101
|
Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today 2023; 28:103517. [PMID: 36736763 DOI: 10.1016/j.drudis.2023.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
T helper 17 cells are thought to significantly contribute to the neuroinflammation process during neurogenerative diseases via their signature cytokine, interleukin (IL)-17. Recently, an emerging key role of IL-17 and its receptors has been documented in inflammatory and autoimmune diseases. The clinical studies conducted on patients with neurodegenerative disease have also shown an increase in IL-17 levels in serum as well as cerebrospinal fluid samples. Therapeutic targeting of either IL-17 receptors or direct IL-17 neutralizing antibodies has shown a promising preclinical and clinical proof of concept for treating chronic autoimmune neurodegenerative diseases such as multiple sclerosis. Thus, IL-17 and its receptors have a central role in regulation of neuroinflammation and can be considered as one of the major therapeutic targets in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
102
|
Terui H, Asano Y. Biologics for Reducing Cardiovascular Risk in Psoriasis Patients. J Clin Med 2023; 12:jcm12031162. [PMID: 36769825 PMCID: PMC9918118 DOI: 10.3390/jcm12031162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with a high prevalence of cardiovascular disease (CVD), obesity, dyslipidemia, hypertension, diabetes mellitus, and metabolic syndrome. Among them, CVD is the most common cause of morbidity and mortality in psoriasis patients. Since CVD is associated with considerable morbidity and mortality, primary care clinicians are increasingly committed to reducing the risk of CVD in patients with psoriasis. Biologics targeting TNF-α, IL-12/23, and IL-17 are systemic therapies that can dramatically improve the condition of psoriasis. Recent studies have reported that these inflammatory cytokine signals may promote atherosclerosis, suggesting that biologics might be effective for improving psoriasis as well as reducing the risk of CVD. Here, we reviewed cardiovascular risk in psoriasis patients, the association between psoriatic inflammation and atherosclerosis, and the efficacy of biologics for reducing the risk of cardiovascular diseases.
Collapse
|
103
|
Zhang B, Roesner LM, Traidl S, Koeken VACM, Xu CJ, Werfel T, Li Y. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 2023; 78:439-453. [PMID: 35986602 DOI: 10.1111/all.15486] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Werfel
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
104
|
The Protective Role of Interleukin 17A in Acinetobacter baumannii Pneumonia Is Associated with Candida albicans in the Airway. Infect Immun 2023; 91:e0037822. [PMID: 36602381 PMCID: PMC9872622 DOI: 10.1128/iai.00378-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.
Collapse
|
105
|
Chasovskikh NY, Chizhik EE. Bioinformatic analysis of biological pathways in coronary heart disease and Alzheimer’s disease. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-193-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. Using bioinformatic tools, to perform a pathway enrichment analysis in Alzheimer’s disease and coronary heart disease (CHD).Materials and methods. Genes contributing to susceptibility to CHD and Alzheimer’s disease were obtained from the public database DisGeNET (Database of Gene – Disease Associations). A pathway enrichment analysis was performed in the ClueGO Cytoscape plug-in (version 3.6.0) using hypergeometric distribution and the KEGG and Reactome databases.Results. The identified genes contributing to susceptibility to Alzheimer’s disease and CHD are included in 69 common signaling pathways, grouped into the following subgroups: cell death signaling pathways (1); signaling pathways regulating immune responses (2); signaling pathways responsible for fatty acid metabolism (3); signaling pathways involved in the functioning of the nervous system (4), cardiovascular system (5), and endocrine system (6).Conclusion. Following the performed analysis, we identified possible associations between processes involving genetic factors and their products in CHD and Alzheimer’s disease. In particular, we assumed that susceptibility genes involved in the implementation of these pathways regulate apoptosis, production of inflammatory cytokines and chemokines, lipid metabolism, β-amyloid formation, and angiogenesis.
Collapse
|
106
|
Antioxidant and Anti-Inflammatory Effects of 6,3',4´- and 7,3´,4´-Trihydroxyflavone on 2D and 3D RAW264.7 Models. Antioxidants (Basel) 2023; 12:antiox12010204. [PMID: 36671068 PMCID: PMC9855077 DOI: 10.3390/antiox12010204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Dietary flavones 6,3´,4´-trihydroxyflavone (6,3´,4´-HOFL) and 7,3´,4´-trihydroxyflavone (7,3´,4´-HOFL) showed preliminary antioxidant and anti-inflammatory activities in a two-dimensional (2D) cell culture model. However, their action mechanisms remain unclear, and the anti-inflammatory activities have not been studied in a reliable three-dimensional (3D) cell model. Therefore, in the current study, the antioxidant potency was examined by their scavenging ability of cellular reactive oxygen species. Anti-inflammatory activities were examined via their inhibitory effects on inflammatory mediators in vitro on 2D and 3D macrophage models, and their mechanisms were determined through transcriptome. In the 3D macrophages, two flavones were less bioactive than they were in 2D macrophages, but they both significantly suppressed the overexpression of proinflammatory mediators in two cell models. The divergent position of the hydroxyl group on the A ring resulted in activity differences. Compared to 6,3´,4´-HOFL, 7,3´,4´-HOFL showed lower activity on NO, IL-1β suppression, and c-Src binding (IC50: 12.0 and 20.9 µM) but higher ROS-scavenging capacity (IC50: 3.20 and 2.71 µM) and less cytotoxicity. In addition to the IL-17 and TNF pathways of 6,3´,4´-HOFL, 7,3´,4´-HOFL also exerted anti-inflammatory activity through JAK-STAT, as indicated by the RNA-sequencing results. Two flavones showed prominent antioxidant and anti-inflammatory activities on 2D and 3D models.
Collapse
|
107
|
Kang JH, Park S, Rho J, Hong EJ, Cho YE, Won YS, Kwon HJ. IL-17A promotes Helicobacter pylori-induced gastric carcinogenesis via interactions with IL-17RC. Gastric Cancer 2023; 26:82-94. [PMID: 36125689 PMCID: PMC9813207 DOI: 10.1007/s10120-022-01342-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.
Collapse
Affiliation(s)
- Jee Hyun Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
108
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
109
|
Li YH, Ren QQ, Wang JP, Wang XP, Luoreng ZM, Ma Y, Wei DW. RNA-seq reveals the role of miR-199a-3p in regulating inflammation of bovine mammary epithelial cells. Res Vet Sci 2022; 153:57-60. [PMID: 36308792 DOI: 10.1016/j.rvsc.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are involved in the regulation of a variety of biological processes. However, the research on the regulatory role of bovine mammary epithelial cells (bMECs) is scarce. To date, there are no reports about the role of miR-199a-3p in bMECs. In this study, RNA sequencing (RNA-seq) technology was used to detect the transcriptomes of the miR-199a-3p overexpression and negative control (NC) groups of bMECs. Then, the screening and functional annotation of differentially expressed genes (DEGs) were conducted. The results showed that there were 140 DEGs (109 up-regulated and 31 down-regulated) in the miR-199a-3p overexpression group. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the DEGs might regulate the immune and inflammatory responses via the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, transforming growth factor-beta (TGF-β) signaling pathway, and interleukin-17 (IL-17) signaling pathway, which revealed that miR-199a-3p might participate in regulating bMECs inflammation via affecting the expression of related genes and the above signaling pathways. This study may provide a new reference for potential therapeutic targets of cow mastitis.
Collapse
Affiliation(s)
- Yu-Hang Li
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qian-Qian Ren
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
110
|
Darmochwal-Kolarz D, Chara A. The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:768. [PMID: 36613090 PMCID: PMC9819392 DOI: 10.3390/ijerph20010768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The aim of the study was to assess the role of concentrations of interleukin-17 (IL-17), placental growth factor (PlGF) and soluble endoglin (sENG), as well as the PlGF/sENG ratio in pregnancy complicated by pre-eclampsia (PE) and normal pregnancy. The concentrations of IL-17, PlGF and sENG were measured with the use of immunoenzymatic methods. The concentrations of IL-17 were significantly higher in PE patients when compared to control patients. In the group of patients with PE, the levels of IL-17 positively correlated with systolic blood pressure. On the other hand, IL-17 negatively correlated with neonatal birth weight. The concentrations of PLGF were significantly lower and sENG significantly higher in studied patients when compared to controls. The PlGF/sENG ratio in the PE group was significantly lower when compared to healthy third trimester pregnant patients. In the study group, negative correlations were observed between the sENG concentrations and thrombocyte levels. The higher concentrations of IL-17 in PE could suggest its role as an inflammatory agent in the pathogenesis of the syndrome. Moreover, the negative correlation between IL-17 and a neonatal birth weight could suggest the role of the cytokine in the development of fetal growth restriction (FGR) associated with PE. It seems possible that IL-17 can be a useful marker of the risk of FGR in pregnancy complicated by PE. Furthermore, the results suggested the potential role of sENG and the PlGF/sENG ratio in the prediction of adverse outcomes such as HELLP syndrome and DIC.
