101
|
Wang W, Li Y, Hao J, He Y, Dong X, Fu YX, Guo X. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 2020; 32:107936. [DOI: 10.1016/j.celrep.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
|
102
|
Germinal centers B-cell reaction and T follicular helper cells in response to HIV-1 infection. Curr Opin HIV AIDS 2020; 14:246-252. [PMID: 30994502 DOI: 10.1097/coh.0000000000000557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings on germinal center B-cell reaction and Tfh cells in HIV-1 infection, with particular emphasis on the spatial organization of the germinal center, follicular cell regulation, and cellular alterations resulting from HIV infection. RECENT FINDINGS HIV-specific bNAbs are generated by iterative cycles of B-cell maturation supported by GC environment. Recent observations underline that germinal center structural alterations at the earliest stages of HIV infection could impact Tfh cell and germinal center B-cell homeostasis, thus preventing the rise of efficient humoral immunity. Moreover, despite ART treatment, HIV-derived antigens persist, particularly in follicular CD4+ T cells. Antigenic persistence and variability lead to unregulated chronic stimulation. In this context, regulation of the germinal center appears of special interest. In addition to follicular T-regulatory cells (Tfr), new potent regulators of germinal center reaction, such as follicular CD8 T and NK cells have been recently identified. SUMMARY Altogether these new data provide a better understanding on how HIV infection severely impacts germinal center reaction. Here we propose several therapeutic approaches to promote the bNAb development in HIV-infected patients by improving the preservation of germinal center architecture and its regulation.
Collapse
|
103
|
Papillion A, Powell MD, Chisolm DA, Bachus H, Fuller MJ, Weinmann AS, Villarino A, O'Shea JJ, León B, Oestreich KJ, Ballesteros-Tato A. Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-T FH cells. Sci Immunol 2020; 4:4/39/eaaw7636. [PMID: 31519812 DOI: 10.1126/sciimmunol.aaw7636] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
Sustained T cell receptor (TCR) stimulation is required for maintaining germinal center T follicular helper (GC-TFH) cells. Paradoxically, TCR activation induces interleukin-2 receptor (IL-2R) expression and IL-2 production, thereby initiating a feedback loop of IL-2 signaling that normally inhibits TFH cells. It is unclear how GC-TFH cells can receive prolonged TCR signaling without succumbing to the detrimental effects of IL-2. Using an influenza infection model, we show here that GC-TFH cells secreted large amounts of IL-2 but responded poorly to it. To maintain their IL-2 hyporesponsiveness, GC-TFH cells required intrinsic IL-6 signaling. Mechanistically, we found that IL-6 inhibited up-regulation of IL-2Rβ (CD122) by preventing association of STAT5 with the Il2rb locus, thus allowing GC-TFH cells to receive sustained TCR signaling and produce IL-2 without initiating a TCR/IL-2 inhibitory feedback loop. Collectively, our results identify a regulatory mechanism that controls the generation of GC-TFH cells.
Collapse
Affiliation(s)
- Amber Papillion
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael D Powell
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Fuller
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth J Oestreich
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
104
|
Rocca MA, Cacciaguerra L, Filippi M. Moving beyond anti-aquaporin-4 antibodies: emerging biomarkers in the spectrum of neuromyelitis optica. Expert Rev Neurother 2020; 20:601-618. [DOI: 10.1080/14737175.2020.1764352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
105
|
Shi Q, Carman CV, Chen Y, Sage PT, Xue F, Liang XM, Gilbert GE. Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Adv 2020; 4:2272-2285. [PMID: 32453842 PMCID: PMC7252558 DOI: 10.1182/bloodadvances.2020001468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of inhibitory antibodies (inhibitors) in ∼30% of patients. Because endothelial cells (ECs) are the primary physiologic expression site, we probed the therapeutic potential of genetically restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ transduction (T2F8LV) or embryonic stem cell-mediated transgenesis (T2F8Tg). Both endothelial expression approaches were associated with a strikingly robust immune response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII immune response upon FVIII immunization. A single injection of FVIII with incomplete Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to undetectable levels. Because ECs are putative major histocompatibility complex class II (MHCII)-expressing nonhematopoietic, "semiprofessional" antigen-presenting cells (APCs), we asked whether they might directly influence the FVIII immune responses. Imaging and flow cytometric studies confirmed that both murine and human ECs express MHCII and efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs preconditioned ex vivo with inflammatory cytokines could functionally present exogenously taken-up FVIII to previously primed CD4+/CXCR5+ T follicular helper (Tfh) cells to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of inhibitors as auxiliary APCs for Tfh cells.
Collapse
Affiliation(s)
- Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Children's Research Institute, Children's Wisconsin, Milwaukee, WI
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI
| | - Christopher V Carman
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Yingyu Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Peter T Sage
- Renal Division, Transplant Research Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Feng Xue
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Xin M Liang
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| | - Gary E Gilbert
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| |
Collapse
|
106
|
Effects of sleep on the splenic milieu in mice and the T cell receptor repertoire recruited into a T cell dependent B cell response. Brain Behav Immun Health 2020; 5:100082. [PMID: 34589857 PMCID: PMC8474558 DOI: 10.1016/j.bbih.2020.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is known to improve immune function ranging from cell distribution in the naïve state to elevated antibody titers after an immune challenge. The underlying mechanisms still remain unclear, partially because most studies have focused on the analysis of blood only. Hence, we investigated the effects of sleep within the spleen in female C57BL/6J mice with normal sleep compared to short-term sleep-deprived animals both in the naïve state and after an antigen challenge. Lack of sleep decreased the expression of genes associated with immune cell recruitment into and antigen presentation within the spleen both in the naïve state and during a T cell dependent B cell response directed against sheep red blood cells (SRBC). However, neither T cell proliferation nor formation of SRBC-specific antibodies was affected. In addition, the T cell receptor repertoire recruited into the immune response within seven days was not influenced by sleep deprivation. Thus, sleep modulated the molecular milieu within the spleen whereas we could not detect corresponding changes in the primary immune response against SRBC. Further studies will show whether sleep influences the secondary immune response against SRBC or the development of the B cell receptor repertoire, and how this can be compared to other antigens. Sleep deprivation (SD) decreases expression of genes involved in T cell function. SD induces those changes in the milieu of both lymph nodes and spleen. SD dampens the expression of several genes in the spleen during an immune response. SD does not alter the T cell receptor repertoire recruited into the immune response.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- IFN, interferon
- IL, interleukin
- Lymphocyte migration
- MHC-II, major histocompatibility complex II
- SD, sleep deprivation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- T cell dependent B cell Response
- T cell receptor repertoire
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
Collapse
|
107
|
Sant AJ. The Way Forward: Potentiating Protective Immunity to Novel and Pandemic Influenza Through Engagement of Memory CD4 T Cells. J Infect Dis 2020; 219:S30-S37. [PMID: 30715376 PMCID: PMC6452298 DOI: 10.1093/infdis/jiy666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Potentially pandemic strains of influenza pose an undeniable threat to human populations. Therefore, it is essential to develop better strategies to enhance vaccine design and predict parameters that identify susceptible humans. CD4 T cells are a central component of protective immunity to influenza, delivering direct effector function and potentiating responses of other lymphoid cells. Humans have highly diverse influenza-specific CD4 T-cell populations that vary in stimulation history, specificity, and functionality. These complexities constitute a formidable obstacle to predicting immune responses to pandemic strains of influenza and derivation of optimal vaccine strategies. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors of immunity in the CD4 T-cell compartment will aid in both predicting susceptible hosts and in development of vaccination strategies that will poise most human subjects to respond to pandemic influenza strains with protective immune responses.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, New York
| |
Collapse
|
108
|
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 2020; 4:4/33/eaau6085. [PMID: 30824527 DOI: 10.1126/sciimmunol.aau6085] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The spleen is the largest secondary lymphoid organ in the body and, as such, hosts a wide range of immunologic functions alongside its roles in hematopoiesis and red blood cell clearance. The physical organization of the spleen allows it to filter blood of pathogens and abnormal cells and facilitate low-probability interactions between antigen-presenting cells (APCs) and cognate lymphocytes. APCs specific to the spleen regulate the T and B cell response to these antigenic targets in the blood. This review will focus on cell types, cell organization, and immunologic functions specific to the spleen and how these affect initiation of adaptive immunity to systemic blood-borne antigens. Potential differences in structure and function between mouse and human spleen will also be discussed.
