang Y, Sun X, Zheng Q. Gut microbiome-metabolites axis: A friend or foe to colorectal cancer progression. Biomed Pharmacother 2024; 173:116410. [PMID: 38460373 DOI: 10.1016/j.biopha.2024.116410] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.
Collapse
Affiliation(s)
- Hao Wu
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yiyao Wang
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
106
|
Wang Y, Zou Z, Wang S, Ren A, Ding Z, Li Y, Wang Y, Qian Z, Bian B, Huang B, Xu G, Cui G. Golden bile powder prevents drunkenness and alcohol-induced liver injury in mice via the gut microbiota and metabolic modulation. Chin Med 2024; 19:39. [PMID: 38431607 PMCID: PMC10908100 DOI: 10.1186/s13020-024-00912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Drunkenness and alcoholic liver disease (ALD) are critical public health issues associated with significant morbidity and mortality due to chronic overconsumption of alcohol. Traditional remedies, such as bear bile powder, have been historically acclaimed for their hepatoprotective properties. This study assessed the efficacy of a biotransformed bear bile powder known as golden bile powder (GBP) in alleviating alcohol-induced drunkenness and ALD. METHODS A murine model was engineered to simulate alcohol drunkenness and acute hepatic injury through the administration of a 50% ethanol solution. Intervention with GBP and its effects on alcohol-related symptoms were scrutinized, by employing an integrative approach that encompasses serum metabolomics, network medicine, and gut microbiota profiling to elucidate the protective mechanisms of GBP. RESULTS GBP administration significantly delayed the onset of drunkenness and decreased the duration of ethanol-induced inebriation in mice. Enhanced liver cell recovery was indicated by increased hepatic aldehyde dehydrogenase levels and superoxide dismutase activity, along with significant decreases in the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride, and total cholesterol levels (P < 0.05). These biochemical alterations suggest diminished hepatic damage and enhanced lipid homeostasis. Microbiota analysis via 16S rDNA sequencing revealed significant changes in gut microbial diversity and composition following alcohol exposure, and these changes were effectively reversed by GBP treatment. Metabolomic analyses demonstrated that GBP normalized the alcohol-induced perturbations in phospholipids, fatty acids, and bile acids. Correlation assessments linked distinct microbial genera to serum bile acid profiles, indicating that the protective efficacy of GBP may be attributable to modulatory effects on metabolism and the gut microbiota composition. Network medicine insights suggest the prominence of two active agents in GBP as critical for addressing drunkenness and ALD. CONCLUSION GBP is a potent intervention for alcohol-induced pathology and offers hepatoprotective benefits, at least in part, through the modulation of the gut microbiota and related metabolic cascades.
Collapse
Affiliation(s)
- Yarong Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhenzhuang Zou
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Sihua Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Airong Ren
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhaolin Ding
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yingying Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yifang Wang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhengming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Huang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Guiwei Xu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
107
|
Mio K, Iida-Tanaka N, Togo-Ohno M, Tadenuma N, Yamanaka C, Aoe S. Barley consumption under a high-fat diet suppresses lipogenic genes through altered intestinal bile acid composition. J Nutr Biochem 2024; 125:109547. [PMID: 38081474 DOI: 10.1016/j.jnutbio.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
We evaluated whether barley flour consumption in a high-fat environment affects lipid metabolism through signals mediated by bile acids. Four-week-old mice were fed a high-fat diet supplemented with cellulose (HC) or β-glucan-rich barley flour (HB) for 12 weeks. Bile acid composition in the intestinal tract and feces was measured by GC/MS. Gene expression levels involved in bile acid metabolism in the liver and intestinal tract were determined by RT-PCR. Similar parameters were measured in mice treated with antibiotics (antibiotics-cellulose [AC] and antibiotics-barley [AB]) to reduce the activity of intestinal bacteria. The Results showed that the HB group had lower liver blood cholesterol and triglyceride levels than the HC group. The HB group showed a significant decrease in primary bile acids in the gastrointestinal tract compared to the HC group. On the other hand, the concentration of secondary bile acids relatively increased in the cecum and feces. In the liver, Fxr activation suppressed gene expression levels in synthesizing bile acids and lipids. Furthermore, in the gastrointestinal tract, Tgr5 was activated by increased secondary bile acids. Correspondingly, AMP levels were increased in the HB group compared to the HC group, AMPK was phosphorylated in the liver, and gene expression involved in lipid synthesis was downregulated. A comparison of the AC and AB groups treated with antibiotics did not confirm these effects of barley intake. In summary, our results suggest that the prevention of lipid accumulation by barley consumption involves signaling through changes in bile acid composition in the intestinal tract.
Collapse
Affiliation(s)
- Kento Mio
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Naoko Iida-Tanaka
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Marina Togo-Ohno
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Natsuki Tadenuma
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Seiichiro Aoe
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan.
| |
Collapse
|
108
|
Zi Z, Rao Y. Discoveries of GPR39 as an evolutionarily conserved receptor for bile acids and of its involvement in biliary acute pancreatitis. SCIENCE ADVANCES 2024; 10:eadj0146. [PMID: 38306436 PMCID: PMC10836733 DOI: 10.1126/sciadv.adj0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal diseases. Bile acids (BAs) were proposed to be a cause of AP nearly 170 years ago, though the underlying mechanisms remain unclear. Here, we report that two G protein-coupled receptors, GPR39 and GHSR, mediated cellular responses to BAs. Our results revealed GPR39 as an evolutionarily conserved receptor for BAs, particularly 3-O-sulfated lithocholic acids. In cultured cell lines, GPR39 is sufficient for BA-induced Ca2+ elevation. In pancreatic acinar cells, GPR39 mediated BA-induced Ca2+ elevation and necrosis. Furthermore, AP induced by BAs was significantly reduced in GPR39 knockout mice. Our findings provide in vitro and in vivo evidence demonstrating that GPR39 is necessary and sufficient to mediate BA signaling, highlighting its involvement in biliary AP pathogenesis, and suggesting it as a promising therapeutic target for biliary AP.
Collapse
Affiliation(s)
- Zhentao Zi
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Rao
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Changping Laboratory, Chinese Institute of Brain Research Beijing and Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
109
|
Han P, Tian X, Wang H, Ju Y, Sheng M, Wang Y, Cheng D. Purslane (Portulacae oleracea L.) polysaccharide relieves cadmium-induced colonic impairments by restricting Cd accumulation and inhibiting inflammatory responses. Int J Biol Macromol 2024; 257:128500. [PMID: 38040149 DOI: 10.1016/j.ijbiomac.2023.128500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to assess the protective effects of purslane polysaccharide (PP) on colonic impairments in mice exposed to cadmium (Cd). C57BL/6 mice were administered with PP (200-800 mg/kg/day) by gavage for 4 weeks after treatment with 100 mg·L-1 CdCl2. PP significantly reduced Cd accumulation in the colon tissue and promoted the excretion of Cd in the feces. PP could reduce the expression levels of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6) and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. In addition, the results of 16S rRNA analysis revealed that PP significantly increased the abundance of probiotics (Lactobacillus), while decreased the abundance of pathogenic bacteria (Lachnospiraceae_NK4A136_group). Following the augmentation of beneficial intestinal bacteria, the treatment with PP led to an increase in the levels of intestinal microbial metabolites, specifically short-chain fatty acids (SCFAs). The SCFAs are known for their anti-inflammatory properties, immune-regulatory effects, and promotion of intestinal barrier function. Additionally, the results suggested that PP effectively impeded the enterohepatic circulation by inhibiting the FXR-FGF15 axis in the intestines of Cd-exposed mice. In summary, PP mitigated the toxic effects of Cd by limiting its accumulation and suppressing inflammatory responses in colon.