Collapse
Affiliation(s)
| | - Anita Chara
- Department of Obstetrics and Gynaecology, 27-600 Sandomierz, Poland
| |
Collapse
|
111
|
Xiao G, Kumar R, Komuro Y, Burguet J, Kakarla V, Azizkhanian I, Sheth SA, Williams CK, Zhang XR, Macknicki M, Brumm A, Kawaguchi R, Mai P, Kaneko N, Vinters HV, Carmichael ST, Havton LA, DeCarli C, Hinman JD. IL-17/CXCL5 signaling within the oligovascular niche mediates human and mouse white matter injury. Cell Rep 2022; 41:111848. [PMID: 36543124 PMCID: PMC10026849 DOI: 10.1016/j.celrep.2022.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease and brain white matter injury are worsened by cardiovascular risk factors including obesity. Molecular pathways in cerebral endothelial cells activated by chronic cerebrovascular risk factors alter cell-cell signaling, blocking endogenous and post-ischemic white matter repair. Using cell-specific translating ribosome affinity purification (RiboTag) in white matter endothelia and oligodendrocyte progenitor cells (OPCs), we identify a coordinated interleukin-chemokine signaling cascade within the oligovascular niche of subcortical white matter that is triggered by diet-induced obesity (DIO). DIO induces interleukin-17B (IL-17B) signaling that acts on the cerebral endothelia through IL-17Rb to increase both circulating and local endothelial expression of CXCL5. In white matter endothelia, CXCL5 promotes the association of OPCs with the vasculature and triggers OPC gene expression programs regulating cell migration through chemokine signaling. Targeted blockade of IL-17B reduced vessel-associated OPCs by reducing endothelial CXCL5 expression. In multiple human cohorts, blood levels of CXCL5 function as a diagnostic and prognostic biomarker of vascular cognitive impairment.
Collapse
Affiliation(s)
- Guanxi Xiao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosie Kumar
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Visesha Kakarla
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ida Azizkhanian
- New York Medical College, School of Medicine, Valhalla, NY, USA
| | - Sunil A Sheth
- Department of Neurology, UT Health McGovern School of Medicine, Houston, TX, USA
| | - Christopher K Williams
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinhai R Zhang
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michal Macknicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew Brumm
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phu Mai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
112
|
Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, Paroli MP. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens 2022; 11:pathogens11121547. [PMID: 36558881 PMCID: PMC9781511 DOI: 10.3390/pathogens11121547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
T-helper 17 (Th17) cells represent a subpopulation of CD4+ T lymphocytes that play an essential role in defense against pathogens. Th17 cells are distinguished from Th1 and Th2 cells by their ability to produce members of the interleukin-17 (IL-17) family, namely IL-17A and IL-17F. IL-17 in turn induces several target cells to synthesize and release cytokines, chemokines, and metalloproteinases, thereby amplifying the inflammatory cascade. Th17 cells reside predominantly in the lamina propria of the mucosa. Their main physiological function is to maintain the integrity of the mucosal barrier against the aggression of infectious agents. However, in an appropriate inflammatory microenvironment, Th17 cells can transform into immunopathogenic cells, giving rise to inflammatory and autoimmune diseases. This review aims to analyze the complex mechanisms through which the interaction between Th17 and pathogens can be on the one hand favorable to the host by protecting it from infectious agents, and on the other hand harmful, potentially generating autoimmune reactions and tissue damage.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Stefano Gumina
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Vittorio Candela
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
113
|
Kim IS, Lee SG, Shin SG, Jeong H, Sohn KM, Park KS, Silwal P, Cheon S, Kim J, Kym S, Kim YS, Jo EK, Park C. Dysregulated thrombospondin 1 and miRNA-29a-3p in severe COVID-19. Sci Rep 2022; 12:21227. [PMID: 36481664 PMCID: PMC9732043 DOI: 10.1038/s41598-022-23533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Although nearly a fifth of symptomatic COVID-19 patients suffers from severe pulmonary inflammation, the mechanism of developing severe illness is not yet fully understood. To identify significantly altered genes in severe COVID-19, we generated messenger RNA and micro-RNA profiling data of peripheral blood mononuclear cells (PBMCs) from five COVID-19 patients (2 severe and 3 mild patients) and three healthy controls (HC). For further evaluation, two publicly available RNA-Seq datasets (GSE157103 and GSE152418) and one single-cell RNA-Seq dataset (GSE174072) were employed. Based on RNA-Seq datasets, thrombospondin 1 (THBS1) and interleukin-17 receptor A (IL17RA) were significantly upregulated in severe COVID-19 patients' blood. From single-cell RNA-sequencing data, IL17RA level is increased in monocytes and neutrophils, whereas THBS1 level is mainly increased in the platelets. Moreover, we identified three differentially expressed microRNAs in severe COVID-19 using micro-RNA sequencings. Intriguingly, hsa-miR-29a-3p significantly downregulated in severe COVID-19 was predicted to bind the 3'-untranslated regions of both IL17RA and THBS1 mRNAs. Further validation analysis of our cohort (8 HC, 7 severe and 8 mild patients) showed that THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was downregulated, in PBMCs from severe patients. These findings strongly suggest that dysregulated expression of THBS1, IL17RA, and hsa-miR-29a-3p involves severe COVID-19.
Collapse
Affiliation(s)
- In Soo Kim
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sung-Gwon Lee
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Seul Gi Shin
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyeongseok Jeong
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung Mok Sohn
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki-Sun Park
- grid.418980.c0000 0000 8749 5149KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Prashanta Silwal
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinhye Cheon
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jungok Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sungmin Kym
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yeon-Sook Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chungoo Park
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
114
|
Huang IH, Chung WH, Wu PC, Chen CB. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front Immunol 2022; 13:1068260. [PMID: 36569854 PMCID: PMC9773077 DOI: 10.3389/fimmu.2022.1068260] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory, pruritic form of dermatosis with heterogeneous manifestations that can substantially affect patients' quality of life. AD has a complex pathogenesis, making treatment challenging for dermatologists. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a central role in modulating multiple immune axes involved in the immunopathogenesis of AD. In particular, Th2 cytokines, including interleukin (IL)-4, IL-5, IL-13, IL-31, and thymic stromal lymphopoietin, which contribute to the symptoms of chronic inflammation and pruritus in AD, are mediated by JAK-STAT signal transduction. Furthermore, JAK-STAT is involved in the regulation of the epidermal barrier and the modulation of peripheral nerves related to the transduction of pruritus. Targeting the JAK-STAT pathway may attenuate these signals and show clinical efficacy through the suppression of various immune pathways associated with AD. Topical and oral JAK inhibitors with variable selectivity have emerged as promising therapeutic options for AD. Notably, topical ruxolitinib, oral upadacitinib, and oral abrocitinib were approved by the U.S. Food and Drug Administration for treating patients with AD. Accordingly, the present study reviewed the role of JAK-STAT pathways in the pathogenesis of AD and explored updated applications of JAK inhibitors in treating AD.