Collapse
Affiliation(s)
- Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
109
|
CD4 + T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020; 351:104096. [PMID: 32199587 DOI: 10.1016/j.cellimm.2020.104096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to enhanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2 subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17, Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.
Collapse
|
110
|
Preite S, Gomez-Rodriguez J, Cannons JL, Schwartzberg PL. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol Rev 2020; 291:154-173. [PMID: 31402502 DOI: 10.1111/imr.12790] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3 kinases (PI3K) are a family of lipid kinases that are activated by a variety of cell-surface receptors, and regulate a wide range of downstream readouts affecting cellular metabolism, growth, survival, differentiation, adhesion, and migration. The importance of these lipid kinases in lymphocyte signaling has recently been highlighted by genetic analyses, including the recognition that both activating and inactivating mutations of the catalytic subunit of PI3Kδ, p110δ, lead to human primary immunodeficiencies. In this article, we discuss how studies on the human genetic disorder "Activated PI3K-delta syndrome" and mouse models of this disease (Pik3cdE1020K/+ mice) have provided fundamental insight into pathways regulated by PI3Kδ in T and B cells and their contribution to lymphocyte function and disease, including responses to commensal bacteria and the development of autoimmunity and tumors. We highlight critical roles of PI3Kδ in T follicular helper cells and the orchestration of the germinal center reaction, as well as in CD8+ T-cell function. We further present data demonstrating the ability of the AKT-resistant FOXO1AAA mutant to rescue IgG1 class switching defects in Pik3cdE1020K/+ B cells, as well as data supporting a role for PI3Kδ in promoting multiple T-helper effector cell lineages.
Collapse
Affiliation(s)
- Silvia Preite
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
111
|
Li X, Gong L, Gu H. Regulation of immune system development and function by Cbl-mediated ubiquitination. Immunol Rev 2020; 291:123-133. [PMID: 31402498 DOI: 10.1111/imr.12789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Ubiquitination is a form of posttranslational protein modification that affects the activity of target proteins by regulating their intracellular degradation, trafficking, localization, and association with other regulators. Recent studies have placed protein ubiquitination as an important regulatory mode to control immune system development, function, and pathogenesis. In this review, we will mainly update the research progress from our laboratory on the roles of the Cbl family of E3 ubiquitin ligases in the development and function of lymphocytes and non-lymphoid cells. In addition, we will highlight our current understanding of the mechanisms used by this family of proteins, especially Cbl and Cbl-b, to co-ordinately regulate the function of various receptors and transcription factors in the context of immune regulation and diseases.
Collapse
Affiliation(s)
- Xin Li
- Kisoji Biotechnologies, Laval, Quebec, Canada
| | - Liying Gong
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hua Gu
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
112
|
Hetta HF, Elkady A, Yahia R, Meshall AK, Saad MM, Mekky MA, Al-Kadmy IMS. T follicular helper and T follicular regulatory cells in colorectal cancer: A complex interplay. J Immunol Methods 2020; 480:112753. [PMID: 32061875 DOI: 10.1016/j.jim.2020.112753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/14/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is considered to be one of the major causes of morbidity and mortality all over the world. T Follicular helper (TFH) and T follicular regulatory (TFR) cells are specialized providers of T-cells to help B-cells and shaping germinal centers (GC) response. Recent researches reported a high percentage of TFH and TFR in different infectious diseases and certain malignancies. However, their functional role in human colorectal cancer (CRC) is relatively unknown. Furthermore, recent studies show that the interaction of both TFH cells and TFR cells are essential to promote several diseases. Under the control of specific cytokines and B-cell lymphoma 6 transcription factor (Bcl-6), the major transcription factor of TFH cells, TFH, can expand to the other distinct CD4 + T helper cells (TH1, TH2, and TH17) which exert a different role in the development of CRC. This review aims to discuss these suggested roles of the two-opposite subset of follicular T cells in colorectal cancer immune pathogenesis.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Ahmed Kh Meshall
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mahmoud M Saad
- Assiut University Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10244, Baghdad, Iraq; Faculty of Science and Engineering, School of Engineering, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
113
|
Amodio D, Santilli V, Zangari P, Cotugno N, Manno EC, Rocca S, Rossi P, Cancrini C, Finocchi A, Chassiakos A, Petrovas C, Palma P. How to dissect the plasticity of antigen-specific immune response: a tissue perspective. Clin Exp Immunol 2020; 199:119-130. [PMID: 31626717 PMCID: PMC6954674 DOI: 10.1111/cei.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/01/2022] Open
Abstract
Generation of antigen-specific humoral responses following vaccination or infection requires the maturation and function of highly specialized immune cells in secondary lymphoid organs (SLO), such as lymph nodes or tonsils. Factors that orchestrate the dynamics of these cells are still poorly understood. Currently, experimental approaches that enable a detailed description of the function of the immune system in SLO have been mainly developed and optimized in animal models. Conversely, methodological approaches in humans are mainly based on the use of blood-associated material because of the challenging access to tissues. Indeed, only few studies in humans were able to provide a discrete description of the complex network of cytokines, chemokines and lymphocytes acting in tissues after antigenic challenge. Furthermore, even fewer data are currently available on the interaction occurring within the complex micro-architecture of the SLO. This information is crucial in order to design particular vaccination strategies, especially for patients affected by chronic and immune compromising medical conditions who are under-vaccinated or who respond poorly to immunizations. Analysis of immune cells in different human tissues by high-throughput technologies, able to obtain data ranging from gene signature to protein expression and cell phenotypes, is needed to dissect the peculiarity of each immune cell in a definite human tissue. The main aim of this review is to provide an in-depth description of the current available methodologies, proven evidence and future perspectives in the analysis of immune mechanisms following immunization or infections in SLO.
Collapse
Affiliation(s)
- D. Amodio
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - V. Santilli
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Zangari
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - N. Cotugno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - E. C. Manno
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - S. Rocca
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - P. Rossi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - C. Cancrini
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Finocchi
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
- Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
| | - A. Chassiakos
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - C. Petrovas
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - P. Palma
- Research Unit in Congenital and Perinatal InfectionsImmune and Infectious Diseases DivisionAcademic Department of PediatricsOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| |
Collapse
|
114
|
Duan X, Shen C, Zhang X, Wu L, Chen J, Ma B, Wang Q, Sun P, Lan Y, Su C. Toll-like receptor 7 agonist imiquimod prevents the progression of SLE in MRL/lpr mice via inhibiting the differentiation of T follicular helper cells. Int Immunopharmacol 2020; 80:106239. [PMID: 32007709 DOI: 10.1016/j.intimp.2020.106239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Previous research has recently indicated that TLR7 is able to induce CD4+T cell anergy, which is the opposite of the role it plays in innate immune cells. Therefore, TLR7 ligands may be used as a manner in which to induce CD4+T cells "tolerance" in autoimmune diseases. T follicular helper (Tfh) cells were demonstrated to be a subset of CD4+T cells that help B cells produce antibodies. The abnormal activity of Tfh cells, though, is their function as a primary pathogenic factor in systemic lupus erythematosus (SLE). However, the role of TLR7 in Tfh cells is not clear. Our study was aimed at determining the influence of TLR7 on Tfh cells in a murine model of SLE (MRL/lpr mice). We were surprised to find that the frequency of Tfh cells and germinal center (GC) B cells was significantly reduced after treatment with the TLR7 agonist imiquimod. Imiquimod also significantly reduced the expression of inducible costimulatory molecule (ICOS) and programmed death 1(PD-1) in Tfh cells and decreased IL-21 secretion. Moreover, imiquimod significantly reduced the mRNA expression of several transcription factors, including Bcl-6, c-Maf, Batf3, Nfatc2 and Stat3, and enhanced the expression of Prdm1 and Stat5b in CD4+T cells. Imiquimod also ameliorated the progression of SLE in MRL/lpr mice by inhibiting anti-dsDNA antibodies and antinuclear antibody (ANA) secretion in the serum. Our findings indicated that TLR7 inhibited the development of Tfh cells both in vivo and ex vivo, which depended on many transcription factors aside from Bcl-6. Our results demonstrated that a TLR7 agonist has the potential to be used to inhibit Tfh cell responses during SLE.