Collapse
Affiliation(s)
- Pengyun Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mian Sheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
110
|
Yu X, Zhang Y, Cogliati B, Klaassen CD, Kumar S, Cheng X, Bu P. Distinct bile acid alterations in response to a single administration of PFOA and PFDA in mice. Toxicology 2024; 502:153719. [PMID: 38181850 PMCID: PMC10922993 DOI: 10.1016/j.tox.2023.153719] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a group of synthetic chemicals that were once widely used for industrial purposes and in consumer products, are widely found in the environment and in human blood due to their extraordinary resistance to degradation. Once inside the body, PFASs can activate nuclear receptors such as PPARα and CAR. The present study aimed to investigate the impact of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) on liver structure and functions, as well as bile acid homeostasis in mice. A single administration of 0.1 mmole/kg of PFDA, not PFOA, elevated serum ALT and bilirubin levels and caused cholestasis in WT mice. PFDA increased total and various bile acid species in serum but decreased them in the liver. Furthermore, in mouse livers, PFDA, not PFOA, down-regulated mRNA expression of uptake transporters (Ntcp, Oatp1a1, 1a4, 1b2, and 2b1) but induced efflux transporters (Bcrp, Mdr2, and Mrp2-4). In addition, PFDA, not PFOA, decreased Cyp7a1, 7b1, 8b1, and 27a1 mRNA expression in mouse livers with concomitant hepatic accumulation of cholesterol. In contrast, in PPARα-null mice, PFDA did not increase serum ALT, bilirubin, or total bile acids, but produced prominent hepatosteatosis; and the observed PFDA-induced expression changes of transporters and Cyps in WT mice were largely attenuated or abolished. In CAR-null mice, the observed PFDA-induced bile acid alterations in WT mice were mostly sustained. These results indicate that, at the dose employed, PFDA has more negative effects than PFOA on liver function. PPARα appears to play a major role in mediating most of PFDA-induced effects, which were absent or attenuated in PPARα-null mice. Lack of PPARα, however, exacerbated hepatic steatosis. Our findings indicate separated roles of PPARα in mediating the adaptive responses to PFDA: protective against hepatosteatosis but exacerbating cholestasis.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Youcai Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY 10029, United States; Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270, Sao Paulo, Brazil
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, KS 66103, United States
| | - Sanaya Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States.
| |
Collapse
|
111
|
Gregor A, Panteva V, Bruckberger S, Auñon-Lopez A, Blahova S, Blahova V, Tevini J, Weber DD, Kofler B, Pignitter M, Duszka K. Energy and macronutrient restriction regulate bile acid homeostasis. J Nutr Biochem 2024; 124:109517. [PMID: 37925090 DOI: 10.1016/j.jnutbio.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As we reported previously, caloric restriction (CR) results in an increased concentration of bile acids (BA) in the intestinal mucosa. We now investigated the background of this phenotype, trying to identify nutrition-related factors modulating BA levels. Male mice were submitted to various types of restrictive diets and BA levels and expression of associated factors were measured. We found that BA concentration is increased in the liver of CR mice, which corresponds to reduced expression of the Shp gene and elevated mRNA levels of Cyp27a1, Bal, and Ntcp, as well as CYP7A1 protein and gene expression. Correlation between decreased concentration of BAs in the feces, increased BAs levels in plasma, and elevated gene expression of BAs transporters in the ileum mucosa suggests enhanced BA uptake in the intestine of CR mice. Corresponding to CR upregulation of liver and ileum mucosa, BA concentration was found in animals submitted to other types of prolonged energy-restricting dietary protocols, including intermittent fasting and fasting-mimicking diet. While over-night fasting had negligible impact on BAs levels. Manipulation of macronutrient levels partly affected BA balance. Low-carbohydrate and ketogenic diet increased BAs in the liver but not in the intestine. Carbohydrate restriction stimulates BA synthesis in the liver, but energy restriction is required for the increase in BA levels in the intestine and its uptake.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Valeriya Panteva
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefan Bruckberger
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Sara Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Viktoria Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
112
|
Xiong X, Gu X, Li X, Jia K, Wei Y, Zhao R. A chemical derivatization-based pseudotargeted liquid chromatography-tandem mass spectrometry method for sensitive and high coverage determination of bile acids in human serum. Anal Chim Acta 2024; 1287:342119. [PMID: 38182391 DOI: 10.1016/j.aca.2023.342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Global profiling of bile acids (BAs) is imperative for understand their function and disease pathogenesis. But it is still a challenging task, as the collision-induced dissociation (CID) fragment ions of unconjugated BAs showed low ion intensities to insufficient analysis. Herein, we developed a highly sensitive method for pseudotargeted profiling of BAs by chemical derivatization. In the developed method, a labeling reagent, 2-dimethylaminoethylamine (DMED), was adopted to label the carboxyl group of BAs. The results demonstrated that the detection sensitivities of unconjugated BAs were increased by 4-200 folds after DMED-labeling. Moreover, to profile other potential BAs not included in the 91 known targets, diverse survey experiments were performed on Qtrap-MS to search BAs for both precursor and fragment ion species, and retention index (RI) strategy was adopted to facilitate the identification of isomers. Finally, MRM-based LC-MS/MS method was validated for the pseudotargeted profiling of the BAs submetabolome with good linearity (r2 ≥ 0.990 for 89 known BAs) and high sensitivity (0.05-0.5 ng/mL for unconjugated BAs), covering unconjugated, glycine, taurine, sulfuric acid, glucuronic acid, and as well as those doubly-conjugated with above types. With this method, a total of 107 BAs, covering 54 BAs identified by authentic standards and 53 BAs candidates, were successfully determined in human serum of women with intrahepatic cholestasis of pregnancy (ICP). Multivariate analysis revealed deferentially expressed BAs. ICP disease altered the BAs profile with a reduced proportion of unconjugated, sulfate- and doubly-conjugated BAs and an increased proportion of glycine and taurine conjugates. Altered proportion and profile of BAs in ICP groups were gradually recovered during the ursodeoxycholic acid (UDCA) therapy. Overall, the strategy of DMED-labeling technique combined with diverse survey experiments is sufficiently sensitive and robust to comprehensively analysis of metabolic profiling of BAs in human serum.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing, 100191, China
| | - Xunke Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China
| | - Keke Jia
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, 100191, China.
