101
|
The Peptidyl-Isomerase Pin1 Regulates p27kip1 Expression through Inhibition of Forkhead Box O Tumor Suppressors. Cancer Res 2008; 68:7597-605. [DOI: 10.1158/0008-5472.can-08-1059] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
102
|
Sheldon AL, González MI, Krizman-Genda EN, Susarla BTS, Robinson MB. Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 2008; 53:296-308. [PMID: 18805448 DOI: 10.1016/j.neuint.2008.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/22/2008] [Accepted: 07/30/2008] [Indexed: 01/12/2023]
Abstract
Sodium-dependent glutamate uptake is essential for limiting excitotoxicity, and dysregulation of this process has been implicated in a wide array of neurological disorders. The majority of forebrain glutamate uptake is mediated by the astroglial glutamate transporter, GLT-1. We and others have shown that this transporter undergoes endocytosis and degradation in response to activation of protein kinase C (PKC), however, the mechanisms involved remain unclear. In the current study, transfected C6 glioma cells or primary cortical cultures were used to show that PKC activation results in incorporation of ubiquitin into GLT-1 immunoprecipitates. Mutation of all 11 lysine residues in the amino and carboxyl-terminal domains to arginine (11R) abolished this signal. Selective mutation of the seven lysine residues in the carboxyl terminus (C7K-R) did not eliminate ubiquitination, but it completely blocked PKC-dependent internalization and degradation. Two families of variants of GLT-1 were prepared with various lysine residues mutated to arginine. Analyses of these constructs indicated that redundant lysine residues in the carboxyl terminus were sufficient for the appearance of ubiquitinated product and degradation of GLT-1. Together these data define a novel mechanism by which the predominant forebrain glutamate transporter can be rapidly targeted for degradation.
Collapse
Affiliation(s)
- Amanda L Sheldon
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
103
|
Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY, Matunis MJ. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem 2008; 283:29405-15. [PMID: 18708356 DOI: 10.1074/jbc.m803632200] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) regulate diverse cellular processes through their covalent attachment to target proteins. Vertebrates express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are approximately 96% identical and referred to as SUMO-2/3). SUMO-1 and SUMO-2/3 are conjugated, at least in part, to unique subsets of proteins and thus regulate distinct cellular pathways. However, how different proteins are selectively modified by SUMO-1 and SUMO-2/3 is unknown. We demonstrate that BLM, the RecQ DNA helicase mutated in Bloom syndrome, is preferentially modified by SUMO-2/3 both in vitro and in vivo. Our findings indicate that non-covalent interactions between SUMO and BLM are required for modification at non-consensus sites and that preferential SUMO-2/3 modification is determined by preferential SUMO-2/3 binding. We also present evidence that sumoylation of a C-terminal fragment of HIPK2 is dependent on SUMO binding, indicating that non-covalent interactions between SUMO and target proteins provide a general mechanism for SUMO substrate selection and possible paralog-selective modification.
Collapse
Affiliation(s)
- Jianmei Zhu
- Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Polo S, Pece S, Di Fiore PP. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. Curr Opin Cell Biol 2008; 16:156-61. [PMID: 15196558 DOI: 10.1016/j.ceb.2004.02.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exosomes are nanovesicles originating from multivesicular bodies that are secreted by a variety of cell types. The dual capability of exosomes to promote immunity or to induce tolerance has prompted their clinical use as vehicles for vaccination against different human diseases. In the present study, the effect of allergen-specific exosomes from tolerized mice on the development of allergen-induced allergic response was determined using a mouse model. Mice were tolerized by respiratory exposure to the olive pollen allergen Ole e 1. Exosome-like vesicles were isolated from bronchoalveolar lavage fluid of the animals by the well-established filtration and ultracentrifugation procedure, characterized by electron microscopy, Western blot, and FACS analyses, and assessed in a prophylactic protocol. To this end, BALB/c mice were intranasally treated with tolerogenic exosomes or naive exosomes as control, 1 wk before sensitization/challenge to Ole e 1. Blood, lungs, and spleen were collected and analyzed for immune responses. Intranasal administration of tolerogenic exosomes inhibited the development of IgE response, Th2 cytokine production, and airway inflammation--cardinal features of allergy--and maintained specific long-term protection in vivo. This protective effect was associated with a concomitant increase in the expression of the regulatory cytokine TGF-beta. These observations demonstrate that exosomes can induce tolerance and protection against allergic sensitization in mice. Thus, exosome-based vaccines could represent an alternative to conventional therapy for allergic diseases in humans.
Collapse
Affiliation(s)
- Simona Polo
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | |
Collapse
|
105
|
Novak DJ, Sabbaghian N, Maillet P, Chappuis PO, Foulkes WD, Tischkowitz M. Analysis of the genes coding for the BRCA1-interacting proteins, RAP80 and Abraxas (CCDC98), in high-risk, non-BRCA1/2, multiethnic breast cancer cases. Breast Cancer Res Treat 2008; 117:453-9. [PMID: 18695986 DOI: 10.1007/s10549-008-0134-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/11/2008] [Indexed: 01/15/2023]
Abstract
Background Around half of familial breast cancer cases are caused by germ-line mutations in genes which are critically involved in the maintenance of genome stability. Mutations in related genes functioning in DNA repair may account for currently unattributed cases. Two such genes, RAP80 and Abraxas, have recently been identified to be in a complex with BRCA1, and are required for the localization of BRCA1 to DNA damage foci. Methods RAP80 and Abraxas variants were screened for in a cohort of 95 high risk, non-BRCA1/2 breast cancer cases of varying ethnicity: those of Ashkenazi Jewish (n = 35), mixed Canadian (n = 34) and Swiss descent (n = 26). Results We have identified four missense variants, four silent SNPs, three SNPs in the UTRs and seven intronic variants in RAP80. Two of the previously reported RAP80 variants were further investigated. In Abraxas, we have identified two missense, nine intronic and two variants in the 3' UTR. Conclusions Overall, it seems unlikely that moderate to highly penetrant alleles of either RAP80 or Abraxas, confer a significantly high relative risk of breast cancer.
Collapse
Affiliation(s)
- David J Novak
- Departments of Oncology and Human Genetics, Program in Cancer Genetics, McGill University, Montreal, QC, Canada H2W 1S6
| | | | | | | | | | | |
Collapse
|
106
|
Brenkman AB, de Keizer PLJ, van den Broek NJF, Jochemsen AG, Burgering BMT. Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 2008; 3:e2819. [PMID: 18665269 PMCID: PMC2475507 DOI: 10.1371/journal.pone.0002819] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 07/07/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Forkhead box O (FOXO) class of transcription factors are involved in the regulation of several cellular responses including cell cycle progression and apoptosis. Furthermore, in model organisms FOXOs act as tumor suppressors and affect aging. Previously, we noted that FOXOs and p53 are remarkably similar within their spectrum of regulatory proteins. For example, the de-ubiquitinating enzyme USP7 removes ubiquitin from both FOXO and p53. However, Skp2 has been identified as E3 ligase for FOXO1, whereas Mdm2 is the prime E3 ligase for p53. PRINCIPAL FINDINGS/METHODOLOGY Here we provide evidence that Mdm2 acts as an E3 ligase for FOXO as well. In vitro incubation of Mdm2 and FOXO results in ATP-dependent (multi)mono-ubiquitination of FOXO similar to p53. Furthermore, in vivo co-expression of Mdm2 and FOXO induces FOXO mono-ubiquitination and consistent with this result, siRNA-mediated depletion of Mdm2 inhibits mono-ubiquitination of FOXO induced by hydrogen peroxide. Regulation of FOXO ubiquitination by Mdm2 is likely to be direct since Mdm2 and FOXO co-immunoprecipitate. In addition, Mdm2-mediated ubiquitination regulates FOXO transcriptional activity. CONCLUSIONS/SIGNIFICANCE These data identify Mdm2 as a novel E3 ligase for FOXOs and extend the analogous mode of regulation between FOXO and p53.
