101
|
Verma J, Subbarao N. Designing novel inhibitors against cyclopropane mycolic acid synthase 3 (PcaA): targeting dormant state of Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 39:6339-6354. [PMID: 32715934 DOI: 10.1080/07391102.2020.1797534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis can sustain inside the host in dormant (non-replicating) state for years. It suppresses the host immune system by residing in the host alveolar macrophage, resulting in the development of latent tuberculosis. Despite many antibiotics available for the treatment of tuberculosis, the major hurdle in complete elimination is the ability of the bacilli to undergo dormancy and develop resistance against the existing drugs. Cyclopropanation of mycolic acids present in the cell wall of mycobacteria is required for its persistence and virulence. Cyclopropane synthases such as PcaA, CmaA1 and CmaA2, introduce site-specific modifications in mycolic acids. PcaA expression levels are high during dormancy and the gene mutants fails to persist, showing reduced survival in host macrophage. Hence, PcaA appears as a potential target to develop inhibitors against the dormant bacilli. In this study, we have identified compounds with maximum binding affinity against PcaA by in-silico virtual screening of anti-tuberculosis compounds and their structural analogues. In-silico docking followed molecular dynamic simulations and free energy calculations of the compounds with highest docking score in their respective libraries. This study reports novel inhibitors that can act as better anti-tuberculosis compounds targeting PcaA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
102
|
Downes TD, Jones SP, Klein HF, Wheldon MC, Atobe M, Bond PS, Firth JD, Chan NS, Waddelove L, Hubbard RE, Blakemore DC, De Fusco C, Roughley SD, Vidler LR, Whatton MA, Woolford AJ, Wrigley GL, O'Brien P. Design and Synthesis of 56 Shape-Diverse 3D Fragments. Chemistry 2020; 26:8969-8975. [PMID: 32315100 PMCID: PMC7496344 DOI: 10.1002/chem.202001123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis). A key, and unique, underpinning design feature of this fragment collection is that assessment of fragment shape and conformational diversity (by considering conformations up to 1.5 kcal mol-1 above the energy of the global minimum energy conformer) is carried out prior to synthesis and is also used to select targets for synthesis. The 3D fragments were designed to contain suitable synthetic handles for future fragment elaboration. Finally, by comparing our 3D fragments with six commercial libraries, it is clear that our collection has high three-dimensionality and shape diversity.
Collapse
Affiliation(s)
- Thomas D. Downes
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - S. Paul Jones
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Hanna F. Klein
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Mary C. Wheldon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- Asahi Kasei Pharma Corporation632-1 Mifuku, IzunokuniShizuoka410-2321Japan
| | - Paul S. Bond
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James D. Firth
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Ngai S. Chan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Laura Waddelove
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Roderick E. Hubbard
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- Vernalis (R&D) LtdGranta Park, AbingtonCambridgeCB21 6GBUK
| | | | | | | | - Lewis R. Vidler
- Eli Lilly and Company LimitedErl Wood Manor, Sunninghill RoadWindleshamSurreyGU20 6PHUK
| | - Maria Ann Whatton
- Eli Lilly and Company LimitedErl Wood Manor, Sunninghill RoadWindleshamSurreyGU20 6PHUK
| | | | - Gail L. Wrigley
- Medicinal Chemistry, Oncology R&DAstraZenecaCB4 0WGCambridgeUK
| | - Peter O'Brien
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
103
|
Karaman Mayack B, Sippl W, Ntie-Kang F. Natural Products as Modulators of Sirtuins. Molecules 2020; 25:molecules25143287. [PMID: 32698385 PMCID: PMC7397027 DOI: 10.3390/molecules25143287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds, as well as the potential application of naturally occurring sirtuin inhibitors in human health and those in clinical trials.
Collapse
Affiliation(s)
- Berin Karaman Mayack
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
- Correspondence:
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (W.S.); (F.N.-K.)
| | - Fidele Ntie-Kang
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (W.S.); (F.N.-K.)
- Department of Chemistry, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon
- Institute of Botany, Technical University of Dresden, 01217 Dresden, Germany
| |
Collapse
|
104
|
Qin Q, Wu T, Yin W, Sun Y, Zhang X, Wang R, Guo J, Zhao D, Cheng M. Discovery of 2,4-diaminopyrimidine derivatives targeting p21-activated kinase 4: Biological evaluation and docking studies. Arch Pharm (Weinheim) 2020; 353:e2000097. [PMID: 32627873 DOI: 10.1002/ardp.202000097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/05/2023]
Abstract
In this study, novel 2,4-diaminopyrimidine derivatives targeting p21-activated kinase 4 (PAK4) were discovered and evaluated for their biological activity against PAK4. Among the derivatives studied, promising compounds A2, B6, and B8 displayed the highest inhibitory activities against PAK4 (IC50 = 18.4, 5.9, and 20.4 nM, respectively). From the cellular assay, compound B6 exhibited the highest potency with an IC50 value of 2.533 μM against A549 cells. Some compounds were selected for computational ADME (absorption, distribution, metabolism, and elimination) properties and molecular docking studies against PAK4. The detailed structure-activity relationship based on the biochemical activities and molecular docking studies were explored. According to the docking studies, compound B6 had the lowest docking score (docking energy: -7.593 kcal/mol). The molecular docking simulation indicated the binding mode between compound B6 and PAK4. All these results suggest compound B6 as a useful candidate for the development of a PAK4 inhibitor.