Collapse
Affiliation(s)
- I-Hsin Huang
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hung Chung
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China,Xiamen Chang Gung Allergology Consortium, Xiamen, Xiamen Chang Gung Hospital, Xiamen, China,College of Medicine, Chang Gung University, Taoyuan, Taiwan,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Chien Wu
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China,Xiamen Chang Gung Allergology Consortium, Xiamen, Xiamen Chang Gung Hospital, Xiamen, China,College of Medicine, Chang Gung University, Taoyuan, Taiwan,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,*Correspondence: Chun-Bing Chen,
| |
Collapse
|
115
|
Sen R, Caplan L. Current treatment and molecular targets for axial spondyloarthritis: Evidence from randomized controlled trials. Curr Opin Pharmacol 2022; 67:102307. [PMID: 36335714 DOI: 10.1016/j.coph.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that predominantly affects the axial skeleton and is characterized by inflammatory back pain. While much has been published regarding non-steroidal anti-inflammatory drugs and tumor necrosis factor inhibitors, other classes of medications which leverage alternate molecular mechanisms receive less attention. In this review, we summarize a few of the novel targets in axSpA, review the putative mechanism of action of therapies that focus on these targets, and reference the germane recently completed, ongoing, or proposed randomized controlled clinical trials. The agents addressed include inhibitors of interleukin-23, interleukin-17, janus kinases, granulocyte-macrophage colony-stimulating factor, macrophage migration inhibitory factor, antibodies recognizing T cell receptor beta variable 9 gene positive clones, as well as inhibitors of mitogen-activated protein kinase-activated protein kinase-2.
Collapse
Affiliation(s)
- Rouhin Sen
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | - Liron Caplan
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
116
|
Zhao L, Huang J, Wu S, Li Y, Pan Y. Integrative analysis of miRNA and mRNA expression associated with the immune response in the intestine of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:54-66. [PMID: 36174908 DOI: 10.1016/j.fsi.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss), an economically important cold-water fish cultured worldwide, suffers from infectious hematopoietic necrosis virus (IHNV) infection, resulting in huge financial losses. In order to understand the immune response of rainbow trout during virus infection, we explored trout intestine transcriptome profiles following IHNV challenge, and identified 3355 differentially expressed genes (DEGs) and 80 differentially expressed miRNAs (DEMs). Transcriptome analysis revealed numerous DEGs involved in immune responses, such as toll-like receptor 3 (TLR3), toll-like receptor 7/8 (TLR7/8), tripartite motif-containing 25 (TRIM25), DExH-Box helicase 58 (DHX58), interferon-induced with helicase C domain 1 (IFIH1), interferon regulatory factor 3 (IRF3/7), signal transducer and activator of transcription 1 (STAT1) and heat shock protein 90-alpha 1 (HSP90A1). Integrated analysis identified five key miRNAs (miR-19-y, miR-181-z, miR-203-y, miR-143-z and miR-206-y) targeting at least two important immune genes (TRIM25, DHX58, STAT1, TLR7/8 and HSP90A1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs and target genes were significantly enriched in various immune-related terms including immune system process, binding, cell part and pathways of Toll-like receptor signalling, RIG-I-like receptor signalling, NOD-like receptor signalling, JAK-STAT signalling, PI3K-Akt signalling, NF-kappa B signalling, IL-17 signalling and AGE-RAGE signalling. In addition, protein-protein interaction networks (PPI) was used to display highly interactive DEG networks involving eight immune-related pathways. The expression trends of 12 DEGs and 10 DEMs were further verified by quantitative real-time PCR, which confirmed the reliability of the transcriptome sequencing results. This study expands our understanding of the immune response of rainbow trout infected with IHNV, and provides valuable resources for future studies on the immune molecular mechanism and disease resistance breeding.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yucai Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
117
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
118
|
Boudreaux BW, Pincelli TP, Bhullar PK, Patel MH, Brumfiel CM, Li X, Heckman MG, Pittelkow MR, Mangold AR, Sluzevich JC. Secukinumab for the treatment of adult-onset pityriasis rubra pilaris: a single-arm clinical trial with transcriptomic analysis. Br J Dermatol 2022; 187:650-658. [PMID: 35701384 DOI: 10.1111/bjd.21708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathogenesis of pityriasis rubra pilaris (PRP) is not completely understood, but interleukin (IL)-17 has been shown to play a critical role. There are no reliable immunomodulatory agents to treat PRP. We conducted an open-label, single-arm clinical trial of secukinumab, a monoclonal antibody that inhibits IL-17A, for the treatment of PRP. OBJECTIVES To evaluate the clinical efficacy of secukinumab and define the transcriptomic landscape of PRP and its response to IL-17A blockade. METHODS Twelve patients with PRP were recruited for an open-label trial of secukinumab. Patients received a 24-week course of secukinumab. The primary endpoint was a ≥ 75% reduction in Psoriasis Area and Severity Index (PASI 75) from baseline to week 28. Secondary endpoints included PASI 90, change in Physician's Global Assessment (PGA), and change in Dermatology Life Quality Index (DLQI). RNA sequencing was performed on lesional and nonlesional skin biopsies obtained at baseline and week 2. Sample groups were compared to identify differential gene expression and pathway enrichment. This trial was registered with ClinicalTrials.gov: 'Cosentyx (secukinumab) for the treatment of adult onset pityriasis rubra pilaris' - NCT03342573. RESULTS At week 28, six of 11 patients (55%) achieved PASI 75, and three patients (27%) achieved PASI 90. PGA (P = 0.008) and DLQI scores (P = 0.010) showed significant improvement with treatment. No serious treatment-related adverse events were encountered. Treatment with secukinumab normalized transcriptional differences between lesional and nonlesional skin. Transcriptomic data from nonresponsive patients suggest that overactivity of innate immune pathways may be driving resistance to secukinumab. CONCLUSIONS Secukinumab appears to be an effective treatment for PRP and warrants further investigation. PRP is a transcriptionally heterogeneous disease, reflecting its variable response to therapy. Agents targeting other IL-17 isoforms and innate immune mediators should be considered for future clinical trials. What is already known about this topic? The pathogenesis of pityriasis rubra pilaris is incompletely understood. Successful treatment has been reported with a variety of immunomodulatory agents, but disease is often refractory to therapy. Interleukin (IL)-17 is thought to drive keratinocyte proliferation and vascular dysfunction in this disease. A previous trial demonstrated efficacy of the anti-IL-17A drug ixekizumab for pityriasis rubra pilaris. What does this study add? Herein we describe the findings of a clinical trial of secukinumab, an anti-IL-17A monoclonal antibody, for the treatment of pityriasis rubra pilaris. Secukinumab was effective in treating pityriasis rubra pilaris. Our transcriptomic data give new insight into the expressional changes that occur in response to secukinumab and suggest mechanisms of treatment resistance.
