101
|
Wu B, Wang L, Dong T, Jin J, Lu Y, Wu H, Luo Y, Shan X. Identification of a novel DMD duplication identified by a combination of MLPA and targeted exome sequencing. Mol Cytogenet 2017; 10:8. [PMID: 28344651 PMCID: PMC5364719 DOI: 10.1186/s13039-017-0301-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 11/21/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle-wasting disease caused by a mutation in the DMD gene. The aim of this study was to identify a de novo mutation of the DMD gene in the family of a 9-month-old Chinese male patient, as well as to describe the phenotypic characteristics of this patient. Results The patient was suspected to suffer from DMD according to physical examination, biochemical analyses, and electromyogram. We identified a duplication of exons 4–42 in DMD gene with targeted exome sequencing and multiplex ligation-dependent probe amplification (MLPA). In addition, the patient’s mother was a carrier of the same mutation. Conclusions We identified a de novo duplication of exons 4–42 in a patient with early stage DMD. The discovery of this mutation may provide insights into future investigations.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Liying Wang
- Capital Medical University, Beijing, 100069 China
| | - Ting Dong
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Jiahui Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Yili Lu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Huiping Wu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Yue Luo
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| | - Xiaoou Shan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang 325027 People's Republic of China
| |
Collapse
|
102
|
Zhong J, Xu T, Chen G, Liao H, Zhang J, Lan D. Genetic analysis of the dystrophin
gene in children with Duchenne and Becker muscular dystrophies. Muscle Nerve 2017; 56:117-121. [PMID: 27750387 DOI: 10.1002/mus.25435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Jingzi Zhong
- Department of Pediatrics; The First Affiliated Hospital of Guangxi Medical University; China
| | - Tiantian Xu
- Department of Pediatrics; The First Affiliated Hospital of Guangxi Medical University; China
| | - Gang Chen
- Department of Pathology; The First Affiliated Hospital of Guangxi Medical University; China
| | - Haixia Liao
- Department of Pediatrics; The First Affiliated Hospital of Guangxi Medical University; China
| | - Jiapeng Zhang
- Department of Pediatrics; The First Affiliated Hospital of Guangxi Medical University; China
| | - Dan Lan
- Department of Pediatrics; The First Affiliated Hospital of Guangxi Medical University; China
- Team for Major Disease Prevention and Control; The First Affiliated Hospital of Guangxi Medical University; China
| |
Collapse
|
103
|
Delalande O, Czogalla A, Hubert JF, Sikorski A, Le Rumeur E. Dystrophin and Spectrin, Two Highly Dissimilar Sisters of the Same Family. Subcell Biochem 2017; 82:373-403. [PMID: 28101868 DOI: 10.1007/978-3-319-49674-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dystrophin and Spectrin are two proteins essential for the organization of the cytoskeleton and for the stabilization of membrane cells. The comparison of these two sister proteins, and with the dystrophin homologue utrophin, enables us to emphasise that, despite a similar topology with common subdomains and a common structural basis of a three-helix coiled-coil, they show a large range of dissimilarities in terms of genetics, cell expression and higher level structural organisation. Interactions with cellular partners, including proteins and membrane phospholipids, also show both strikingly similar and very different behaviours. The differences between dystrophin and spectrin are also illustrated by the large variety of pathological anomalies emerging from the dysfunction or the absence of these proteins, showing that they are keystones in their function of providing a scaffold that sustains cell structure.
Collapse
Affiliation(s)
- Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France.
| | - Aleksander Czogalla
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jean-François Hubert
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| | - Aleksander Sikorski
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| |
Collapse
|
104
|
Maruyama N, Asai T, Abe C, Inada A, Kawauchi T, Miyashita K, Maeda M, Matsuo M, Nabeshima YI. Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Sci Rep 2016; 6:39375. [PMID: 27991570 PMCID: PMC5171804 DOI: 10.1038/srep39375] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Muscle damage and loss of muscle mass are triggered by immobilization, loss of appetite, dystrophies and chronic wasting diseases. In addition, physical exercise causes muscle damage. In damaged muscle, the N-terminal and C-terminal regions of titin, a giant sarcomere protein, are cleaved by calpain-3, and the resulting fragments are excreted into the urine via glomerular filtration. Therefore, we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury. Here, we established a sandwich ELISA that can measure the titin N-terminal fragment over a biologically relevant range of concentrations, including those in urine samples from older, non-ambulatory Duchenne muscular dystrophy patients and from healthy donors under everyday life conditions and after exercise. Our results indicate that the established ELISA could be a useful tool for the screening of muscular dystrophies and also for monitoring the progression of muscle disease, evaluating the efficacy of therapeutic approaches, and investigating exercise-related sarcomeric disruption and repair processes.
