101
|
Branche E, Simon AY, Sheets N, Kim K, Barker D, Nguyen AVT, Sahota H, Young MP, Salgado R, Mamidi A, Viramontes KM, Carnelley T, Qiu H, Elong Ngono A, Regla-Nava JA, Susantono MX, Valls Cuevas JM, Kennedy K, Kodihalli S, Shresta S. Human Polyclonal Antibodies Prevent Lethal Zika Virus Infection in Mice. Sci Rep 2019; 9:9857. [PMID: 31285451 PMCID: PMC6614477 DOI: 10.1038/s41598-019-46291-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that represents a major threat to global health. ZIKV infections in adults are generally asymptomatic or present with mild symptoms. However, recent outbreaks of ZIKV have revealed that it can cause Congenital Zika Syndrome in neonates and Guillain-Barré syndrome in adults. Currently, no ZIKV-specific vaccines or antiviral treatments are available. In this study, we tested the efficacy of convalescent plasma IgG hyperimmune product (ZIKV-IG) isolated from individuals with high neutralizing anti-ZIKV titers as a therapeutic candidate against ZIKV infection using a model of ZIKV infection in Ifnar1-/- mice. ZIKV-IG successfully protected mice from lethal ZIKV challenge. In particular, ZIKV-IG treatment at 24 hours after lethal ZIKV infection improved survival by reducing weight loss and tissue viral burden and improving clinical score. Additionally, ZIKV-IG eliminated ZIKV-induced tissue damage and inflammation in the brain and liver. These results indicate that ZIKV-IG is efficacious against ZIKV, suggesting this human polyclonal antibody is a viable candidate for further development as a treatment against human ZIKV infection.
Collapse
Affiliation(s)
- Emilie Branche
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ayo Yila Simon
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Nicholas Sheets
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Anh-Viet T Nguyen
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Harpreet Sahota
- Medical Affairs, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Matthew Perry Young
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rebecca Salgado
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Anila Mamidi
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Trevor Carnelley
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Hongyu Qiu
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Annie Elong Ngono
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Joan M Valls Cuevas
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Kieron Kennedy
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada.
| | - Sujan Shresta
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA.
| |
Collapse
|
102
|
Hastings AK, Uraki R, Gaitsch H, Dhaliwal K, Stanley S, Sproch H, Williamson E, MacNeil T, Marin-Lopez A, Hwang J, Wang Y, Grover JR, Fikrig E. Aedes aegypti NeSt1 Protein Enhances Zika Virus Pathogenesis by Activating Neutrophils. J Virol 2019; 93:e00395-19. [PMID: 30971475 PMCID: PMC6580965 DOI: 10.1128/jvi.00395-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022] Open
Abstract
Saliva from the mosquito vector of flaviviruses is capable of changing the local immune environment, leading to an increase in flavivirus-susceptible cells at the infected bite site. In addition, an antibody response to specific salivary gland (SG) components changes the pathogenesis of flaviviruses in human populations. To investigate whether antigenic SG proteins are capable of enhancing infection with Zika virus (ZIKV), a reemerging flavivirus primarily transmitted by the Aedes aegypti mosquito, we screened for antigenic SG proteins using a yeast display library and demonstrate that a previously undescribed SG protein we term neutrophil stimulating factor 1 (NeSt1) activates primary mouse neutrophils ex vivo Passive immunization against NeSt1 decreases pro-interleukin-1β and CXCL2 expression, prevents macrophages from infiltrating the bite site, protects susceptible IFNAR-/- IFNGR-/- (AG129) mice from early ZIKV replication, and ameliorates virus-induced pathogenesis. These findings indicate that NeSt1 stimulates neutrophils at the mosquito bite site to change the immune microenvironment, allowing a higher level of early viral replication and enhancing ZIKV pathogenesis.IMPORTANCE When a Zika virus-infected mosquito bites a person, mosquito saliva is injected into the skin along with the virus. Molecules in this saliva can make virus infection more severe by changing the immune system to make the skin a better place for the virus to replicate. We identified a molecule that activates immune cells, called neutrophils, to recruit other immune cells, called macrophages, that the virus can infect. We named this molecule neutrophil-stimulating factor 1 (NeSt1). When we used antibodies to block NeSt1 in mice and then allowed Zika virus-infected mosquitoes to feed on these mice, they survived much better than mice that do not have antibodies against NeSt1. These findings give us more information about how mosquito saliva enhances virus infection, and it is possible that a vaccine against NeSt1 might protect people against severe Zika virus infection.