Collapse
Affiliation(s)
| | | | - Puneet K Bhullar
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Meera H Patel
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Xing Li
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Mark R Pittelkow
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Aaron R Mangold
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | |
Collapse
|
119
|
Zhang B, Dömling A. Small molecule modulators of IL-17A/IL-17RA: a patent review (2013-2021). Expert Opin Ther Pat 2022; 32:1161-1173. [PMID: 36350977 DOI: 10.1080/13543776.2022.2143264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Interleukin-17A (IL-17A) is a well-established pro-inflammatory cytokine, which plays a pivotal role in immune and autoimmune diseases including psoriasis, asthma, psoriatic arthritis, and rheumatoid arthritis. Three currently approved monoclonal antibodies (mAbs) are in clinical practice for the treatment of multiple immune diseases. However, the disadvantages of the mAbs, such as non-oral administration, poor tissue penetration, lacking blood-brain barrier penetration, often long half-life times, narrow its application. Thus, intensive research is performed to discover potent small molecules, peptides, and macrocycles targeting the IL-17A/IL-17 RA protein-protein interaction (PPI) to modulate immune responses as an attractive approach for immunotherapy. AREAS COVERED Small molecules, macrocycles, and peptides targeting IL-17A/IL-17RA PPI from 2013 to 2021. EXPERT OPINION The rapid increase in the identification of small-molecule inhibitors of IL-17 should translate into a supplement of current biotherapeutics with mAbs. Potential advantages of small molecules over mAbs show room for clinical treatment improvement and new indication areas . An increasing number of patents and articles are recently published on small-molecule immunomodulators (SMIMs). Two compounds from Lilly and Leo Pharma are currently investigated in early clinical trials, followed by a Dice molecule. The outcome of these trials will influence future development of IL-17 inhibitors for treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Bidong Zhang
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Innovative Chemistry, CATRIN, Palackӯ University, Olomouc, Czech Republic
| |
Collapse
|
120
|
Paroli M, Spadea L, Caccavale R, Spadea L, Paroli MP, Nante N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1552. [PMID: 36363508 PMCID: PMC9696590 DOI: 10.3390/medicina58111552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 04/12/2024]
Abstract
Background and Objectives: Interleukin-17 (IL-17) is a cytokine family consisting of six members and five specific receptors. IL-17A was the first member to be identified in 1993. Since then, several studies have elucidated that IL-17 has predominantly pro-inflammatory activity and that its production is involved in both the defense against pathogens and the genesis of autoimmune processes. Materials and Methods: In this review, we provide an overview of the role of interleukin-17 in the pathogenesis of juvenile idiopathic arthritis (JIA) and its relationship with IL-23, the so-called IL-23-IL-17 axis, by reporting updated findings from the scientific literature. Results: Strong evidence supports the role of interleukin-17A in the pathogenesis of JIA after the deregulated production of this interleukin by both T helper 17 (Th17) cells and cells of innate immunity. The blocking of IL-17A was found to improve the course of JIA, leading to the approval of the use of the human anti-IL17A monoclonal antibody secukinumab in the treatment of the JIA subtypes juvenile psoriatic arthritis (JPsA) and enthesitis-related arthritis (ERA). Conclusions: IL-17A plays a central role in the pathogenesis of JIA. Blocking its production with specific biologic drugs enables the effective treatment of this disabling childhood rheumatic disease.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Leopoldo Spadea
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Nante
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
121
|
lncRNA IL-17RA-1 Attenuates LPS-Induced Sepsis via miR-7847-3p/PRKCG-Mediated MAPK Signaling Pathway. Mediators Inflamm 2022; 2022:9923204. [PMID: 36274974 PMCID: PMC9584741 DOI: 10.1155/2022/9923204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis represents a syndrome of systemic inflammatory response, which is mostly a result of infection with various pathogenic microorganisms, characterized by an uncontrolled infection response of the organism leading to life-threatening organ dysfunction. Long noncoding RNA (lncRNA), as competing endogenous RNA, can affect the binding of microRNA (miRNA) to mRNA, thus influencing the development of sepsis. In this study, based on transcriptome data from GEO database, we screened differentially expressed lncRNAs and constructed lncRNA-miRNA-mRNA network. And pathway IL-17RA-1/miR-7847-3p/protein kinase C gamma (PRKCG) coexpression network was successfully sorted out. The effect of this network on LPS-induced sepsis model in THP-1 cells was also verified by CCK-8, scratch, ELISA, Western blot, and qRT-PCR assays. Corresponding binding sites of miR-7847-3p to IL-17RA-1 and miR-7847-3p to PRKCG were verified using dual luciferase gene reporter assays, respectively. Compared with control, si-IL-17RA-1 significantly inhibited the cell viability and migration ability of THP-1, and levels of proinflammatory factors IL-6, IL-1β, and TNF-α secreted were markedly decreased, and the expression of IL-17RA-1, PRKCG, p-MEKK1, and p-JNK were markedly reduced. In addition, IL-17RA-1 could target binding to miR-7847-3p and inhibit its expression, and miR-7847-3p could also bind to PRKCG. Our experiments demonstrate that IL17-RA-1 attenuates the sepsis response through the miR-7847-3p/MAPK pathway, and this competing endogenous RNA (ceRNA) network may be a potential approach to predict and combat sepsis.
Collapse
|
122
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
123
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
124
|
Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in Rheumatic Disease: Therapeutics Help to Elucidate Disease Mechanisms. Curr Rheumatol Rep 2022; 24:310-320. [PMID: 35861937 PMCID: PMC9470681 DOI: 10.1007/s11926-022-01084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis and ankylosing spondylitis belong to a family of rheumatological diseases that lead to painful joint inflammation that impacts on patient function and quality of life. Recent studies have shown that the pro-inflammatory cytokine IL-17 is involved in the inflammatory joint changes in spondyloarthritides. We will review the pathophysiology of IL-17 and review the biological therapies targeting IL-17. RECENT FINDINGS IL-17 is produced and released from T cells and is dependent on multiple upstream cytokines, which include IL-23. There are six members of the IL-17 family that are secreted from multiple populations of T cells. The initial biologic medications have been developed against IL-17A, which is the best-studied member of this family. These medications appear to be effective in controlling joint inflammation, improving patient quality of life, and are generally well tolerated. More recently, medications have been developed that target both IL-17A and IL-17F. In addition, brodalumab, an antibody targeting the IL-17 receptor, has had a resurgence after initial concerns for an increased risk of suicide. IL-17 is an inflammatory cytokine that is critical in the pathobiology of axial spondyloarthritides. Recent biological therapies targeting IL-17A are effective and well tolerated in patients with axial spondyloarthritis. Specific targeting of the Il-17A/F heterodimer is also effective and provides another viable option in the clinician's armamentarium.
Collapse
Affiliation(s)
| | - Philip C. Robinson
- The University of Queensland, Herston, QLD 4006 Australia
- Department of Rheumatology, Royal Brisbane & Women’s Hospital, Herston, QLD Australia
| | - Peter Nash
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
125
|
Structural basis of interleukin-17B receptor in complex with a neutralizing antibody for guiding humanization and affinity maturation. Cell Rep 2022; 41:111555. [DOI: 10.1016/j.celrep.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/22/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
|
126
|
Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X, Lin W. E3
ubiquitin ligase
NEDD4L
negatively regulates inflammation by promoting ubiquitination of
MEKK2. EMBO Rep 2022; 23:e54603. [PMID: 36161689 PMCID: PMC9638856 DOI: 10.15252/embr.202254603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF‐α), interleukin‐1 (IL‐1), and interleukin‐17 (IL‐17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down‐regulated gene 4‐like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF‐α, IL‐1, and IL‐17. NEDD4L modulates the degradation of mitogen‐activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly‐ubiquitination. In interleukin‐17 receptor (IL‐17R) signaling, Nedd4l knockdown or deficiency enhances IL‐17‐induced p38 and NF‐κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2‐dependent manner. We further show that IL‐17‐induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF‐κB activation but also for NEDD4L‐mediated MEKK2 degradation and the subsequent shutdown of IL‐17R signaling. Importantly, Nedd4l‐deficient mice show increased susceptibility to IL‐17‐induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL‐17R signaling‐dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL‐17R signaling, which ameliorates the pathogenesis of IL‐17‐mediated autoimmune diseases.
Collapse
Affiliation(s)
- Hui Li
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
- Department of Medical Oncology The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou China
- Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Ning Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Yu Jiang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Haofei Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Zengfeng Xin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Jinan China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Wangqian Ma
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Ting Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiaojian Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Wenlong Lin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| |
Collapse
|
127
|
Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer. Cell Death Dis 2022; 13:813. [PMID: 36138018 PMCID: PMC9499936 DOI: 10.1038/s41419-022-05215-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/23/2023]
Abstract
A common stage of advanced prostate cancer is castration-resistant prostate cancer (CRPC), greater understanding of which is required in order to address and solve the clinically difficult challenge. Cathepsin K (CTSK) is a cysteine protease that usually has a strong activity of degrading extracellular matrix and is related to osteoclast-mediated bone destruction. However, the mechanism of CTSK-regulation in CRPC is still unclear to us. The current study aimed to analyze the expression of differentially expressed genes (DEGs) in patient samples (from localized PC and CRPC). Interestingly, we found that CTSK to be significantly up-regulated in CRPC. Through further signal pathway enrichment analysis, we found that the IL-17 signaling pathway to be highly correlated with CTSK. The oncogenic functions of CTSK and IL-17 in CRPC were proven by a series of in vivo and in vitro experiments. Possible downstream molecules of CTSK were investigated, which could serve as control elements to regulate the expression of EMT, thereby facilitating the metastasis and excessive proliferation of PC cells. Expression of CTSK was related to high concentration of M2 tumor-associated macrophages (TAMs) M2 in CRPC. A CTSK-mediated feedback circuit between TAMs and CRPC tissues was indicated in the process of transfer, proving the possibility of CTSK could be use as an available therapeutic target for CRPC.