Collapse
Affiliation(s)
- Nobuhiro Maruyama
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Tsuyoshi Asai
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 1-1-3 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Chiaki Abe
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Akari Inada
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Kazuya Miyashita
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Masahiro Maeda
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 1-1-3 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
105
|
Crist C. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 2016; 241:264-272. [PMID: 27762447 DOI: 10.1002/path.4830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Colin Crist
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
106
|
The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research. Int J Cardiol 2016; 227:191-193. [PMID: 27847153 DOI: 10.1016/j.ijcard.2016.11.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/06/2016] [Indexed: 11/23/2022]
Abstract
CRISPR/Cas9 is a precision-guided munition found in bacteria to fight against invading viruses. This technology has enormous potential applications, including altering genes in both somatic and germ cells, as well as generating knockout animals. Compared to other gene editing techniques such as zinc finger nucleases and TALENS, CRISPR/Cas9 is much easier to use and highly efficient. Importantly, the multiplex capacity of this technology allows multiple genes to be edited simultaneously. CRISPR/Cas9 also has the potential to prevent and cure human diseases. In this review, we wish to highlight some key points regarding the future prospect of using CRISPR/Cas9 as a powerful tool for cardiovascular research, and as a novel therapeutic strategy to treat cardiovascular diseases.
Collapse
|
107
|
Spinazzola JM, Kunkel LM. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2016; 4:1179-1194. [PMID: 28670506 DOI: 10.1080/21678707.2016.1240613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. AREAS COVERED In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. EXPERT OPINION For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation.
Collapse
Affiliation(s)
- Janelle M Spinazzola
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115
| | - Louis M Kunkel
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115.,The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115.,The Manton Center for Orphan Diseases, Boston, MA 02115.,Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
108
|
Fröhlich T, Kemter E, Flenkenthaler F, Klymiuk N, Otte KA, Blutke A, Krause S, Walter MC, Wanke R, Wolf E, Arnold GJ. Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy. Sci Rep 2016; 6:33362. [PMID: 27634466 PMCID: PMC5025886 DOI: 10.1038/srep33362] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.
Collapse
Affiliation(s)
- Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Kathrin A Otte
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, LMU Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, LMU Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| |
Collapse
|
109
|
Abstract
The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead.
Collapse
|
110
|
Abstract
There is still no curative treatment for Duchenne muscular dystrophy (DMD). In this issue of Cell Stem Cell, Young et al. (2016) demonstrate a genome editing approach applicable to 60% of DMD patients with CRISPR/Cas9 using one pair of guide RNAs.
Collapse
|
111
|
Abstract
Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.
Collapse
Affiliation(s)
- Hayder Abdul-Razak
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
112
|
Hathout Y, Seol H, Han MHJ, Zhang A, Brown KJ, Hoffman EP. Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin Proteomics 2016; 13:9. [PMID: 27051355 PMCID: PMC4820909 DOI: 10.1186/s12014-016-9109-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 12/14/2022] Open
Abstract
Assessments of disease progression and response to therapies in Duchenne muscular dystrophy (DMD) patients remain challenging. Current DMD patient assessments include complex physical tests and invasive procedures such as muscle biopsies, which are not suitable for young children. Defining alternative, less invasive and objective outcome measures to assess disease progression and response to therapy will aid drug development and clinical trials in DMD. In this review we highlight advances in development of non-invasive blood circulating biomarkers as a means to assess disease progression and response to therapies in DMD.
Collapse
Affiliation(s)
- Yetrib Hathout
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Haeri Seol
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Meng Hsuan J Han
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Aiping Zhang
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Kristy J Brown
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| |
Collapse
|
113
|
2015 William Allan Award. Am J Hum Genet 2016; 98:419-426. [PMID: 26942278 DOI: 10.1016/j.ajhg.2016.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/21/2022] Open
|
114
|
Fisch G. 2015 William Allan Award Introduction: Kay E. Davies 1. Am J Hum Genet 2016. [DOI: 10.1016/j.ajhg.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
115
|
Exon Snipping in Duchenne Muscular Dystrophy. Trends Mol Med 2016; 22:187-189. [DOI: 10.1016/j.molmed.2016.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
|
116
|
Willcocks RJ, Rooney WD, Triplett WT, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Wang DJ, Harrington AT, Tennekoon GI, Russman BS, Finanger EL, Byrne BJ, Finkel RS, Walter GA, Sweeney HL, Vandenborne K. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Ann Neurol 2016; 79:535-47. [PMID: 26891991 DOI: 10.1002/ana.24599] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to describe Duchenne muscular dystrophy (DMD) disease progression in the lower extremity muscles over 12 months using quantitative magnetic resonance (MR) biomarkers, collected across three sites in a large cohort. METHODS A total of 109 ambulatory boys with DMD (8.7 ± 2.0 years; range, 5.0-12.9) completed baseline and 1-year follow-up quantitative MR imaging (transverse relaxation time constant; MRI-T2 ), MR spectroscopy (fat fraction and (1) H2 O T2 ), and 6-minute walk test (6MWT) measurements. A subset of boys completed additional measurements after 3 or 6 months. RESULTS MRI-T2 and fat fraction increased significantly over 12 months in all age groups, including in 5- to 6.9-year-old boys. Significant increases in vastus lateralis (VL) fat fraction were observed in 3 and 6 months. Even in boys whose 6MWT performance improved or remained stable over 1 year, significant increases in MRI-T2 and fat fraction were found. Of all the muscles examined, the VL and biceps femoris long head were the most responsive to disease progression in boys with DMD. INTERPRETATION MR biomarkers are responsive to disease progression in 5- to 12.9-year-old boys with DMD and able to detect subclinical disease progression in DMD, even within short (3-6 months) time periods. The measured sensitivity of MR biomarkers in this multicenter study may be critically important to future clinical trials, allowing for smaller sample sizes and/or shorter study windows in this fatal rare disease.