Collapse
Affiliation(s)
- Andrew K Hastings
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ryuta Uraki
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hallie Gaitsch
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Khushwant Dhaliwal
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sydney Stanley
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Sproch
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric Williamson
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tyler MacNeil
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuchen Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan R Grover
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
103
|
Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. J Virol 2019; 93:JVI.00405-19. [PMID: 31043537 DOI: 10.1128/jvi.00405-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The mosquito-borne Zika virus (ZIKV) has been causing epidemic outbreaks on a global scale. Virus infection can result in severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we characterized monoclonal antibodies isolated from a patient with an active Zika virus infection that potently neutralized virus infection in Vero cells at the nanogram-per-milliliter range. In addition, these antibodies enhanced internalization of virions into human leukemia K562 cells in vitro, indicating their possible ability to cause antibody-dependent enhancement of disease. Escape variants of the ZIKV MR766 strain to a potently neutralizing antibody, AC10, exhibited an amino acid substitution at residue S368 in the lateral ridge region of the envelope protein. Analysis of publicly availably ZIKV sequences revealed the S368 site to be conserved among the vast majority (97.6%) of circulating strains. We validated the importance of this residue by engineering a recombinant virus with an S368R point mutation that was unable to be fully neutralized by AC10. Four out of the 12 monoclonal antibodies tested were also unable to neutralize the virus with the S368R mutation, suggesting this region to be an important immunogenic epitope during human infection. Last, a time-of-addition infection assay further validated the escape variant and showed that all monoclonal antibodies inhibited virus binding to the cell surface. Thus, the present study demonstrates that the lateral ridge region of the envelope protein is likely an immunodominant, neutralizing epitope.IMPORTANCE Zika virus (ZIKV) is a global health threat causing severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we analyzed the human monoclonal antibody response to acute ZIKV infection and found that neutralizing antibodies could not elicit Fc-mediated immune effector functions but could potentiate antibody-dependent enhancement of disease. We further identified critical epitopes involved with neutralization by generating and characterizing escape variants by whole-genome sequencing. We demonstrate that the lateral ridge region, particularly the S368 amino acid site, is critical for neutralization by domain III-specific antibodies.
Collapse
|
104
|
Li L, Meng W, Horton M, DiStefano DR, Thoryk EA, Pfaff JM, Wang Q, Salazar GT, Barnes T, Doranz BJ, Bett AJ, Casimiro DR, Vora KA, An Z, Zhang N. Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog 2019; 15:e1007716. [PMID: 31170257 PMCID: PMC6553876 DOI: 10.1371/journal.ppat.1007716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies. Dengue virus (DENV) is a leading cause of human illness in the tropics and subtropics, with about 40% of the world’s population living in areas at risk for infection. There are four DENV serotypes. Patients who have previously been infected by one dengue serotype may develop more severe symptoms such as bleeding and endothelial leakage upon secondary infection with another dengue serotype. This study reports the extensive cloning and analysis of 780 monoclonal antibodies (mAbs) from single B cells of rhesus macaques after immunization with an experimental dengue vaccine. We identified a panel of potent neutralizing mAbs with diverse epitopes on the DENV envelope protein. Antibodies in this panel were found to bind to the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and the loops of DI. We also isolated one mAb (d448) that can neutralize all four dengue serotypes and binds to a novel epitope at the interface of the DENV envelope and membrane proteins. Further investigation of these neutralizing monoclonal antibodies is warranted for better vaccine efficacy evaluation and vaccine design.
Collapse
Affiliation(s)
- Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weixu Meng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Melanie Horton
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Daniel R. DiStefano
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Elizabeth A. Thoryk
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Qihui Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Georgina T. Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Trevor Barnes
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Bett
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Danilo R. Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| |
Collapse
|
105
|
Sasmal SK, Takeuchi Y, Nakaoka S. T-Cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection. J Theor Biol 2019; 470:50-63. [DOI: 10.1016/j.jtbi.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 11/26/2022]
|
106
|
Bailey MJ, Broecker F, Duehr J, Arumemi F, Krammer F, Palese P, Tan GS. Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. mBio 2019; 10:e02861-18. [PMID: 30940710 PMCID: PMC6445944 DOI: 10.1128/mbio.02861-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus which can cause severe disease in humans, including microcephaly and other congenital malformations in newborns and Guillain-Barré syndrome in adults. There are currently no approved prophylactics or therapeutics for Zika virus; the development of a safe and effective vaccine is an urgent priority. Preclinical studies suggest that the envelope glycoprotein can elicit potently neutralizing antibodies. However, such antibodies are implicated in the phenomenon of antibody-dependent enhancement of disease. We have previously shown that monoclonal antibodies targeting the Zika virus nonstructural NS1 protein are protective without inducing antibody-dependent enhancement of disease. Here, we investigated whether the NS1 protein itself is a viable vaccine target. Wild-type mice were vaccinated with an NS1-expressing DNA plasmid followed by two adjuvanted protein boosters, which