Collapse
|
128
|
Kołkowski K, Jolanta Gleń, Berenika Olszewska, Monika Zabłotna, Nowicki RJ, Małgorzata Sokołowska-Wojdyło. Interleukin-17 Genes Polymorphisms are Significantly Associated with Cutaneous T-cell Lymphoma Susceptibility. Acta Derm Venereol 2022; 102:adv00777. [DOI: 10.2340/actadv.v102.2416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumour microenvironment has an important effect on the progression of cutaneous T-cell lymphomas. Using PCR with sequence-specific primers, this study analysed single-nucleotide polymorphisms in the interleukin-17 genes of 150 patients with cutaneous T-cell lymphoma. GG homozygote rs8193036 A/G of interleukin-17A gene occurred less commonly in the cutaneous T-cell lymphoma group; however, patients with this single-nucleotide polymorphism experience significantly intense pruritus. Conversely, the rs2397084 AG heterozygote of interleukin-17F is more common in the lymphoma population. In addition, there were significant differences in the frequencies of interleukin-17 genotypes when comparing early (Ia to IIa) and advanced stages (IIb, III and IV) of this neoplasms. A similar result has been shown in comparison between Sézary syndrome and mycosis fungoides. The current data may serve as a possible explanation for the increased bacterial infection rates in the course of cutaneous T-cell lymphoma, especially caused by Staphylococcus aureus. In summary, specific single-nucleotide polymorphisms occur with different frequencies between cutaneous T-cell lymphoma and healthy patients. Moreover, genetic predisposition of several interleukin-17 single-nucleotide polymorphisms may be a factor causing impaired immune defence in cutaneous lymphomas.
Collapse
|
129
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
130
|
Kathania M, Kumar R, Lenou ET, Basrur V, Theiss AL, Chernoff J, Venuprasad K. Pak2-mediated phosphorylation promotes RORγt ubiquitination and inhibits colonic inflammation. Cell Rep 2022; 40:111345. [PMID: 36103814 PMCID: PMC9510046 DOI: 10.1016/j.celrep.2022.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Dysregulated interleukin-17 (IL-17) expression and its downstream signaling is strongly linked to inflammatory bowel diseases (IBDs). However, the molecular mechanisms by which the function of RORγt, the transcription factor of IL-17, is regulated remains elusive. By a mass spectrometry-based approach, we identify that Pak2, a serine (S)/threonine (T) kinase, directly associates with RORγt. Pak2 recognizes a conserved KRLS motif within RORγt and phosphorylates the S-316 within this motif. Genetic deletion of Pak2 in Th17 cells reduces RORγt phosphorylation, increases IL-17 expression, and induces severe colitis upon adoptive transfer to Rag1−/− mice. Similarly, reconstitution of RORγt-S316A mutant in Rorc−/− Th17 cells enhances IL-17 expression and colitis severity. Mechanistically, we demonstrate that Pak2-mediated phosphorylation causes a conformational change resulting in exposure of the ubiquitin ligase Itch interacting PPLY motif and degradation of RORγt. Thus, we have uncovered a mechanism by which the activity of RORγt is regulated that can be exploited therapeutically. Kathania et al. show that Pak2, a Ser/Thr kinase, associates with RORγt and phosphorylates Ser-316 of RORγt. Deletion of Pak2 in Th17 cells enhances IL-17 expression and colitis severity. Pak2-mediated phosphorylation causes a conformational change resulting in increased ubiquitination of RORγt by the E3 ubiquitin ligase Itch.
Collapse
Affiliation(s)
- Mahesh Kathania
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elviche Taskem Lenou
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arianne L Theiss
- University of Colorado, School of Medicine, Division of Gastroenterology and Hepatology, Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan Chernoff
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
131
|
Gan X, Dai Z, Ge C, Yin H, Wang Y, Tan J, Sun S, Zhou W, Yuan S, Yang F. FTO promotes liver inflammation by suppressing m6A mRNA methylation of IL-17RA. Front Oncol 2022; 12:989353. [PMID: 36172147 PMCID: PMC9511030 DOI: 10.3389/fonc.2022.989353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous studies have demonstrated that inflammation-related interleukin-17 (IL-17) signaling plays a pivotal role in the pathogenesis of non-alcoholic steatohepatitis (NASH)- and alcoholic liver disease (ALD)-induced hepatocellular carcinoma (HCC). However, rare efforts have been intended at implementing the analysis of N6-methyladenosine (m6A) mRNA methylation to elucidate the underpinning function of the IL-17 receptor A (IL-17RA) during the inflammation-carcinogenesis transformation of HCC. Methods We performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) using normal, HCC tumor and paired tumor adjacent tissues from patients to investigate the dynamic changes of m6A mRNA methylation in the process of HCC. Additionally, murine non-alcoholic fatty liver disease (NAFLD) model and murine chronic liver injury model were utilized to investigate the role of IL-17RA regulated by m6A mRNA modulator fat mass and obesity-associated (FTO) in chronic hepatic inflammation. Results MeRIP-seq revealed the reduction of m6A mRNA methylation of IL-17RA in tumor adjacent tissues with chronic inflammation, suggesting the potential role of IL-17RA in the inflammation-carcinogenesis transformation of HCC. Besides, we demonstrated that FTO, rather than methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), and alkB homolog 5 (ALKBH5) functions as a main modulator for the decrease of m6A mRNA methylation of IL-17RA via knockdown and overexpression of FTO in vitro and in vivo. Conclusions Overall, we elaborated the underlying mechanisms of the increase of IL-17RA resulting in chronic inflammation via the demethylation of FTO in tumor adjacent tissues and demonstrated that targeting the specific m6A modulator FTO may provide an effective treatment for hepatitis patients to prevent the development of HCC.
Collapse
Affiliation(s)
- Xiaojie Gan
- The department of Medical Genetics, Naval Medical University, Shanghai, China
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Chunmei Ge
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Shuhan Sun
- The department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Weiping Zhou, ; Shengxian Yuan, ; Fu Yang,
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Weiping Zhou, ; Shengxian Yuan, ; Fu Yang,
| | - Fu Yang
- The department of Medical Genetics, Naval Medical University, Shanghai, China
- *Correspondence: Weiping Zhou, ; Shengxian Yuan, ; Fu Yang,
| |
Collapse
|
132
|
PI3K/AKT/mTOR Signaling Pathway Is Downregulated by Runzaoling (RZL) in Sjögren’s Syndrome. Mediators Inflamm 2022; 2022:7236118. [PMID: 36133744 PMCID: PMC9484952 DOI: 10.1155/2022/7236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Infiltration and aggregation of lymphocytes in exocrine glands are the basic pathological manifestations of Sjögren’s syndrome (SS), and the incidence of SS has been increasing year by year in recent years. To explore the potential signaling pathway of Runzaoling (RZL) in alleviating SS, the possible targets of RZL in SS were firstly explored through network pharmacology, and then, the regulation of PI3K/AKT/mTOR signaling in NOD mice and Th17 cells was verified. 75 8-week-old NOD mice were casually classified into 5 groups: model; hydroxychloroquine; high, medium, and low dose RZL groups, with 15 in each; and 15 BALB/c mice were employed as control group. After 10 weeks of continuous intragastric administration in mice and 24 hours of drugs intervention in Th17 cells, histopathology was observed by HE staining, and the gene transcription levels were identified by real-time quantitative PCR (RT-qPCR). The protein expressions were detected by western blotting (WB). The findings showed that high and medium dose RZL group could attenuate the submandibular gland tissue damage. The results indicated that the mRNA expressions of PI3K, AKT, mTOR, STAT3, and IL-17 in SS mice and in IL-17 stimulation of Th17 cells were dramatically increased compared with control group and decreased to varying degrees after RZL intervention. The trend of phosphorylated PI3K/AKT/mTOR and STAT3 and IL-17 protein expression in NOD mice and Th17 cells were consistent with mRNA. RZL can downregulate STAT3 and IL-17 expressions in the submandibular gland of NOD mice and in Th17 cells via regulating the PI3K/AKT/mTOR signaling pathway. Moreover, RZL could reduce the activation of CD4+ T lymphocyte differentiation to Th17 cells.