Collapse
Affiliation(s)
- Arjan B. Brenkman
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter L. J. de Keizer
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Niels J. F. van den Broek
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A. G. Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Boudewijn M. Th. Burgering
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Physiological Chemistry and Centre for Biomedical Genetics Universiteitsweg, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
107
|
Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14:10-21. [PMID: 18598940 DOI: 10.1016/j.ccr.2008.06.001] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/23/2022]
Abstract
The involvement of the homologous to E6-AP carboxyl terminus (HECT)-type E3s in crucial signaling pathways implicated in tumorigenesis is presently an area of intense research and extensive scientific interest. This review highlights recent discoveries on the ubiquitin-mediated degradation of crucial tumor suppressor molecules catalyzed by the HECT-type E3s. By providing a portrait of their protein targets, we intend to link the substrate specificity of HECT-type E3s with their contribution to tumorigenesis. Moreover, we discuss the relevance of targeting the HECT E3s, through the development of small-molecule inhibitors, as an anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Francesca Bernassola
- Department of Experimental Medicine and Biochemical Sciences, Biochemistry IDI-IRCCS Laboratory, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | |
Collapse
|
108
|
Yan J, Jetten AM. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett 2008; 271:179-90. [PMID: 18550271 DOI: 10.1016/j.canlet.2008.04.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal double-strand breaks (DSBs) in eukaryotes provoke a rapid, extensive modification in chromatin flanking the breaks. The DNA damage response (DDR) coordinates activation of cell cycle checkpoints, apoptosis, and DNA repair networks, to ensure accurate repair and genomic integrity. The checkpoint kinase ATM plays a critical role in the initiation of DDR in response to DSBs. The early ATM-mediated phosphorylation of the histone variant H2AX proteins near DSBs leads to the subsequent binding of MDC1, which functions as a scaffold for the recruitment and assembly of many DDR mediators and effectors, including BRCA1. Recent studies have provided new insights into the mechanism by which BRCA1 and associated proteins are recruited to DNA damage foci and revealed key roles for the receptor-associated protein 80 (RAP80) and the E3 ligase RNF8 in this process. RAP80 is an ubiquitin-interaction motif (UIM) containing protein that is associated with a BRCA1/BARD1 complex through its interaction with CCDC98 (Abraxas). The UIMs of RAP80 are critical for targeting this protein complex to DSB sites. Additional studies revealed that after binding gamma-H2AX, ATM-phosphorylated MDC1 is recognized by the FHA domain of RNF8, which subsequently binds the E2 conjugating enzyme UBC13. This complex catalyzes K63-linked polyubiquitination of histones H2A and gamma-H2AX, which are then recognized by the UIMs of RAP80, thereby facilitating the recruitment of the BRCA1/BARD1/CCDC98/RAP80 protein complex to DSB sites. Depletion of RAP80 or RNF8 impairs the translocation of BRCA1 to DNA damage sites and results in defective cell cycle checkpoint control and DSB repair. In this review, we discuss this cascade of protein phosphorylation and ubiquitination and the role it plays in the control of cellular responses to genotoxic stress by regulating the interactions, localization, and function of DDR proteins.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | | |
Collapse
|
109
|
Effect of nitric oxide donor and gamma irradiation on modifications of ERK and JNK in murine peritoneal macrophages. J Cell Commun Signal 2008; 1:219-26. [PMID: 18523870 DOI: 10.1007/s12079-008-0021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 04/29/2008] [Indexed: 01/13/2023] Open
Abstract
Mitogen activated protein kinases (MAPKs) play an important role in activation, differentiation and proliferation of macrophages. Macrophages, upon activation, produce large amounts of nitric oxide that inhibit the growth of variety of microorganisms and tumor cells. This nitric oxide which is known to interfere with tyrosine phosphorylation may result in changes in the pattern of activation of MAPKs. In a previous study we have found that tyrosine phosphorylation of MAPKs was completely abolished in the presence of nitric oxide donor and radiation but this did not affect the function of macrophages. In this study the other post translational modifications namely nitration and ubiquitination of JNK and ERK have been looked at. Both ERK and JNK were found to be nitrated. However, there was no increase in ubiquitination of ERK and JNK, indicating that ubiquitination, in this case was not a natural consequence of nitration and may serve in signaling. Additionally, when the nitration was extensive, phosphorylation was also inhibited. The activation of substrates of ERK and JNK were looked at to determine the consequences of such modifications. Inhibition of phosphorylation and extensive nitration of JNK did not prevent activation of its substrate, c-jun. This study indicates that ERK and JNK may be under regulation by different type of modifications in macrophages.
Collapse
|
110
|
Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 2008; 9:536-42. [PMID: 18516089 PMCID: PMC2427391 DOI: 10.1038/embor.2008.93] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/25/2008] [Indexed: 12/28/2022] Open
Abstract
Ubiquitin (Ub) is a small protein modifier that regulates many biological processes, including gene transcription, cell-cycle progression, DNA repair, apoptosis, virus budding and receptor endocytosis. Ub can be conjugated to target proteins either as a monomer or as Ub chains that vary in length and linkage type. The various types of Ub modification are linked to distinct physiological functions in cells. MonoUb, for example, regulates DNA repair and receptor endocytosis, whereas lysine 48-linked Ub chains label proteins for proteasomal degradation. More recently, the importance of chains conjugated through the other six lysines in Ub, known as atypical Ub chains, has been revealed. Atypical chains can be homotypic, sequentially using the same lysine residue in Ub for conjugation; mixed-linkage, utilizing several distinct lysines to connect consecutive Ub moieties; or heterologous, connecting Ub with other Ub-like modifiers. Here, we describe recent progress in the understanding of atypical Ub chain assembly and their recognition by Ub-binding domains, and we discuss further their functional roles in vivo.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište bb, 21000 Split, Croatia
| | - Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| |
Collapse
|
111
|
Yamashita Y, Kojima K, Tsukahara T, Agawa H, Yamada K, Amano Y, Kurotori N, Tanaka N, Sugamura K, Takeshita T. Ubiquitin-independent binding of Hrs mediates endosomal sorting of the interleukin-2 receptor beta-chain. J Cell Sci 2008; 121:1727-38. [PMID: 18445679 DOI: 10.1242/jcs.024455] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Several lines of evidence have revealed that ubiquitylation of membrane proteins serves as a signal for endosomal sorting into lysosomes or lytic vacuoles. The hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) interacts with ubiquitylated cargoes through its ubiquitin-interacting-motif domain (UIM domain), and plays an essential early role in endosomal sorting. Here, we show that the C-terminal region of Hrs, which does not contain the UIM domain, can bind to interleukin-2 receptor beta (IL-2Rbeta). We found a direct interaction between bacterially expressed IL-2Rbeta and Hrs in GST pull-down assays, indicating that their binding is independent of ubiquitin. Trafficking and degradation assays revealed that, similarly to wild-type IL-2Rbeta, an IL-2Rbeta mutant lacking all the cytoplasmic lysine residues is sorted from Hrs-positive early endosomes to LAMP1-positive late endosomes, resulting in degradation of the receptor. By contrast, an IL-2Rbeta mutant lacking the Hrs-binding region passes through early endosomes and is mis-sorted to compartments positive for the transferrin receptor. The latter mutant exhibits attenuated degradation. Taken together, these results indicate that precise sorting of IL-2Rbeta from early to late endosomes is mediated by Hrs, a known sorting component of the ubiquitin-dependent machinery, in a manner that is independent of UIM-ubiquitin binding.