elicited high antibody titers. Passive transfer of the immune sera was able to significantly protect STAT2 knockout mice against lethal challenge by Zika virus. In addition, long-lasting NS1-specific IgG responses were detected in serum samples from patients in either the acute or the convalescent phase of Zika virus infection. These NS1-specific antibodies were able to functionally engage Fcγ receptors. In contrast, envelope-specific antibodies did not activate Fc-mediated effector functions on infected cells. Our data suggest that the Zika virus NS1 protein, which is expressed on infected cells, is critical for Fc-dependent cell-mediated immunity. The present study demonstrates that the Zika virus NS1 protein is highly immunogenic and can elicit protective antibodies, underscoring its potential for an effective Zika virus vaccine.IMPORTANCE Zika virus is a global public health threat that causes microcephaly and congenital malformations in newborns and Guillain-Barré syndrome in adults. Currently, no vaccines or treatments are available. While antibodies targeting the envelope glycoprotein can neutralize virus, they carry the risk of antibody-dependent enhancement of disease (ADE). In contrast, antibodies generated against the NS1 protein can be protective without eliciting ADE. The present study demonstrates the effectiveness of an NS1-based vaccine in eliciting high titers of protective antibodies against Zika virus disease in a mouse model. Sera generated by this vaccine can elicit Fc-mediated effector functions against Zika virus-infected cells. Lastly, we provide human data suggesting that the antibody response against the Zika virus NS1 protein is long-lasting and functionally active. Overall, our work will inform the development of a safe and effective Zika virus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cell Line
- Disease Models, Animal
- Humans
- Immunity, Cellular
- Immunization Schedule
- Immunization, Passive
- Immunoglobulin G/blood
- Mice
- Mice, Knockout
- Receptors, Fc/metabolism
- Survival Analysis
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Nonstructural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Mark J Bailey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fortuna Arumemi
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
107
|
Ellwanger JH, Kaminski VDL, Chies JAB. Emerging infectious disease prevention: Where should we invest our resources and efforts? J Infect Public Health 2019; 12:313-316. [PMID: 30928239 DOI: 10.1016/j.jiph.2019.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Strategies focused on the prevention of emerging infectious disease outbreaks are currently in the spotlight of discussions among researchers committed to infectious disease control. In this mini-review, we provided a brief update on this discussion and characterized the three main targets for investments in emerging infectious disease prevention: animals, human sentinels for spillover events, and the general human population. Furthermore, the pros and cons of each target are highlighted. Despite the particularities of the proposed targets, each of them can fill different gaps in the surveillance of infectious diseases. When all three targets are focused on together, they create a powerful strategy of emerging infectious disease prevention.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José A B Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
108
|
Fauci A, Erbelding E, Whitehead S, Cassetti MC, Handley FG, Gupta R. Dengue vaccine clinical trials in India - An opportunity to inform the global response to a re-emerging disease challenge. Int J Infect Dis 2019; 84S:S4-S6. [PMID: 30880127 DOI: 10.1016/j.ijid.2019.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anthony Fauci
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), USA.
| | - Emily Erbelding
- Division of Microbiology and Infectious Diseases, NIAID, NIH, USA.
| | | | - M Cristina Cassetti
- Virology Branch, Division of Microbiology and Infectious Diseases, NIAID, NIH, USA.
| | | | | |
Collapse
|
109
|
Rosa BR, Cunha AJLAD, Medronho RDA. Efficacy, immunogenicity and safety of a recombinant tetravalent dengue vaccine (CYD-TDV) in children aged 2-17 years: systematic review and meta-analysis. BMJ Open 2019; 9:e019368. [PMID: 30872537 PMCID: PMC6429993 DOI: 10.1136/bmjopen-2017-019368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Randomised controlled trials have evaluated the recombinant tetravalent dengue vaccine (CYD-TDV). However, individual results may have little power to identify differences among the populations studied. OBJECTIVE To evaluate efficacy, immunogenicity and safety of CYD-TDV in the prevention of dengue in children aged 2-17 years. DESIGN Systematic review and meta-analysis. DATA SOURCES MEDLINE (from 1950 to 5 December 2018), EMBASE (from 1947 to 5 December 2018) and Cochrane (from 1993 to 5 December 2018). ELIGIBILITY CRITERIA OF STUDIES Randomised trials comparing efficacy, immunogenicity and safety of CYD-TDV with placebo or other vaccines for preventing dengue cases in children aged 2-17 years. OUTCOME MEASURES Efficacy, immunogenicity and safety of CYD-TDV. STUDY APPRAISAL AND METHODS Calculations were made of relative risk (RR) and mean difference (MD) for dichotomous and continuous outcomes, respectively. All estimates were calculated considering a 95% CI estimate. A p<0.05 was considered statistically significant. RESULTS Nine studies involving 34 248 participants were included. The overall efficacy of CYD-TDV was 60% (RR 0.40 (0.30 to 0.54)). Serotype-specific efficacy of the vaccine was 51% for dengue virus type-1 (DENV-1) (RR 0.49 (0.39 to 0.63)); 34% for DENV-2 (RR 0.66 (0.50 to 0.86)); 75% for DENV-3 (RR 0.25 (0.18 to 0.35)) and 77% for DENV-4 (RR 0.23 (0.15 to 0.34)). Overall immunogenicity (MD) of CYD-TDV was 225.13 (190.34 to 259.93). Serotype-specific immunogenicity was: DENV-1: 176.59 (123.36 to 229.83); DENV-2: 294.21 (181.98 to 406.45); DENV-3: 258.78 (146.72 to 370.84) and DENV-4: 189.35 (141.11 to 237.59). The most common adverse events were headache and pain at the injection site. LIMITATIONS The main limitation of this study was unclear or incomplete data. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS CYD-TDV is considered safe and able to partially protect children and adolescents against four serotypes of DENV for a 1-year period. Despite this, research should prioritise improvements in vaccine efficacy, thus proving higher long-term protection against all virus serotypes. PROSPERO REGISTRATION NUMBER CRD42016043628.