Collapse
Affiliation(s)
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | | | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Michael J Daniels
- Department of Statistics & Data Sciences and Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Dah-Jyuu Wang
- Division of Neurology and Department of Radiology, the Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Barry S Russman
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Shriners Hospital for Children, Portland, OR
| | - Erika L Finanger
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Shriners Hospital for Children, Portland, OR
| | - Barry J Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center University of Florida, Gainesville, FL
| | - Richard S Finkel
- Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
117
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
118
|
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351:400-3. [PMID: 26721683 PMCID: PMC4760628 DOI: 10.1126/science.aad5725] [Citation(s) in RCA: 681] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022]
Abstract
CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus-9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth.
Collapse
Affiliation(s)
- Chengzu Long
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leonela Amoasii
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex A Mireault
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samadrita Bhattacharyya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
119
|
De Arcangelis V, Strimpakos G, Gabanella F, Corbi N, Luvisetto S, Magrelli A, Onori A, Passananti C, Pisani C, Rome S, Severini C, Naro F, Mattei E, Di Certo MG, Monaco L. Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy. J Cell Physiol 2016; 231:224-32. [PMID: 26097015 DOI: 10.1002/jcp.25075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.
Collapse
Affiliation(s)
- Valeria De Arcangelis
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Armando Magrelli
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sophie Rome
- CarMen Laboratory (INSERM 1060, INRA 1362, INSA), University of Lyon, Lyon, France
| | - Cinzia Severini
- CNR-IBCN, Rome, Italy.,European Brain Research Institute, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
120
|
Wojtal D, Kemaladewi DU, Malam Z, Abdullah S, Wong TWY, Hyatt E, Baghestani Z, Pereira S, Stavropoulos J, Mouly V, Mamchaoui K, Muntoni F, Voit T, Gonorazky HD, Dowling JJ, Wilson MD, Mendoza-Londono R, Ivakine EA, Cohn RD. Spell Checking Nature: Versatility of CRISPR/Cas9 for Developing Treatments for Inherited Disorders. Am J Hum Genet 2016; 98:90-101. [PMID: 26686765 DOI: 10.1016/j.ajhg.2015.11.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals. We show that an adapted version of CRISPR/Cas9 increases the amount of utrophin, a known disease modifier in Duchenne muscular dystrophy (DMD). Furthermore, we demonstrate preferential elimination of the dominant-negative FGFR3 c.1138G>A allele in fibroblasts of an individual affected by achondroplasia. Using a previously undescribed approach involving single guide RNA, we successfully removed large genome rearrangement in primary cells of an individual with an X chromosome duplication including MECP2. Moreover, removal of a duplication of DMD exons 18-30 in myotubes of an individual affected by DMD produced full-length dystrophin. Our findings establish the far-reaching therapeutic utility of CRISPR/Cas9, which can be tailored to target numerous inherited disorders.
Collapse
Affiliation(s)
- Daria Wojtal
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dwi U Kemaladewi
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zeenat Malam
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sarah Abdullah
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tatianna W Y Wong
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zahra Baghestani
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio Pereira
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Stavropoulos
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Vincent Mouly
- INSERM UMRS974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- INSERM UMRS974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Thomas Voit
- NIHR Biomedical Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Hernan D Gonorazky
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - James J Dowling
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Roberto Mendoza-Londono
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Evgueni A Ivakine
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronald D Cohn
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
121
|
Le BT, Filichev VV, Veedu RN. Investigation of twisted intercalating nucleic acid (TINA)-modified antisense oligonucleotides for splice modulation by induced exon-skipping in vitro. RSC Adv 2016. [DOI: 10.1039/c6ra22346j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have investigated the applicability of twisted intercalating nucleic acids (TINA)-modified antisense oligonucleotides (AOs) in exon skipping. We found that TINA-modified AOs induced exon skipping.