Collapse
Affiliation(s)
- Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
105
|
Azimian F, Hamzeh-Mivehroud M, Shahbazi Mojarrad J, Hemmati S, Dastmalchi S. Synthesis and biological evaluation of diaryl urea derivatives designed as potential anticarcinoma agents using de novo structure-based lead optimization approach. Eur J Med Chem 2020; 201:112461. [PMID: 32663641 DOI: 10.1016/j.ejmech.2020.112461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
To develop inhibitors blocking VEGFR2 and the Raf/MEK/ERK mitogen-activated protein kinase signaling pathway new compounds based on sorafenib were designed, synthesized and biologically evaluated. Using de novo design method, a library of new ligands was generated and expanded. Considering in silico binding affinity towards VEGFR2, synthetic feasibility, and drug-likeness property, some of the designed ligands were selected for synthesis and screening for their in vitro antiproliferative activities against two cancer cell lines (HT-29 and A549). Four compounds (13a, 14a, 14l and 15b) exhibited stronger antiproliferative activity (with IC50 values of 13.27, 6.62, 12.74, 3.38 μM, respectively) against HT-29 cells compared to that of the positive reference drug sorafenib (IC50 = 17.28 μM). Notably, compound 15b demonstrated the highest activity, and in particular, it induced HT-29 apoptosis, increased intracellular reactive oxygen species level, arrested cell cycle at G0/G1 phase, and influenced the expression of apoptosis- and cell cycle-related proteins. 15b compound can effectively block the Raf/MEK/ERK pathway and inhibit VEGFR2 phosphorylation. Molecular docking revealed that 15b can bind well to the active site of VEGFR2 receptor. Collectively, 15b may be considered as a promising compound amenable for further investigation for the development of new anticancer agents.
Collapse
Affiliation(s)
- Fereshteh Azimian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
106
|
Shinde PB, Bhowmick S, Alfantoukh E, Patil PC, Wabaidur SM, Chikhale RV, Islam MA. De novo design based identification of potential HIV-1 integrase inhibitors: A pharmacoinformatics study. Comput Biol Chem 2020; 88:107319. [PMID: 32801062 DOI: 10.1016/j.compbiolchem.2020.107319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.
Collapse
Affiliation(s)
- Pooja Balasaheb Shinde
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Etidal Alfantoukh
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
107
|
Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
108
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
109
|
Ramya K, Suresh R, Kumar HY, Kumar BRP, Murthy NBS. Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules. Bioorg Med Chem 2020; 28:115466. [PMID: 32247750 PMCID: PMC7112834 DOI: 10.1016/j.bmc.2020.115466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Hypertension is a diverse illness interlinked with cerebral, cardiovascular (CVS) and renal abnormalities. Presently, the malady is being treated by focusing on Renin- angiotensin system (RAS), voltage-gated calcium channels, peripheral vasodilators, renal and sympathetic nervous systems. Cardiovascular and renal abnormalities are associated with the overactivation of RAS, which can be constrained by angiotensin- converting enzyme inhibitors (ACEIs), angiotensin II (Ang-II) -AT1 receptor blockers (ARBs) and renin inhibitors. The latter is a new player in the old system. The renin catalyzes the conversion of angiotensinogen to Angiotensin I (Ang-I). This can be overcome by inhibiting renin, a preliminary step, eventually hinders the occurrence of the cascade of events in the RAS. Various peptidomimetics, the first-generation renin inhibitors developed six decades ago have limited drug-like properties as they suffered from poor intestinal absorption, high liver first-pass metabolism and low oral bioavailability. The development of chemically diverse molecules from peptides to nonpeptides expanded the horizon to achieving direct renin inhibition. Aliskiren, a blockbuster drug that emerged as a clinical candidate and got approved by the US FDA in 2007 was developed by molecular modeling studies. Aliskiren indicated superior to average efficacy and with minor adverse effects relative to other RAS inhibitors. However, its therapeutic use is limited by poor oral bioavailability of less than 2% that is similar to first-generation peptidic compounds. In this review, we present the development of direct renin inhibitors (DRIs) from peptidic to nonpeptidics that lead to the birth of aliskiren, its place in the treatment of cardiovascular diseases and its limitations.
Collapse
Affiliation(s)
- Krishnappa Ramya
- Department of Pharmaceutical Chemistry, Oxbridge College of Pharmacy, Mahadeshwara Nagara, Bengaluru 560091, Karnataka, India; Department of Pharmacy, Annamalai University, Annamalai nagar, Chidambaram 608002, Tamilnadu, India.
| | - Ramalingam Suresh
- Department of Pharmacy, Annamalai University, Annamalai nagar, Chidambaram 608002, Tamilnadu, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), SS Nagara, Mysuru 570015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), SS Nagara, Mysuru 570015, Karnataka, India
| | - N B Sridhara Murthy
- Department of Pharmaceutical Chemistry, Oxbridge College of Pharmacy, Mahadeshwara Nagara, Bengaluru 560091, Karnataka, India
| |
Collapse
|
110
|
Vásquez AF, Reyes Muñoz A, Duitama J, González Barrios A. Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products. J Biomol Struct Dyn 2020; 39:3285-3299. [DOI: 10.1080/07391102.2020.1763839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alejandro Reyes Muñoz
- Grupo de Biología Computacional Ecología Microbiana (BCEM), Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
111
|
Di Martino RMC, Bottegoni G, Seghetti F, Russo D, Penna I, De Simone A, Ottonello G, Mandrup Bertozzi S, Armirotti A, Bandiera T, Belluti F, Cavalli A. Multitarget Compounds for Bipolar Disorder: From Rational Design to Preliminary Pharmacokinetic Evaluation. ChemMedChem 2020; 15:949-954. [PMID: 32267999 DOI: 10.1002/cmdc.202000210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Due to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation. Two compounds (7 and 10) emerged as promising D3R/GSK-3β multitarget-directed ligands with nanomolar activity at D3R and low-micromolar inhibition of GSK-3β, thereby confirming, albeit preliminarily, the feasibility of our strategy. Furthermore, 7 showed promising drug-like properties in stability and pharmacokinetic studies.
Collapse
Affiliation(s)
| | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham Sir Robert Aitken Institute for Clinical Research Edgbaston, Birmingham, B15 2TT, UK
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Debora Russo
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Ilaria Penna
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | | | - Giuliana Ottonello
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
112
|
Influence of Carbamazepine Dihydrate on the Preparation of Amorphous Solid Dispersions by Hot Melt Extrusion. Pharmaceutics 2020; 12:pharmaceutics12040379. [PMID: 32326114 PMCID: PMC7238004 DOI: 10.3390/pharmaceutics12040379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are commonly used in the pharmaceutical industry to improve the dissolution and bioavailability of poorly water-soluble drugs. Hot melt extrusion (HME) has been employed to prepare ASD based products. However, due to the narrow processing window of HME, ASDs are normally obtained with high processing temperatures and mechanical stress. Interestingly, one-third of pharmaceutical compounds reportedly exist in hydrate forms. In this study, we selected carbamazepine (CBZ) dihydrate to investigate its solid-state changes during the dehydration process and the impact of the dehydration on the preparation of CBZ ASDs using a Leistritz micro-18 extruder. Various characterization techniques were used to study the dehydration kinetics of CBZ dihydrate under different conditions. We designed the extrusion runs and demonstrated that: 1) the dehydration of CBZ dihydrate resulted in a disordered state of the drug molecule; 2) the resulted higher energy state CBZ facilitated the drug solubilization and mixing with the polymer matrix during the HME process, which significantly decreased the required extrusion temperature from 140 to 60 °C for CBZ ASDs manufacturing compared to directly processing anhydrous crystalline CBZ. This work illustrated that the proper utilization of drug hydrates can significantly improve the processability of HME for preparing ASDs.