Collapse
Affiliation(s)
- Bruno Rodrigues Rosa
- Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
110
|
Cao J, Deng H, Ye L, Ma X, Chen S, Sun X, Wu X, Yan T, Zhang L, Liu L, Li L, Li W, Hu K. Epidemiological and clinical characteristics of Dengue virus outbreaks in two regions of China, 2014 - 2015. PLoS One 2019; 14:e0213353. [PMID: 30835769 PMCID: PMC6400443 DOI: 10.1371/journal.pone.0213353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/20/2019] [Indexed: 12/02/2022] Open
Abstract
Dengue virus (DENV), a single-stranded RNA virus and Flaviviridae family member, is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. DENV causes dengue fever, which may progress to severe dengue. Hospital-based surveillance was performed in two Chinese regions, Guangzhou and Xishuangbanna, during the dengue epidemics in 2014 and 2015, respectively. Acute-phase serum was obtained from 133 patients with suspected dengue infections during the peak season for dengue cases. Viremia levels, virus sero-positivity, serotype distribution, infection type, clinical manifestations and virus phylogenetics were investigated. Of the 112 DENV-confirmed cases, 92(82.14%) were IgM antibody-positive for DENV, and 69(51.88%) were positive for DENV RNA. From these cases, 47(41.96%) were classified as primary infections, 39(34.82%) as secondary infections and 26 (23.21%) as undetermined infections. The viremia levels were negatively correlated with IgM presence, but had no relationship with the infection type. DENV-1 genotype V dominated in Guangzhou, whereas the DENV-2 Cosmopolitan genotype dominated in Xishuangbanna, where fewer DENV-1 genotype I cases occurred. DENV-2 is associated with severe dengue illness with more serious clinical issues. The strains isolated during 2014–2015 are closely related to the isolates obtained from other Chinese regions and to those isolated recently in Southeast Asian countries. Our results indicate that DENV is no longer an imported virus and is now endemic in China. An extensive seroepidemiological study of DENV and the implementation of vector control measures against it are now warranted in China.
Collapse
Affiliation(s)
- Jiaqi Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Hong Deng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Ye
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xuezheng Ma
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Shuru Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohong Sun
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xuemin Wu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Tao Yan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Liping Zhang
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lijuan Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lili Li
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wuping Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- * E-mail: (WL); (KH)
| | - Kongxin Hu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- * E-mail: (WL); (KH)
| |
Collapse
|
111
|
Zaneti AB, Yamamoto MM, Sulczewski FB, Almeida BDS, Souza HFS, Ferreira NS, Maeda DLNF, Sales NS, Rosa DS, Ferreira LCDS, Boscardin SB. Dendritic Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4 + T Cells to the Dengue Virus Envelope Protein Domain III. Front Immunol 2019; 10:59. [PMID: 30761131 PMCID: PMC6362411 DOI: 10.3389/fimmu.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Dengue fever has become a global threat, causing millions of infections every year. An effective vaccine against all four serotypes of dengue virus (DENV) has not been developed yet. Among the different vaccination strategies available today, DNA vaccines are safe and practical, but currently induce relatively weak immune responses in humans. In order to improve immunogenicity, antigens may be targeted to dendritic cells (DCs), the main antigen presenting cells and orchestrators of the adaptive immune response, inducing T and B cell activation. It was previously shown that a DNA vaccine encoding a fusion protein comprised of an antigen and a single-chain Fv antibody (scFv) specific for the DC endocytic receptor DEC205 induced strong immune responses to the targeted antigen. In this work, we evaluate this strategy to improve the immunogenicity of dengue virus (DENV) proteins. Plasmids encoding the scFv αDEC205, or an isotype control (scFv ISO), fused to the DENV2 envelope protein domain III (EDIII) were generated, and EDIII specific immune responses were evaluated in immunized mice. BALB/c mice were intramuscularly (i.m.) immunized three times with plasmid DNAs encoding either scDEC-EDIII or scISO-EDIII followed by electroporation. Analyses of the antibody responses indicated that EDIII fusion with scFv targeting the DEC205 receptor significantly enhanced serum anti-EDIII IgG titers that inhibited DENV2 infection. Similarly, mice immunized with the scDEC-EDIII plasmid developed a robust CD4+ T cell response to the targeted antigen, allowing the identification of two linear epitopes recognized by the BALB/c haplotype. Taken together, these results indicate that targeting DENV2 EDIII protein to DCs using a DNA vaccine encoding the scFv αDEC205 improves both antibody and CD4+ T cell responses. This strategy opens perspectives for the use of DNA vaccines that encode antigens targeted to DCs as a strategy to increase immunogenicity.