Collapse
Affiliation(s)
- Bao T. Le
- Centre for Comparative Genomics
- Murdoch University
- Perth 6150
- Australia
- Western Australian Neuroscience Research Institute
| | | | - Rakesh N. Veedu
- Centre for Comparative Genomics
- Murdoch University
- Perth 6150
- Australia
- Western Australian Neuroscience Research Institute
| |
Collapse
|
122
|
Carotenuto F, Costa A, Albertini MC, Rocchi MBL, Rudov A, Coletti D, Minieri M, Di Nardo P, Teodori L. Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: in Vivo, in Vitro and in Silico Studies. Int J Med Sci 2016; 13:206-19. [PMID: 26941581 PMCID: PMC4773285 DOI: 10.7150/ijms.13268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Diets enriched with n-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to exert a positive impact on muscle diseases. Flaxseed is one of the richest sources of n-3 PUFA acid α-linolenic acid (ALA). The aim of this study was to assess the effects of flaxseed and ALA in models of skeletal muscle degeneration characterized by high levels of Tumor Necrosis Factor-α (TNF). METHODS The in vivo studies were carried out on dystrophic hamsters affected by muscle damage associated with high TNF plasma levels and fed with a long-term 30% flaxseed-supplemented diet. Differentiating C2C12 myoblasts treated with TNF and challenged with ALA represented the in vitro model. Skeletal muscle morphology was scrutinized by applying the Principal Component Analysis statistical method. Apoptosis, inflammation and myogenesis were analyzed by immunofluorescence. Finally, an in silico analysis was carried out to predict the possible pathways underlying the effects of n-3 PUFAs. RESULTS The flaxseed-enriched diet protected the dystrophic muscle from apoptosis and preserved muscle myogenesis by increasing the myogenin and alpha myosin heavy chain. Moreover, it restored the normal expression pattern of caveolin-3 thereby allowing protein retention at the sarcolemma. ALA reduced TNF-induced apoptosis in differentiating myoblasts and prevented the TNF-induced inhibition of myogenesis, as demonstrated by the increased expression of myogenin, myosin heavy chain and caveolin-3, while promoting myotube fusion. The in silico investigation revealed that FAK pathways may play a central role in the protective effects of ALA on myogenesis. CONCLUSIONS These findings indicate that flaxseed may exert potent beneficial effects by preserving skeletal muscle regeneration and homeostasis partly through an ALA-mediated action. Thus, dietary flaxseed and ALA may serve as a useful strategy for treating patients with muscle dystrophies.
Collapse
Affiliation(s)
- Felicia Carotenuto
- 1. Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.; 2. Diagnostic & Metrology , FSN-TECFIS-DIM, ENEA, Frascati-Rome, Italy
| | - Alessandra Costa
- 3. Department of Surgery, McGowan Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.; 4. Fondazione San Raffaele, Ceglie Messapica Italy
| | | | | | - Alexander Rudov
- 5. Department of Biomolecular Sciences; Urbino University "Carlo Bo"; Urbino, Italy
| | - Dario Coletti
- 6. UMR 8256, UPMC P6, Pierre et Marie Curie University, Department of Biological Adaptation and Aging, Paris Cedex, France
| | - Marilena Minieri
- 7. Department of Experimental Medicine and Surgery, University of Rome Tor Vergata , Rome, Italy
| | - Paolo Di Nardo
- 1. Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Teodori
- 2. Diagnostic & Metrology , FSN-TECFIS-DIM, ENEA, Frascati-Rome, Italy
| |
Collapse
|
123
|
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2015; 351:403-7. [PMID: 26721684 DOI: 10.1126/science.aad5143] [Citation(s) in RCA: 824] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Pratiksha I Thakore
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Ruth M Castellanos Rivera
- Gene Therapy Center, Departments of Genetics, Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarina Madhavan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - F Ann Ran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Winston X Yan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Graduate Program in Biophysics, Harvard Medical School, Boston, MA, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Aravind Asokan
- Gene Therapy Center, Departments of Genetics, Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
124
|
|
125
|
Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K, Kunkel LM, Zatz M. Jagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype. Cell 2015; 163:1204-1213. [PMID: 26582133 DOI: 10.1016/j.cell.2015.10.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/28/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP.
Collapse
Affiliation(s)
- Natassia M Vieira
- The Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA; Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ingegerd Elvers
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 597, 751 24, Uppsala, Sweden
| | - Matthew S Alexander
- The Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Yuri B Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 05508-000
| | - Alal Eran
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Juliana P Gomes
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo 05508-090, Brazil
| | - Jamie L Marshall
- The Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Elinor K Karlsson
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 05508-000; Instituto Butantan, São Paulo 05508-050, Brazil
| | - Kerstin Lindblad-Toh
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 597, 751 24, Uppsala, Sweden
| | - Louis M Kunkel
- The Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mayana Zatz
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo 05508-090, Brazil.
| |
Collapse
|
126
|
Klymiuk N, Seeliger F, Bohlooly-Y M, Blutke A, Rudmann DG, Wolf E. Tailored Pig Models for Preclinical Efficacy and Safety Testing of Targeted Therapies. Toxicol Pathol 2015; 44:346-57. [PMID: 26511847 DOI: 10.1177/0192623315609688] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite enormous advances in translational biomedical research, there remains a growing demand for improved animal models of human disease. This is particularly true for diseases where rodent models do not reflect the human disease phenotype. Compared to rodents, pig anatomy and physiology are more similar to humans in cardiovascular, immune, respiratory, skeletal muscle, and metabolic systems. Importantly, efficient and precise techniques for genetic engineering of pigs are now available, facilitating the creation of tailored large animal models that mimic human disease mechanisms at the molecular level. In this article, the benefits of genetically engineered pigs for basic and translational research are exemplified by a novel pig model of Duchenne muscular dystrophy and by porcine models of cystic fibrosis. Particular emphasis is given to potential advantages of using these models for efficacy and safety testing of targeted therapies, such as exon skipping and gene editing, for example, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system. In general, genetically tailored pig models have the potential to bridge the gap between proof-of-concept studies in rodents and clinical trials in patients, thus supporting translational medicine.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frank Seeliger
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | | | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel G Rudmann
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
127
|
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.