Collapse
|
113
|
Computational screening of promising beta-secretase 1 inhibitors through multi-step molecular docking and molecular dynamics simulations - Pharmacoinformatics approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Exploring the binding mode of triflamide derivatives at the active site of Topo I and Topo II enzymes: In silico analysis and precise molecular docking. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1750-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
115
|
Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg Chem 2020; 96:103616. [DOI: 10.1016/j.bioorg.2020.103616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
|
116
|
Bhowmick S, Alissa SA, Wabaidur SM, Chikhale RV, Islam MA. Structure-guided screening of chemical database to identify NS3-NS2B inhibitors for effective therapeutic application in dengue infection. J Mol Recognit 2020; 33:e2838. [PMID: 32060998 DOI: 10.1002/jmr.2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Dengue infection is the most common arthropod-borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi-step virtual screening effort was conceived to screen out the entire "screening library" of the Asinex database. Initially, through "Lipinski rule of five" filtration criterion almost 0.6 million compounds were collected and docked with NS3-NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the "Virtual Screening Workflow" (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as - high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM-GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3-NS2B protein based on the investigation of molecular interactions map and protein-ligand fingerprint analyses. Different pharmacokinetics and drug-likeness parameters were also checked, which favour the potentiality of selected molecules for being drug-like candidates. The molecular dynamics (MD) simulation analyses of protein-ligand complexes were explained that NS3-NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM-GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3-NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3-NS2B protein subjected to experimental validation.
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
117
|
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, Qin C, Li Y, Li X, Chen Y, Zhu F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020; 48:D1031-D1041. [PMID: 31691823 PMCID: PMC7145558 DOI: 10.1093/nar/gkz981] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of therapeutic targets and early drug candidates is useful for improved drug discovery. In particular, information about target regulators and the patented therapeutic agents facilitates research regarding druggability, systems pharmacology, new trends, molecular landscapes, and the development of drug discovery tools. To complement other databases, we constructed the Therapeutic Target Database (TTD) with expanded information about (i) target-regulating microRNAs and transcription factors, (ii) target-interacting proteins, and (iii) patented agents and their targets (structures and experimental activity values if available), which can be conveniently retrieved and is further enriched with regulatory mechanisms or biochemical classes. We also updated the TTD with the recently released International Classification of Diseases ICD-11 codes and additional sets of successful, clinical trial, and literature-reported targets that emerged since the last update. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp. In case of possible web connectivity issues, two mirror sites of TTD are also constructed (http://db.idrblab.org/ttd/ and http://db.idrblab.net/ttd/).
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Yinghong Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxu Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
118
|
Multi-target QSAR modelling of chemo-genomic data analysis based on Extreme Learning Machine. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2019.104977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
119
|
Abstract
Computational methods are a powerful and consolidated tool in the early stage of the drug lead discovery process. Among these techniques, high-throughput molecular docking has proved to be extremely useful in identifying novel bioactive compounds within large chemical libraries. In the docking procedure, the predominant binding mode of each small molecule within a target binding site is assessed, and a docking score reflective of the likelihood of binding is assigned to them. These methods also shed light on how a given hit could be modified in order to improve protein-ligand interactions and are thus able to guide lead optimization. The possibility of reducing time and cost compared to experimental approaches made this technology highly appealing. Due to methodological developments and the increase of computational power, the application of quantum mechanical methods to study macromolecular systems has gained substantial attention in the last decade. A quantum mechanical description of the interactions involved in molecular association of biomolecules may lead to better accuracy compared to molecular mechanics, since there are many physical phenomena that cannot be correctly described within a classical framework, such as covalent bond formation, polarization effects, charge transfer, bond rearrangements, halogen bonding, and others, that require electrons to be explicitly accounted for. Considering the fact that quantum mechanics-based approaches in biomolecular simulation constitute an active and important field of research, we highlight in this work the recent developments of quantum mechanical-based molecular docking and high-throughput docking.
Collapse
Affiliation(s)
- M Gabriela Aucar
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
- Facultad de Ingeniería, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
| |
Collapse
|
120
|
Hlaváč M, Kováčiková L, Prnová MŠ, Šramel P, Addová G, Májeková M, Hanquet G, Boháč A, Štefek M. Development of Novel Oxotriazinoindole Inhibitors of Aldose Reductase: Isosteric Sulfur/Oxygen Replacement in the Thioxotriazinoindole Cemtirestat Markedly Improved Inhibition Selectivity. J Med Chem 2019; 63:369-381. [PMID: 31820975 DOI: 10.1021/acs.jmedchem.9b01747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibition of aldose reductase (AR), the first enzyme of the polyol pathway, is a promising approach in treatment of diabetic complications. We proceeded with optimization of the thioxotriazinoindole scaffold of the novel AR inhibitor cemtirestat by replacement of sulfur with oxygen. A series of 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid derivatives (OTIs), designed by molecular modeling and docking, were synthesized. More electronegative and less bulky oxygen of OTIs compared to the sulfur of the original thioxotriazinoindole congeners was found to form a stronger H-bond with Leu300 of AR and to render larger rotational flexibility of the carboxymethyl pharmacophore. AR inhibitory activities of the novel compounds were characterized by the IC50 values in a submicromolar range. Markedly enhanced inhibition selectivity relative to the structurally related aldehyde reductase was recorded. To conclude, structure modification of the original carboxymethylated thioxotriazinoindole cemtirestat by isosteric replacement of sulfur with oxygen in combination with variable N(2) simple substituents provided novel analogues with increased AR inhibition efficacy and markedly improved selectivity.