| |
Collapse
|
113
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
114
|
Deng Z, Wu B, Yi X, Ma J, Liu Y, Nussio LG, Meng Q, Zhou Z, Wu H. The Effect of Yucca schidigera Extract on Serum Metabolites of Angus Crossbreed Steers with Metabolomics. Metabolites 2024; 14:58. [PMID: 38248861 PMCID: PMC10818960 DOI: 10.3390/metabo14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study was conducted to explore the potential effect of Yucca schidigera extract (YSE) on the metabolism of beef cattle. Thirty Angus crossbreed steers were selected, with an initial mean body weight of 506.6 ± 33.3 kg, and assigned to two treatments: a diet with no additives (CON group) and a diet supplemented with 1.75 g/kg of YSE (YSE group) (on a dry matter basis). The experiment lasted for 104 days, with 14 days for adaptation. The results showed that adding YSE could significantly improve the average daily gain (ADG) from 1 to 59 d (15.38%) (p = 0.01) and 1 to 90 d (11.38%) (p < 0.01), as well as dry matter digestibility (DMD) (0.84%) (p < 0.05). The contents of alanine aminotransferase, aspartate aminotransferase, and bilirubin and the total antioxidant capacity were increased and blood urea was reduced in the YSE group, compared to the CON group (p < 0.05). Both the glycerophospholipids and bile acids, including phosphocholine, glycerophosphocholine, PC(15:0/18:2(9Z,12Z)), PE(18:0/20:3(5Z,8Z,11Z)), PE(18:3(6Z,9Z,12Z)/P-18:0), LysoPC(15:0), LysoPC(17:0), LysoPC(18:0), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), deoxycholic acid, glycocholic acid, and cholic acid, were upregulated by the addition of YSE. In summary, YSE may improve the ADG by increasing the blood total antioxidant capacity and glycerophospholipid synthesis, maintaining steers under a healthy status that is beneficial for growth. Furthermore, YSE may also increase the expression of bile acid synthesis, thereby promoting DMD, which, in turn, offers more nutrients available for growth.
Collapse
Affiliation(s)
- Ziqi Deng
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Baoyun Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Xin Yi
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Jinglei Ma
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Yue Liu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Luiz Gustavo Nussio
- Department of Animal Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo, Av. Pádua Dias, 11- 13416490, Piracicaba 13418-900, SP, Brazil
| | - Qingxiang Meng
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Zhenming Zhou
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| | - Hao Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Z.D.)
| |
Collapse
|
115
|
He X, Gao X, Hong Y, Zhong J, Li Y, Zhu W, Ma J, Huang W, Li Y, Li Y, Wang H, Liu Z, Bao Y, Pan L, Zheng N, Sheng L, Li H. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:230-244. [PMID: 38079533 DOI: 10.1021/acs.jafc.3c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, β diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.
Collapse
Affiliation(s)
- Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
116
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
117
|
Marzhoseyni Z, Shaghaghi Z, Alvandi M, Shirvani M. Investigating the Influence of Gut Microbiota-related Metabolites in Gastrointestinal Cancer. Curr Cancer Drug Targets 2024; 24:612-628. [PMID: 38213140 DOI: 10.2174/0115680096274860231111210214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Gastrointestinal (GI) cancer is a major health concern due to its prevalence, impact on well-being, high mortality rate, economic burden, and potential for prevention and early detection. GI cancer research has made remarkable strides in understanding biology, risk factors, and treatment options. An emerging area of research is the gut microbiome's role in GI cancer development and treatment response. The gut microbiome, vital for digestion, metabolism, and immune function, is increasingly linked to GI cancers. Dysbiosis and alterations in gut microbe composition may contribute to cancer development. Scientists study how specific bacteria or microbial metabolites influence cancer progression and treatment response. Modulating the gut microbiota shows promise in enhancing treatment efficacy and preventing GI cancers. Gut microbiota dysbiosis can impact GI cancer through inflammation, metabolite production, genotoxicity, and immune modulation. Microbes produce metabolites like short-chain fatty acids, bile acids, and secondary metabolites. These affect host cells, influencing processes like cell proliferation, apoptosis, DNA damage, and immune regulation, all implicated in cancer development. This review explores the latest research on gut microbiota metabolites and their molecular mechanisms in GI cancers. The hope is that this attempt will help in conducting other relevant research to unravel the precise mechanism involved, identify microbial signatures associated with GI cancer, and develop targets.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Iran, Sari, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maria Shirvani
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
118
|
Gao P, Rinott E, Dong D, Mei Z, Wang F, Liu Y, Kamer O, Yaskolka Meir A, Tuohy KM, Blüher M, Stumvoll M, Stampfer MJ, Shai I, Wang DD. Gut microbial metabolism of bile acids modifies the effect of Mediterranean diet interventions on cardiometabolic risk in a randomized controlled trial. Gut Microbes 2024; 16:2426610. [PMID: 39535126 PMCID: PMC11567240 DOI: 10.1080/19490976.2024.2426610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Bile acids (BAs) undergo extensive microbial metabolism in the gut and exert hormone-like functions on physiological processes underlying metabolic risk. However, the extent to which gut BA profiles predict cardiometabolic risk and explain individual responses to dietary interventions in humans is still unclear. In the DIRECT-PLUS Trial, we conducted a multi-omics analysis of 284 participants randomized into three groups: healthy dietary guidelines and two Mediterranean diet (MedDiet) groups. We longitudinally measured 44 fecal BAs using liquid chromatography-mass spectrometry, the gut microbiome through shotgun metagenomic sequencing, and body adiposity and serum lipids at baseline, 6, and 18 months. Fecal levels of 14 BAs, such as lithocholic acid and ursodeoxycholic acid, were prospectively associated with body mass index (BMI) and serum lipid profiles (false discovery rate [q]<0.05). Baseline fecal BA levels significantly modified the beneficial effects of the MedDiet; for example, BMI reduction induced by MedDiet interventions was more pronounced in individuals with lower 12-dehydrocholic acid levels (q-interaction <0.001). We confirmed that the gut microbiome is a major modifier of the secondary BA pool in humans. Furthermore, the association of fecal BAs with body adiposity and serum lipids varied significantly in individuals with different abundances of gut microbes carrying BA metabolism enzymes, e.g. several Ruminococcus spp. In summary, our study identifies novel predictive biomarkers for cardiometabolic risk and offers new mechanistic insights to guide personalized dietary interventions.