Collapse
Affiliation(s)
- Arthur Baruel Zaneti
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| | | | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| |
Collapse
|
112
|
Ahmad Z, Poh CL. The Conserved Molecular Determinants of Virulence in Dengue Virus. Int J Med Sci 2019; 16:355-365. [PMID: 30911269 PMCID: PMC6428985 DOI: 10.7150/ijms.29938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
113
|
de Los Reyes V AA, Escaner JML. Dengue in the Philippines: model and analysis of parameters affecting transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 12:894-912. [PMID: 30353774 DOI: 10.1080/17513758.2018.1535096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Dengue is endemic in the Philippines and poses a substantial economic burden in the country. In this work, a compartmentalized model which includes healthcare-seeking class is developed. The reproduction number is determined to investigate critical parameters influencing transmission. Partial rank correlation coefficient (PRCC) technique is performed to address how the model output is affected by changes in a specific parameter disregarding the uncertainty over the rest of the parameters. Results show that mosquito biting rate, transmission probability from mosquito to human, respectively, from human to mosquito, and fraction of individuals who seek healthcare at the onset of the disease, posted high PRCC values. In order to obtain the values for the desired parameters, the reported dengue cases by morbidity week in the Philippines for the year 2014 and 2015 are used. The reliability of parameters is then verified via parametric bootstrap.
Collapse
Affiliation(s)
| | - Jose Maria L Escaner
- a Institute of Mathematics , University of the Philippines Diliman , Quezon City , Philippines
| |
Collapse
|
114
|
Benjathummarak S, Pipattanaboon C, Boonha K, Wongwit W, Ramasoota P, Pitaksajjakul P. Human single-chain variable fragment antibody expressed in E. coli with optimal in vitro cross-neutralizing and no enhancing activity. Biologicals 2018; 56:54-62. [DOI: 10.1016/j.biologicals.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/28/2018] [Accepted: 10/12/2018] [Indexed: 01/11/2023] Open
|
115
|
Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model. Nat Commun 2018; 9:4560. [PMID: 30385750 PMCID: PMC6212565 DOI: 10.1038/s41467-018-07008-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus closely related to dengue virus that can cause severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Specific treatments and vaccines for Zika virus are not currently available. Here, we isolate and characterize four monoclonal antibodies (mAbs) from an infected patient that target the non-structural protein NS1. We show that while these antibodies are non-neutralizing, NS1-specific mAbs can engage FcγR without inducing antibody dependent enhancement (ADE) of infection in vitro. Moreover, we demonstrate that mAb AA12 has protective efficacy against lethal challenges of African and Asian lineage strains of Zika virus in Stat2–/– mice. Protection is Fc-dependent, as a mutated antibody unable to activate known Fc effector functions or complement is not protective in vivo. This study highlights the importance of the ZIKV NS1 protein as a potential vaccine antigen. Zika virus infection can cause severe disease in humans and there are currently no specific treatments or vaccines. Here, Bailey et al. isolate antibodies recognizing non-structural protein NS1 and show that they protect mice from disease by an Fc-dependent, non-neutralizing mechanism.
Collapse
|
116
|
Castillo JA, Naranjo JS, Rojas M, Castaño D, Velilla PA. Role of Monocytes in the Pathogenesis of Dengue. Arch Immunol Ther Exp (Warsz) 2018; 67:27-40. [DOI: 10.1007/s00005-018-0525-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
|
117
|
Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 2018; 78:224-235. [PMID: 30099200 DOI: 10.1016/j.actbio.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine. STATEMENT OF SIGNIFICANCE This research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.
Collapse
|
118
|
Bos S, Gadea G, Despres P. Dengue: a growing threat requiring vaccine development for disease prevention. Pathog Glob Health 2018; 112:294-305. [PMID: 30213255 PMCID: PMC6381545 DOI: 10.1080/20477724.2018.1514136] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dengue disease is the most prevalent mosquito-borne viral infection in humans. At least one half of the global population is estimated at risk of infection and an estimated 390 million people are infected each year. Over the past few years, dengue burden continued to increase, mainly impacting developing countries. Alarming changes in dengue epidemiology were observed highlighting a spread from tropical to subtropical regions as well as urban to rural areas. An increase in the co-infections with the four serotypes has also been noticed, involving a shift in the targeted population from pediatric to adult. Facing these global changes, authorities will have to reinforce preventive actions and adapt healthcare management. New prophylactic strategies are urgently needed to prevent severe forms of dengue disease. The lack of specific antiviral therapies available turns vaccine development into a socio-economic challenge. In this review, we propose an update on the dengue global trends and different vaccine strategies in development. A particular attention will be paid to up-to-date information on dengue transmission and the protective efficacy of newly commercialized tetravalent dengue vaccine Dengvaxia®, as well as the most advanced candidate vaccines in clinical development.