Collapse
Affiliation(s)
- Xiangguo Duan
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, 750004 Yinchuan, PR China; Department of Laboratory Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, PR China
| | - Chunxiu Shen
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Lihua Wu
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, 750004 Yinchuan, PR China
| | - Jian Chen
- Guolong Hospital, 750004 Yinchuan, PR China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, 750001 Yinchuan, PR China
| | - Qi Wang
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Peng Sun
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Yaru Lan
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Chunxia Su
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China.
| |
Collapse
|
115
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
116
|
Guo S, Yu X, Wang L, Jing J, Sun Y, Li N, Kuang J, Zhao D, Yu X, Yang J, Yan W. The frequency of Tim-3 on circulating Tfh cells was increased in type 2 diabetes mellitus patients. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220982803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic, low-grade inflammation disease. T follicular helper (Tfh) cells and T cell immunoglobulin and mucin domain 3 (Tim-3) are implicated in many immune diseases. This study aims to explore whether Tim-3 expression on Tfh cells is associated with T2DM progression. White blood cells (WBCs) were harvested from 30 patients with T2DM and 20 healthy donors. The abundance of circulating Tfh cells (cTfh) and the frequency of Tim-3 were analyzed by flow cytometry. Levels of fasting plasma glucose (FPG), insulin, hemoglobin A1C (HbA1C), and fasting plasma C-peptide were measured. Body mass index (BMI) and diabetes duration were also recorded. Patients with T2DM had higher numbers of cTfh cells. In addition, cTfh cells showed a negative correlation with HbA1C and diabetes duration, a positive correlation with fasting plasma C-peptide. The frequency of Tim-3 on cTfh cells was higher among T2DM patients compared with healthy donors. The in vitro experiment showed that high glucose levels increased the abundance cTfh cells but had no effect on Tim-3 expression. Our results suggest that cTfh cells and associated Tim-3 frequency may contribute to the progression of T2DM, and high glucose levels may influence cTfh cells directly.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xujie Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei Wang
- Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Jing Jing
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangying Kuang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Di Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University; Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, Shandong, China
| | - Xingyu Yu
- Class 2019, MSc Banking and Finance, University of St Andrews, Fife, UK
| | - Jingjing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
117
|
The Critical Role of Bach2 in Shaping the Balance between CD4 + T Cell Subsets in Immune-Mediated Diseases. Mediators Inflamm 2019; 2019:2609737. [PMID: 32082072 PMCID: PMC7012215 DOI: 10.1155/2019/2609737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 01/12/2023] Open
Abstract
The transcription factor Bach2 which is predominantly expressed in B and T lymphocytes represses the expression of genes by forming heterodimers with small Maf and Batf proteins and binding to the corresponding sequence on the DNA. In this way, Bach2 serves as a highly conserved repressor which controls the terminal differentiation and maturation of both B and T lymphocytes. It is required for class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes in activated B cells, and its function in B cell differentiation has been well-described. Furthermore, emerging data show that Bach2 regulates transcriptional activity in T cells at super enhancers or regions of high transcriptional activity, thus stabilizing immunoregulatory capacity and maintaining T cell homeostasis. Bach2 is also critical for the formation and function of CD4+ T cell lineages (Th1, Th2, Th9, Th17, T follicular helper (Tfh), and regulatory T (Treg) cells). Genetic variations within Bach2 locus are associated with numerous immune-mediated diseases including multiple sclerosis (MS), rheumatoid arthritis (RA), chronic pancreatitis (CP), type 2 chronic airway inflammation, inflammatory bowel disease (IBD), and type 1 diabetes. Here, we reveal a critical role of Bach2 in regulating T cell biology and the correlation with these immune-mediated diseases.
Collapse
|
118
|
Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev 2019; 288:85-96. [PMID: 30874350 DOI: 10.1111/imr.12740] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
T follicular helper (Tfh) cells play a crucial role in orchestrating the humoral arm of adaptive immune responses. Mature Tfh cells localize to follicles in secondary lymphoid organs (SLOs) where they provide help to B cells in germinal centers (GCs) to facilitate immunoglobulin affinity maturation, class-switch recombination, and generation of long-lived plasma cells and memory B cells. Beyond the canonical GC Tfh cells, it has been increasingly appreciated that the Tfh phenotype is highly diverse and dynamic. As naive CD4+ T cells progressively differentiate into Tfh cells, they migrate through a variety of microanatomical locations to obtain signals from other cell types, which in turn alters their phenotypic and functional profiles. We herein review the heterogeneity of Tfh cells marked by the dynamic phenotypic changes accompanying their developmental program. Focusing on the various locations where Tfh and Tfh-like cells are found, we highlight their diverse states of differentiation. Recognition of Tfh cell heterogeneity has important implications for understanding the nature of T helper cell identity specification, especially the plasticity of the Tfh cells and their ontogeny as related to conventional T helper subsets.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
119
|
The role of actin and myosin in antigen extraction by B lymphocytes. Semin Cell Dev Biol 2019; 102:90-104. [PMID: 31862219 DOI: 10.1016/j.semcdb.2019.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
B cells must extract antigens attached to the surface of antigen presenting cells to generate high-affinity antibodies. Antigen extraction requires force, and recent studies have implicated actomyosin-dependent pulling forces generated within the B cell as the major driver of antigen extraction. These actomyosin-dependent pulling forces also serve to test the affinity of the B cell antigen receptor for antigen prior to antigen extraction. Such affinity discrimination is central to the process of antibody affinity maturation. Here we review the evidence that actomyosin-dependent pulling forces generated within the B cell promote affinity discrimination and power antigen extraction. Our take on these critical B cell functions is influenced significantly by the recent identification of formin-generated, myosin-rich, concentric actin arcs in the medial portion of the T cell immune synapse, as B cells appear to contain a similar contractile actomyosin structure.