Collapse
Affiliation(s)
- Peipei Gao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Ehud Rinott
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Danyue Dong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhendong Mei
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yuxi Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Kamer
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kieran M. Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Meir J. Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Iris Shai
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
119
|
Li J, Huang Z, Jin Y, Liang L, Li Y, Xu K, Zhou W, Li X. Neuroprotective Effect of Tauroursodeoxycholic Acid (TUDCA) on In Vitro and In Vivo Models of Retinal Disorders: A Systematic Review. Curr Neuropharmacol 2024; 22:1374-1390. [PMID: 37691227 PMCID: PMC11092919 DOI: 10.2174/1570159x21666230907152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Tauroursodeoxycholic acid (TUDCA) is a naturally produced hydrophilic bile acid that has been used for centuries in Chinese medicine. Numerous recent in vitro and in vivo studies have shown that TUDCA has neuroprotective action in various models of retinal disorders. OBJECTIVE To systematically review the scientific literature and provide a comprehensive summary on the neuroprotective action and the mechanisms involved in the cytoprotective effects of TUDCA. METHODS A systematic review was conducted in accordance with the PRISMA (The Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Systematic literature search of United States National Library of Medicine (PubMed), Web of Science, Embase, Scopus and Cochrane Library was performed, which covered all original articles published up to July 2022. The terms, "TUDCA" in combination with "retina", "retinal protection", "neuroprotection" were searched. Possible biases were identified with the adopted SYRCLE's tool. RESULTS Of the 423 initially gathered studies, 24 articles met inclusion/exclusion criteria for full-text review. Six of them were in vitro experiments, 17 studies reported in vivo data and one study described both in vitro and in vivo data. The results revealed the effect of TUDCA on different retinal diseases, such as retinitis pigmentosa (RP), diabetic retinopathy (DR), retinal degeneration (RD), retinal ganglion cell (RGC) injury, Leber's hereditary optic neuropathy (LHON), choroidal neovascularization (CNV), and retinal detachment (RDT). The quality scores of the in vivo studies were ranged from 5 to 7 points (total 10 points), according to SYRCLE's risk of bias tool. Both in vitro and in vivo data suggested that TUDCA could effectively delay degeneration and apoptosis of retinal neurons, preserve retinal structure and function, and its mechanism of actions might be related with inhibiting apoptosis, decreasing inflammation, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, and reducing angiogenesis. CONCLUSION This systematic review demonstrated that TUDCA has neuroprotective effect on in vivo and in vitro models of retinal disorders, reinforcing the currently available evidence that TUDCA could be a promising therapeutic agent in retinal diseases treatment. However, well designed clinical trials are necessary to appraise the efficacy of TUDCA in clinical setting.
Collapse
Affiliation(s)
- Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| |
Collapse
|
120
|
Yang X, Li P, Zhuang J, Wu Y, Qu Z, Wu W, Wei Q. Identification of Molecular Targets of Bile Acids Acting on Colorectal Cancer and Their Correlation with Immunity. Dig Dis Sci 2024; 69:123-134. [PMID: 37917212 DOI: 10.1007/s10620-023-08032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bile acids (BAs) are closely related to the occurrence and development of colorectal cancer (CRC), but the specific mechanism is still unclear. AIMS To identify potential targets related to BAs in CRC and analyze the correlation with immunity. METHODS The expression of BAs and CRC-related genes in TCGA was studied and screened using KEGG. GSE71187 was used for external validation of differentially expressed genes. Immunofluorescence, immunohistochemistry, and enzymatic cycling assays were used to detect the expression levels of the differentially expressed genes ki67 and BAs. Weighted gene coexpression network analysis (WGCNA) was used to identify genes associated with differential gene expression and immunity. The Cibersort algorithm was used to detect the infiltration of 22 kinds of immune cells in cancer tissues. The PPI network and ceRNA network were constructed to reveal the possible molecular mechanisms behind tumorigenesis. RESULTS The BA-related gene UGT2A3 is positively correlated with good prognoses in CRC. The expression level of UGT2A3 was negatively related to the BA level and positively related to the Ki67 proliferation index. The expression level of UGT2A3 was higher in the moderately differentiation and advanced stage (stage IV) of CRC. In addition, the expression level of UGT2A3 is correlated with CD8+ T cells. A PPI network related to UGT2A3 and T-cell immune-related genes was constructed. A ceRNA network containing 32 miRNA‒mRNA and 40 miRNA‒lncRNA regulatory pairs was constructed. CONCLUSION UGT2A3 is a potential molecular target of bile acids in the regulation of CRC and is related to T-cell immunity.
Collapse
Affiliation(s)
- Xi Yang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Li
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Wu
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qichun Wei
- Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, People's Republic of China.
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
121
|
Chattaraj B, Nandi A, Lin WY. Role of the gallbladder in our metabolism and immune system. GALLSTONE FORMATION, DIAGNOSIS, TREATMENT AND PREVENTION 2024:23-38. [DOI: 10.1016/b978-0-443-16098-1.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
122
|
Cui Y, Jing C, Yue Y, Ning M, Chen H, Yuan Y, Yue T. Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice. Mol Nutr Food Res 2024; 68:e2300301. [PMID: 37933689 DOI: 10.1002/mnfr.202300301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury. METHODS AND RESULTS C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of Blautia, Bacteroides, and Parasutterella and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of Psychrobacter, Bacillus, and Monoglobus. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs. CONCLUSION Kefir can ameliorate ALD through regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Chun Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| |
Collapse
|
123
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
124
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
125
|
Rosatelli E, Carotti A, Cerra B, De Franco F, Passeri D, Pellicciari R, Gioiello A. Chemical exploration of TGR5 functional hot-spots: Synthesis and structure-activity relationships of C7- and C23-Substituted cholic acid derivatives. Eur J Med Chem 2023; 261:115851. [PMID: 37813065 DOI: 10.1016/j.ejmech.2023.115851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The activation of TGR5 bestows on bile acids the ability to modulate nongenomic signaling pathways, which are responsible of physiological actions including immunosuppressive and anti-inflammatory properties as well as the regulation of glucose metabolism and energy homeostasis. TGR5 agonists have therefore emerged in drug discovery and preclinical appraisals as promising compounds for the treatment of liver diseases and metabolic syndrome. In this study, we have been devising site-selected chemical modifications of the bile acid scaffold to provide novel chemical tools able to modulate the functions of TGR5 in different tissues. Biological results of the tested collection of semisynthetic cholic acid derivatives were used to extend the structure-activity relationships of TGR5 agonists and to clarify the molecular basis and functional role of TGR5 hot-spots in the receptor activation and selectivity. Some unexpected properties deriving from the molecular structure of bile acids have been unveiled as relevant to the receptor activation and may hence be used to design novel, selective and potent TGR5 agonists.
Collapse
Affiliation(s)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | | | | | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy.
| |
Collapse
|
126
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
127
|
Wu C, Zhang W, Luo Y, Cheng C, Wang X, Jiang Y, Li S, Luo L, Yang Y. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis. J Genet Genomics 2023; 50:1004-1013. [PMID: 37271428 DOI: 10.1016/j.jgg.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants associated with PBC is essential to understand the pathogenesis of PBC. Here we identify a zebrafish balloon dog (blg) mutant with intrahepatic bile duct branching defects, exhibiting several key pathological PBC-like features, including immunodominant autoantigen PDC-E2 production, cholangiocyte apoptosis, immune cell infiltration, inflammatory activation, and liver fibrosis. blg encodes the protein phosphatase 1 regulatory subunit 21 (Ppp1r21), which is enriched in the liver and its peripheral tissues and plays a vital role in the early intrahepatic bile duct formation stage. Further studies show an excessive activation of the PI3K/AKT/mTOR pathway in the hepatic tissues in the mutant, while treatment with the pathway inhibitor LY294002 and rapamycin partially rescues intrahepatic bile duct branching defects and alleviates the PBC-like symptoms. These findings implicate the potential role of the Ppp1r21-mediated PI3K/AKT/mTOR pathway in the pathophysiology of PBC.