Collapse
|
133
|
Li J, Xu L, Zhao W, Pan J, Lu J, Lu H, Yan J, Weng J, Liu F. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes Metab Res Rev 2022; 38:e3547. [PMID: 35583128 DOI: 10.1002/dmrr.3547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022]
Abstract
AIMS Interleukin (IL)-17 is associated with autoimmunity. This study aimed to affirm the role of IL-17A, IL-17F and single nucleotide polymorphisms (SNPs) in genes related to them and their receptors in autoimmune type 1 diabetes (T1D) for Chinese population. METHODS In this study, 130 patients with autoimmune T1D and 140 non-T1D controls were included for analysis. Clinical and biochemical data were collected, and serum levels of IL-17A, IL-17F, IL-6, and high-sensitivity C reactive protein were measured using ELISA. The SNPs rs2275913, rs8193036, rs3819025, rs763780, rs879577, rs4819554, and rs708567 were genotyped using the SNaPshot assay. RESULTS IL-17A levels were higher in patients with autoimmune T1D than in controls (median [IQR] 28.83[37.38] vs. 16.68[8.10], p < 0.001) and high IL-17A was a risk factor for autoimmune T1D (odds ratio (OR), 1.013; 95% CI, 1.003-1.023; p = 0.013) after adjusting for confounding factors. Linear regression analysis revealed that log10 IL-17A levels were independently associated with fasting C-peptide, IL-6, body mass index, and IL-17F. However, no independent association was found between IL-17F and autoimmune T1D. The GG genotype of SNP rs4819554 in the interleukin 17 receptor A (IL17RA) gene was associated with a decreased risk of autoimmune T1D (OR, 0.458; 95% CI, 0.246-0.852; p = 0.014) after adjusting for other confounders. The IL17RA rs4819554 GG genotype was negatively correlated with serum glutamic acid decarboxylase antibody appearance (p < 0.05). CONCLUSIONS Increased serum IL-17A, but not IL-17F, is a risk factor for autoimmune T1D. The GG genotype of IL17RA rs4819554 might decrease the risk for autoimmune T1D.
Collapse
Affiliation(s)
- Junxian Li
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijing Zhao
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiemin Pan
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junxi Lu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huijuan Lu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Fang Liu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
134
|
Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. Int J Mol Sci 2022; 23:ijms23169344. [PMID: 36012618 PMCID: PMC9409205 DOI: 10.3390/ijms23169344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.
Collapse
|
135
|
An J, Li H, Xia D, Xu B, Wang J, Qiu H, He J. The role of interleukin-17 in epilepsy. Epilepsy Res 2022; 186:107001. [PMID: 35994860 DOI: 10.1016/j.eplepsyres.2022.107001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a common neurological disorder that seriously affects human health. It is a chronic central nervous system dysfunction caused by abnormal discharges of neurons. About 50 million patients worldwide are affected by epilepsy. Although epileptic symptoms of most patients are controllable, some patients with refractory epilepsy have no response to antiseizure medications. It is necessary to investigate the pathogenesis of epilepsy and identify new therapeutic targets for refractory epilepsy. Epileptic disorders often accompany cerebral inflammatory reactions. Recently, the role of inflammation in the onset of epilepsy has increasingly attracted attention. The activation of both innate and adaptive immunity plays a significant role in refractory epilepsy. According to several clinical studies, interleukin-17, an essential inflammatory mediator linking innate and adaptive immunity, increased significantly in the body liquid and epileptic focus of patients with epilepsy. Experimental studies also indicated that interleukin-17 participated in epileptogenesis through various mechanisms. This review summarized the current studies about interleukin-17 in epilepsy and aimed at finding new therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Jiayin An
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - He Li
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Demeng Xia
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China; Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China.
| | - Bin Xu
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Jiayan Wang
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Huahui Qiu
- Zhoushan Hospital, Zhejiang University, Zhoushan, Zhejiang, China.
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
136
|
Tazawa K, Azuma Presse MM, Furusho H, Stashenko P, Sasaki H. Revisiting the role of IL-1 signaling in the development of apical periodontitis. FRONTIERS IN DENTAL MEDICINE 2022; 3:985558. [PMID: 36938490 PMCID: PMC10021022 DOI: 10.3389/fdmed.2022.985558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apical periodontitis (AP) develops as a result of an immune response to pulpal bacterial infection, and various cytokines are involved in the pathogenesis of AP, with Interleukin (IL)-1 being considered a key cytokine. The role of IL-1 in the pathogenesis of AP has been well studied. It is known that IL-1 expression in periapical lesions correlates closely with the development of AP. IL-1 is a potent bone-resorptive cytokine that induces osteoclast formation and activation. Hence, inhibiting its signaling with IL-1 receptor antagonist (IL-1RA) results in a reduction in periapical lesion size. On the other hand, IL-1 is also a central cytokine that combats bacterial infection by activating innate immune responses. Therefore, a complete loss of IL-1 signaling leads to a failure to limit bacterial dissemination and consequently exacerbates AP. In vivo, IL-1 expression is tightly regulated and its signaling is modulated to optimize the immune response. Obesity causes systemic low-grade chronic inflammation and increases the risk of cardiovascular, renal, and other disorders. In experimentally induced AP, obesity significantly increases periapical bone loss, albeit the underlying mechanism remains unclear. Recent technological innovations have enabled more comprehensive and detailed analyses than previously, leading to new insights into the role of IL-1RA in regulating IL-1 signaling, and modulating apical lesion progression in obesity. In this review, we provide a brief overview of the function of IL-1 in AP development, with special emphasis on the latest findings in normal weight and obese states.
Collapse
Affiliation(s)
- Kento Tazawa
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mariane Maffei Azuma Presse
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Philip Stashenko
- Department of Translational Dental Medicine and Department of Endodontics, Boston University Goldman School of Dental Medicine, Boston, MA, United States
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
137
|
The Screening of Therapeutic Peptides for Anti-Inflammation through Phage Display Technology. Int J Mol Sci 2022; 23:ijms23158554. [PMID: 35955688 PMCID: PMC9368796 DOI: 10.3390/ijms23158554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
For the treatment of inflammatory illnesses such as rheumatoid arthritis and carditis, as well as cancer, several anti-inflammatory medications have been created over the years to lower the concentrations of inflammatory mediators in the body. Peptides are a class of medication with the advantages of weak immunogenicity and strong activity, and the phage display technique is an effective method for screening various therapeutic peptides, with a high affinity and selectivity, including anti-inflammation peptides. It enables the selection of high-affinity target-binding peptides from a complex pool of billions of peptides displayed on phages in a combinatorial library. In this review, we will discuss the regular process of using phage display technology to screen therapeutic peptides, and the peptides screened for anti-inflammation properties in recent years according to the target. We will describe how these peptides were screened and how they worked in vitro and in vivo. We will also discuss the current challenges and future outlook of using phage display to obtain anti-inflammatory therapeutic peptides.
Collapse
|
138
|
Leal-Silva T, Lopes CDA, Vieira-Santos F, Oliveira FMS, Kraemer L, Padrão LDLS, Amorim CCO, Souza JLN, Russo RC, Fujiwara RT, Magalhães LMD, Bueno LL. IL-17RA receptor signaling contributes to lung inflammation and parasite burden during Toxocara canis infection in mice. Front Immunol 2022; 13:864632. [PMID: 35844540 PMCID: PMC9277699 DOI: 10.3389/fimmu.2022.864632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
IL-17 is a cytokine produced by innate and acquired immunity cells that have an action against fungi and bacteria. However, its action in helminth infections is unclear, including in Toxocara canis infection. Toxocariasis is a neglected zoonosis representing a significant public health problem with an estimated seroprevalence of 19% worldwide. In the present study, we describe the immunopathological action of IL-17RA in acute T. canis infection. C57BL/6j (WT) and IL-17RA receptor knockout (IL-17RA-/-) mice were infected with 1000 T. canis eggs. Mice were evaluated 3 days post-infection for parasite load and white blood cell count. Lung tissue was harvested for histopathology and cytokine expression. In addition, we performed multiparametric flow cytometry in the BAL and peripheral blood, evaluating phenotypic and functional changes in myeloid and lymphoid populations. We showed that IL-17RA is essential to control larvae load in the lung; however, IL-17RA contributed to pulmonary inflammation, inducing inflammatory nodular aggregates formation and presented higher pulmonary IL-6 levels. The absence of IL-17RA was associated with a higher frequency of neutrophils as a source of IL-4 in BAL, while in the presence of IL-17RA, mice display a higher frequency of alveolar macrophages expressing the same cytokine. Taken together, this study indicates that neutrophils may be an important source of IL-4 in the lungs during T. canis infection. Furthermore, IL-17/IL-17RA axis is important to control parasite load, however, its presence triggers lung inflammation that can lead to tissue damage.