Collapse
|
120
|
Shao F, Zheng P, Yu D, Zhou Z, Jia L. Follicular helper T cells in type 1 diabetes. FASEB J 2019; 34:30-40. [PMID: 31914661 DOI: 10.1096/fj.201901637r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Feng Shao
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Di Yu
- The University of Queensland Diamantina Institute, Translational Research Institute Brisbane Queensland Australia
- Shandong Analysis and Test Center Shandong Academy of Sciences Jinan China
- China‐Australia Centre for Personalised Immunology Shanghai Renji Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| |
Collapse
|
121
|
Knowlden ZAG, Richards KA, Moritzky SA, Sant AJ. Peptide Epitope Hot Spots of CD4 T Cell Recognition Within Influenza Hemagglutinin During the Primary Response to Infection. Pathogens 2019; 8:pathogens8040220. [PMID: 31694141 PMCID: PMC6963931 DOI: 10.3390/pathogens8040220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies specific for the hemagglutinin (HA) protein of influenza virus are critical for protective immunity to infection. Our studies show that CD4 T cells specific for epitopes derived from HA are the most effective in providing help for the HA-specific B cell responses to infection and vaccination. In this study, we asked whether HA epitopes recognized by CD4 T cells in the primary response to infection are equally distributed across the HA protein or if certain segments are enriched in CD4 T cell epitopes. Mice that collectively expressed eight alternative MHC (Major Histocompatibility Complex) class II molecules, that would each have different peptide binding specificities, were infected with an H1N1 influenza virus. CD4 T cell peptide epitope specificities were identified by cytokine EliSpots. These studies revealed that the HA-specific CD4 T cell epitopes cluster in two distinct regions of HA and that some segments of HA are completely devoid of CD4 T cell epitopes. When located on the HA structure, it appears that the regions that most poorly recruit CD4 T cells are sequestered within the interior of the HA trimer, perhaps inaccessible to the proteolytic machinery inside the endosomal compartments of antigen presenting cells.
Collapse
|
122
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
123
|
Huang R, Zeng Z, Li G, Song D, Yan P, Yin H, Hu P, Zhu X, Chang R, Zhang X, Zhang J, Meng T, Huang Z. The Construction and Comprehensive Analysis of ceRNA Networks and Tumor-Infiltrating Immune Cells in Bone Metastatic Melanoma. Front Genet 2019; 10:828. [PMID: 31608101 PMCID: PMC6774271 DOI: 10.3389/fgene.2019.00828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background/Aims: As a malignant and melanocytic tumor, cutaneous melanoma is the devastating skin tumor with high rates of recurrence and metastasis. Bone is the common metastatic location, and bone metastasis may result in pathologic fracture, neurologic damage, and severe bone pain. Although metastatic melanoma was reported to get benefits from immunotherapy, molecular mechanisms and immune microenviroment underlying the melanoma bone metastasis and prognostic factors are still unknown. Methods: Gene expression profiling of 112 samples, including 104 primary melanomas and 8 bone metastatic melanomas from The Cancer Genome Atlas database, was assayed to construct a ceRNA network associated with bone metastases. Besides, we detected the fraction of 22 immune cell types in melanoma via the algorithm of “cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT).” Based on the significant ceRNAs or immune cells, we constructed nomograms to predict the prognosis of patients with melanoma. Ultimately, correlation analysis was implemented to discover the relationship between the significant ceRNA and immune cells to reveal the potential signaling pathways. Results: We constructed a ceRNA network based on the interaction among 8 pairs of long noncoding RNA–microRNA and 15 pairs of microRNA–mRNA. CIBERSORT and ceRNA integration analysis discovered that AL118506.1 has both significant prognostic value (P = 0.002) and high correlation with T follicular helper cells (P = 0.033). Meanwhile, T cells CD8 and macrophages M2 were negatively correlated (P < 0.001). Moreover, we constructed two satisfactory nomograms (area under curve of 3-year survival: 0.899; 5-year survival: 0.885; and concordance index: 0.780) with significant ceRNAs or immune cells, to predict the prognosis of patients. Conclusions: In this study, we suggest that bone metastasis in melanoma might be related to AL118506.1 and its role in regulating thrombospondin 2 and T follicular helper cells. Two nomograms were constructed to predict the prognosis of patients with melanoma and demonstrated their value in improving the personalized management.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Chang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
124
|
Abstract
B-cell follicle represents a functionally dynamic microstructure within second lymphoid tissues, predominantly consisting of B cells, follicular T cells and DCs. Through intimate interactions with cognate B cells, follicular helper T cells (Tfh) initiate and facilitate germinal center (GC) reactions by providing signals required for producing high-affinity antibodies, as well as for the generation of long-lived antibody-secreting plasma cells and memory B cells. Concomitantly, germinal center reaction needs to be fine controlled to avoid autoimmunity or B-cell malignancies. Among immune cells residing in follicles, follicular regulatory T cells (Tfr), converted from naïve Treg cells, are specifically assigned to repress excessive GC responses by suppressing Tfh and GC B cells within GC structure. Hence, through Yin and Yang (positive and negative) regulation of GC reaction, Tfh cells play concert with Tfr cells in maintaining immune homeostasis. Besides CD4+ T cells, a small portion of CXCR5 expressing CD8+ T cells, regarded as follicular cytotoxic T cells (Tfc), could migrate into B cell follicles during chronic viral infection and several types of cancers, and this population exhibit lower level of exhaustion than its CXCR5- counterparts. Besides, Tfc cells demonstrate a stem-cell like phenotype during chronic infection which could further differentiate into terminally differentiated CXCR5-CD8+ T cells. Collectively, in this review, we will discuss the recent advances in our understanding of the ontology and differentiation of B-cell follicle resident Tfh, Tfr and Tfc cells.
Collapse
|
125
|
Roe K, Shu GL, Draves KE, Giordano D, Pepper M, Clark EA. Targeting Antigens to CD180 but Not CD40 Programs Immature and Mature B Cell Subsets to Become Efficient APCs. THE JOURNAL OF IMMUNOLOGY 2019; 203:1715-1729. [PMID: 31484732 DOI: 10.4049/jimmunol.1900549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Targeting Ags to the CD180 receptor activates both B cells and dendritic cells (DCs) to become potent APCs. After inoculating mice with Ag conjugated to an anti-CD180 Ab, B cell receptors were rapidly internalized. Remarkably, all B cell subsets, including even transitional 1 B cells, were programed to process, present Ag, and stimulate Ag-specific CD4+ T cells. Within 24-48 hours, Ag-specific B cells were detectable at T-B borders in the spleen; there, they proliferated in a T cell-dependent manner and induced the maturation of T follicular helper (TFH) cells. Remarkably, immature B cells were sufficient for the maturation of TFH cells after CD180 targeting: TFH cells were induced in BAFFR-/- mice (with only transitional 1 B cells) and not in μMT mice (lacking all B cells) following CD180 targeting. Unlike CD180 targeting, CD40 targeting only induced DCs but not B cells to become APCs and thus failed to efficiently induce TFH cell maturation, resulting in slower and lower-affinity IgG Ab responses. CD180 targeting induces a unique program in Ag-specific B cells and to our knowledge, is a novel strategy to induce Ag presentation in both DCs and B cells, especially immature B cells and thus has the potential to produce a broad range of Ab specificities. This study highlights the ability of immature B cells to present Ag to and induce the maturation of cognate TFH cells, providing insights toward vaccination of mature B cell-deficient individuals and implications in treating autoimmune disorders.