Collapse
Affiliation(s)
- Yuki Yamashita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Baust T, Anitei M, Czupalla C, Parshyna I, Bourel L, Thiele C, Krause E, Hoflack B. Protein networks supporting AP-3 function in targeting lysosomal membrane proteins. Mol Biol Cell 2008; 19:1942-51. [PMID: 18287518 PMCID: PMC2366865 DOI: 10.1091/mbc.e08-02-0110] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 01/08/2023] Open
Abstract
The AP-3 adaptor complex targets selected transmembrane proteins to lysosomes and lysosome-related organelles. We reconstituted its preferred interaction with liposomes containing the ADP ribosylation factor (ARF)-1 guanosine triphosphatase (GTPase), specific cargo tails, and phosphatidylinositol-3 phosphate, and then we performed a proteomic screen to identify new proteins supporting its sorting function. We identified approximately 30 proteins belonging to three networks regulating either AP-3 coat assembly or septin polymerization or Rab7-dependent lysosomal transport. RNA interference shows that, among these proteins, the ARF-1 exchange factor brefeldin A-inhibited exchange factor 1, the ARF-1 GTPase-activating protein 1, the Cdc42-interacting Cdc42 effector protein 4, an effector of septin-polymerizing GTPases, and the phosphatidylinositol-3 kinase IIIC3 are key components regulating the targeting of lysosomal membrane proteins to lysosomes in vivo. This analysis reveals that these proteins, together with AP-3, play an essential role in protein sorting at early endosomes, thereby regulating the integrity of these organelles.
Collapse
Affiliation(s)
- Thorsten Baust
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Mihaela Anitei
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Cornelia Czupalla
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Iryna Parshyna
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Line Bourel
- Faculté de Pharmacie de Lille, Laboratoire de Chimie, BP 83 59006 Lille Cedex, France
| | - Christoph Thiele
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; and
| | - Eberhard Krause
- Institute of Molecular Pharmacology, 10 13125, Berlin, Germany
| | - Bernard Hoflack
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
113
|
Jean S, Moss T. A ubiquitin-conjugating enzyme, ube2d3.2, regulates xMLK2 and pronephros formation in Xenopus. Differentiation 2008; 76:431-41. [DOI: 10.1111/j.1432-0436.2007.00239.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
114
|
Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T. Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J 2008; 275:1540-1555. [PMID: 18312418 DOI: 10.1111/j.1742-4658.2008.06313.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV-1 efficiently infects susceptible cells and causes AIDS in humans. Although HIV can also enter the cells of Old World monkeys, it encounters a block before reverse transcription. Data have shown that this species-specific restriction is mediated by tripartite motif (TRIM)5alpha, whose molecular function is still undefined. Here, we show that TRIM5alpha functions as a RING-finger-type E3 ubiquitin ligase both in vitro and in vivo and ubiquitinates itself in cooperation with the E2 ubiquitin-conjugating enzyme UbcH5B. In addition to the self-ubiquitination, we show that TRIM5alpha is ubiquitinated by another E3 ubiquitin ligase, Ro52, and deubiquitinated by YopJ, one of the pathogenic proteins derived from Yersinia species. Thus, the ubiquitination of TRIM5alpha is catalyzed by itself and Ro52 and downregulated by YopJ. Unexpectedly, although TRIM5alpha is ubiquitinated, our results have revealed that the proteasome inhibitors MG115 and MG132 do not stabilize it in HeLa cells, suggesting that the ubiquitination of TRIM5alpha does not lead to proteasomal degradation. Importantly, TRIM5alpha is clearly conjugated by a single ubiquitin molecule (monoubiquitination). Our monoubiquitin-fusion assay suggests that monoubiquitination is a signal for TRIM5alpha to translocate from cytoplasmic bodies to the cytoplasm.
Collapse
Affiliation(s)
- Keiko Yamauchi
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Keiji Wada
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kunikazu Tanji
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Makoto Tanaka
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Tetsu Kamitani
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
115
|
Nishizawa Y, Katoh S, Koiwai H, Katoh E. EL5 is involved in root development as an anti-cell death ubiquitin ligase. PLANT SIGNALING & BEHAVIOR 2008; 3:148-50. [PMID: 19704739 PMCID: PMC2634009 DOI: 10.4161/psb.3.2.5081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 05/09/2023]
Abstract
Ubiquitin ligase (E3) plays a central role in substrate recognition during ubiquitination, a post-translational modification of proteins. Rice EL5 is an E3 with a RING-H2 finger domain (RFD) and its transcript is upregulated by a chitin elicitor. The EL5-RFD has been intensively studied and demonstrated to exhibit E3 activity. Its three-dimensional structure was determined for the first time in plant E3, and the amino acid residues required for the interaction with the ubiquitin-conjugating enzyme (E2) were identified. Recent analyses revealed that EL5 plays a crucial role as an E3 in the maintenance of cell viability during root development in rice. In this addendum, we report that the EL5-RFD catalyzes polyubiquitination via the Lys48 residue of ubiquitin. We also discuss the possible role of EL5 as an anti-cell death enzyme. We hypothesize that EL5 might be responsible for mediating the degradation of cytotoxic proteins produced in root cells after the actions of phytohormones.
Collapse
Affiliation(s)
- Yoko Nishizawa
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Japan
| | | | | | | |
Collapse
|
116
|
Abstract
Accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. In this article, we provide a comprehensive summary of the roles of the Nedd4-like family of E3 ubiquitin ligases in human cancer. There are nine members of the Nedd4-like E3 family, all of which share a similar structure, including a C2 domain at the N-terminus, two to four WW domains in the middle of the protein, and a homologous to E6-AP COOH terminus domain at the C-terminus. The assertion that Nedd4-like E3s play a role in cancer is supported by the overexpression of Smurf2 in esophageal squamous cell carcinoma, WWP1 in prostate and breast cancer, Nedd4 in prostate and bladder cancer, and Smurf1 in pancreatic cancer. Because Nedd4-like E3s regulate ubiquitin-mediated trafficking, lysosomal or proteasomal degradation, and nuclear translocation of multiple proteins, they modulate important signaling pathways involved in tumorigenesis like TGFbeta, EGF, IGF, VEGF, SDF-1, and TNFalpha. Additionally, several Nedd4-like E3s directly regulate various cancer-related transcription factors from the Smad, p53, KLF, RUNX, and Jun families. Interestingly, multiple Nedd4-like E3s show ligase independent function. Furthermore, Nedd4-like E3s themselves are frequently regulated by phosphorylation, ubiquitination, translocation, and transcription in cancer cells. Because the regulation and biological output of these E3s is such a complex process, study of the role of these E3s in cancer development poses some challenges. However, understanding the oncogenic potential of these E3s may facilitate the identification and development of biomarkers and drug targets in human cancer.