Collapse
Affiliation(s)
- Sandra Bos
- a Unité Mixte Processus Infectieux en Milieu Insulaire Tropical , Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249 , Sainte-Clotilde , La Réunion , France
| | - Gilles Gadea
- a Unité Mixte Processus Infectieux en Milieu Insulaire Tropical , Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249 , Sainte-Clotilde , La Réunion , France
| | - Philippe Despres
- a Unité Mixte Processus Infectieux en Milieu Insulaire Tropical , Plateforme Technologique CYROI, Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249 , Sainte-Clotilde , La Réunion , France
| |
Collapse
|
119
|
Bal J, Jung HY, Nguyen LN, Park J, Jang YS, Kim DH. Evaluation of cell-surface displayed synthetic consensus dengue EDIII cells as a potent oral vaccine candidate. Microb Cell Fact 2018; 17:146. [PMID: 30217208 PMCID: PMC6138890 DOI: 10.1186/s12934-018-0994-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue is a rapidly spreading mosquito borne tropical viral disease affecting hundreds of millions of people across the globe annually. The dengue virus (DENV) includes four genetically distinct serotypes that cause serious life-threatening infections, including dengue hemorrhagic fever/dengue shock syndrome. Dengue vaccine development is complicated by the possibility of vaccine-enhanced severe dengue disease due to antibody-dependent enhancement by pre-existing cross-reactivity, as well as homotypic antibodies. Thus, the development of an efficacious dengue vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes has not yet been developed despite years of research. For mass immunization in deeply affected resource-limited countries, oral vaccination is considered more beneficial than conventional approaches. Therefore, in a continuing effort towards designing economical and potent vaccine candidates, the current study applied yeast surface display technology to develop an oral dengue vaccine candidate using whole recombinant yeast cells displaying the recombinant fusion protein of M cell targeting ligand Co1 fused to the synthetic consensus dengue envelope domain III (scEDIII). Female Balb/c mice were orally fed with recombinant yeast cells and immunogenicity in terms of systemic and mucosal immune responses was monitored. RESULTS Immunofluorescence microscopy with dengue specific antibody and fluorescein isothiocyanate-conjugated anti-mouse IgG antibody clearly showed that recombinant protein Co1-scEDIII-AGA was localized on the cell surface of the respective clones in comparison with scEDIII-Co1 and Mock cells with no fluorescence. Oral dosage applications of surface displayed Co1-scEDIII-AGA stimulated a systemic humoral immune response in the form of dengue-specific serum IgG, as well as a mucosal immune response in the form of secretory immunoglobulin A (sIgA). Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further supported an elevated mucosal immune response. In addition, surface displayed Co1-scEDIII-AGA feeding elicited strong immune responses in comparison with scEDIII-Co1 and Mock following intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS Surface displayed preparations of Co1-scEDIII-AGA induced strong immunogenicity compared with non-displayed scEDIII-Co1. Prior studies have supported the neutralization potential of scEDIII constructs against all four serotypes. Thus, the oral administration of genetically engineered yeast whole cells displaying biologically active Co1-scEDIII fusion protein without any further processing shows prospective as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Hee-Young Jung
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Luong Ngoc Nguyen
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Yong-Suk Jang
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
120
|
de Oliveira Dias JR, Ventura CV, de Paula Freitas B, Prazeres J, Ventura LO, Bravo-Filho V, Aleman T, Ko AI, Zin A, Belfort R, Maia M. Zika and the Eye: Pieces of a Puzzle. Prog Retin Eye Res 2018; 66:85-106. [PMID: 29698814 DOI: 10.1016/j.preteyeres.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) is an arbovirus mainly transmitted to humans by mosquitoes from Aedes genus. Other ways of transmission include the perinatal and sexual routes, blood transfusion, and laboratory exposure. Although the first human cases were registered in 1952 in African countries, outbreaks were only reported since 2007, when entire Pacific islands were affected. In March 2015, the first cases of ZIKV acute infection were notified in Brazil and, to date, 48 countries and territories in the Americas have confirmed local mosquito-borne transmission of ZIKV. Until 2015, ZIKV infection was thought to only cause asymptomatic or mild exanthematous febrile infections. However, after explosive ZIKV outbreaks in Polynesia and Latin American countries, it was confirmed that ZIKV could also lead to Guillain-Barré syndrome and congenital birth abnormalities. These abnormalities, which can include neurologic, ophthalmologic, audiologic, and skeletal findings, are now considered congenital Zika syndrome (CZS). Brain abnormalities in CZS include cerebral calcifications, malformations of cortical development, ventriculomegaly, lissencephaly, hypoplasia of the cerebellum and brainstem. The ocular findings, which are present in up to 70% of infants with CZS, include iris coloboma, lens subluxation, cataract, congenital glaucoma, and especially posterior segment findings. Loss of retinal pigment epithelium, the presence of a thin choroid, a perivascular choroidal inflammatory infiltrate, and atrophic changes within the optic nerve were seen in histologic analyses of eyes from deceased fetuses. To date, there is no ZIKV licensed vaccines or antiviral therapies are available for treatment. Preventive measures include individual protection from mosquito bites, control of mosquito populations and the use of barriers measures such as condoms during sexual intercourse or sexual abstinence for couples either at risk or after confirmed infection. A literature review based on studies that analyzed ocular findings in mothers and infants with CZS, with or without microcephaly, was conducted and a theoretical pathophysiologic explanation for ZIKV-ocular abnormalities was formulated.