Collapse
Affiliation(s)
- Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
126
|
Fischman C, Fribourg M, Fabrizio G, Cioni M, Comoli P, Nocera A, Cardillo M, Cantarelli C, Gallon L, Petrosyan A, Da Sacco S, Perin L, Cravedi P. Circulating B Cells With Memory and Antibody-Secreting Phenotypes Are Detectable in Pediatric Kidney Transplant Recipients Before the Development of Antibody-Mediated Rejection. Transplant Direct 2019; 5:e481. [PMID: 31579809 PMCID: PMC6739044 DOI: 10.1097/txd.0000000000000914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Development of anti-human leukocyte antigen donor-specific antibodies (DSAs) is associated with antibody-mediated rejection (AMR) and reduced allograft survival in kidney transplant recipients. Whether changes in circulating lymphocytes anticipate DSA or AMR development is unclear. METHODS We used time-of-flight mass cytometry to analyze prospectively collected peripheral blood mononuclear cells (PBMC) from pediatric kidney transplant recipients who developed DSA (DSA-positive recipients [DSAPOS], n = 10). PBMC were obtained at 2 months posttransplant, 3 months before DSA development, and at DSA detection. PBMC collected at the same time points posttransplant from recipients who did not develop DSA (DSA-negative recipients [DSANEG], n = 11) were used as controls. RESULTS DSAPOS and DSANEG recipients had similar baseline characteristics and comparable frequencies of total B and T cells. Within DSAPOS recipients, there was no difference in DSA levels (mean fluorescence intensity [MFI]: 13 687 ± 4159 vs 11 375 ± 1894 in DSAPOSAMR-positive recipients (AMRPOS) vs DSAPOSAMR-negative recipients (AMRNEG), respectively; P = 0.630), C1q binding (5 DSAPOSAMRPOS [100%] vs 4 DSAPOSAMRNEG [80%]; P = 1.000), or C3d binding (3 DSAPOSAMRPOS [60%] vs 1 DSAPOSAMRNEG [20%]; P = 0.520) between patients who developed AMR and those who did not. However, DSAPOS patients who developed AMR (n = 5; 18.0 ± 3.6 mo post-DSA detection) had increased B cells with antibody-secreting (IgD-CD27+CD38+; P = 0.002) and memory (IgD-CD27+CD38-; P = 0.003) phenotypes compared with DSANEG and DSAPOSAMRNEG recipients at DSA detection. CONCLUSIONS Despite the small sample size, our comprehensive phenotypic analyses show that circulating B cells with memory and antibody-secreting phenotypes are present at DSA onset, >1 year before biopsy-proven AMR in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Clara Fischman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miguel Fribourg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ginevri Fabrizio
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Michela Cioni
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology & Cell Factory, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Arcangelo Nocera
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Massimo Cardillo
- Department Transplantation Immunology, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Lorenzo Gallon
- Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Astgik Petrosyan
- Division of Urology GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Stefano Da Sacco
- Division of Urology GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- Division of Urology GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
127
|
Excessive CD11c +Tbet + B cells promote aberrant T FH differentiation and affinity-based germinal center selection in lupus. Proc Natl Acad Sci U S A 2019; 116:18550-18560. [PMID: 31451659 DOI: 10.1073/pnas.1901340116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response-a process critical for antibody affinity maturation-is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+ age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ ABCs and deregulated TFH cell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ ABC differentiation, and blocking CD11c+Tbet+ ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFH cell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.
Collapse
|
128
|
Yamashita M, Kuwahara M. The critical role of Bach2 in regulating type 2 chronic airway inflammation. Int Immunol 2019. [PMID: 29529253 DOI: 10.1093/intimm/dxy020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although Bach2 (broad complex-tramtrack-bric a brac and Cap'n'collar homology 2) plays an important role in regulating Th2 cell differentiation and type 2 immune responses, the underlying molecular mechanisms remain unclear. Our current studies demonstrate that Bach2 associates with Batf (basic leucine zipper transcription factor ATF-like) family transcription factors and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the interferon regulatory factor 4 (Irf4)-containing Batf complex to activator protein 1 (AP-1) motifs in the Th2 cytokine gene locus and suppresses Th2 cytokine production and/or Th2 cell differentiation. The deletion of Batf ameliorated the spontaneous development of type 2 airway inflammation that is found in mice with Bach2 deficiency specifically in T cells. Interestingly, Bach2 regulates Batf and Batf3 expression via two distinct pathways. First, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. Second, Bach2 suppresses interleukin 4 (IL-4)-induced augmentation of Batf and Batf3 expression through the regulation of IL-4 production. These findings suggest that IL-4 and Batf family transcription factors form a positive feedback amplification loop to induce Th2 cell differentiation and that Bach2-Batf interactions block the formation of this amplification loop. Furthermore, we found that reductions in Bach2 confer an innate immunological function on CD4 T cells to induce antigen-independent cytokine production. Some Bach2-deficient lung CD4 T cells showed characteristic features similar to pathogenic Th2 cells, including IL-33 receptor expression and IL-33-dependent Th2 cytokine production. These results suggest a critical role for Bach2 in regulating Th2 cell differentiation and the subsequent onset of chronic type 2 inflammation.
Collapse
Affiliation(s)
- Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| |
Collapse
|
129
|
Yang X, Tang X, Li T, Man C, Yang X, Wang M, Zhang G, Chen Y, Yang H, Li Q. Circulating follicular T helper cells are possibly associated with low levels of serum immunoglobulin G due to impaired immunoglobulin class-switch recombination of B cells in children with primary nephrotic syndrome. Mol Immunol 2019; 114:162-170. [PMID: 31352232 DOI: 10.1016/j.molimm.2019.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/23/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Clinically, most patients with primary nephrotic syndrome (PNS) have low serum IgG levels, which is an important factor in infection and in PNS relapse.To some extent, the mechanisms involved remain largely unknown. Here, we aimed to investigate the pathogenesis of the decreased IgG levels in PNS. Peripheral blood was collected from patients with PNS and closely age- and sex-matched healthy individuals. The frequency, phenotype and molecular function of different circulating B cell and T follicular helper cell (TFH) subsets were examined by flow cytometry. The function of the CD40/CD40 L interaction in immunoglobulin class-switch recombination (CSR) was evaluated by assessing the induction of activation-induced deaminase (AID) expression with CD40 L stimulation. We revealed an increase in the levels of circulating total plasmablasts, plasma cells and mature-naive B cells and a decrease in the levels of germinal centre-like B cells and CD19+IgG+ B cells in PNS. In addition, although the expression of CD86 on the surface of B cells and the expression of the inducible costimulator (ICOS) on the surface of TFH cells both were increased, the expression of CD40 L on the surface of TFH cells was decreased. Moreover, upon stimulation with CD40 L in vitro, the mRNA expression of AID in peripheral blood mononuclear cells (PBMCs) was decreased in patients with PNS compared with that in healthy controls. Our results indicate that the immunoglobulin CSR of B cells was partly dysfunctional and provide insights into the potential involvement of impaired TFH cell-dependent B cell responses in the pathogenesis of low IgG levels through downregulating CD40 L expression on TFH cells in PNS.
Collapse
Affiliation(s)
- Xia Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Tang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Li
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Changming Man
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuejun Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China; Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong District, Chongqing, 400014, China
| | - Gaofu Zhang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China; Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong District, Chongqing, 400014, China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Haiping Yang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China; Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong District, Chongqing, 400014, China.
| | - Qiu Li
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China; Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
130
|
Vella LA, Buggert M, Manne S, Herati RS, Sayin I, Kuri-Cervantes L, Bukh Brody I, O’Boyle KC, Kaprielian H, Giles JR, Nguyen S, Muselman A, Antel JP, Bar-Or A, Johnson ME, Canaday DH, Naji A, Ganusov VV, Laufer TM, Wells AD, Dori Y, Itkin MG, Betts MR, Wherry EJ. T follicular helper cells in human efferent lymph retain lymphoid characteristics. J Clin Invest 2019; 129:3185-3200. [PMID: 31264971 PMCID: PMC6668682 DOI: 10.1172/jci125628] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.