Collapse
Affiliation(s)
- Matúš Hlaváč
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Lucia Kováčiková
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Marta Šoltésová Prnová
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Peter Šramel
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Gabriela Addová
- Institute of Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Magdaléna Májeková
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM , 25 rue Becquerel , 67087 Strasbourg , France
| | - Andrej Boháč
- Department of Organic Chemistry, Faculty of Natural Sciences , Comenius University in Bratislava , Ilkovičova 6 , 842 15 Bratislava , Slovakia.,Biomagi, Inc. , Mamateyova 26 , 851 04 Bratislava , Slovakia
| | - Milan Štefek
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS , Dúbravská cesta 9 , 841 04 Bratislava , Slovakia
| |
Collapse
|
121
|
Matsumura N, Hayashi S, Akiyama Y, Ono A, Funaki S, Tamura N, Kimoto T, Jiko M, Haruna Y, Sarashina A, Ishida M, Nishiyama K, Fushimi M, Kojima Y, Yoneda K, Nakanishi M, Kim S, Fujita T, Sugano K. Prediction Characteristics of Oral Absorption Simulation Software Evaluated Using Structurally Diverse Low-Solubility Drugs. J Pharm Sci 2019; 109:1403-1416. [PMID: 31863733 DOI: 10.1016/j.xphs.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to characterize current biopharmaceutics modeling and simulation software regarding the prediction of the fraction of a dose absorbed (Fa) in humans. As commercial software products, GastroPlus™ and Simcyp® were used. In addition, the gastrointestinal unified theoretical framework, a simple and publicly accessible model, was used as a benchmark. The Fa prediction characteristics for a total of 96 clinical Fa data of 27 model drugs were systematically evaluated using the default settings of each software product. The molecular weight, dissociation constant, octanol-water partition coefficient, solubility in biorelevant media, dose, and particle size of model drugs were used as input data. Although the same input parameters were used, GastroPlus™, Simcyp®, and the gastrointestinal unified theoretical framework showed different Fa prediction characteristics depending on the rate-limiting steps of oral drug absorption. The results of the present study would be of great help for the overall progression of physiologically based absorption models.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Shun Hayashi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing and Control Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Satoko Funaki
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Naomi Tamura
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takahiro Kimoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Maiko Jiko
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Yuka Haruna
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Akiko Sarashina
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ishida
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Fushimi
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Yukiko Kojima
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Kazuhiro Yoneda
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Misato Nakanishi
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Soonih Kim
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
122
|
Pharmacoinformatics-based identification of anti-bacterial catalase-peroxidase enzyme inhibitors. Comput Biol Chem 2019; 83:107136. [DOI: 10.1016/j.compbiolchem.2019.107136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
|
123
|
Wang R, Chen Y, Yang B, Yu S, Zhao X, Zhang C, Hao C, Zhao D, Cheng M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg Chem 2019; 94:103474. [PMID: 31859010 DOI: 10.1016/j.bioorg.2019.103474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023]
Abstract
A class of 3-substituted 1H-pyrrolo[2,3-b]pyridine derivatives were designed, synthesized and evaluated for their in vitro biological activities against maternal embryonic leucine zipper kinase (MELK). Among these derivatives, the optimized compound 16h exhibited potent enzyme inhibition (IC50 = 32 nM) and excellent anti-proliferative effect with IC50 values from 0.109 μM to 0.245 μM on A549, MDA-MB-231 and MCF-7 cell lines. The results of flow cytometry indicated that 16h promoted apoptosis of A549 cells in a dose-dependent manner and effectively arrested A549 cells in the G0/G1 phase. Further investigation indicated that compound 16h potently suppressed the migration of A549 cells, had moderate stability in rat liver microsomes and showed moderate inhibitory activity against various subtypes of human cytochrome P450. However, compound 16h is a multi-target kinase inhibitor and recently several studies reported MELK expression is not required for cancer growth, suggesting that compound 16h suppressed the proliferation and migration of cancer cells should through an off-target mechanism. Collectively, compound 16h has the potential to serve as a new lead compound for further anticancer drug discovery.
Collapse
Affiliation(s)
- Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yixuan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Bowen Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Sijia Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiangxin Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Cai Zhang
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
124
|
Affiliation(s)
- Sonia Lobo
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
125
|
Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur J Med Chem 2019; 186:111875. [PMID: 31740054 DOI: 10.1016/j.ejmech.2019.111875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases (MMPs) are major modulators of the tumor microenvironment. They participate in extracellular matrix turnover, tumor growth, angiogenesis and metastasis. Accordingly, MMPs inhibition seems to be ideal solution to control cancer. Many MMPs inhibitors have been introduced ranging from hydroxamate-based peptidomimetics to the next generation non-hydroxamate inhibitors. Among MMPs, MMP-9 is attractive druggable anticancer target. Studies showed that inhibiting AKT, the central signaling node of MMP-9 upregulation, provides additional MMP-9 blockade. Furthermore, caspase-dependent AKT cleavage leads to cell death. Herein, Ugi MCR was utilized as a rapid combinatorial approach to generate various decorated bis-amide scaffolds as dual MMP-9/AKT inhibitors endowed with caspase 3/7 activation potential. The target adducts were designed to mimic the thematic structural features of non-hydroxamate MMP inhibitors. p-Nitrophenyl isonitrile 1 was utilized as structure entry to Ugi products with some structural similarities to amide-based caspase 3/7 activators. Besides, various acids, amines and aldehydes were employed as Ugi educts to enrich the SAR data. All adducts were screened for cytotoxicity against normal fibroblasts and three cancer cell lines; MCF-7, NFS-60 and HepG-2 utilizing MTT assay. 8, 11 and 28 were more active and safer than doxorubicin with single-digit nM IC50 and promising selectivity. Mechanistically, they exhibited dual MMP-9/AKT inhibition at single-digit nM IC50 with excellent selectivity over MMP-1,-2 and -13, and induced >51% caspase 3/7 activation. Consequently, they induced >49% apoptosis as detected by flow cytometric analysis, and inhibited cell migration (metastasis) up to 97% in cancer cells. Docking simulations were nearly consistent with enzymatic evaluation, also declared possible binding modes and essential structure features of active compounds. In silico physicochemical properties, ligand efficiency and drug-likeness metrics were reasonable for all adducts. Interestingly, 8 and 28 can be considered as drug-like candidates.