Collapse
Affiliation(s)
- Ceshi Chen
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47, New Scotland Ave., Albany, NY 12208, USA.
| | | |
Collapse
|
117
|
Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 2007; 377:162-80. [PMID: 18241885 DOI: 10.1016/j.jmb.2007.12.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 11/20/2022]
Abstract
Ubiquilin/PLIC proteins belong to the family of UBL-UBA proteins implicated in the regulation of the ubiquitin-dependent proteasomal degradation of cellular proteins. A human presenilin-interacting protein, ubiquilin-1, has been suggested as potential therapeutic target for treating Huntington's disease. Ubiquilin's interactions with mono- and polyubiquitins are mediated by its UBA domain, which is one of the tightest ubiquitin binders among known ubiquitin-binding domains. Here we report the three-dimensional structure of the UBA domain of ubiquilin-1 (UQ1-UBA) free in solution and in complex with ubiquitin. UQ1-UBA forms a compact three-helix bundle structurally similar to other known UBAs, and binds to the hydrophobic patch on ubiquitin with a K(d) of 20 microM. To gain structural insights into UQ1-UBA's interactions with polyubiquitin chains, we have mapped the binding interface between UQ1-UBA and Lys48- and Lys63-linked di-ubiquitins and characterized the strength of UQ1-UBA binding to these chains. Our NMR data show that UQ1-UBA interacts with the individual ubiquitin units in both chains in a mode similar to its interaction with mono-ubiquitin, although with an improved binding affinity for the chains. Our results indicate that, in contrast to UBA2 of hHR23A that has strong binding preference for Lys48-linked chains, UQ1-UBA shows little or no binding selectivity toward a particular chain linkage or between the two ubiquitin moieties in the same chain. The structural data obtained in this study provide insights into the possible structural reasons for the diversity of polyubiquitin chain recognition by UBA domains.
Collapse
|
118
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
119
|
Barriere H, Nemes C, Du K, Lukacs GL. Plasticity of polyubiquitin recognition as lysosomal targeting signals by the endosomal sorting machinery. Mol Biol Cell 2007; 18:3952-65. [PMID: 17686993 PMCID: PMC1995726 DOI: 10.1091/mbc.e07-07-0678] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal targeting is fundamental for the regulated disposal of ubiquitinated membrane proteins from the cell surface. To elucidate ubiquitin (Ub) configurations that are necessary and sufficient as multivesicular body (MVB)/lysosomal-sorting motifs, the intraendosomal destination and transport kinetics of model transmembrane cargo molecules bearing monoubiquitinated, multi-monoubiquitinated, or polyubiquitinated cytoplasmic tails were determined. Monomeric CD4 chimeras with K63-linked poly-Ub chains and tetrameric CD4-mono-Ub chimeras were rapidly targeted to the lysosome. In contrast, lysosomal delivery of CD4 chimeras exposing K48-linked Ub chains was delayed, whereas delivery of monoubiquitinated CD4 chimeras was undetectable. Similar difference was observed in the lysosomal targeting of mono- versus polyubiquitinated invariant chain and CD4 ubiquitinated by the MARCH (membrane-associated RING-CH) IV Ub ligase. Consistent with this, Hrs (hepatocyte growth factor regulated tyrosine kinase phosphorylated substrate), an endosomal sorting adaptor, binds preferentially to K63-Ub chain and negligibly to mono-Ub. These results highlight the plasticity of Ub as a sorting signal and its recognition by the endosomal sorting machinery, and together with previous data, suggest a regulatory role for assembly and disassembly of Ub chains of specific topology in lysosomal cargo sorting.
Collapse
Affiliation(s)
- Herve Barriere
- Hospital for Sick Children Research Institute, Department of Biochemistry and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5G 1X8
| | | | | | | |
Collapse
|
120
|
Hoeller D, Hecker CM, Wagner S, Rogov V, Dötsch V, Dikic I. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol Cell 2007; 26:891-8. [PMID: 17588522 DOI: 10.1016/j.molcel.2007.05.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/15/2007] [Accepted: 05/16/2007] [Indexed: 01/01/2023]
Abstract
Ubiquitin (Ub)-binding domains (UBDs) are key elements in conveying Ub-based cellular signals. UBD-containing proteins interact with ubiquitinated targets and control numerous biological processes. They themselves undergo UBD-dependent monoubiquitination, which promotes intramolecular binding of the UBD to the attached Ub and leads to their inactivation. Here, we report that, in contrast to the established ubiquitination pathway, the presence of UBDs allows the ubiquitination of host proteins independently of E3 ligases. UBDs of different types, including UBA, UIM, UBM, NFZ, and UBZ, can directly cooperate with Ub-charged E2 enzymes to promote monoubiquitination. Using FRET and siRNA technologies, we verify that Ub-loaded E2 and substrates interact in cells and that E2 enzymes are essential for their monoubiquitination in vivo. This modification is mechanistically and functionally distinct from E3-mediated and growth factor-dependent monoubiquitination.
Collapse
Affiliation(s)
- Daniela Hoeller
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Nikko E, André B. Split-ubiquitin two-hybrid assay to analyze protein-protein interactions at the endosome: application to Saccharomyces cerevisiae Bro1 interacting with ESCRT complexes, the Doa4 ubiquitin hydrolase, and the Rsp5 ubiquitin ligase. EUKARYOTIC CELL 2007; 6:1266-77. [PMID: 17513562 PMCID: PMC1951119 DOI: 10.1128/ec.00024-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 05/07/2007] [Indexed: 11/20/2022]
Abstract
Targeting of membrane proteins into the lysosomal/vacuolar lumen for degradation requires their prior sorting into multivesicular bodies (MVB). The MVB sorting pathway depends on ESCRT-0, -I, -II, and -III protein complexes functioning on the endosomal membrane and on additional factors, such as Bro1/Alix and the ubiquitin ligase Rsp5/Nedd4. We used the split-ubiquitin two-hybrid assay to analyze the interaction partners of yeast Bro1 at its natural cellular location. We show that Bro1 interacts with ESCRT-I and -III components, including Vps23, the Saccharomyces cerevisiae homologue of human Tsg101. These interactions do not require the C-terminal proline-rich domain (PRD) of Bro1. Rather, this PRD interacts with the Doa4 deubiquitinating enzyme to recruit it to the endosome. This interaction is disrupted by a single amino acid substitution in the conserved ELC box motif in Doa4. The PRD of Bro1 also mediates an association with Rsp5, and this interaction appears to be conserved, as Alix, the human homologue of Bro1, coimmunoprecipitates with Nedd4 in yeast lysates. We further show that the Bro1 PRD domain is essential to MVB sorting of only cargo proteins whose sorting to the vacuolar lumen is dependent on their own ubiquitination and Doa4. The Bro1 region preceding the PRD, however, is required for MVB sorting of proteins irrespective of whether their targeting to the vacuole is dependent on their ubiquitination and Doa4. Our data indicate that Bro1 interacts with several ESCRT components and contributes via its PRD to associating ubiquitinating and deubiquitinating enzymes with the MVB sorting machinery.