Collapse
Affiliation(s)
- Laura A. Vella
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus Buggert
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Sasikanth Manne
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramin S. Herati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ismail Sayin
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, Ohio, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irene Bukh Brody
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaitlin C. O’Boyle
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hagop Kaprielian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Josephine R. Giles
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Son Nguyen
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander Muselman
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew E. Johnson
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, Ohio, USA
| | - Ali Naji
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Terri M. Laufer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Andrew D. Wells
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yoav Dori
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maxim G. Itkin
- Center for Lymphatic Disorders, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael R. Betts
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
131
|
Durand M, Walter T, Pirnay T, Naessens T, Gueguen P, Goudot C, Lameiras S, Chang Q, Talaei N, Ornatsky O, Vassilevskaia T, Baulande S, Amigorena S, Segura E. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J Exp Med 2019; 216:1561-1581. [PMID: 31072818 PMCID: PMC6605753 DOI: 10.1084/jem.20181994] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
CD4+ T follicular helper (Tfh) cells are essential for inducing efficient humoral responses. T helper polarization is classically orientated by dendritic cells (DCs), which are composed of several subpopulations with distinct functions. Whether human DC subsets display functional specialization for Tfh polarization remains unclear. Here we find that tonsil cDC2 and CD14+ macrophages are the best inducers of Tfh polarization. This ability is intrinsic to the cDC2 lineage but tissue dependent for macrophages. We further show that human Tfh cells comprise two effector states producing either IL-21 or CXCL13. Distinct mechanisms drive the production of Tfh effector molecules, involving IL-12p70 for IL-21 and activin A and TGFβ for CXCL13. Finally, using imaging mass cytometry, we find that tonsil CD14+ macrophages localize in situ in the B cell follicles, where they can interact with Tfh cells. Our results indicate that human lymphoid organ cDC2 and macrophages play complementary roles in the induction of Tfh responses.
Collapse
Affiliation(s)
- Mélanie Durand
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
- Université Paris Descartes, Paris, France
| | - Thomas Walter
- Mines ParisTech, Paris-Sciences-et-Lettres Research University, Center for Computational Biology, Paris, France
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U900, Paris, France
| | - Tiphène Pirnay
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
| | - Thomas Naessens
- Target and Translational Science, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paul Gueguen
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
- Université Paris Descartes, Paris, France
| | - Christel Goudot
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
| | - Sonia Lameiras
- Institut Curie, Paris-Sciences-et-Lettres Research University, Next Generation Sequencing Platform, Paris, France
| | | | | | | | | | - Sylvain Baulande
- Institut Curie, Paris-Sciences-et-Lettres Research University, Next Generation Sequencing Platform, Paris, France
| | - Sebastian Amigorena
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
| | - Elodie Segura
- Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale, U932, Paris, France
| |
Collapse
|
132
|
Dias ASO, Sacramento PM, Lopes LM, Sales MC, Castro C, Araújo ACRA, Ornelas AMM, Aguiar RS, Silva-Filho RG, Alvarenga R, Bento CAM. TLR-2 and TLR-4 agonists favor expansion of CD4 + T cell subsets implicated in the severity of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019; 34:66-76. [PMID: 31229737 DOI: 10.1016/j.msard.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND High frequency of circulating Th17 cell subsets expressing TLR2, TLR4 and TLR9 was observed in Neuromyelitis optica spectrum disorder (NMOSD) patients, a severe humoral autoimmune disease of the central nervous system. Our objective was to evaluate the direct effects of different TLR ligands on CD4+ T-cells form those patients. METHODS CD4+ T-cell cultures from NMOSD and healthy individuals were stimulated with different TLR ligands and the cell proliferation and cytokine profile was analyzed by [3H] TdR up take and ELISA/ cytometry, respectively. The plasma levels of CD14 were determined by ELISA. RESULTS Here, Pam3C (TLR2) and LPS (TLR4) induced significant cell proliferation and IL-6, IL-17 and IL-21 production by CD4+ T-cells from NMOSD. Additionally, while both TLR ligands were more potent in favoring the expansion of TFH-like cells, Pam3C reduced the frequency of IL-10-secreting FoxP3+and FoxP3- CD4+ T-cells. With regard to disease severity, the levels of IL-6, IL-17 and IL-21 produced by CD4+ T-cells, as well as the frequency of TFH-like cells, in response to TLR2 and TLR4 agonists were positively correlated with neurological disabilities and the occurrence of new acute relapses during follow up. Finally, circulating levels of CD14, an indirect marker of microbial translocation, were positively correlated with IL-6, IL-17 and IL-21 release by Pam3C- and LPS-activated CD4+ T-cells. CONCLUSIONS In summary, our data suggest that microbial antigens may affect NMOSD outcomes by favoring an imbalance between Th17 and TFH-like cells and regulatory T cell subsets.
Collapse
Affiliation(s)
- Aleida S O Dias
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila M Sacramento
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lana Márcia Lopes
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marisa C Sales
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camilla Castro
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina R A Araújo
- Departament of Neurology/ Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alice M M Ornelas
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, of Rio de Janeiro
| | - Renato S Aguiar
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, of Rio de Janeiro
| | - Renato Geraldo Silva-Filho
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Alvarenga
- Departament of Neurology/ Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology /Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Departament of Neurology/ Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
133
|
Crickx E, Poullot E, Moulis G, Goulabchand R, Fieschi C, Galicier L, Meignin V, Coppo P, Delarue R, Casasnovas O, Roos-Weil D, de Leval L, Parrens M, Michel M, Dupuis J, Le Bras F, Fataccioli V, Martin-Garcia N, Godeau B, Haïoun C, Gaulard P, Mahévas M. Clinical spectrum, evolution, and management of autoimmune cytopenias associated with angioimmunoblastic T-cell lymphoma. Eur J Haematol 2019; 103:35-42. [PMID: 30985955 DOI: 10.1111/ejh.13239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Angioimmunoblastic T-cell lymphoma (AITL) is frequently associated with autoimmune cytopenia (AIC). Whether such patients have a particular phenotype and require particular management is unclear. METHOD Angioimmunoblastic T-cell lymphoma patients from the multicentric database of the Lymphoma Study Association presenting with AIC during disease course were included and matched to AITL patients without AIC (1/5 ratio). RESULTS At diagnosis, AIC patients (n = 28) had more spleen and bone marrow involvement (54% vs 19% and 71% vs 34%, P < 0.001), Epstein-Barr virus replication (89% vs 39%, P < 0.001), gamma globulin titers (median 23 vs 15 g/L, P = 0.002), and proliferating B cells and plasmablasts in biopsies, as compared to control patients (n = 136). The 28 AIC patients had 41 episodes of AIC, diagnosed concomitantly with AITL in 23 (82%) cases. After a median follow-up of 24 months (range 3-155), 10 patients relapsed, all associated with AITL relapse. CONCLUSION Our results provide new insight into AIC associated with AITL by highlighting the significant interplay between AITL and B-cell activation leading to subsequent autoimmunity.