Collapse
|
126
|
|
127
|
Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorg Chem 2019; 92:103189. [DOI: 10.1016/j.bioorg.2019.103189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
|
128
|
Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Int J Mol Sci 2019; 20:ijms20215326. [PMID: 31731563 PMCID: PMC6862029 DOI: 10.3390/ijms20215326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Drug discovery now faces a new challenge, where the availability of experimental data is no longer the limiting step, and instead, making sense of the data has gained a new level of importance, propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies into the drug discovery and development pipeline. These enable, for example, the inference of structure-activity relationships that can be useful in the discovery of new drug candidates. One of the therapeutic applications that could benefit from this type of data mining is proteasome inhibition, given that multiple compounds have been designed and tested for the last 20 years, and this collection of data is yet to be subjected to such type of assessment. This study presents a retrospective overview of two decades of proteasome inhibitors development (680 compounds), in order to gather what could be learned from them and apply this knowledge to any future drug discovery on this subject. Our analysis focused on how different chemical descriptors coupled with statistical tools can be used to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a decision tree allowed the identification of two meaningful decision rules that describe the chemical parameters associated with high activity. Additionally, a characterization of the prevalence of key functional groups gives insight into global patterns followed in drug discovery projects, and highlights some systematically underexplored parts of the chemical space. The various chemical patterns identified provided useful insight that can be applied in future drug discovery projects, and give an overview of what has been done so far.
Collapse
|
129
|
Sauer UG, Kreiling R. The Grouping and Assessment Strategy for Organic Pigments (GRAPE): Scientific evidence to facilitate regulatory decision-making. Regul Toxicol Pharmacol 2019; 109:104501. [PMID: 31629781 DOI: 10.1016/j.yrtph.2019.104501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
This article presents the Grouping and Assessment Strategy for Organic Pigments (GRAPE). GRAPE is driven by the hypotheses that low (bio)dissolution and low permeability indicate absence of systemic bioavailability and hence no systemic toxicity potential upon oral exposure, and, for inhalation exposure, that low (bio)dissolution (and absence of surface reactivity, dispersibility and in vitro effects) indicate that the organic pigment is a 'poorly soluble particle without intrinsic toxicity potential'. In GRAPE Tier 1, (bio)solubility and (bio)dissolution are assessed, and in Tier 2, in vitro Caco-2 permeability and in vitro alveolar macrophage activation. Thereafter, organic pigments are grouped by common properties (further considering structural similarity depending on the regulatory requirements). In Tier 3, absence of systemic bioavailability is verified by limited in vivo screening (rat 28-day oral and 5-day inhalation toxicity studies). If Tier 3 confirms no (or only very low) systemic bioavailability, all higher-tier endpoint-specific animal testing is scientifically not-relevant. Application of the GRAPE can serve to reduce animal testing needs for all but few representative organic pigments within a group. GRAPE stands in line with the EU REACH Regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals). An ongoing research project aims at establishing a proof-of-concept of the GRAPE.
Collapse
|
130
|
Hassouna F, Abo El Dahab M, Fulem M, De Lima Haiek A, Laachachi A, Kopecký D, Šoóš M. Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
131
|
Bibic L, Herzig V, King GF, Stokes L. Development of High-Throughput Fluorescent-Based Screens to Accelerate Discovery of P2X Inhibitors from Animal Venoms. JOURNAL OF NATURAL PRODUCTS 2019; 82:2559-2567. [PMID: 31532206 PMCID: PMC7123434 DOI: 10.1021/acs.jnatprod.9b00410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Animal venoms can play an important role in drug discovery, as they are a rich source of evolutionarily tuned compounds that target a variety of ion channels and receptors. To date, there are six FDA-approved drugs derived from animal venoms, with recent work using high-throughput platforms providing a variety of new therapeutic candidates. However, high-throughput methods for screening animal venoms against purinoceptors, one of the oldest signaling receptor families, have not been reported. Here, we describe a variety of quantitative fluorescent-based high-throughput screening (HTS) cell-based assays for screening animal venoms against ligand-gated P2X receptors. A diverse selection of 180 venoms from arachnids, centipedes, hymenopterans, and cone snails were screened, analyzed, and validated, both analytically and pharmacologically. Using this approach, we performed screens against human P2X3, P2X4, and P2X7 using three different fluorescent-based dyes on stable cell lines and isolated the active venom components. Our HTS assays are performed in 96-well format and allow simultaneous screening of multiple venoms on multiple targets, improving testing characteristics while minimizing costs, specimen material, and testing time. Moreover, utilizing our assays and applying them to the other natural product libraries, rather than venoms, might yield other novel natural products that modulate P2X activity.
Collapse
Affiliation(s)
- Lucka Bibic
- School
of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Volker Herzig
- Institute
for Molecular Bioscience, University of
Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute
for Molecular Bioscience, University of
Queensland, St Lucia, QLD 4072, Australia
| | - Leanne Stokes
- School
of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- E-mail:
| |
Collapse
|
132
|
Tsantili-Kakoulidou A, Demopoulos VJ. Fraction Lipophilicity Index (FLI). A drug-like metric for orally administered ionizable drugs. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:643-653. [PMID: 31469319 DOI: 10.1080/1062936x.2019.1653363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Fraction Lipophilicity Index (FLI) was developed as a metric for assessing drug likeness of ionizable oral drugs. Considering that both log P and log D have distinct roles in drug action, the metric FLI allocates lipophilicity to a pH dependent neutral fraction of the molecule and is a weighted combination of log P and log D. It is expressed by equation: FLI = 2 x log P-│log D│. A dataset of 368 basic and acidic drugs was analyzed. Based on available % absorption data, drugs were classified into class 1 (268 drugs) and class 2 (100 drugs). The freeware MedChem Designer was used for log P and log D calculations at pH 7.4 and pH 5.5 for acids. Based on class 1, a drug-like FLI range 0-8 was defined. FLI distribution for class 2 is shifted towards significantly lower values. Comparison of FLI with rule of 5 (Ro5) shows that it leads to fewer values outside the established range than the corresponding log P violations for class 1. For class 2 it gives more alerts than Ro5 and can be considered complementary to Ro5, while it also sets lower limits to discriminate drugs with poor absorption.