Collapse
Affiliation(s)
- Chaoying Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yiyu Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Chaoqing Cheng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinjuan Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
128
|
Zhu L, Fang S, Zhang H, Sun X, Yang P, Wan J, Zhang Y, Lu W, Yu L. Total Sn-2 Palmitic Triacylglycerols and the Ratio of OPL to OPO in Human Milk Fat Substitute Modulated Bile Acid Metabolism and Intestinal Microbiota Composition in Rats. Nutrients 2023; 15:4929. [PMID: 38068787 PMCID: PMC10708361 DOI: 10.3390/nu15234929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, the impact of sn-2 palmitic triacyclglycerols (TAGs) in combination with their ratio of two major TAGs (1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO)) in human milk fat substitute (HMFS) on bile acid (BA) metabolism and intestinal microbiota composition was investigated in newly-weaned Sprague-Dawley rats after four weeks of high-fat feeding. Compared to those of control group rats, HMFS-fed rats had significantly increased contents of six hepatic primary BAs (CDCA, αMCA, βMCA, TCDCA, TαMCA and TβMCA), four ileal primary BAs (UDCA, TCA, TCDCA and TUDCA) and three secondary BAs (DCA, LCA and ωMCA), especially for the HMFS with the highest sn-2 palmitic acid TAGs of 57.9% and OPL to OPO ratio of 1.4. Meanwhile, the inhibition of ileal FXR-FGF15 and activation of TGR5-GLP-1 signaling pathways in HMFS-fed rats were accompanied by the increased levels of enzymes involved in BA synthesis (CYP7A1, CYP27A1 and CYP7B1) in the liver and two key thermogenic proteins (PGC1α and UCP1) in perirenal adipose tissue, respectively. Moreover, increasing sn-2 palmitic TAGs and OPL to OPO ratio in HMFS also altered the microbiota composition both on the phylum and genus level in rats, predominantly microbes associated with bile-salt hydrolase activity, short-chain fatty acid production and reduced obesity risk, which suggested a beneficial effect on host microbial ecosystem. These observations provided important nutritional evidence for developing new HMFS products for infants.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Shuaizhen Fang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China; (H.Z.); (J.W.)
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Jianchun Wan
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China; (H.Z.); (J.W.)
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
129
|
Guo D, Chen Q, Wang G, Li C, FinnGen consortium. Causal relationship between gut microbiota and immune thrombocytopenia: a Mendelian randomization study of two samples. Front Microbiol 2023; 14:1190866. [PMID: 38075905 PMCID: PMC10702357 DOI: 10.3389/fmicb.2023.1190866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 05/24/2024] Open
Abstract
Background Some observational studies have shown that immune thrombocytopenia (ITP) is highly associated with the alteration-composition of gut microbiota. However, the causality of gut microbiota on ITP has not yet been determined. Methods Based on accessible summary statistics of the genome-wide union, the latent connection between ITP and gut microbiota was estimated using bi-directional Mendelian randomization (MR) and multivariable MR (MVMR) analyses. Inverse variance weighted (IVW), weighted median analyses, and MR-Egger regression methods were performed to examine the causal correlation between ITP and the gut microbiota. Several sensitivity analyses verified the MR results. The strength of causal relationships was evaluated using the MR-Steiger test. MVMR analysis was undertaken to test the independent causal effect. MR analyses of reverse direction were made to exclude the potential of reverse correlations. Finally, GO enrichment analyses were carried out to explore the biological functions. Results After FDR adjustment, two microbial taxa were identified to be causally associated with ITP (PFDR < 0.10), namely Alcaligenaceae (PFDR = 7.31 × 10-2) and Methanobacteriaceae (PFDR = 7.31 × 10-2). In addition, eight microbial taxa were considered as potentially causal features under the nominal significance (P < 0.05): Actinobacteria, Lachnospiraceae, Methanobacteria, Bacillales, Methanobacteriales, Coprococcus2, Gordonibacter, and Veillonella. According to the reverse-direction MR study findings, the gut microbiota was not significantly affected by ITP. There was no discernible horizontal pleiotropy or instrument heterogeneity. Finally, GO enrichment analyses showed how the identified microbial taxa participate in ITP through their underlying biological mechanisms. Conclusion Several microbial taxa were discovered to be causally linked to ITP in this MR investigation. The findings improve our understanding of the gut microbiome in the risk of ITP.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong, China
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qian Chen
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Centre of Neuro-Encephalology, Taian City Central Hospital, Qingdao University, Shandong, China
| | - Guojun Wang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Centre of Neuro-Encephalology, Taian City Central Hospital, Qingdao University, Shandong, China
| | - ChunPu Li
- Department of Orthopedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong, China
- Department of Orthopedics, The Affiliated Taian City Central Hospital of
Qingdao University, Taian, China
| | | |
Collapse
|
130
|
Niu Z, Liu Y, Wang Y, Liu Y, Chai L, Wang H. Impairment of bile acid metabolism and altered composition by lead and copper in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165901. [PMID: 37524187 DOI: 10.1016/j.scitotenv.2023.165901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Lead (Pb) and copper (Cu) are two common heavy metal contaminants in environments, and liver is recognized as one of the main target organs for toxicity of Pb and Cu in animal organisms. Bile acids play a critical role in regulating hepatic metabolic homeostasis by activating farnesoid X receptor (Fxr). However, there were few studies on the interactions between bile acids and liver pathology caused by heavy metals. In this work, the histopathological changes, targeted metabolome and transcriptome responses in the liver of Bufo gargarizans tadpoles to Pb and/or Cu were examined. We found that exposure to Pb and/or Cu altered the hepatic bile acid profile, resulting in increased hydrophobicity and toxicity of the bile acid pool. And the expression of genes involved in bile acid metabolism and their downstream signaling pathways in the liver were significantly altered by Pb and/or Cu exposure. The alteration of bile acid profiles and the expression of genes related to bile acid metabolism might induce oxidative stress and inflammation, ultimately inducing hepatocyte injury observed in the histological sections. To our knowledge, this is the first study to provide histological, biochemical, and molecular evidence for establishing the link between Pb and Cu exposure, disturbances in hepatic bile acid metabolism, and liver injury.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
131
|