Collapse
Affiliation(s)
- Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Mourão Dias Magalhães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
139
|
Andrews MD, Dack KN, de Groot MJ, Lambert M, Sennbro CJ, Larsen M, Stahlhut M. Discovery of an Oral, Rule of 5 Compliant, Interleukin 17A Protein-Protein Interaction Modulator for the Potential Treatment of Psoriasis and Other Inflammatory Diseases. J Med Chem 2022; 65:8828-8842. [PMID: 35767390 DOI: 10.1021/acs.jmedchem.2c00422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 17A (IL-17A) is an interleukin cytokine whose dysregulation is implicated in autoimmune disorders such as psoriasis, and monoclonal antibodies against the IL-17A pathway are now well-established and very effective treatments. This article outlines the work that led to the identification of 23 as an oral, small-molecule protein-protein interaction modulator (PPIm) clinical development candidate. Protein crystallography provided knowledge of the key binding interactions between small-molecule ligands and the IL-17A dimer, and this helped in the multiparameter optimization toward identifying an orally bioavailable, Rule of 5 compliant PPIm of IL-17A. Overlap of early ligands led to a series of benzhydrylglycine-containing compounds that allowed the identification of dimethylpyrazole as a key substituent that gave PPIm with oral bioavailability. Exploration of the amino acid portion of the structure then led to dicyclopropylalanine as a group that gave potent and metabolically stable compounds, including the development candidate 23.
Collapse
Affiliation(s)
- Mark D Andrews
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Kevin N Dack
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Marcel J de Groot
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Maja Lambert
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Carl J Sennbro
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Mogens Larsen
- Drug Design, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| | - Martin Stahlhut
- Skin Research, LEO Pharma Research & Early Development, 2750 Ballerup, Denmark
| |
Collapse
|
140
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
141
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
142
|
Lo CY, Wang CH, Wang CW, Chen CJ, Huang HY, Chung FT, Huang YC, Lin CW, Lee CS, Lin CY, Lin CH, Chang PJ, Lin TY, Heh CC, He JR, Chung KF. Increased Interleukin-17 and Glucocorticoid Receptor-β Expression in Interstitial Lung Diseases and Corticosteroid Insensitivity. Front Immunol 2022; 13:905727. [PMID: 35865549 PMCID: PMC9294725 DOI: 10.3389/fimmu.2022.905727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Background Treatment responsiveness to corticosteroids is excellent for cryptogenic organizing pneumonia (COP) and sarcoidosis, but suboptimal for idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP). We hypothesise that the differential expression of IL-17 contributes to variable corticosteroid sensitivity in different interstitial lung diseases. Objective To determine the associations among expression of IL-17, glucocorticoid receptor-β and responsiveness to corticosteroid treatment in interstitial lung diseases. Methods Immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded (FFPE) lung tissues obtained by bronchoscopic, CT-guided or surgical biopsies, and quantified by both cell counting (% positive cells) by individuals and by software IHC Profiler plugin of ImageJ (opacity density score). We studied the effect of IL-17 on corticosteroid sensitivity in human fibroblast MRC5 cell line. Results Compared with specimens from patients with COP (n =13) and sarcoidosis (n =13), those from IPF patients (n = 21) had greater GR-β and IL-17 expression and neutrophil infiltration. Radiographic progression after oral corticosteroid treatment was positively correlated with the expression in IL-17 and GR-β/GR-α ratio in all patients (COP, sarcoidosis and IPF) and also within the IPF subgroup only. IL-17 expression level was positively associated with GR-β and GR-β/GR-α ratio. In MRC5 cells, exogenous IL-17 increased the production of collagen I and up-regulated GR-β expression and dexamethasone’s suppressive effect on collagen I production was impaired by IL-17, and silencing IL-17 receptor A gene attenuated the effect of IL-17. Conclusion Up-regulation of GR-β/GR-α ratio by IL-17 could be associated with the relative corticosteroid-insensitivity of IPF.
Collapse
Affiliation(s)
- Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chun-Yu Lo, ;
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- New Taipei Municipal TuCheng Hospital (Managed by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Wei Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- New Taipei Municipal TuCheng Hospital (Managed by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Chun-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Hung Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chen Heh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jung-Ru He
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
143
|
Wang T, Zhou Y, Wang K, Jiang X, Wang J, Chen J. Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology. Medicine (Baltimore) 2022; 101:e29762. [PMID: 35776988 PMCID: PMC9239660 DOI: 10.1097/md.0000000000029762] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since the 20th century, mortality rate due to cardiovascular diseases has increased, posing a substantial economic burden on society. Atherosclerosis is a common cardiovascular disease that requires urgent and careful attention. This study was conducted to predict and validate the potential molecular targets and pathways of Astragalus membranaceus and Angelica sinensis (A&A) in the treatment of atherosclerosis using network pharmacology. The active ingredients of A&A were obtained using the TCMSP database, while the target genes of atherosclerosis were acquired using 2 databases, namely GeneCards and DrugBank. The disease-target-component model map and the core network were obtained using Cytoscape 3.8.2 and MCODE plug-in, respectively. The core network was then imported into the STRING database to obtain the protein-protein interaction (PPI) network diagram. Moreover, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed using the HIPLOT online website. Finally, the small molecules related to key signaling pathways were molecularly docked and visualized. Under the screening conditions of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, 22 active ingredients were identified from A&A, and 174 relevant targets were obtained. Additionally, 54 active ingredients were found in the extracted core network. Interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor (TLR) signaling pathway were selected as the main subjects through KEGG enrichment analysis. Core targets (RELA, IKBKB, CHUK, and MMP3) and active ingredients (kaempferol, quercetin, and isorhamnetin) were selected and validated using molecular docking. This study identified multiple molecular targets and pathways for A&A in the treatment of atherosclerosis. A&A has the potential to treat atherosclerosis through an antiinflammatory approach.
Collapse
Affiliation(s)
- Tianyue Wang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Kaina Wang
- The 1st Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Jiang
- The 1st Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbo Wang
- Library, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of life science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Jing Chen, School of life science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou City 310053, Zhejiang Province, China (e-mail: )
| |
Collapse
|
144
|
Yan C, Xu H, Rong C, Cao M, Miao Z, Zhou H. IL-31 expression in HIV-infected patients with different routes of disease transmission. Medicine (Baltimore) 2022; 101:e29509. [PMID: 35758393 PMCID: PMC9276414 DOI: 10.1097/md.0000000000029509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV). AIDS is characterized by an impaired immune system and low cellular immunity. The main manifestation of AIDS is a reduction in the number of CD4+ T cells and alteration in cytokine concentration. The present work aimed to explore the expression of IL-31 in HIV infection and disease progression.Serum samples were collected from HIV-infected patients with different routes of disease transmission. The subjects included 24 patients who were infected with HIV upon blood transmission and 36 patients who had acquired the disease through sexual transmission (21 cases of homosexual transmission and 15 cases of heterosexual transmission). In addition, 20 normal healthy individuals were included to serve as the control group. The levels of IL-31 in the collected serum samples were estimated using the human IL-31 Platinum ELISA kit.The serum analysis results revealed that the concentration of IL-31 in the serum samples for the blood transmission, sexually transmission, and normal group patients was 4.07 ± 1.63 pg/L, 7.43 ± 1.15 pg/L, and 2.87 ± 1.04 pg/L, respectively. The statistical analysis revealed that the concentration of IL-31 in HIV-1 infection was higher than that in the normal control. In addition, the expression of IL-31 was significantly higher in the sexual transmission group compared to the blood transmission group (P < .05).IL-31 could have an important role in HIV infection, although the role of IL-31 in disease progression in HIV-infected individuals requires further research.