Collapse
Affiliation(s)
- A Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - V J Demopoulos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
133
|
Kwofie SK, Broni E, Teye J, Quansah E, Issah I, Wilson MD, Miller WA, Tiburu EK, Bonney JHK. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput Biol Med 2019; 113:103414. [PMID: 31536833 DOI: 10.1016/j.compbiomed.2019.103414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of Ebola virus disease (EVD) is devastating with concomitant high fatalities. Currently, various drugs and vaccines are at different stages of development, corroborating the need to identify new therapeutic molecules. The VP24 protein of the Ebola virus (EBOV) plays a key role in the pathology and replication of the EVD. The VP24 protein interferes with the host immune response to viral infections and promotes nucleocapsid formation, thus making it a viable drug target. This study sought to identify putative lead compounds from the African flora with potential to inhibit the activity of the EBOV VP24 protein using pharmacoinformatics and molecular docking. METHODS An integrated library of 7675 natural products originating from Africa obtained from the AfroDB and NANPDB databases, as well as known inhibitors were screened against VP24 (PDB ID: 4M0Q) utilising AutoDock Vina after energy minimization using GROMACS. The top 19 compounds were physicochemically and pharmacologically profiled using ADMET Predictor™, SwissADME and DataWarrior. The mechanisms of binding between the molecules and EBOV VP24 were characterised using LigPlot+. The performance of the molecular docking was evaluated by generating a receiver operating characteristic (ROC) by screening known inhibitors and decoys against EBOV VP24. The prediction of activity spectra for substances (PASS) and machine learning-based Open Bayesian models were used to predict the anti-viral and anti-Ebola activity of the molecules, respectively. RESULTS Four natural products, namely, ZINC000095486070, ZINC000003594643, ZINC000095486008 and sarcophine were found to be potential EBOV VP24-inhibitiory molecules. The molecular docking results showed that ZINC000095486070 had high binding affinity of -9.7 kcal/mol with EBOV VP24, which was greater than those of the known VP24-inhibitors used as standards in the study including Ouabain, Nilotinib, Clomiphene, Torimefene, Miglustat and BCX4430. The area under the curve of the generated ROC for evaluating the performance of the molecular docking was 0.77, which was considered acceptable. The predicted promising molecules were also validated using induced-fit docking with the receptor using Schrödinger and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The molecules had better binding mechanisms and were pharmacologically profiled to have plausible efficacies, negligible toxicity as well as suitable for designing anti-Ebola scaffolds. ZINC000095486008 and sarcophine (NANPDB135) were predicted to possess anti-viral activity, while ZINC000095486070 and ZINC000003594643 to be anti-Ebola compounds. CONCLUSION The identified compounds are potential inhibitors worthy of further development as EBOV biotherapeutic agents. The scaffolds of the compounds could also serve as building blocks for designing novel Ebola inhibitors.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA.
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Joshua Teye
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Erasmus Quansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Ibrahim Issah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Whelton A Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Elvis K Tiburu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Joseph H K Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
134
|
Bunally SB, Luscombe CN, Young RJ. Using Physicochemical Measurements to Influence Better Compound Design. SLAS DISCOVERY 2019; 24:791-801. [PMID: 31429385 DOI: 10.1177/2472555219859845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the past decade, the physicochemical quality of molecules under investigation at all stages of the drug discovery process has come under particular scrutiny. The issues associated with excessive lipophilicity and poor solubility in particular are many and varied, ranging from poor outcomes in screening campaigns to promiscuity, limited and/or poorly predictable pharmacokinetic exposure, and, ultimately, greater chances of clinical failure. In this review, contemporary methods to secure key measurements are described along with their relevance to understanding the behavior of molecules in environments pertinent to pharmacological activity. Together, the various measurements contribute to predictive models of both the physicochemical properties themselves and the outcomes they influence.
Collapse
Affiliation(s)
| | | | - Robert J Young
- 1 GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| |
Collapse
|
135
|
Boudergua S, Alloui M, Belaidi S, Al Mogren MM, Ellatif Ibrahim UAA, Hochlaf M. QSAR Modeling and Drug-Likeness Screening for Antioxidant Activity of Benzofuran Derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
136
|
Li Z, Liu C, Yang J, Zhou J, Ye Z, Feng D, Yue N, Tong J, Huang W, Qian H. Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: New breakthrough in an old scaffold. Eur J Med Chem 2019; 179:608-622. [PMID: 31279294 DOI: 10.1016/j.ejmech.2019.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Based on an old phenoxyacetic acid scaffold, CPU014 (compound 14) has been identified as a superior agonist by comprehensive exploration of structure-activity relationship. In vitro toxicity study suggested that CPU014 has lower risk of hepatotoxicity than TAK-875. During acute toxicity study (5-500 mg/kg), a favorable therapeutic window of CPU014 was observed by evaluation of plasma profiles and liver slices. Moreover, CPU014 promotes insulin secretion in a glucose-dependent manner, while no GLP-1 secretion has been enhanced. Other than good pharmacokinetic properties, CPU014 significantly improved glucose tolerance both in normal and diabetic models without the risk of hypoglycemia. These subversive findings provided a safer candidate CPU014, which is currently in preclinical study to assess its potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jianyong Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiaqi Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiwen Ye
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Dazhi Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiayi Tong
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
137
|
Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, limited manpower, high research cost coupled with high failure rate during preclinical and clinical studies might militate against the pursuit of this mission. These limitations may be overcome with cheminformatic techniques. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of cheminformatics techniques (including molecular diversity analysis, quantitative-structure activity/property relationships and Machine learning) to natural products with in vitro and in vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.