Huang W, Wang J, Kuang M, Xiao Z, Fan B, Sun G, Tan Z. Exploring global research status and trends in anti-obesity effects of traditional Chinese medicine through intestinal microbiota: a bibliometric study. Front Cell Infect Microbiol 2023; 13:1271473. [PMID: 38045760 PMCID: PMC10690589 DOI: 10.3389/fcimb.2023.1271473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The intestinal microbiota (IM) has been found to contribute to metabolic disorders that lead to excessive fat accumulation, systemic and chronic low-grade inflammation, and insulin resistance in the host. Current research highlights a pivotal interaction between IM and traditional Chinese medicine (TCM) in mitigating obesity-related diseases. Undeniably, IM stands as a central focus in TCM research aimed at preventing and treating obesity. Therefore, tracing the progress and trends in this field can offer valuable references and insights for future studies. METHODS On June 17, 2023, we conducted a literature search on the topic of "IM and obesity in TCM" spanning the period from 2009 to 2023. We extracted the primary information of the publications, which includes complete records and reference citations, from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WoSCC). To visualize and analyze the literature, we utilized CiteSpace and VOSviewer for bibliometric analysis. RESULTS During the past fifteen years, a rapid increase in the number of publications has been observed. The cooperative networks demonstrate China, Beijing University of Chinese Medicine, and Food & Function as the most active countries, organizations, and journals in this field, respectively. Liu Bin has contributed the most publications. A paper by Xu Jia, published in 2014, holds the highest Local Citation Score (LCS). Analyses of keyword co-occurrence and reference co-citation indicate that the research hotspots of IM and obesity in TCM are primarily focused on the metabolic benefits driven by endogenous functional metabolic molecules generated by TCM regulation of IM. Other focal points include the mechanism by which TCM regulates IM to restore the intestinal mucosal barrier This is a provisional file, not the final typeset article, and manages the gut-organ axis, the metabolic advantages of acupuncture's regulation of IM, and the process by which Chinese medicine small molecules transform IM. CONCLUSION This research offers a comprehensive understanding of the current status, hotspots, and trends in global TCM research. Additionally, it provides a comprehensive summary and exploration of the latest advancements in this field, thereby emphasizing the essence of TCM more effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
132
|
Yang M, Liu S, Cai J, Sun X, Li C, Tan M, He B. Bile acids ameliorates lipopolysaccharide-induced endometritis in mice by inhibiting NLRP3 inflammasome activation. Life Sci 2023; 331:122062. [PMID: 37666389 DOI: 10.1016/j.lfs.2023.122062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
AIMS Endometritis is a common inflammatory disorder affecting the reproductive health in both humans and livestock. The NLR family pyrin domain containing 3 (NLRP3) inflammasome has recently been identified as a possible therapeutic target for several inflammatory disorders. Bile acids (BAs) have been shown to possess anti-inflammatory properties by inhibiting the activation of the NLRP3 inflammasome. However, whether BAs ameliorate endometritis by targeting NLRP3 inflammasome remain poorly understood. MAIN METHODS Female NLRP3+/+ and NLRP3-/- mice were subjected to uterine perfusion with lipopolysaccharide (LPS) to establish the endometritis model. For BAs pre-treatment, wild-type mice were administered oral gavage of BAs for seven days followed by uterine perfusion with LPS. All mice were euthanized and the uterine tissues were collected for analysis. KEY FINDINGS The abundances of NLRP3 and interleukin-1 beta (IL-1β) were significantly upregulated in the uterine tissues of endometritis mice. NLRP3 deficiency led to a reduction in the inflammatory response, neutrophil infiltration, and myeloperoxidase (MPO) activity in the uterus, as well as an inhibition of IL-1β secretion. Moreover, BAs pre-treatment successfully decreased LPS-induced upregulation of NLRP3, ASC, and Caspase1, lessened histopathological alteration in the uterus, and notably reduced MPO activity and secretion of IL-1β. SIGNIFICANCE NLRP3 inflammasome is a promising target for endometritis treatment and BAs exhibit anti-inflammatory properties by repressing NLRP3 inflammasome activation, making them a possible novel therapeutic strategy for endometritis.
Collapse
Affiliation(s)
- Miaoxin Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Suyuan Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiangxue Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
133
|
Saran C, Brouwer KLR. Hepatic Bile Acid Transporters and Drug-induced Hepatotoxicity. Toxicol Pathol 2023; 51:405-413. [PMID: 37982363 PMCID: PMC11014762 DOI: 10.1177/01926233231212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.
Collapse
Affiliation(s)
- Chitra Saran
- Transporter Sciences, Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kim L. R. Brouwer
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
134
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
135
|
Jiang L, Fan JG. The role of the gut microbiome in chronic liver diseases: Present insights and future outlook. Hepatobiliary Pancreat Dis Int 2023; 22:441-443. [PMID: 37690926 DOI: 10.1016/j.hbpd.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
136
|
Jiang L, Xu J, Cheng SY, Wang Y, Cai W. The gut microbiome and intestinal failure-associated liver disease. Hepatobiliary Pancreat Dis Int 2023; 22:452-457. [PMID: 37453856 DOI: 10.1016/j.hbpd.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Intestinal failure-associated liver disease (IFALD) is a common hepatobiliary complication resulting from long-term parenteral nutrition (PN) in patients with intestinal failure. The spectrum of IFALD ranges from cholestasis, steatosis, portal fibrosis, to cirrhosis. Development of IFALD is a multifactorial process, in which gut dysbiosis plays a critical role in its initiation and progression in conjunction with increased intestinal permeability, activation of hepatic immune responses, and administration of lipid emulsion. Gut microbiota manipulation including pre/probiotics, fecal microbiota transplantation, and antibiotics has been studied in IFALD with varying success. In this review, we summarize current knowledge on the taxonomic and functional changes of gut microbiota in preclinical and clinical studies of IFALD. We also review the function of microbial metabolites and associated signalings in the context of IFALD. By providing microbiota-targeted interventions aiming to optimize PN-induced liver injury, our review provides perspectives for future basic and translational investigations in the field.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Si-Yang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
137
|
Zang W, Gao D, Yu M, Long M, Zhang Z, Ji T. Oral Delivery of Gemcitabine-Loaded Glycocholic Acid-Modified Micelles for Cancer Therapy. ACS NANO 2023; 17:18074-18088. [PMID: 37717223 PMCID: PMC10540784 DOI: 10.1021/acsnano.3c04793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The clinical utility of gemcitabine, an antimetabolite antineoplastic agent applied in various chemotherapy treatments, is limited due to the required intravenous injection. Although chemical structure modifications of gemcitabine result in enhanced oral bioavailability, these modifications compromise complex synthetic routes and cause unexpected side effects. In this study, gemcitabine-loaded glycocholic acid-modified micelles (Gem-PPG) were prepared for enhanced oral chemotherapy. The in vitro transport pathway experiments revealed that intact Gem-PPG were transported across the intestinal epithelial monolayer via an apical sodium-dependent bile acid transporter (ASBT)-mediated pathway. In mice, the pharmacokinetic analyses demonstrated that the oral bioavailability of Gem-PPG approached 81%, compared to less than 20% for unmodified micelles. In addition, the antitumor activity of oral Gem-PPG (30 mg/kg, BIW) was superior to that of free drug injection (60 mg/kg, BIW) in the xenograft model. Moreover, the assessments of hematology, blood chemistry, and histology all indicated the hypotoxicity profile of the drug-loaded micelles.