Collapse
Affiliation(s)
- Changxin Yan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Huafeng Xu
- Department of Radio-immunity, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150081, China
| | - Chunli Rong
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Meilin Cao
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhuo Miao
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
145
|
Enevold C, Loft N, Bregnhøj A, Zachariae C, Iversen L, Skov L, Nielsen CH. Circulating Brodalumab Levels and Therapy Outcomes in Patients With Psoriasis Treated With Brodalumab: A Case Series. JAMA Dermatol 2022; 158:762-769. [PMID: 35648430 DOI: 10.1001/jamadermatol.2022.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Given the possible treatment modalities in psoriasis management, little is known about whether drug monitoring is associated with response rate. Objective To determine whether drug monitoring is associated with response to brodalumab therapy. Design A multicenter case series study of patients with psoriasis treated with brodalumab whose treatment with previous IL-17A inhibitor therapy failed. Patients were recruited from the Departments of Dermatology at Gentofte and Aarhus University Hospitals, Denmark, between 2018 and 2020. Patient visits were conducted after 4 and 12 weeks of therapy. Patients not achieving Psoriasis Area and Severity Index 75% improvement from baseline (PASI 75) after 12 weeks were discontinued and considered nonresponders. Patients maintaining PASI 75 response were followed up for up to 52 weeks. Exposure Treatment with brodalumab, 210 mg, at weeks 0, 1, 2, then every 2 weeks. Main Outcomes and Measures Outcome measures were PASI reductions vs brodalumab levels and antibrodalumab antibodies. Results Twenty patients with psoriasis (13 [65%] were male; median age, 50 years [range, 19-66 years]) were included. After 12 weeks of therapy, patients with quantifiable levels of brodalumab (≥0.05 μg/mL) experienced significantly higher PASI reductions than those without (median, 93%; range, 61%-100% vs median, -3; range, -49% to 94%, respectively; P = .006). After 12 weeks of therapy, 4 of 5 patients (80%) not achieving PASI 75 had subquantifiable drug levels (<0.05 μg/mL), although this finding was seen for only 3 of 14 PASI 75 responders (21%). None of 7 patients (35%) with subquantifiable drug levels after 12 weeks of therapy maintained response. No antibrodalumab antibodies were detected in any of the tested samples. Conclusions and Relevance Results of this case series study suggest that circulating brodalumab level is a factor associated with clinical treatment response. Monitoring patient levels of circulating brodalumab may aid clinical decision-making and help prevent ineffective therapy.
Collapse
Affiliation(s)
- Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolai Loft
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Copenhagen Research Group for Inflammatory Skin, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Anne Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claus Zachariae
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Copenhagen Research Group for Inflammatory Skin, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Copenhagen Research Group for Inflammatory Skin, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
146
|
Zhang JJ, Zhou R, Deng LJ, Cao GZ, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomed Pharmacother 2022; 150:112948. [PMID: 35430394 DOI: 10.1016/j.biopha.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Juan Deng
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing-Yi Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shang Ju
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Centre, China Academy of Chinese Medical Science, 100007, China.
| |
Collapse
|
147
|
Cao W, Wang W, Fan S, Li J, Li Q, Wu S, Wang L, Song L. The receptor CgIL-17R1 expressed in granulocytes mediates the CgIL-17 induced haemocytes proliferation in Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104376. [PMID: 35183562 DOI: 10.1016/j.dci.2022.104376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Inflammatory cytokine interleukin-17 (IL-17) binds its receptors (IL-17Rs) to activate the downstream immune signals and plays an important role in host defense. In the present study, an IL-17 receptor (designated as CgIL-17R1) was identified from oyster Crassostrea gigas with an open reading frame of 3141 bp encoding 1047 amino acids. The amino acid sequence of CgIL-17R1 with two conserved FN3 domains shared higher similarity with other known IL-17Rs from mollusc species. The recombinant CgIL-17R1 protein (rCgIL-17R1) displayed high binding affinity to the recombinant CgIL-17 protein (rCgIL-17) in vitro. The mRNA transcripts of CgIL-17R1 were significantly higher expressed in haemocytes, especially in granunolyctes, compared with that in other tissues. After the stimulation with Vibrio splendidus or rCgIL17-1 in vivo, the expressions of CgIL-17R1 and cell proliferation related genes (CgRunx-1, CgCDC-6, CgCDC-45, and CgCDK-2) were significantly up-regulated in haemocytes (p < 0.01). When the CgIL-17R1 expression was interfered by specific CgIL-17R1-dsRNA, the expressions of these cell proliferation related genes reduced significantly, and the proliferation rate of haemocytes declined dramatically at 6 h post V. splendidus stimulation (p < 0.01), compared to that of blank group. These results collectively indicated that CgIL-17R1 expressed in granulocytes mediated the CgIL-17 induced haemocytes proliferation during immune response in oyster C. gigas, which provided novel information about the regulation of haemocyte proliferation in invertebrates.
Collapse
Affiliation(s)
- Wanqing Cao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Fan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jialuo Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shasha Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
148
|
Liu X, Zhou L, Xin W, Hua Z. Exogenous Annexin 1 inhibits Th17 cell differentiation induced by anti-TNF treatment via activating FPR2 in DSS-induced colitis. Int Immunopharmacol 2022; 107:108685. [DOI: 10.1016/j.intimp.2022.108685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
|
149
|
Adverse Effect in Patients with Psoriasis Treated with Interleukin 17A Inhibitor- Secukinumab. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Secukinumab is fully human monoclonal antibody, IgG-1κ, which selectively attaches to IL-17A and inhibits its effects, which subsequently leads to a decrease of local inflammatory markers. In 2015 it was approved for treatment of patients suffering from psoriasis. We can say that in comparison with other biologic medicine, such as IL-12/23 inhibitors and TNF-α inhibitors, the incidence rate of serious adverse effects related to use of secukinumab is notably lower. Serious adverse effects reported in relation to use of secukinumab were development of mucocutaneous candidiasis, neutropenia and development or aggravation of the inflammatory bowel disease conditions.
In this review study we focused on frequent adverse effects and adverse effects of special interest during the secukinumab therapy in treating psoriasis patients.
Available data on long-term safety and effects on comorbidities are relatively few. A more extensive and longer term research is needed, as well as critical reevaluation of the criteria for participation in clinical trials in order to obtain data which would be of relevance in clinical practice. A better understanding of adverse effects leads to an improved individual therapeutic approach, increases patient’s satisfaction and results in minimizing these effects.
Collapse
|
150
|
Paul P, Kaul R, Abdellatif B, Arabi M, Upadhyay R, Saliba R, Sebah M, Chaari A. The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Front Nutr 2022; 9:906243. [PMID: 35711547 PMCID: PMC9197462 DOI: 10.3389/fnut.2022.906243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background One in 10 adults suffer from type 2 diabetes (T2D). The role of the gut microbiome, its homeostasis, and dysbiosis has been investigated with success in the pathogenesis as well as treatment of T2D. There is an increasing volume of literature reporting interventions of pro-, pre-, and synbiotics on T2D patients. Methods Studies investigating the effect of pro-, pre-, and synbiotics on biomarkers of inflammation and oxidative stress in T2D populations were extracted from databases such as PubMed, Scopus, Web of Science, Embase, and Cochrane from inception to January 2022. Results From an initial screening of 5,984 hits, 47 clinical studies were included. Both statistically significant and non-significant results have been compiled, analyzed, and discussed. We have found various promising pro-, pre-, and synbiotic formulations. Of these, multistrain/multispecies probiotics are found to be more effective than monostrain interventions. Additionally, our findings show resistant dextrin to be the most promising prebiotic, followed closely by inulin and oligosaccharides. Finally, we report that synbiotics have shown excellent effect on markers of oxidative stress and antioxidant enzymes. We further discuss the role of metabolites in the resulting effects in biomarkers and ultimately pathogenesis of T2D, bring attention toward the ability of such nutraceuticals to have significant role in COVID-19 therapy, and finally discuss few ongoing clinical trials and prospects. Conclusion Current literature of pro-, pre- and synbiotic administration for T2D therapy is promising and shows many significant results with respect to most markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ridhima Kaul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Basma Abdellatif
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Arabi
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Rohit Upadhyay
- Department of Medicine—Nephrology and Hypertension, Tulane University, School of Medicine, New Orleans, LA, United States
| | - Reya Saliba
- Distributed eLibrary, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Majda Sebah
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|