Collapse
Affiliation(s)
- Elina Nikko
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
122
|
Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, Jetten AM. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 2007; 67:6647-56. [PMID: 17621610 PMCID: PMC2391092 DOI: 10.1158/0008-5472.can-07-0924] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we examine the potential role of receptor-associated protein 80 (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), in DNA damage response and double-strand break (DSB) repair. We show that following ionizing radiation and treatment with DNA-damaging agents, RAP80 translocates to discrete nuclear foci that colocalize with those of gamma-H2AX. The UIMs and the region of amino acids 204 to 304 are critical for the relocalization of RAP80 to ionizing radiation-induced foci (IRIF). These observations suggest that RAP80 becomes part of a DNA repair complex at the sites of IRIF. We also show that RAP80 forms a complex with the tumor repressor BRCA1 and that this interaction is mediated through the BRCA1 COOH-terminal repeats of BRCA1. The UIMs are not required for the interaction of RAP80 with BRCA1. Knockdown of RAP80 in HEK293 cells significantly reduced DSB-induced homology-directed recombination (HDR). Moreover, inhibition of RAP80 expression by small interfering RNA increased radiosensitivity, whereas increased radioresistance was observed in human breast cancer MCF-7 cells with overexpression of RAP80. Taken together, our data suggest that RAP80 plays an important role in DNA damage response signaling and HDR-mediated DSB repair. We further show that RAP80 can function as a substrate of the ataxia-telangiectasia mutated protein kinase in vitro, which phosphorylates RAP80 at Ser(205) and Ser(402). We show that this phosphorylation is not required for the migration of RAP80 to IRIF.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Li-Ping Li
- Department of Radiation Oncology, Vanderbilt University Medical Center, 1301 22 Avenue South, Nashville, TN 37232
| | - Grace Liao
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Fen Xia
- Department of Radiation Oncology, Vanderbilt University Medical Center, 1301 22 Avenue South, Nashville, TN 37232
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- To whom correspondence should be addressed, Tel: 919-541-2768; Fax: 919-541-4133, E-mail:
| |
Collapse
|
123
|
French M, Swanson K, Shih SC, Radhakrishnan I, Hicke L. Identification and characterization of modular domains that bind ubiquitin. Methods Enzymol 2007; 399:135-57. [PMID: 16338353 DOI: 10.1016/s0076-6879(05)99009-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To receive and transmit the information carried by ubiquitin signals, cells have evolved an array of modular ubiquitin-binding domains. These domains bind directly and noncovalently to monoubiquitin and polyubiquitin chains and are found within proteins that function in diverse biological processes. Ubiquitin-binding domains characterized thus far are generally small and structurally diverse, yet they all interact with the same hydrophobic patch on the surface of ubiquitin. The rapid identification and characterization of ubiquitin-binding domains has been accomplished through the extensive use of bioinformatics, biochemistry, molecular biology, and biophysics. Here, we discuss the strategies and tools that have been most successful in the identification and characterization of ubiquitin-binding domains.
Collapse
Affiliation(s)
- Michael French
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | |
Collapse
|
124
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
125
|
Omerovic J, Santangelo L, Puggioni EMR, Marrocco J, Dall'Armi C, Palumbo C, Belleudi F, Di Marcotullio L, Frati L, Torrisi MR, Cesareni G, Gulino A, Alimandi M. The E3 ligase Aip4/Itch ubiquitinates and targets ErbB‐4 for degradation. FASEB J 2007; 21:2849-62. [PMID: 17463226 DOI: 10.1096/fj.06-7925com] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ErbB-4 receptors are unique in the EGFR/ErbB family for the ability to associate with WW domain-containing proteins. To identify new ligands of the cytoplasmic tail of ErbB-4, we panned a brain cDNA phage library with ErbB-4 peptides containing sequence motifs corresponding to putative docking sites for class-I WW domains. This approach led to identification of AIP4/Itch, a member of the Nedd4-like family of E3 ubiquitin protein ligases, as a protein that specifically interacts with and ubiquitinates ErbB-4 in vivo. Interaction with the ErbB-4 receptors occurs via the WW domains of AIP4/Itch. Functional analyses demonstrate that AIP4/Itch is recruited to the ErbB-4 receptor to promote its polyubiquitination and degradation, thereby regulating stability of the receptor and access of receptor intracellular domains to the nuclear compartment. These findings expand our understanding of the mechanisms contributing to the integrity of the ErbB signaling network and mechanistically link the cellular ubiquitination pathway of AIP4/Itch to the ErbB-4 receptor.
Collapse
Affiliation(s)
- Jasminka Omerovic
- Department of Experimental Medicine and Pathology, University La Sapienza, Viale Regina Elena 324 00161, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Hasseine LK, Murdaca J, Suavet F, Longnus S, Giorgetti-Peraldi S, Van Obberghen E. Hrs is a positive regulator of VEGF and insulin signaling. Exp Cell Res 2007; 313:1927-42. [PMID: 17445799 DOI: 10.1016/j.yexcr.2007.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/25/2022]
Abstract
Both VEGF and insulin are implicated in the pathogenesis of diabetic retinopathy. While it has been established for many years that the number of cell surface receptors impacts upon VEGF and insulin action, little is known about the precise machinery and proteins driving VEGF-R2 and IR degradation. Here, we investigate the role of Hepatocyte growth factor-Regulated tyrosine kinase Substrate (Hrs), a regulator of RTK trafficking, in VEGF and insulin signaling. We report that ectopic expression of Hrs increases VEGF-R2 and IR number and tyrosine phosphorylation, leading to amplification of their downstream signaling. The UIM (Ubiquitin Interacting Motif) domain of Hrs is required for Hrs-induced increases in VEGF-R2, but not in IR. Furthermore, Hrs is tyrosine-phosphorylated in response to VEGF and insulin. We show that the UIM domain is required for Hrs phosphorylation in response to VEGF, but not to insulin. Importantly, Hrs co-localizes with both VEGF-R2 and IR and co-immunoprecipitates with both in a manner independent of the Hrs-UIM domain. Finally, we demonstrate that Hrs inhibits Nedd4-mediated VEGF-R2 degradation and acts additively with Grb10. We conclude that Hrs is a positive regulator of VEGF-R2 and IR signaling and that ectopic expression of Hrs protects both VEGF-R2 and IR from degradation.
Collapse
|
127
|
Woelk T, Sigismund S, Penengo L, Polo S. The ubiquitination code: a signalling problem. Cell Div 2007; 2:11. [PMID: 17355622 PMCID: PMC1832185 DOI: 10.1186/1747-1028-2-11] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/13/2007] [Indexed: 11/10/2022] Open
Abstract
Ubiquitin is a highly versatile post-translational modification that controls virtually all types of cellular events. Over the past ten years we have learned that diverse forms of ubiquitin modifications and of ubiquitin binding modules co-exist in the cell, giving rise to complex networks of protein:protein interactions. A central problem that continues to puzzle ubiquitinologists is how cells translate this myriad of stimuli into highly specific responses. This is a classical signalling problem. Here, we draw parallels with the phosphorylation signalling pathway and we discuss the expanding repertoire of ubiquitin signals, signal tranducers and signalling-regulated E3 enzymes. We examine recent advances in the field, including a new mechanism of regulation of E3 ligases that relies on ubiquitination.