Collapse
|
138
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
139
|
Islam MA, Pillay TS. Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2019; 38:1798-1809. [PMID: 31084271 DOI: 10.1080/07391102.2019.1617785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapidly increasing rate of antibiotic resistance is of great concern. Approximately two million deaths result annually from bacterial infections worldwide. Therefore, there is a paramount requirement to develop innovative and novel antibacterial agents with new mechanisms of action and activity against resistant bacterial strains. For this purpose, a set of benzothiazole and N-phenylpyrrolamides derivatives reported as DNA Gyrase B (GyrB) inhibitors were collected from the literature and docked inside the receptor cavity of DNA Gyrase B (PDB ID: 5L3J). The best 10 docked complexes were used to identify novel antibacterial chemical agents through a de novo design approach. Out of initial 300 chemical analogues, the best six analogues were identified using screening with a set of criteria followed by pharmacokinetic analysis. The binding interactions of the best six analogues revealed that all molecules formed a number of critical interactions with catalytic amino residues of DNA Gyrase B with high binding energy. The predicted inhibitory constant biological activity based on binding energy supported the potential of the molecules as DNA Gyrase B ligands. The RMSD, RMSF, and radius of gyration parameters obtained from the 100 ns molecular dynamics simulation study clearly demonstrated that all six analogues were efficient enough to form stable complexes with DNA Gyrase B. High negative binding energy of all ligands obtained from MM-GBSA approach undoubtedly explained the strong affinity toward the DNA Gyrase B. Therefore, the proposed de novo designed molecules can be considered as promising antibacterial chemical agents subject to experimental validation, in vitro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Ataul Islam
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tahir S Pillay
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
140
|
Shahare HV, Talele GS. Designing of benzothiazole derivatives as promising EGFR tyrosine kinase inhibitors: a pharmacoinformatics study. J Biomol Struct Dyn 2019; 38:1365-1374. [DOI: 10.1080/07391102.2019.1604264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hitesh V. Shahare
- Department of Chemistry, SNJBs Shriman Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, India
| | - Gokul S. Talele
- Department of Chemistry, SNJBs Shriman Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, India
- NGSPM College of Pharmacy, Brahmavalley Educational Campus, Anjaneri, Nashik, Maharashtra, India
| |
Collapse
|
141
|
Reiersølmoen AC, Aarhus TI, Eckelt S, Nørsett KG, Sundby E, Hoff BH. Potent and selective EGFR inhibitors based on 5-aryl-7H-pyrrolopyrimidin-4-amines. Bioorg Chem 2019; 88:102918. [PMID: 30999245 DOI: 10.1016/j.bioorg.2019.102918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
The epidermal growth factor receptor represents an important target in cancer therapy, and low molecular weight inhibitors based on quinazolines have reached the marked. Herein we report on a new scaffold, 5-aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines, and show that when employing (S)-phenylglycinol as C-4 substituent, potent inhibitors can be made. The two most active inhibitors have suitable druglike properties, were equipotent with Erlotinib in Ba/F3 cell studies, and showed lower cross reactivity than Erlotinib in a panel of 50 kinases.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Sarah Eckelt
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Institute of Organic Chemistry, Universität Hamburg, Welckerstrasse 8, 201354 Hamburg, Germany
| | - Kristin Gabestad Nørsett
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Department of Computer Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
142
|
You W, Tang Z, Chang CEA. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? J Chem Theory Comput 2019; 15:2433-2443. [PMID: 30811931 PMCID: PMC6456367 DOI: 10.1021/acs.jctc.8b01142] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in free energy provide valuable information for molecular recognition, including both ligand-receptor binding thermodynamics and kinetics. Umbrella sampling (US), a widely used free energy calculation method, has long been used to explore the dissociation process of ligand-receptor systems and compute binding free energy. In existing publications, the binding free energy computed from the potential of mean force (PMF) with US simulation mostly yielded "ball park" values with experimental data. However, the computed PMF values are highly influenced by factors such as initial conformations and/or trajectories provided, the reaction coordinate, and sampling of conformational space in each US window. These critical factors have rarely been carefully studied. Here we used US to study the guest aspirin and 1-butanol dissociation processes of β-cyclodextrin (β-CD) and an inhibitor SB2 dissociation from a p38α mitogen-activated protein kinase (MAPK) complex. For β-CD, we used three different β-CD conformations to generate the dissociation path with US windows. For p38α, we generated the dissociation pathway by using accelerated molecular dynamics followed by conformational relaxing with short conventional MD, steered MD, and manual pulling. We found that, even for small β-CD complexes, different β-CD conformations altered the height of the PMF, but the pattern of PMF was not affected if the MD sampling in each US window was well-converged. Because changing the macrocyclic ring conformation needs to rotate dihedral angles in the ring, a bound ligand largely restrains the motion of cyclodextrin. Therefore, once a guest is in the binding site, cyclodextrin cannot freely change its initial conformation, resulting in different absolute heights of the PMF, which cannot be overcome by running excessively long MD simulations for each US window. Moreover, if the US simulations were not converged, the important barrier and minimum were missed. For ligand-protein systems, our studies also suggest that the dissociation trajectories modeled by an enhanced sampling method must maintain a natural molecular movement to avoid biased PMF plots when using US simulations.
Collapse
Affiliation(s)
- Wanli You
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
143
|
Design, synthesis and biological evaluation of 2,5-dimethylfuran-3-carboxylic acid derivatives as potential IDO1 inhibitors. Bioorg Med Chem 2019; 27:1605-1618. [DOI: 10.1016/j.bmc.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 11/22/2022]
|
144
|
Salah Ayoup M, Wahby Y, Abdel-Hamid H, Ramadan ES, Teleb M, Abu-Serie MM, Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur J Med Chem 2019; 168:340-356. [DOI: 10.1016/j.ejmech.2019.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
|
145
|
|
146
|
Akiyama Y, Kimoto T, Mukumoto H, Miyake S, Ito S, Taniguchi T, Nomura Y, Matsumura N, Fujita T, Sugano K. Prediction Accuracy of Mechanism-Based Oral Absorption Model for Dogs. J Pharm Sci 2019; 108:2728-2736. [PMID: 30905705 DOI: 10.1016/j.xphs.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to evaluate the prediction accuracy of a mechanism-based oral absorption model for the fraction of a dose absorbed (Fa) in dogs, focusing on poorly soluble drugs. As an open mechanism-based model, the gastrointestinal unified theoretical framework was used in this study. The prediction accuracy of the gastrointestinal unified theoretical framework was evaluated using Fa data in dogs (63 data sets for marketed drugs and proprietary compounds). For neutral compounds, Fa was accurately predicted, suggesting that the physiological parameters of dogs were appropriate except for gastrointestinal pH. An extensive literature survey on the small intestinal pH of dogs was then conducted. The result suggested that the pH value ranged between 6.5 and 7.5, with the midst value of 7.0, but there was a great variation among the literature. To confirm the appropriateness of this pH value, the Fa of free acid compounds was predicted by setting the small intestinal pH to 6.5, 7.0, and 7.5. The proportions of compounds with <2-fold error were 57%, 90%, and 76%, respectively. The results of the present study would enable an appropriate use of a mechanism-based model for drug discovery and development.