Collapse
Affiliation(s)
- Akitsu Hotta
- Center for iPS Cell Research & Application (CiRA), Kyoto University, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
| |
Collapse
|
128
|
Molza AE, Mangat K, Le Rumeur E, Hubert JF, Menhart N, Delalande O. Structural Basis of Neuronal Nitric-oxide Synthase Interaction with Dystrophin Repeats 16 and 17. J Biol Chem 2015; 290:29531-41. [PMID: 26378238 DOI: 10.1074/jbc.m115.680660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy is a lethal genetic defect that is associated with the absence of dystrophin protein. Lack of dystrophin protein completely abolishes muscular nitric-oxide synthase (NOS) function as a regulator of blood flow during muscle contraction. In normal muscles, nNOS function is ensured by its localization at the sarcolemma through an interaction of its PDZ domain with dystrophin spectrin-like repeats R16 and R17. Early studies suggested that repeat R17 is the primary site of interaction but ignored the involved nNOS residues, and the R17 binding site has not been described at an atomic level. In this study, we characterized the specific amino acids involved in the binding site of nNOS-PDZ with dystrophin R16-17 using combined experimental biochemical and structural in silico approaches. First, 32 alanine-scanning mutagenesis variants of dystrophin R16-17 indicated the regions where mutagenesis modified the affinity of the dystrophin interaction with the nNOS-PDZ. Second, using small angle x-ray scattering-based models of dystrophin R16-17 and molecular docking methods, we generated atomic models of the dystrophin R16-17·nNOS-PDZ complex that correlated well with the alanine scanning identified regions of dystrophin. The structural regions constituting the dystrophin interaction surface involve the A/B loop and the N-terminal end of helix B of repeat R16 and the N-terminal end of helix A' and a small fraction of helix B' and a large part of the helix C' of repeat R17. The interaction surface of nNOS-PDZ involves its main β-sheet and its specific C-terminal β-finger.
Collapse
Affiliation(s)
- Anne-Elisabeth Molza
- From the Université de Rennes1, Campus Santé, 35043 Rennes, France, the Institut de Génétique et Développement de Rennes, IGDR, UMR CNRS 6290, Rennes, France, and
| | | | - Elisabeth Le Rumeur
- From the Université de Rennes1, Campus Santé, 35043 Rennes, France, the Institut de Génétique et Développement de Rennes, IGDR, UMR CNRS 6290, Rennes, France, and
| | - Jean-François Hubert
- From the Université de Rennes1, Campus Santé, 35043 Rennes, France, the Institut de Génétique et Développement de Rennes, IGDR, UMR CNRS 6290, Rennes, France, and
| | - Nick Menhart
- the Illinois Institute of Technology, Chicago, Illinois 60616
| | - Olivier Delalande
- From the Université de Rennes1, Campus Santé, 35043 Rennes, France, the Institut de Génétique et Développement de Rennes, IGDR, UMR CNRS 6290, Rennes, France, and
| |
Collapse
|
129
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
130
|
British Society for Gene and Cell Therapy Annual Conference Glasgow9–11th June 2015Conference Abstracts. Hum Gene Ther 2015. [DOI: 10.1089/hum.2015.29005.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
131
|
Fujino H, Saito T, Matsumura T, Shibata S, Iwata Y, Fujimura H, Shinno S, Imura O. How Physicians Support Mothers of Children with Duchenne Muscular Dystrophy. J Child Neurol 2015; 30:1287-94. [PMID: 25564482 DOI: 10.1177/0883073814558334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/26/2014] [Indexed: 11/15/2022]
Abstract
Communicating about Duchenne muscular dystrophy and its prognosis can be difficult for affected children and their family. We focused on how physicians provide support to the mothers of children with Duchenne muscular dystrophy who have difficulty communicating about the condition with their child. The eligible participants were certified child neurologists of the Japanese Society of Child Neurology. Participants responded to questionnaires consisting of free descriptions of a vignette of a child with Duchenne muscular dystrophy and a mother. We analyzed 263 responses of the participants. We found 4 themes on advising mothers, involving encouraging communication, family autonomy, supporting family, and considering the child's concerns. These results provide a better understanding of the communication between physicians and family members who need help sharing information with a child with Duchenne muscular dystrophy. These findings will assist clinical practitioners in supporting families and the affected children throughout the course of their illness.