Collapse
Affiliation(s)
- Tanja Woelk
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Sara Sigismund
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Lorenza Penengo
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Simona Polo
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
128
|
Kalesnikoff J, Rios EJ, Chen CC, Alejandro Barbieri M, Tsai M, Tam SY, Galli SJ. Roles of RabGEF1/Rabex-5 domains in regulating Fc epsilon RI surface expression and Fc epsilon RI-dependent responses in mast cells. Blood 2007; 109:5308-17. [PMID: 17341663 PMCID: PMC1890836 DOI: 10.1182/blood-2007-01-067363] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RabGEF1/Rabex-5, a guanine nucleotide exchange factor (GEF) for the endocytic pathway regulator, Rab5, contains a Vps9 domain, an A20-like zinc finger (ZnF) domain, and a coiled coil domain. To investigate the importance of these domains in regulating receptor internalization and cell activation, we lentivirally delivered RabGEF1 mutants into RabGEF1-deficient (-/-) mast cells and examined Fc epsilon RI-dependent responses. Wild-type RabGEF1 expression corrected phenotypic abnormalities in -/- mast cells, including decreased basal Fc epsilon RI expression, slowed Fc epsilon RI internalization, elevated IgE + Ag-induced degranulation and IL-6 production, and the decreased ability of -/- cytosol to support endosome fusion. We showed that RabGEF1's ZnF domain has ubiquitin ligase activity. Moreover, the coiled coil domain of RabGEF1 is required for Rabaptin-5 binding and for maintaining basal levels of Rabaptin-5 and surface Fc epsilon RI. However, mutants lacking either of these domains normalized phenotypic abnormalities in IgE + antigen-activated -/- mast cells. By contrast, correction of these -/- phenotypes required a functional Vps9 domain. Thus, Fc epsilon RI-mediated mast cell functional activation is dependent on RabGEF1's GEF activity.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Yan J, Kim YS, Yang XP, Albers M, Koegl M, Jetten AM. Ubiquitin-interaction motifs of RAP80 are critical in its regulation of estrogen receptor alpha. Nucleic Acids Res 2007; 35:1673-86. [PMID: 17311814 PMCID: PMC1865050 DOI: 10.1093/nar/gkl1112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we demonstrate that receptor-associated protein 80 (RAP80) interacts with estrogen receptor alpha (ERα) in an agonist-dependent manner. The interaction is specific for ERα as ERβ and several other nuclear receptors tested did not interact with RAP80. Interaction between RAP80 and ERα was supported by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation analyses. The hinge/ligand-binding domain of ERα is sufficient for interaction with RAP80. RAP80 overexpression reduces ERα polyubiquitination, increases the level of ERα protein, and enhances ERα-mediated transactivation. Knockdown of endogenous RAP80 expression by small-interfering RNA (siRNA) reduced ERα protein level and the E2-dependent induction of pS2. In this study, we also demonstrate that RAP80 contains two functional ubiquitin-interaction motifs (UIMs) that are able to bind ubiquitin and to direct monoubiquitination of RAP80. Deletion of these UIMs does not affect the ability of RAP80 to interact with ERα, but eliminates the effects of RAP80 on ERα polyubiquitination, the level of ERα protein, and ERα-mediated transcription. These data indicate that the UIMs in RAP80 are critical for the function of RAP80. Our study identifies ERα as a new RAP80-interacting protein and suggests that RAP80 may be an important modulator of ERα activity.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Michael Albers
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Manfred Koegl
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
- *To whom correspondence should be addressed. 919-541-2768919-541-4133
| |
Collapse
|
130
|
Kirkin V, Dikic I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 2007; 19:199-205. [PMID: 17303403 DOI: 10.1016/j.ceb.2007.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
Besides tagging proteins for degradation, ubiquitin is now recognized as a signaling module for diverse cellular processes, including progression through the cell cycle, DNA repair, gene transcription, receptor trafficking and endocytosis. Recent advances have indicated the existence of a wide variety of ubiquitin-binding proteins that, upon recognition of conjugated ubiquitin moieties, can control assembly of complex signaling networks. Small ubiquitin-like proteins, like SUMO, emerge to play biological roles distinct from ubiquitin, and require specific recognition by a dedicated set of proteins. Identification and characterization of recognition motifs and domains for ubiquitin-like proteins have just begun, promising new insights into the diversity of functions ubiquitin family proteins have in physiological and pathological settings.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Institute of Biochemistry II, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | | |
Collapse
|
131
|
Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 2007; 26:923-34. [PMID: 17268548 PMCID: PMC1852828 DOI: 10.1038/sj.emboj.7601560] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 12/21/2006] [Indexed: 01/13/2023] Open
Abstract
A major function of the p53 tumor suppressor is the induction of a pleiotropic apoptotic program in response to stress through transcription-dependent and -independent mechanisms. In particular, this includes a direct apoptotic role of p53 at the mitochondria. Stress-induced p53 translocation to the mitochondria with subsequent outer membrane permeabilization is a common early component in p53-mediated apoptosis in normal and transformed cells. However, the mechanism of p53 delivery to the mitochondria remains unknown. Here, we show that the cytoplasm contains a separate and distinct p53 pool that is the major source for p53 translocation to the mitochondria upon its stress-induced stabilization. Using various manipulations that enhance or diminish p53 ubiquitylation, our data provide evidence that Mdm2-mediated monoubiquitylation of p53 greatly promotes its mitochondrial translocation and thus its direct mitochondrial apoptosis. On the other hand, p53 does not require Mdm2 as a shuttler. Upon arrival at the mitochondria, our data suggest that p53 undergoes rapid deubiquitylation by mitochondrial HAUSP via a stress-induced mitochondrial p53-HAUSP complex. This generates the apoptotically active non-ubiquitylated p53. Taken together, we propose a novel model for mitochondrial p53 targeting, whereby a distinct cytoplasmic pool of stabilized monoubiquitylated p53, generated in resting cells by basal levels of Mdm2-type ligases, is subject to a binary switch from a fate of inactivation via subsequent polyubiquitylation and degradation in unstressed cells, to a fate of activation via mitochondrial trafficking.
Collapse
Affiliation(s)
- Natasha D Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY, USA
| | - Sonja Wolff
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY, USA
| | - Susan Erster
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY, USA
| | - Kerstin Becker
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY, USA
- Department of Pathology, Stony Brook University, Stony Brook, New York, NY 11794-869, USA. Tel.: +1 631 444 2459; Fax: +1 631 444 3424; E-mail:
| |
Collapse
|
132
|
Stamenova SD, French ME, He Y, Francis SA, Kramer ZB, Hicke L. Ubiquitin binds to and regulates a subset of SH3 domains. Mol Cell 2007; 25:273-84. [PMID: 17244534 PMCID: PMC2713028 DOI: 10.1016/j.molcel.2006.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/19/2006] [Accepted: 12/21/2006] [Indexed: 01/28/2023]
Abstract
SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that bind to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain and that ubiquitin binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands.
Collapse
Affiliation(s)
- Svetoslava D Stamenova
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
133
|
Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2007; 127:1401-13. [PMID: 17190603 DOI: 10.1016/j.cell.2006.09.051] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 08/25/2006] [Accepted: 09/29/2006] [Indexed: 11/21/2022]
Abstract
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.
Collapse
Affiliation(s)
- Bernat Crosas
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Nam JM, Onodera Y, Mazaki Y, Miyoshi H, Hashimoto S, Sabe H. CIN85, a Cbl-interacting protein, is a component of AMAP1-mediated breast cancer invasion machinery. EMBO J 2007; 26:647-56. [PMID: 17255943 PMCID: PMC1794391 DOI: 10.1038/sj.emboj.7601534] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 12/07/2006] [Indexed: 01/22/2023] Open
Abstract
Expression of AMAP1 correlates well with the invasive phenotypes and malignancy of human primary breast carcinomas. AMAP1 recruits its binding proteins, such as cortactin and paxillin, to sites of Arf6 activation to form invadopodia. A mouse ortholog of AMAP1, ASAP1, is known to bind to CIN85, a binding partner of an E3 ligase, Cbl. Here, we found that CIN85 colocalizes with AMAP1 at invadopodia, and binding of AMAP1 with CIN85 is important for the invasive activities of breast cancer cells, including MDA-MB-231. siRNA-mediated silencing of CIN85, as well as Cbl, also inhibited the invasion. We moreover found that AMAP1 is monoubiquitinated, rather than polyubiquitinated, by virtue of Cbl and provide evidence that the ability of AMAP1 to be monoubiquitinated is important for its involvement in invasion. Our results indicate that CIN85, as well as Cbl, which is a well-known suppressor of growth factor receptor signaling, can be positively involved in tumor invasion, and suggest that a complex epigenetic process is involved in AMAP1 function in breast cancer cell invasion.