Collapse
Affiliation(s)
- Yoshiyuki Akiyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Takahiro Kimoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hanae Mukumoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shuji Miyake
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Soichiro Ito
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshio Taniguchi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yukihiro Nomura
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoya Matsumura
- Early Stage Oral Formulation Research & Development, Pharmaceutical Research & Development, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
147
|
Lenci E, Trabocchi A. Smart Design of Small‐Molecule Libraries: When Organic Synthesis Meets Cheminformatics. Chembiochem 2019; 20:1115-1123. [DOI: 10.1002/cbic.201800751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino Florence Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino Florence Italy
| |
Collapse
|
148
|
Ma X, Huang S, Lowinger MB, Liu X, Lu X, Su Y, Williams RO. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: Preparation and physical stability. Int J Pharm 2019; 561:324-334. [PMID: 30858115 DOI: 10.1016/j.ijpharm.2019.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Hot melt extrusion (HME) has been used to prepare solid dispersions, especially molecularly dispersed amorphous solid dispersions (ASDs) for solubility enhancement purposes. The energy generated by the extruder in the form of mechanical and thermal output enables the dispersion and dissolution of crystalline drugs in polymeric carriers. However, the impact of this thermal and mechanical energy on ASD systems remains unclear. We selected a model ASD system containing nifedipine (NIF) and polyvinylpyrrolidone vinyl acetate (PVP/VA 64) to investigate how different types of energy input affect the preparation and physical stability of ASDs. Formulations were prepared using a Leistritz Nano-16 extruder, and we varied the screw design, barrel temperature, screw speed, and feed rate to control the mechanical and thermal energy input. Specific mechanical energy (SME) was calculated to quantitate the mechanical energy input, and the thermal energy was estimated using barrel temperature. We find that both mechanical and thermal energy inputs affect the conversion of crystalline NIF into an amorphous form, and they also affect the level of mixing and the degree of homogeneity in NIF ASDs. However, for small size extruders (e.g., Leistritz Nano-16), thermal energy is more efficient than mechanical energy in preparing NIF ASDs that have better stability.
Collapse
Affiliation(s)
- Xiangyu Ma
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA
| | - Siyuan Huang
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, 46221 Indianapolis, IN, USA
| | - Michael B Lowinger
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA; Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Xu Liu
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA
| | - Xingyu Lu
- Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Yongchao Su
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA; Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA.
| |
Collapse
|
149
|
Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 2019; 199:139-154. [PMID: 30851297 PMCID: PMC7112620 DOI: 10.1016/j.pharmthera.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of effective cancer therapeutic strategies relies on our ability to interfere with cellular processes that are dysregulated in tumors. Given the essential role of the ubiquitin proteasome system (UPS) in regulating a myriad of cellular processes, it is not surprising that malfunction of UPS components is implicated in numerous human diseases, including many types of cancer. The clinical success of proteasome inhibitors in treating multiple myeloma has further stimulated enthusiasm for targeting UPS proteins for pharmacological intervention in cancer treatment, particularly in the precision medicine era. Unfortunately, despite tremendous efforts, the paucity of potent and selective UPS inhibitors has severely hampered attempts to exploit the UPS for therapeutic benefits. To tackle this problem, many groups have been working on technology advancement to rapidly and effectively screen for potent and specific UPS modulators as intracellular probes or early-phase therapeutic agents. Here, we review several emerging technologies for developing chemical- and protein-based molecules to manipulate UPS enzymatic activity, with the aim of providing an overview of strategies available to target ubiquitination for cancer therapy.
Collapse
Affiliation(s)
- Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - María Carla Rosales Gerpe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
150
|
Heidrich J, Sperl LE, Boeckler FM. Embracing the Diversity of Halogen Bonding Motifs in Fragment-Based Drug Discovery-Construction of a Diversity-Optimized Halogen-Enriched Fragment Library. Front Chem 2019; 7:9. [PMID: 30834240 PMCID: PMC6387937 DOI: 10.3389/fchem.2019.00009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Halogen bonds have recently gained attention in life sciences and drug discovery. However, it can be difficult to harness their full potential, when newly introducing them into an established hit or lead structure by molecular design. A possible solution to overcome this problem is the use of halogen-enriched fragment libraries (HEFLibs), which consist of chemical probes that provide the opportunity to identify halogen bonds as one of the main features of the binding mode. Initially, we have suggested the HEFLibs concept when constructing a focused library for finding p53 mutant stabilizers. Herein, we broaden and extent this concept aiming for a general HEFLib comprising a huge diversity of binding motifs and, thus, increasing the applicability to various targets. Using the construction principle of feature trees, we represent each halogenated fragment by treating all simple to complex substituents as modifiers of the central (hetero)arylhalide. This approach allows us to focus on the proximal binding interface around the halogen bond and, thus, its integration into a network of interactions based on the fragment's binding motif. As a first illustrative example, we generated a library of 198 fragments that unifies a two-fold strategy: Besides achieving a diversity-optimized basis of the library, we have extended this "core" by structurally similar "satellite compounds" that exhibit quite different halogen bonding interfaces. Tuning effects, i.e., increasing the magnitude of the σ-hole, can have an essential influence on the strength of the halogen bond. We were able to implement this key feature into the diversity selection, based on the rapid and efficient prediction of the highest positive electrostatic potential on the electron isodensity surface, representing the σ-hole, by VmaxPred.
Collapse
Affiliation(s)
- Johannes Heidrich
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Laura E. Sperl
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Frank M. Boeckler
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Center for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|