Collapse
Affiliation(s)
- Haruo Fujino
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Saito
- Division of Child Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Saki Shibata
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Yuko Iwata
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Susumu Shinno
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan Shinno Clinic, Nara, Japan
| | - Osamu Imura
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
132
|
Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Sci Rep 2015; 5:12831. [PMID: 26290039 PMCID: PMC4642533 DOI: 10.1038/srep12831] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle degenerating disease caused by a dystrophin deficiency. Effective suppression of the primary pathology observed in DMD is critical for treatment. Patient-derived human induced pluripotent stem cells (hiPSCs) are a promising tool for drug discovery. Here, we report an in vitro evaluation system for a DMD therapy using hiPSCs that recapitulate the primary pathology and can be used for DMD drug screening. Skeletal myotubes generated from hiPSCs are intact, which allows them to be used to model the initial pathology of DMD in vitro. Induced control and DMD myotubes were morphologically and physiologically comparable. However, electric stimulation of these myotubes for in vitro contraction caused pronounced calcium ion (Ca2+) influx only in DMD myocytes. Restoration of dystrophin by the exon-skipping technique suppressed this Ca2+ overflow and reduced the secretion of creatine kinase (CK) in DMD myotubes. These results suggest that the early pathogenesis of DMD can be effectively modelled in skeletal myotubes induced from patient-derived iPSCs, thereby enabling the development and evaluation of novel drugs.
Collapse
|
133
|
Guiraud S, Chen H, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 2015; 100:1458-67. [PMID: 26140505 PMCID: PMC4973818 DOI: 10.1113/ep085308] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X-linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene-replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re-establish muscle function.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
134
|
Le Rumeur E. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 2015; 15:14-20. [PMID: 26295289 DOI: 10.17305/bjbms.2015.636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.
Collapse
Affiliation(s)
- Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes (IGDR), Faculté de Médecine, Rennes Cedex.
| |
Collapse
|
135
|
Abstract
Serum biomarkers in Duchenne muscular dystrophy (DMD) may provide deeper insights into disease pathogenesis, suggest new therapeutic approaches, serve as acute read-outs of drug effects, and be useful as surrogate outcome measures to predict later clinical benefit. In this study a large-scale biomarker discovery was performed on serum samples from patients with DMD and age-matched healthy volunteers using a modified aptamer-based proteomics technology. Levels of 1,125 proteins were quantified in serum samples from two independent DMD cohorts: cohort 1 (The Parent Project Muscular Dystrophy-Cincinnati Children's Hospital Medical Center), 42 patients with DMD and 28 age-matched normal volunteers; and cohort 2 (The Cooperative International Neuromuscular Research Group, Duchenne Natural History Study), 51 patients with DMD and 17 age-matched normal volunteers. Forty-four proteins showed significant differences that were consistent in both cohorts when comparing DMD patients and healthy volunteers at a 1% false-discovery rate, a large number of significant protein changes for such a small study. These biomarkers can be classified by known cellular processes and by age-dependent changes in protein concentration. Our findings demonstrate both the utility of this unbiased biomarker discovery approach and suggest potential new diagnostic and therapeutic avenues for ameliorating the burden of DMD and, we hope, other rare and devastating diseases.
Collapse
|
136
|
van Westering TLE, Betts CA, Wood MJA. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015; 20:8823-55. [PMID: 25988613 PMCID: PMC6272314 DOI: 10.3390/molecules20058823] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
137
|
Ohe K, Hagiwara M. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases. ACS Chem Biol 2015; 10:914-24. [PMID: 25560473 DOI: 10.1021/cb500697f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a critical step where a limited number of human genes generate a complex and diverse proteome. Various diseases, including inherited diseases with abnormalities in the "genome code," have been found to result in an aberrant mis-spliced "transcript code" with correlation to the resulting phenotype. Chemical compound-based and nucleic acid-based strategies are trying to target this mis-spliced "transcript code". We will briefly mention about how to obtain splicing-modifying-compounds by high-throughput screening and overview of what is known about compounds that modify splicing pathways. The main focus will be on RNA-binding protein kinase inhibitors. In the main text, we will refer to diseases where splicing-modifying-compounds have been intensively investigated, with comparison to nucleic acid-based strategies. The information on their involvement in mis-splicing as well as nonsplicing events will be helpful in finding better compounds with less off-target effects for future implications in mis-splicing therapy.