Collapse
Affiliation(s)
- Wenqing Zang
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Duo Gao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Manmei Long
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Zhuan Zhang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Ji
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| |
Collapse
|
138
|
Sun X, Hu X, Zhang Q, Zhao L, Sun X, Yang L, Jin M. Sodium taurocholate hydrate inhibits influenza virus replication and suppresses influenza a Virus-triggered inflammation in vitro and in vivo. Int Immunopharmacol 2023; 122:110544. [PMID: 37392567 DOI: 10.1016/j.intimp.2023.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Influenza A virus is an important respiratory pathogen that poses serious threats to human health. Owing to the high mutation rate of viral genes, weaker cross-protection of vaccines, and rapid emergence of drug resistance, there is an urgent need to develop new antiviral drugs against influenza viruses. Taurocholic acid is a primary bile acid that promotes digestion, absorption, and excretion of dietary lipids. Here, we demonstrate that sodium taurocholate hydrate (STH) exhibits broad-spectrum antiviral activity against influenza strains H5N6, H1N1, H3N2, H5N1, and H9N2 in vitro. STH significantly inhibited the early stages of influenza A virus replication. The levels of influenza virus viral RNA (vRNA), complementary RNA (cRNA), and mRNA were specifically reduced in virus-infected cells following STH treatment. In vivo, STH treatment of infected mice alleviated clinical signs and reduced weight loss and mortality. STH also reduced TNF-α, IL-1β, and IL-6 overexpression. STH significantly inhibited the upregulation of TLR4 and the NF-kB family member p65, both in vivo and in vitro. These results suggest that STH exerts a protective effect against influenza infection via suppression of the NF-kB pathway, highlighting the potential use of STH as a drug for treating influenza infection.
Collapse
Affiliation(s)
- Xiaolu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Xiaotong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Li Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China.
| |
Collapse
|
139
|
Zhang C, Cao Z, Lei H, Chen C, Du R, Song Y, Zhang C, Zhou J, Lu Y, Huang L, Shen P, Zhang L. Discovery of a novel small molecule with efficacy in protecting against inflammation in vitro and in vivo by enhancing macrophages activation. Biomed Pharmacother 2023; 165:115273. [PMID: 37536035 DOI: 10.1016/j.biopha.2023.115273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Immune response and inflammation highly contribute to many metabolic syndromes such as inflammatory bowel disease (IBD), ageing and cancer with disruption of host metabolic homeostasis and the gut microbiome. Icariin-1 (GH01), a small-molecule flavonoid derived from Epimedium, has been shown to protect against systemic inflammation. However, the molecular mechanisms by which GH01 ameliorates ulcerative colitis via regulation of microbiota-mediated macrophages polarization remain elusive. In this study, we found that GH01 effectively ameliorated dextran sulfate sodium (DSS)-induced colitis symptoms in mice. Disruption of intestinal barrier function, commensal microbiota and its metabolites were also significantly restored by GH01 in a dose-dependent manner. Of note, we also found that GH01 enhanced phagocytic ability of macrophages and switched macrophage phenotype from M1 to M2 both in vitro and in vivo. Such macrophage polarization was highly associated with intestinal barrier integrity and the gut microbial community. Consequently, GH01 exhibited strong anti-inflammatory capacity by inhibiting TLR4 and NF-κB pathways and proinflammatory factors (IL-6). These findings suggested that GH01 might be a potential nutritional intervention strategy for IBD treatment with the gut microbial community-meditated macrophage as the therapeutic targets.
Collapse
Affiliation(s)
- Cui Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
140
|
Venkatesan K, Haroon NN. Management of Metabolic-Associated Fatty Liver Disease. Endocrinol Metab Clin North Am 2023; 52:547-557. [PMID: 37495344 DOI: 10.1016/j.ecl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD), previously known as nonalcoholic fatty liver disease (NAFLD), is the most common cause of liver disease in the world. Its prevalence is over 30% and is becoming the most common cause of liver transplants. Rates are rising along with obesity-related diseases. Risk factors for MAFLD include adverse lifestyles, genetic variations, advancing age, male sex, and alterations in the gut microbiota. Extrahepatic complications include cardiovascular disease, renal dysfunction, and colorectal cancer. As there are no currently approved medications for MAFLD, management mainly focuses on lifestyle modifications.
Collapse
Affiliation(s)
- Kirthika Venkatesan
- Caribbean Medical University School of Medicine, 25 Pater Euwensweg, Willemstad, Curaçao; Walden University, 650 South Exerter Street, Baltimore, MD 21202, USA
| | - Nisha Nigil Haroon
- Clinical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada; Health Sciences North Research Institute, Sudbury, Ontario, Canada.
| |
Collapse
|
141
|
Han K, Feng G, Li T, Wan Z, Zhao W, Yang X. Extension Region Domain of Soybean 7S Globulin Contributes to Serum Triglyceride-Lowering Effect via Modulation of Bile Acids Homeostasis. Mol Nutr Food Res 2023; 67:e2200883. [PMID: 37423975 DOI: 10.1002/mnfr.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/14/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Soybean 7S globulin (β-conglycinin), a major soybean storage protein, has been demonstrated to exert remarkable triglyceride (TG) and cholesterol-lowering effects, yet the underlying mechanism remains controversial. METHODS AND RESULTS A comparative investigation is performed to assess the contribution of different structural domains of soybean 7S globulin, including core region (CR) and extension region (ER) domains, to biological effects of soybean 7S globulin using a high-fat diet rat model. The results show that ER domain mainly contributes to the serum TG-lowering effect of soybean 7S globulin, but not for CR domain. Metabolomics analysis reveals that oral administration of ER peptides obviously influences the metabolic profiling of serum bile acids (BAs), as well as significantly increased the fecal excretion of total BAs. Meanwhile, ER peptides supplementation reshapes the composition of gut microbiota and impacts the gut microbiota-dependent biotransformation of BAs which indicate by a significantly increased secondary BAs concentration in fecal samples. These results highlight that TG-lowering effects of ER peptides mainly stem from their modulation of BAs homeostasis. CONCLUSION Oral administration of ER peptides can effectively lower serum TG level by regulating BAs metabolism. ER peptides have potential to be used as a candidate pharmaceutical for the intervention of dyslipidemia.