Collapse
Affiliation(s)
- Etienne Crickx
- Service de médecine interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est, Créteil, France.,Institut Necker Enfants Malades, INSERM U1151/CNRS UMS 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex, France
| | - Elsa Poullot
- Département de Pathologie, Hôpital Henri-Mondor (AP-HP), Créteil, France.,Faculté de Médecine, Université Paris-Est, Inserm U955, Créteil, France
| | - Guillaume Moulis
- Service de médecine Interne, CHU de Toulouse, Toulouse, France.,UMR 1027 Inserm-Université de Toulouse, Toulouse, France.,CIC 1436, CHU de Toulouse, Toulouse, France
| | - Radjiv Goulabchand
- Service de médecine interne, maladies multi-organiques, Hôpital Saint-Eloi, CHRU Montpellier, Montpellier, France
| | - Claire Fieschi
- Service d'immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lionel Galicier
- Service d'immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Véronique Meignin
- Service d'anatomopathologie, Hôpital Saint-Louis (AP-HP), Paris, France
| | - Paul Coppo
- Service d'hématologie, Centre de référence des microangiopathies thrombotiques, Hôpital Saint-Antoine (AP-HP), Sorbonne Universités, Paris, France
| | - Richard Delarue
- Service d'hématologie, Hôpital Necker (AP-HP), Paris, France
| | - Olivier Casasnovas
- Service d'hématologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Damien Roos-Weil
- Sorbonne Universités, UPMC Université Paris 06, AP-HP, GRC-11, Groupe de recherche clinique sur les hémopathies lymphoïdes (GRECHY), Hôpital Pitié-Salpétrière (APHP), Paris, France
| | - Laurence de Leval
- Institut de Pathologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Parrens
- Département de Pathologie, Hôpital Pessac, Bordeaux, France
| | - Marc Michel
- Service de médecine interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est, Créteil, France
| | - Jehan Dupuis
- Unité Hémopathies Lymphoïdes, Hôpital Henri-Mondor (AP-HP), Créteil, France
| | - Fabien Le Bras
- Unité Hémopathies Lymphoïdes, Hôpital Henri-Mondor (AP-HP), Créteil, France
| | - Virginie Fataccioli
- Département de Pathologie, Hôpital Henri-Mondor (AP-HP), Créteil, France.,Faculté de Médecine, Université Paris-Est, Inserm U955, Créteil, France
| | - Nadine Martin-Garcia
- Département de Pathologie, Hôpital Henri-Mondor (AP-HP), Créteil, France.,Faculté de Médecine, Université Paris-Est, Inserm U955, Créteil, France
| | - Bertrand Godeau
- Service de médecine interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est, Créteil, France
| | - Corinne Haïoun
- Unité Hémopathies Lymphoïdes, Hôpital Henri-Mondor (AP-HP), Créteil, France
| | - Philippe Gaulard
- Département de Pathologie, Hôpital Henri-Mondor (AP-HP), Créteil, France.,Faculté de Médecine, Université Paris-Est, Inserm U955, Créteil, France
| | - Matthieu Mahévas
- Service de médecine interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est, Créteil, France.,Institut Necker Enfants Malades, INSERM U1151/CNRS UMS 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex, France.,Unité Inserm U955, équipe 2, Hôpital Henri-Mondor, Assistance publique-hôpitaux de Paris, Créteil, France
| |
Collapse
|
134
|
Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS. Exploiting CD22 To Selectively Tolerize Autoantibody Producing B-Cells in Rheumatoid Arthritis. ACS Chem Biol 2019; 14:644-654. [PMID: 30835424 DOI: 10.1021/acschembio.8b01018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the synovial joints and can lead to bone erosion and cartilage damage. One hallmark of RA is anticitrullinated protein autoantibodies (ACPA) and memory citrulline-specific B-cells, which have been implicated in RA pathogenesis. While depletion of B-cells with Rituximab improves clinical responses in RA patients, this treatment strategy leaves patients susceptible to infections. Here we use of Siglec-engaging Tolerance-inducing Antigenic Liposomes (STALs) to selectively target the citrulline-specific B-cells. ACPA production from purified human RA patients' B-cells in vitro was achieved through a set of stimulation conditions, which includes the following: BAFF, anti-CD40, IL-21, and LPS. In vivo generation of citrulline specific B-cells and ACPA production was accomplished by antigenic liposomes consisting of monophosphoryl lipid A (MPLA) and a cyclic citrullinated peptide (CCP) administered to SJL/J mice. We show that STALs that codisplay a high affinity CD22 glycan ligand and synthetic citrullinated antigen (CCP STALs) can prevent ACPA production from RA patients' memory B-cells in vitro. These CCP STALs were also effective in inducing tolerance to citrullinated antigens in SJL/J mice. The results demonstrate that tolerization of the B-cells responsible for ACPA can be achieved by exploiting the inhibitory receptor CD22 with high-affinity glycan ligands. Such a treatment strategy could be beneficial in the treatment of RA.
Collapse
Affiliation(s)
- Kyle J. Bednar
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Corwin M. Nycholat
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tadimeti S. Rao
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Wai-Ping Fung-Leung
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - Matthew S. Macauley
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
135
|
Jiang W, Wragg KM, Tan HX, Kelly HG, Wheatley AK, Kent SJ, Juno JA. Identification of murine antigen-specific T follicular helper cells using an activation-induced marker assay. J Immunol Methods 2019; 467:48-57. [DOI: 10.1016/j.jim.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
|
136
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
137
|
Immunological abnormalities in patients with primary biliary cholangitis. Clin Sci (Lond) 2019; 133:741-760. [DOI: 10.1042/cs20181123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Primary biliary cholangitis (PBC), an autoimmune liver disease occurring predominantly in women, is characterized by high titers of serum anti-mitochondrial antibodies (AMAs) and progressive intrahepatic cholestasis. The immune system plays a critical role in PBC pathogenesis and a variety of immune cell subsets have been shown to infiltrate the portal tract areas of patients with PBC. Amongst the participating immune cells, CD4 T cells are important cytokine-producing cells that foster an inflammatory microenvironment. Specifically, these cells orchestrate activation of other immune cells, including autoreactive effector CD8 T cells that cause biliary epithelial cell (BEC) injury and B cells that produce large quantities of AMAs. Meanwhile, other immune cells, including dendritic cells (DCs), natural killer (NK) cells, NKT cells, monocytes, and macrophages are also important in PBC pathogenesis. Activation of these cells initiates and perpetuates bile duct damage in PBC patients, leading to intrahepatic cholestasis, hepatic damage, liver fibrosis, and eventually cirrhosis or even liver failure. Taken together, the body of accumulated clinical and experimental evidence has enhanced our understanding of the immunopathogenesis of PBC and suggests that immunotherapy may be a promising treatment option. Herein, we summarize current knowledge regarding immunological abnormalities of PBC patients, with emphasis on underlying pathogenic mechanisms. The differential immune response which occurs over decades of disease activity suggests that different therapies may be needed at different stages of disease.
Collapse
|
138
|
Maul J, Alterauge D, Baumjohann D. Micro
RNA
‐mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol Rev 2019; 288:97-111. [DOI: 10.1111/imr.12735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Julia Maul
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Dominik Alterauge
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Dirk Baumjohann
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| |
Collapse
|
139
|
Fonseca VR, Ribeiro F, Graca L. T follicular regulatory (Tfr) cells: Dissecting the complexity of Tfr‐cell compartments. Immunol Rev 2019; 288:112-127. [DOI: 10.1111/imr.12739] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Válter R. Fonseca
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisboa Portugal
- Centro Hospitalar Lisboa Norte – Hospital de Santa Maria Lisboa Portugal
| | - Filipa Ribeiro
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisboa Portugal
- Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de Lisboa Lisboa Portugal
- Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
140
|
Wan Z, Lin Y, Zhao Y, Qi H. T
FH
cells in bystander and cognate interactions with B cells. Immunol Rev 2019; 288:28-36. [DOI: 10.1111/imr.12747] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Zurong Wan
- Department of Basic Biomedical Sciences, School of Medicine, Laboratory of Dynamic Immunobiology, Tsinghua‐Peking Center for Life SciencesTsinghua University Beijing China
| | - Yihan Lin
- Department of Basic Biomedical Sciences, School of Medicine, Laboratory of Dynamic Immunobiology, Tsinghua‐Peking Center for Life SciencesTsinghua University Beijing China
| | - Yongshan Zhao
- Department of Basic Biomedical Sciences, School of Medicine, Laboratory of Dynamic Immunobiology, Tsinghua‐Peking Center for Life SciencesTsinghua University Beijing China
| | - Hai Qi
- Department of Basic Biomedical Sciences, School of Medicine, Laboratory of Dynamic Immunobiology, Tsinghua‐Peking Center for Life SciencesTsinghua University Beijing China
| |
Collapse
|
141
|
Higgins BW, McHeyzer-Williams LJ, McHeyzer-Williams MG. Programming Isotype-Specific Plasma Cell Function. Trends Immunol 2019; 40:345-357. [PMID: 30846256 DOI: 10.1016/j.it.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023]
Abstract
Helper T cell induced plasma cells (PCs) that secrete class-switched neutralizing antibody are paramount to effective immunity. Following class-switch recombination (CSR), antigen-activated B cells differentiate into extrafollicular PCs or mature in germinal centers (GCs) to produce high-affinity memory B cells and follicular PCs. Many studies focus on the core transcriptional programs that drive central PC functions of longevity and antibody secretion. However, it is becoming clear that these central programs are further subdivided across antibody isotype with separable transcriptional trajectories. Divergent functions emerge at CSR, persist through PC terminal differentiation and further assort memory PC function following antigen recall. Here, we emphasize recent work that assorts divergent isotype-specific PC function across four major modules of immune protection.