Collapse
Affiliation(s)
- Kenji Ohe
- †Department of Anatomy and Developmental Biology and ‡Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society (LIMS), Kyoto University Graduate School of Medicine, Kyoto 606-8315, Japan
| | - Masatoshi Hagiwara
- †Department of Anatomy and Developmental Biology and ‡Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society (LIMS), Kyoto University Graduate School of Medicine, Kyoto 606-8315, Japan
| |
Collapse
|
138
|
Tandon A, Jefferies JL, Villa CR, Hor KN, Wong BL, Ware SM, Gao Z, Towbin JA, Mazur W, Fleck RJ, Sticka JJ, Benson DW, Taylor MD. Dystrophin genotype-cardiac phenotype correlations in Duchenne and Becker muscular dystrophies using cardiac magnetic resonance imaging. Am J Cardiol 2015; 115:967-71. [PMID: 25702278 DOI: 10.1016/j.amjcard.2015.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne and Becker muscular dystrophies are caused by mutations in dystrophin. Cardiac manifestations vary broadly, making prognosis difficult. Current dystrophin genotype-cardiac phenotype correlations are limited. For skeletal muscle, the reading-frame rule suggests in-frame mutations tend to yield milder phenotypes. We performed dystrophin genotype-cardiac phenotype correlations using a protein-effect model and cardiac magnetic resonance imaging. A translational model was applied to patient-specific deletion, indel, and nonsense mutations to predict exons and protein domains present within truncated dystrophin protein. Patients were dichotomized into predicted present and predicted absent groups for exons and protein domains of interest. Development of myocardial fibrosis (represented by late gadolinium enhancement [LGE]) and depressed left ventricular ejection fraction (LVEF) were compared. Patients (n = 274) with predicted present cysteine-rich domain (CRD), C-terminal domain (CTD), and both the N-terminal actin-binding and cysteine-rich domains (ABD1 + CRD) had a decreased risk of LGE and trended toward greater freedom from LGE. Patients with predicted present CTD (exactly the same as those with in-frame mutations) and ABD1 + CRD trended toward decreased risk of and greater freedom from depressed LVEF. In conclusion, genotypes previously implicated in altering the dystrophinopathic cardiac phenotype were not significantly related to LGE and depressed LVEF. Patients with predicted present CRD, CTD/in-frame mutations, and ABD1 + CRD trended toward milder cardiac phenotypes, suggesting that the reading-frame rule may be applicable to the cardiac phenotype. Genotype-phenotype correlations may help predict the cardiac phenotype for dystrophinopathic patients and guide future therapies.
Collapse
Affiliation(s)
- Animesh Tandon
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John L Jefferies
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chet R Villa
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Brenda L Wong
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephanie M Ware
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zhiqian Gao
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey A Towbin
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Wojciech Mazur
- The Heart and Vascular Center at the Christ Hospital, Cincinnati, Ohio
| | - Robert J Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joshua J Sticka
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - D Woodrow Benson
- Herma Heart Center, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael D Taylor
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
139
|
Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci U S A 2015; 112:E1632-41. [PMID: 25775541 DOI: 10.1073/pnas.1423556112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The design of highly defective herpes simplex virus (HSV) vectors for transgene expression in nonneuronal cells in the absence of toxic viral-gene activity has been elusive. Here, we report that elements of the latency locus protect a nonviral promoter against silencing in primary human cells in the absence of any viral-gene expression. We identified a CTCF motif cluster 5' to the latency promoter and a known long-term regulatory region as important elements for vigorous transgene expression from a vector that is functionally deleted for all five immediate-early genes and the 15-kb internal repeat region. We inserted a 16.5-kb expression cassette for full-length mouse dystrophin and report robust and durable expression in dystrophin-deficient muscle cells in vitro. Given the broad cell tropism of HSV, our design provides a nontoxic vector that can accommodate large transgene constructs for transduction of a wide variety of cells without vector integration, thereby filling an important void in the current arsenal of gene-therapy vectors.
Collapse
|
140
|
Shimizu-Motohashi Y, Asakura Y, Motohashi N, Belur NR, Baumrucker MG, Asakura A. Pregnancy-induced amelioration of muscular dystrophy phenotype in mdx mice via muscle membrane stabilization effect of glucocorticoid. PLoS One 2015; 10:e0120325. [PMID: 25775477 PMCID: PMC4361742 DOI: 10.1371/journal.pone.0120325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common and severe type of dystrophinopathy, is an X-linked recessive genetic disease caused by the absence of dystrophin, which leads to fragility and vulnerability of the sarcolemma to mechanical stretching with increased membrane permeability. Currently, glucocorticoids such as prednisolone are the only medication available for DMD. However, molecular pathways responsible for this effect are still unclear. In addition, it remains unclear whether sex-related factors, including pregnancy and the postpartum period, affect the phenotype of dystrophinopathy. Here, we report the amelioration of muscle membrane permeability in the diaphragm muscle of pregnant and postpartum, but not in nulliparous, mdx mice, an animal model for DMD, during the physiological surge of corticosterone, the most abundant glucocorticoid in rodents. Cultures of single muscle fibers and myotubes isolated from mdx mouse diaphragm demonstrate resistance to hypo-osmotic shock when treated with corticosterone but not with estradiol or progesterone. This corticosterone-mediated resistance was diminished by an antagonist of corticosterone, indicating that the glucocorticoid-glucocorticoid receptor axis plays a role in this membrane stabilization effect on muscle. Moreover, subcutaneous injection of corticosterone into mdx mice showed decreased membrane permeability. This is the first report to demonstrate that pregnancy-related resistance to muscle fiber damage in mdx mice due to the membrane stabilization effect of corticosterone. We also propose that this membrane stabilization effect is exerted through annexin A1 up-regulation as the molecular mechanisms of glucocorticoid effects on DMD muscle. Furthermore, single muscle fiber culture studies provide a sensitive chemical screening platform for muscular dystrophies.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Norio Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Nandkishore R. Belur
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Michael G. Baumrucker
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
141
|
Miro J, Laaref AM, Rofidal V, Lagrafeuille R, Hem S, Thorel D, Méchin D, Mamchaoui K, Mouly V, Claustres M, Tuffery-Giraud S. FUBP1: a new protagonist in splicing regulation of the DMD gene. Nucleic Acids Res 2015; 43:2378-89. [PMID: 25662218 PMCID: PMC4344520 DOI: 10.1093/nar/gkv086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript.