Collapse
Affiliation(s)
- João Rafael de Oliveira Dias
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Camila V Ventura
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Bruno de Paula Freitas
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Department of Ophthalmology, Roberto Santos General Hospital, Salvador, Brazil
| | - Juliana Prazeres
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Liana O Ventura
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Vasco Bravo-Filho
- Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Tomas Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia, United States
| | - Albert Icksang Ko
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Andréa Zin
- Clinical Research Unit, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rubens Belfort
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Mauricio Maia
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Brazilian Institute of Fight Against Blindness, Assis and Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
121
|
Pattanapanyasat K, Khowawisetsut L, Chuansumrit A, Chokephaibulkit K, Tangnararatchakit K, Apiwattanakul N, Techasaensiri C, Thitilertdecha P, Sae-Ung T, Onlamoon N. B cell subset alteration and the expression of tissue homing molecules in dengue infected patients. J Biomed Sci 2018; 25:64. [PMID: 30149800 PMCID: PMC6112127 DOI: 10.1186/s12929-018-0467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background B cells play an essential role during dengue viral infection. While a major expansion of antibody secreting cells (ASCs) was observed, the importance of these increased frequencies of ASCs remains unclear. The alteration of B cell subsets may result from the expression of tissue specific homing molecules leading to their mobilization and distribution to different target organs during acute dengue viral infection. Methods In this study, whole blood samples were obtained from thirty pediatric dengue-infected patients and ten healthy children and then stained with fluorochrome-conjugated monoclonal antibodies against CD3, CD14, CD19, CD20, CD21, CD27, CD38, CD45, CD138 and homing molecules of interest before analyzed by polychromatic flow cytometry. B cell subsets were characterized throughout acute infection period. Results Data shows that there were no detectable differences in frequencies of resting, activated and tissue memory cells, whereas the frequency of ASCs was significantly increased and associated with the lower frequency of naïve cells. These results were found from patients with both dengue fever and dengue hemorrhagic fever, suggesting that such change or alteration of B cells was not associated with disease severity. Moreover, several homing molecules (e.g., CXCR3 and CCR2) were found in ASCs, indicating that ASCs may distribute to inflamed tissues and various organs. Conclusions Findings from this study provide insight into B cell subset distribution. Furthermore, organ mobilization according to homing molecule expression on different B cell subsets during the course of dengue viral infection also suggests they are distributed to inflamed tissues and various organs.
Collapse
Affiliation(s)
- Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Tangnararatchakit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonnamet Techasaensiri
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Research group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Tipaporn Sae-Ung
- Master of Science program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Research group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
122
|
Wang X, Xiao Y, Hao H, Zhang Y, Xu X, Tang R. Therapeutic Potential of Biomineralization‐Based Engineering. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xurong Xu
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
123
|
Oral Delivery of a DNA Vaccine Expressing the PrM and E Genes: A Promising Vaccine Strategy against Flavivirus in Ducks. Sci Rep 2018; 8:12360. [PMID: 30120326 PMCID: PMC6098003 DOI: 10.1038/s41598-018-30258-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
A flavivirus, named duck tembusu virus (DTMUV), emerged in China in 2010. This virus has caused great economic losses in the poultry industry in China and may pose a threat to public health. As a safe, efficient and convenient vaccine development strategy, DNA-based vaccines have become a popular approach for both human and veterinary applications. Attenuated bacteria have been widely used as vehicles to deliver heterologous antigens to the immune system. Thus, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-SME) based on envelope proteins (prM and E) of DTMUV and attenuated Salmonella typhimurium aroA- strain SL7207 was developed and evaluated in this study. The prM and E antigen proteins were successfully expressed from the vaccine SL7207 (pVAX1-SME) both in vitro and in vivo. High titers of the specific antibody against the DTMUV-E protein and the neutralizing antibody against the DTMUV virus were both detected after vaccination with SL7207 (pVAX1-SME). Ducks orally vaccinated with the SL7207 (pVAX-SME) vaccine were efficiently protected from lethal DTMUV infection in this study. Taken together, we demonstrated that prM and E proteins of DTMUV possess strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-SME) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large-scale clinical use.
Collapse
|
124
|
Watanabe S, Low JGH, Vasudevan SG. Preclinical Antiviral Testing for Dengue Virus Infection in Mouse Models and Its Association with Clinical Studies. ACS Infect Dis 2018; 4:1048-1057. [PMID: 29756760 DOI: 10.1021/acsinfecdis.8b00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At present, there is no licensed antiviral drug against dengue virus (DENV) infection. Mouse models of DENV infection have been widely used for preclinical evaluation of antivirals. However, only in a few instances so far have the data obtained from preclinical mouse model testing been associated with data from clinical studies in humans. In this Review, we focus on the antiviral drugs targeting viral replication that have been tested in animals/humans and discuss how preclinical drug evaluation in suitable mouse/animal models may be more fruitfully used to inform early phase clinical testing.