Collapse
Affiliation(s)
- Brett W Higgins
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA 92037, USA
| | - Louise J McHeyzer-Williams
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA 92037, USA. https://twitter.com/mmw_lmw
| | | |
Collapse
|
142
|
Lahmann A, Kuhrau J, Fuhrmann F, Heinrich F, Bauer L, Durek P, Mashreghi MF, Hutloff A. Bach2 Controls T Follicular Helper Cells by Direct Repression of Bcl-6. THE JOURNAL OF IMMUNOLOGY 2019; 202:2229-2239. [DOI: 10.4049/jimmunol.1801400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
|
143
|
Pivotal role for α V integrins in sustained Tfh support of the germinal center response for long-lived plasma cell generation. Proc Natl Acad Sci U S A 2019; 116:4462-4470. [PMID: 30770452 DOI: 10.1073/pnas.1809329116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CD4+ follicular helper T cells (Tfh) are essential for germinal center (GC) reactions in the lymph node that generate high-affinity, long-lived plasma cells (LLPCs). Temporal GC analysis suggests B memory cells (Bmem) are generated early, while LLPCs are generated late in the GC reaction. Distinct roles for Tfh at these temporally different stages are not yet clear. Tfh entry into the GC is highly dynamic and the signals that maintain Tfh within the GC for support of late LLPC production are poorly understood. The GC is marked by inflammation-induced presentation of specific ECM components. To determine if T cell recognition of these ECM components played a role in Tfh support of the GC, we immunized mice with a T cell-restricted deletion of the ECM-binding integrin αV (αV-CD4 cKO). T cell integrin αV deletion led to a striking defect in the number and size of the GCs following immunization with OVA protein in complete Freund's adjuvant. The GC defect was not due to integrin αV deficiency impeding Tfh generation or follicle entry or the ability of αV-CD4 cKO Tfh to contact and support B cell activation. Instead, integrin αV was essential for T cell-intrinsic accumulation within the GC. Altered Tfh positioning resulted in lower-affinity antibodies and a dramatic loss of LLPCs. Influenza A infection revealed that αV integrin was not required for Tfh support of Bmem but was essential for Tfh support of LLPCs. We highlight an αV integrin-ECM-guided mechanism of Tfh GC accumulation that selectively impacts GC output of LLPCs but not Bmem.
Collapse
|
144
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
145
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
146
|
Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney Int 2019; 95:774-786. [PMID: 30711200 DOI: 10.1016/j.kint.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There is an urgent need for therapeutic agents that target humoral alloimmunity in solid organ transplantation. This includes sensitized patients with preformed donor-specific human leukocyte antigen antibodies and patients who develop de novo donor-specific antibodies, both of which are associated with acute and chronic antibody-mediated rejection and allograft loss. In the last decade, both experimental and clinical studies highlighted the major impact of costimulation molecules in the control of immune responses both in the field of transplantation and autoimmune disease. Although these molecules have been initially developed to control the early steps of T-cell activation, recent evidence also supports their influence at several steps of the humoral response. In this review, we aim to provide an overview of the current knowledge of the effects of costimulatory blockade agents on humoral responses in both autoimmune and allogeneic contexts. We first present the effects of costimulatory molecules on the different steps of alloantibody production. We then summarize mechanisms and clinical results observed using cytotoxic T lymphocyte antigen-4 (CTLA4)-Ig molecules both in transplantation and autoimmunity. Finally, we present the potential interest and implications of other costimulatory family members as therapeutic targets, with emphasis on combinatorial approaches, for the optimal control of the alloantigen-specific humoral response.
Collapse
Affiliation(s)
- Claire Leibler
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allan Thiolat
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Rebecca A Elsner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khalil El Karoui
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Chloe Samson
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Philippe Grimbert
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France.
| |
Collapse
|
147
|
Monteiro C, Fernandes G, Kasahara TM, Barros PO, Dias ASO, Araújo ACRA, Ornelas AMM, Aguiar RS, Alvarenga R, Bento CAM. The expansion of circulating IL-6 and IL-17-secreting follicular helper T cells is associated with neurological disabilities in neuromyelitis optica spectrum disorders. J Neuroimmunol 2019; 330:12-18. [PMID: 30769212 DOI: 10.1016/j.jneuroim.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 11/19/2022]
Abstract
Due to their function in assisting B cells, TFH cells may be involved in the production of pathogenic IgG in neuromyelitis optica spectrum disorder (NMOSD). In the present study, the proportion of IL-6+ and IL-17+ TFH cell subsets was higher in NMOSD patients than healthy individuals. The frequency of both TFH cell subsets were directly associated with disease activity. By contrast, NMOSD patients with a higher proportion of IL-10+ TFH cell subsets showed a lower neurological disabilities score. In summary, all findings suggest that expansion of peripheral IL-6+ and IL-17+ TFH cells may be involved in the severity of NMOSD.
Collapse
Affiliation(s)
- Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila O Barros
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Alice M M Ornelas
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Regina Alvarenga
- Departament of Neurology, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Departament of Neurology, Federal University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
148
|
Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Front Immunol 2019; 9:3079. [PMID: 30666254 PMCID: PMC6330320 DOI: 10.3389/fimmu.2018.03079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses.
Collapse
Affiliation(s)
- Silvia Preite
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L Cannons
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
149
|
Rudqvist NP, Galluzzi L. T Cells: Friends and Foes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:xi-xiv. [DOI: 10.1016/s1937-6448(19)30009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
150
|
Liping H, Aibaidula Y, Abudukeyoumu N, Yuexin Z. Epidemiological characteristics and clinical analysis of 97 AIDS patients. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219857989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study is to analyze clinical features of 97 AIDS patients received and treated in our hospital. Clinical data of 97 HIV-infected patients who were admitted between September 2004 and September 2018 were analyzed retrospectively. We found that all patients were in AIDS stage, CD4+ T lymphocytes counts were (210.56 ± 79.31)/µL. After the highly active antiretroviral therapy (HAART) regimens, CD4+ cell number is 315.21 ± 187.90, most patients before clinical symptoms are significantly improved. HIV infections were mainly through intravenous drug injection (51 cases, 52.58%) and sex contact (29 cases, 29.90%). In conclusion, the clinical manifestations of AIDS patients are various, and the main infection route is intravenous drug injection. Multiple measures should be taken to prevent and control HIV transmission, patients should undergo effective antiviral treatment, monitor and follow-up, so as to control opportunistic infection and virus replication.
Collapse
Affiliation(s)
- Hu Liping
- Department of Infection, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Yibaguli Aibaidula
- Department of Infection, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Nulibiya Abudukeyoumu
- Department of Infection, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Zhang Yuexin
- Department of Infection, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| |
Collapse
|