Collapse
Affiliation(s)
- Julie Miro
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Abdelhamid Mahdi Laaref
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Valérie Rofidal
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Rosyne Lagrafeuille
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Sonia Hem
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Delphine Thorel
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Déborah Méchin
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Kamel Mamchaoui
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Vincent Mouly
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Mireille Claustres
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Sylvie Tuffery-Giraud
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| |
Collapse
|
142
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
143
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
144
|
Dmochewitz M, Wolf E. Genetic engineering of pigs for the creation of translational models of human pathologies. Anim Front 2015. [DOI: 10.2527/af.2015-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Dmochewitz
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
145
|
Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 2014; 93:S97-107. [PMID: 25313664 DOI: 10.1097/phm.0000000000000138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.
Collapse
|
146
|
Gintjee TJJ, Magh ASH, Bertoni C. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics. BIOLOGY 2014; 3:752-80. [PMID: 25405319 PMCID: PMC4280510 DOI: 10.3390/biology3040752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Abstract
Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.
Collapse
Affiliation(s)
- Thomas J J Gintjee
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Alvin S H Magh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
147
|
Nicolas A, Raguénès-Nicol C, Ben Yaou R, Ameziane-Le Hir S, Chéron A, Vié V, Claustres M, Leturcq F, Delalande O, Hubert JF, Tuffery-Giraud S, Giudice E, Le Rumeur E. Becker muscular dystrophy severity is linked to the structure of dystrophin. Hum Mol Genet 2014; 24:1267-79. [DOI: 10.1093/hmg/ddu537] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
148
|
Rodrigues M, Kidd A, Love DR, Roxburgh R. The New Zealand Neuromuscular Disease Registry: rate of diagnoses confirmed by molecular testing. J Clin Neurosci 2014; 22:434-6. [PMID: 25443090 DOI: 10.1016/j.jocn.2014.06.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
Abstract
The New Zealand Neuromuscular Disease Registry (NZ NMD Registry) is part of the TREAT NMD Alliance, an international network that provides infrastructure ensuring the most promising new therapies reach neuromuscular patients as quickly as possible. Its main aim is to ensure that the most promising new therapies reach patients as quickly as possible. From the perspective of researchers interested in trialling treatments it is useful to have data on the pool of potential research participants. From a patient's perspective it is important to know what trials they can take part in. Both of these require a confirmed molecular diagnosis in the patient. Some therapeutic strategies not only require knowledge of which gene is affected but are targeted at specific mutations within the gene. In reviewing data held in the NZ NMD Registry it was noted that, of those diagnosed with a genetic condition, only 51% have a confirmed molecular genetic diagnosis. This low rate of genetic diagnosis is a potential barrier to research participation but can be removed with improved genetic technology and with changes in knowledge about and attitudes towards genetic testing.
Collapse
Affiliation(s)
- Miriam Rodrigues
- Neurology Department, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand.
| | - Alexa Kidd
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Neurology Department, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
149
|
A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Res 2014; 13:390-403. [PMID: 25310255 DOI: 10.1016/j.scr.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/22/2022] Open
Abstract
An emerging therapeutic approach for Duchenne muscular dystrophy is the transplantation of autologous myogenic progenitor cells genetically modified to express dystrophin. The use of this approach is challenged by the difficulty in maintaining these cells ex vivo while keeping their myogenic potential, and ensuring sufficient transgene expression following their transplantation and myogenic differentiation in vivo. We investigated the use of the piggyBac transposon system to achieve stable gene expression when transferred to cultured mesoangioblasts and into murine muscles. Without selection, up to 8% of the mesoangioblasts expressed the transgene from 1 to 2 genomic copies of the piggyBac vector. Integration occurred mostly in intergenic genomic DNA and transgene expression was stable in vitro. Intramuscular transplantation of mouse Tibialis anterior muscles with mesoangioblasts containing the transposon led to sustained myofiber GFP expression in vivo. In contrast, the direct electroporation of the transposon-donor plasmids in the mouse Tibialis muscles in vivo did not lead to sustained transgene expression despite molecular evidence of piggyBac transposition in vivo. Together these findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.
Collapse
|
150
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|