Collapse
Affiliation(s)
- Jin-Min Nam
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuhito Onodera
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuichi Mazaki
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Shigeru Hashimoto
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan. Tel.: +81 6 6872 4814; Fax: +81 6 6871 6686; E-mail:
| |
Collapse
|
135
|
Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K. Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr Biol 2007; 16:2265-70. [PMID: 17113392 DOI: 10.1016/j.cub.2006.09.062] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 11/17/2022]
Abstract
Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.
Collapse
Affiliation(s)
- Brian Brissoni
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Ubiquitin is an important regulator of diverse biological functions including cell cycle progression, apoptosis, cell proliferation, and DNA damage responses. Crucial proteins involved in the control of such diverse functions are modified by ubiquitin and are frequently altered during oncogenesis. Here, we define such proteins as key-nodes regulated by ubiquitin, discuss examples of their oncogenic aberrations, and indicate how pharmacologic manipulation of such molecular hubs might improve anticancer therapy.
Collapse
Affiliation(s)
- Nicola Crosetto
- Institute of Biochemistry II, Goethe University Hospital, Frankfort on the Main, Germany
| | | | | |
Collapse
|
137
|
Parker JL, Bielen AB, Dikic I, Ulrich HD. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:881-9. [PMID: 17251197 PMCID: PMC1807963 DOI: 10.1093/nar/gkl1102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bypassing of DNA lesions by damage-tolerant DNA polymerases depends on the interaction of these enzymes with the monoubiquitylated form of the replicative clamp protein, PCNA. We have analyzed the contributions of ubiquitin and PCNA binding to damage bypass and damage-induced mutagenesis in Polymerase η (encoded by RAD30) from the budding yeast Saccharomyces cerevisiae. We report here that a ubiquitin-binding domain provides enhanced affinity for the ubiquitylated form of PCNA and is essential for in vivo function of the polymerase, but only in conjunction with a basal affinity for the unmodified clamp, mediated by a conserved PCNA interaction motif. We show that enhancement of the interaction and function in damage tolerance does not depend on the ubiquitin attachment site within PCNA. Like its mammalian homolog, budding yeast Polymerase η itself is ubiquitylated in a manner dependent on its ubiquitin-binding domain.
Collapse
Affiliation(s)
- Joanne L. Parker
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, United Kingdom Max Planck Insitute for Terrestrial Microbiology, Karl-von-Frisch-Straße, D-35043 Marburg, Germany Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Aleksandra B. Bielen
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, United Kingdom Max Planck Insitute for Terrestrial Microbiology, Karl-von-Frisch-Straße, D-35043 Marburg, Germany Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Ivan Dikic
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, United Kingdom Max Planck Insitute for Terrestrial Microbiology, Karl-von-Frisch-Straße, D-35043 Marburg, Germany Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Helle D. Ulrich
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, United Kingdom Max Planck Insitute for Terrestrial Microbiology, Karl-von-Frisch-Straße, D-35043 Marburg, Germany Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
- *To whom the correspondence should be addressed. Tel: +44 1707 625821; Fax: +44 1707 625550; E-mail:
| |
Collapse
|
138
|
Cao Z, Wu X, Yen L, Sweeney C, Carraway KL. Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 2007; 27:2180-8. [PMID: 17210635 PMCID: PMC1820496 DOI: 10.1128/mcb.01245-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms underlying epidermal growth factor (EGF) receptor tyrosine kinase down-regulation in response to growth factor binding are coming into focus and involve cbl-mediated receptor ubiquitination followed by lysosomal degradation. However, mechanisms underlying the ligand-stimulated degradation of the related receptor tyrosine kinases of the ErbB family do not involve cbl and remain unexplored. Previous studies have demonstrated that the E3 ubiquitin ligase Nrdp1 contributes to the maintenance of steady-state ErbB3 levels by mediating its growth factor-independent degradation. Here we demonstrate that treatment of cells with the ErbB3 ligand neuregulin-1 (NRG1) stabilizes the deubiquitinating enzyme USP8, which in turn stabilizes Nrdp1. The catalytic activity of USP8 is required for NRG1-induced Nrdp1 stabilization. We provide evidence that Akt-mediated phosphorylation of USP8 threonine residue T907 contributes to USP8 stability. Finally, we demonstrate that Nrdp1 or USP8 knockdown suppresses NRG1-induced ErbB3 ubiquitination and degradation in MCF7 breast cancer cells. We conclude that an NRG1-induced protein stability cascade involving USP8 and Nrdp1 mediates the down-regulation of ErbB3. Our observations raise the possibility that the ligand-induced augmentation of pathways involved in the maintenance of basal levels of receptor tyrosine kinases can contribute to ligand-stimulated down-regulation.
Collapse
Affiliation(s)
- Zhongwei Cao
- UC Davis Cancer Center, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
139
|
|
140
|
Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2006; 27:1147-57. [PMID: 16237670 DOI: 10.1002/bies.20304] [Citation(s) in RCA: 550] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Germana Meroni
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
141
|
Nikolaou S, Gasser RB. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 2006; 134:461-82. [PMID: 17107637 DOI: 10.1017/s0031182006001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/05/2022]
Abstract
Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
142
|
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins are small signaling molecules that are involved in many aspects of cell function. It has been assumed that Ub and Ubl have functionally distinct roles because they use different conjugation machineries and bind to different effector proteins. This paradigm, however, must be revisited after recent findings that signaling cascades mediated by Ub and the Ubl NEDD8 (Neural precursor cell-Expressed Developmentally Down-regulated 8) in the regulation of epidermal growth factor receptor (EGFR) endocytosis are redundant. In this context, Ub and NEDD8 share the same E3 ligase, Cbl, and are recognized by identical components of the endocytic sorting machinery. This unexpected redundancy introduces additional complexity to the current view of Ub signaling pathways.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute of Biochemistry II, Johann Wolfgang Goethe-University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | |
Collapse
|
143
|
Abstract
The covalent modification of proteins by ubiquitination is a major regulatory mechanism of protein degradation and quality control, endocytosis, vesicular trafficking, cell-cycle control, stress response, DNA repair, growth-factor signalling, transcription, gene silencing and other areas of biology. A class of specific ubiquitin-binding domains mediates most of the effects of protein ubiquitination. The known membership of this group has expanded rapidly and now includes at least sixteen domains: UBA, UIM, MIU, DUIM, CUE, GAT, NZF, A20 ZnF, UBP ZnF, UBZ, Ubc, UEV, UBM, GLUE, Jab1/MPN and PFU. The structures of many of the complexes with mono-ubiquitin have been determined, revealing interactions with multiple surfaces on ubiquitin. Inroads into understanding polyubiquitin specificity have been made for two UBA domains, whose structures have been characterized in complex with Lys48-linked di-ubiquitin. Several ubiquitin-binding domains, including the UIM, CUE and A20 ZnF (zinc finger) domains, promote auto-ubiquitination, which regulates the activity of proteins that contain them. At least one of these domains, the A20 ZnF, acts as a ubiquitin ligase by recruiting a ubiquitin-ubiquitin-conjugating enzyme thiolester adduct in a process that depends on the ubiquitin-binding activity of the A20 ZnF. The affinities of the mono-ubiquitin-binding interactions of these domains span a wide range, but are most commonly weak, with Kd>100 microM. The weak interactions between individual domains and mono-ubiquitin are leveraged into physiologically relevant high-affinity interactions via several mechanisms: ubiquitin polymerization, modification multiplicity, oligomerization of ubiquitinated proteins and binding domain proteins, tandem-binding domains, binding domains with multiple ubiquitin-binding sites and co-operativity between ubiquitin binding and binding through other domains to phospholipids and small G-proteins.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
144
|
Heir R, Ablasou C, Dumontier E, Elliott M, Fagotto-Kaufmann C, Bedford FK. The UBL domain of PLIC-1 regulates aggresome formation. EMBO Rep 2006; 7:1252-8. [PMID: 17082820 PMCID: PMC1794689 DOI: 10.1038/sj.embor.7400823] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/04/2006] [Accepted: 09/04/2006] [Indexed: 12/25/2022] Open
Abstract
Defects in protein folding and the proteasomal pathway have been linked with many neurodegenerative diseases. PLIC-1 (protein linking IAP to the cytoskeleton) is a ubiquitin-like protein that binds to the ubiquitin-interacting motif (UIM) of the proteasomal subunit S5a. Here, we show that PLIC-1 also binds to the UIM proteins ataxin 3--a deubiquitinating enzyme--HSJ1a--a co-chaperone--and EPS15 (epidermal growth factor substrate 15)--an endocytic protein. Using a polyglutamine (polyQ) disease model, we found that both endogenous PLIC-1 and EPS15 localize to perinuclear aggresomes, and that polyQ enhances their in vivo interaction. We show that knockdown of PLIC-1 and EPS15 by RNA interference reduces aggresome formation. In addition, PLIC-1(DeltaUBL) functions as a dominant-negative mutant, blocking both polyQ transport to aggresomes and the association of EPS15 with dispersed aggregates. We also show that PLIC-1 is upregulated by arsenite-induced protein misfolding. These results indicate a role for PLIC-1 in the protein aggregation-stress pathway, and we propose a novel function for the ubiquitin-like (UBL) domain--by means of UBL-UIM interactions--in transport to aggresomes.