Collapse
Affiliation(s)
- Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
142
|
Li H, Li C. Causal relationship between gut microbiota and type 2 diabetes: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1184734. [PMID: 37692402 PMCID: PMC10483233 DOI: 10.3389/fmicb.2023.1184734] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies showed that development of gut microbial dysbiosis has a close association with type 2 diabetes (T2D). It is not yet clear if there is a causal relationship between gut microbiota and T2D. Methods The data collected from the published genome-wide association studies (GWASs) on gut microbiota and T2D were analyzed. Two-sample Mendelian randomization (MR) analyses were performed to identify causal relationship between bacterial taxa and T2D. Significant bacterial taxa were further analyzed. To confirm the findings' robustness, we performed sensitivity, heterogeneity, and pleiotropy analyses. A reverse MR analysis was also performed to check for potential reverse causation. Results By combining the findings of all the MR steps, we identified six causal bacterial taxa, namely, Lachnoclostridium, Oscillospira, Roseburia, Ruminococcaceae UCG003, Ruminococcaceae UCG010 and Streptococcus. The risk of T2D might be positively associated with a high relative abundance of Lachnoclostridium, Roseburia and Streptococcus but negatively associated with Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010. The results of MR analyses revealed that there were causal relationships between the six different genera and T2D. And the reverse MR analysis did not reveal any evidence of a reverse causality. Conclusion This study implied that Lachnoclostridium, Roseburia and Streptococcus might have anti-protective effect on T2D, whereas Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera might have protective effect on T2D. Our study revealed that there was a causal relationship between specific gut microbiota genera and T2D.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, Fujian, China
| |
Collapse
|
143
|
Guo X, Zhou Q, Jin J, Lan F, Wen C, Li J, Yang N, Sun C. Hepatic steatosis is associated with dysregulated cholesterol metabolism and altered protein acetylation dynamics in chickens. J Anim Sci Biotechnol 2023; 14:108. [PMID: 37568219 PMCID: PMC10422840 DOI: 10.1186/s40104-023-00910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens. METHODS Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis. RESULTS The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins (DEPs) interacted with differentially acetylated proteins (DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group (P < 0.05). Lipidomics detected a variety of sphingolipids (SPs) and glycerophospholipids (GPs) were negatively correlated with hepatic steatosis (r ≤ -0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport. CONCLUSIONS In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoli Guo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
144
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
145
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
146
|
Yin C, Zhong R, Zhang W, Liu L, Chen L, Zhang H. The Potential of Bile Acids as Biomarkers for Metabolic Disorders. Int J Mol Sci 2023; 24:12123. [PMID: 37569498 PMCID: PMC10418921 DOI: 10.3390/ijms241512123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| |
Collapse
|
147
|
He S, Li J, Yao Z, Gao Z, Jiang Y, Chen X, Peng L. Insulin alleviates murine colitis through microbiome alterations and bile acid metabolism. J Transl Med 2023; 21:498. [PMID: 37491256 PMCID: PMC10369930 DOI: 10.1186/s12967-023-04214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Insulin has been reported to exhibit anti-inflammatory activities in the context of bowel inflammation. However, the role of the interaction between insulin and the microbiota in gut health is unclear. Our goal was to investigate the mechanism of action of insulin in bowel inflammation and the relationship between insulin and the gut microbiota. METHODS We used acute and chronic murine models of inflammatory bowel disease (IBD) to evaluate whether insulin influences the progression of colitis. Colonic tissues, the host metabolome and the gut microbiome were analyzed to investigate the relationship among insulin treatment, the microbiome, and disease. Experiments involving antibiotic (Abx) treatment and fecal microbiota transplantation (FMT) confirmed the association among the gut microbiota, insulin and IBD. In a series of experiments, we further defined the mechanisms underlying the anti-inflammatory effects of insulin. RESULTS We found that low-dose insulin treatment alleviated intestinal inflammation but did not cause death. These effects were dependent on the gut microbiota, as confirmed by experiments involving Abx treatment and FMT. Using untargeted metabolomic profiling and 16S rRNA sequencing, we discovered that the level of the secondary bile acid lithocholic acid (LCA) was notably increased and the LCA levels were significantly associated with the abundance of Blautia, Enterorhadus and Rumi-NK4A214_group. Furthermore, LCA exerted anti-inflammatory effects by activating a G-protein-coupled bile acid receptor (TGR5), which inhibited the polarization of classically activated (M1) macrophages. CONCLUSION Together, these data suggest that insulin alters the gut microbiota and affects LCA production, ultimately delaying the progression of IBD.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jiating Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zirong Yao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
148
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
149
|
Gao Y, Wu X, Zhao N, Bai D. Scientific connotation of the compatibility of traditional Chinese medicine from the perspective of the intestinal flora. Front Pharmacol 2023; 14:1152858. [PMID: 37538183 PMCID: PMC10395102 DOI: 10.3389/fphar.2023.1152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Revealing the connotation of the compatibility of Chinese medicines (CM) is a requirement for the modernization of traditional Chinese medicine (TCM). However, no consensus exists on the specific mechanism of traditional Chinese medicine compatibility (TCMC). Many studies have shown that the occurrence and development of diseases and the efficacy of CM are closely related to intestinal flora (IF), which may provide a new perspective to understand the theory of TCM. This study aimed to summarize the relationship between the changes in IF before and after the compatibility of different drugs and the synergistic, toxicity reduction, and incompatibility effects of drug pairs from the perspective of the effects of CM on the IF and the regulation of microbial metabolites. These studies showed that the effect of drug pairs on the composition of the IF is not a simple superposition of two single drugs, and that the drug pairs also play a specific role in regulating the production of intestinal bacterial metabolites; therefore, it has a different pharmacodynamic effect, which may provide a perspective to clarify the compatibility mechanism. However, research on the interpretation of the scientific connotations of TCMC from the perspective of the IF is still in its infancy and has limitations. Therefore, this study aimed to summarize previous research experience and proposed to conduct a deep and systematic study from the perspective of drug pair dismantling, IF, intestinal bacteria metabolite, organism, and disease to provide a reference for scientific research on the compatibility mechanism of CM.
Collapse
Affiliation(s)
- Yuan Gao
- Fang Zheng Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Fang Zheng Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Bai
- Fang Zheng Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
150
|
Yang C, Yang L, Yang Y, Wan M, Xu D, Pan D, Sun G. Effects of flaxseed powder in improving non-alcoholic fatty liver by regulating gut microbiota-bile acids metabolic pathway through FXR/TGR5 mediating. Biomed Pharmacother 2023; 163:114864. [PMID: 37167728 DOI: 10.1016/j.biopha.2023.114864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is gradually becoming one of the most common and health-endangering diseases. Flaxseed powder (FLA) is rich in α-linolenic acid, dietary fiber, lignans, and other active ingredients, which have lipid-lowering and anti-inflammatory effects. Here, we investigated whether the FLA improves host metabolism by gut bacteria modulation and further bile acid modulation in mice fed a high-fat diet. At the end of the experiment, we found that FLA can significantly reduce the body weight, body fat content, and serum TG, LDL-C, and TNF-α levels of mice, and improve liver steatosis. FLA intervention has a significant effect on preventing and regulating the gut flora disturbance caused by HFD. FLA intervention affects bile acid metabolism in the intestine and causes significant changes in functional bile acids, which can play a lipid-lowering and anti-inflammatory role by activating the intestinal Fxr- Fgfr4-Cyp7a1 and Tgr5-Tlr4-Tnfα pathways.
Collapse
Affiliation(s)
- Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Rongxiang Community Health Service Center, Wuxi 214000, China
| | - Dengfeng Xu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|