Collapse
Affiliation(s)
- Renu Heir
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A2B2, Canada
| | - Celine Ablasou
- Laboratoire d'Immunologie Equipe d'Accueil 2686, Faculte de Medecine, Pole Recherche, 1 Place de Verdun, 59045 Lille, France
| | - Emilie Dumontier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A2B2, Canada
| | - Meghan Elliott
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A2B2, Canada
| | - Christine Fagotto-Kaufmann
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A2B2, Canada
| | - Fiona K Bedford
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A2B2, Canada
- Tel: +1 514 398 1426; Fax: +1 514 398 5047; E-mail:
| |
Collapse
|
145
|
Dikic I, Crosetto N, Calatroni S, Bernasconi P. Targeting ubiquitin in cancers. Eur J Cancer 2006; 42:3095-102. [PMID: 17084074 DOI: 10.1016/j.ejca.2006.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 05/10/2006] [Indexed: 11/15/2022]
Abstract
Ubiquitin (Ub) is a small protein modifier involved in cellular functions such as cell cycle, apoptosis, cell signalling, endocytosis, transcription and DNA repair. Ubiquitin operates as a reversible and highly versatile regulatory signal, which may be read and interpreted by an expanding number of Ub-binding domains (UBD). There is accumulating evidence that mutations or altered expression of ubiquitylating or de-ubiquitylating enzymes as well as of Ub-binding proteins affect crucial mediators of such functions and are found in several malignancies. Here we discuss how oncogenic alterations in the Ub system can be targeted by anti-cancer therapies.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany.
| | | | | | | |
Collapse
|
146
|
Hirano S, Suzuki N, Slagsvold T, Kawasaki M, Trambaiolo D, Kato R, Stenmark H, Wakatsuki S. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nat Struct Mol Biol 2006; 13:1031-2. [PMID: 17057714 DOI: 10.1038/nsmb1163] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/03/2006] [Indexed: 11/09/2022]
Abstract
ESCRT-II, a complex that sorts ubiquitinated membrane proteins to lysosomes, localizes to endosomes through interaction between the Vps36 subunit's GLUE domain and phosphatidylinositides (PIs). In yeast, a ubiquitin (Ub)-interacting NZF domain is inserted in Vps36 GLUE, whereas its mammalian counterpart, Eap45 GLUE, lacks the NZF domain. In the Eap45 GLUE-Ub complex structure, Ub binds far from the proposed PI-binding site of Eap45 GLUE, suggesting their independent binding.
Collapse
Affiliation(s)
- Satoshi Hirano
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N. The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 2006; 580:6233-41. [PMID: 17070805 DOI: 10.1016/j.febslet.2006.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/27/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
The Rybp protein has been promoted as a Polycomb group (PcG)-associated protein, but its molecular function has remained elusive. Here we show that Rybp is a novel ubiquitin binding protein and is itself ubiquitinated. The Rybp interacting PcG protein Ring1B, a known ubiquitin E3 ligase, promotes Rybp ubiquitination. Moreover, one target of Rybp's ubiquitin binding domain appears to be ubiquitinated histone H2A; this histone is a substrate for Ring1B's E3 ligase activity in association with gene silencing processes. These findings on Rybp provide a further link between the ubiquitination system and PcG transcriptional repressors.
Collapse
Affiliation(s)
- Rachele Arrigoni
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 809 Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Woelk T, Oldrini B, Maspero E, Confalonieri S, Cavallaro E, Di Fiore PP, Polo S. Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol 2006; 8:1246-54. [PMID: 17013377 DOI: 10.1038/ncb1484] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/05/2006] [Indexed: 11/08/2022]
Abstract
Many proteins contain ubiquitin-binding domains or motifs (UBDs), such as the UIM (ubiquitin-interacting motif) and are referred to as ubiquitin receptors. Ubiquitin receptors themselves are frequently monoubiquitinated by a process that requires the presence of a UBD and is referred to as coupled monoubiquitination. Using a UIM-containing protein, eps15, as a model, we show here that coupled monoubiquitination strictly depends on the ability of the UIM to bind to monoubiquitin (mUb). We found that the underlying molecular mechanism is based on interaction between the UIM and a ubiquitin ligase (E3), which has itself been modified by ubiquitination. Furthermore, we demonstrate that the in vivo ubiquitination of members of the Nedd4 family of E3 ligases correlates with their ability to monoubiquitinate eps15. Thus, our results clarify the mechanism of coupled monoubiquitination and identify the ubiquitination of E3 ligases as a critical determinant in this process.
Collapse
Affiliation(s)
- Tanja Woelk
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Ubiquitin and ubiquitin-like proteins (Ubls) are signalling messengers that control many cellular functions, such as cell proliferation, apoptosis, the cell cycle and DNA repair. It is becoming apparent that the deregulation of ubiquitin pathways results in the development of human diseases, including many types of tumours. Here we summarize the common principles and specific features of ubiquitin and Ubls in the regulation of cancer-relevant pathways, and discuss new strategies to target ubiquitin signalling in drug discovery.
Collapse
Affiliation(s)
- Daniela Hoeller
- Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Building 75, Theodour-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | |
Collapse
|
150
|
McNiven MA, Thompson HM. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 2006; 313:1591-4. [PMID: 16973870 DOI: 10.1126/science.1118133] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An elaborate vesicle transport system supports the active exchange of membranes and protein cargo between the plasma membrane and the trans-Golgi network. Many observations suggest that highly conserved mechanisms are used in vesicle formation and scission. Such similarity is found both at the level of the receptor-ligand sequestration process that uses clathrin and associated polymeric and monomeric adaptor proteins, and in the machinery used to deform and vesiculate lipid membranes.
Collapse
Affiliation(s)
- Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|