Collapse
Affiliation(s)
- Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Jenny Guek-Hong Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore 169856
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
125
|
Lertjuthaporn S, Khowawisetsut L, Keawvichit R, Polsrila K, Chuansumrit A, Chokephaibulkit K, Thitilertdecha P, Onlamoon N, Ansari AA, Pattanapanyasat K. Identification of changes in dendritic cell subsets that correlate with disease severity in dengue infection. PLoS One 2018; 13:e0200564. [PMID: 30001408 PMCID: PMC6042784 DOI: 10.1371/journal.pone.0200564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease in humans. DENV causes a spectrum of illness ranging from mild to potentially severe complications. Dendritic cells (DCs) play a critical role in initiating and regulating highly effective antiviral immune response that include linking innate and adaptive immune responses. This study was conducted to comparatively characterize in detail the relative proportion, phenotypic changes, and maturation profile of subsets of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in children with dengue fever (DF), dengue hemorrhagic fever (DHF) and for purposes of control healthy individuals. The mDCs (Lin-CD11c+CD123lo), the pDCs (Lin-CD11c-CD123+) and the double negative (DN) subset (Lin-/HLA-DR+/CD11c-CD123-) were analyzed by polychromatic flow cytometry. The data were first analyzed on blood samples collected from DENV-infected patients at various times post-infection. Results showed that the relative proportion of mDCs were significantly decreased which was associated with an increase in disease severity in samples from DENV-infected patients. While there was no significant difference in the relative proportion of pDCs between healthy and DENV-infected patients, there was a marked increase in the DN subset. Analysis of the kinetics of changes of pDCs showed that there was an increase but only during the early febrile phase. Additionally, samples from patients during acute disease showed marked decreases in the relative proportion of CD141+ and CD16+ mDC subsets that were the major mDC subsets in healthy individuals. In addition, there was a significant decrease in the level of CD33-expressing mDCs in DENV patients. While the pDCs showed an up-regulation of maturation profile during acute DENV infection, the mDCs showed an alteration of maturation status. This study suggests that different relative proportion and phenotypic changes as well as alteration of maturation profile of DC subsets may play a critical role in the dengue pathogenesis and disease outcome.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rassamon Keawvichit
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Polsrila
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kovit Pattanapanyasat
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
126
|
Yan H, Ding Z, Yan J, Yao W, Pan J, Yang Z, Lou X, Mao H, Lin J, Sun J, Hou J, Wu H, Wu C, Zhang Y. Epidemiological Characterization of the 2017 Dengue Outbreak in Zhejiang, China and Molecular Characterization of the Viruses. Front Cell Infect Microbiol 2018; 8:216. [PMID: 30023351 PMCID: PMC6039557 DOI: 10.3389/fcimb.2018.00216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
Dengue, a mosquito-borne disease caused by the dengue virus (DV), has been recognized as a global public health threat. In 2017, an unexpected dengue outbreak occurred in Zhejiang, China. To clarify and characterize the causative agent of this outbreak, data on dengue fever cases were collected from the China Information System for Disease Control and Prevention in Zhejiang province for subsequent epidemiological analysis. A total of 1,229 cases were reported, including 1,149 indigenous and 80 imported cases. Most indigenous cases (1,128 cases) were in Hangzhou. The epidemic peak occurred in late August and early September, and the incidence rate of elderly people (4.34 per 100,000) was relatively high. Imported cases were reported all year round, and most were from South-East Asia and Western Pacific regions. Young people and men accounted for a large fraction of the cases. Acute phase serums of patients were collected for virus isolation. And 35 isolates (including 25 DV-2, 8 DV-1, 1 DV-3, and 1 DV-4) were obtained after inoculation and culture in mosquito C6/36 cells. The E genes of the 35 new DV isolates and the complete genome of a DV-2 isolate (Zhejiang/HZ33/2017), and the E gene of a DV-2 isolate from Ae. albopictus (Zhejiang/Aedes-1/2017) were determined. Phylogenetic analyses were performed using the neighbor-joining method with the Tajima-Nei model. Phylogenetically, DVs of all four serotypes with multiple genotypes (mainly including 21 Cosmopolitan genotype DV-2, 4 Asian I genotype DV-2, 6 genotype I DV-1, and 2 genotype V DV-1) were present in the indigenous and imported cases in Zhejiang during the same period. Most of the isolates probably originated from South-East Asia and Western Pacific countries. The imported cases, high density of mosquito vector, and missed diagnosis might contribute to the 2017 outbreak in Zhejiang.
Collapse
Affiliation(s)
- Hao Yan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zheyuan Ding
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Juying Yan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wenwu Yao
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Junhang Pan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhangnv Yang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiuyu Lou
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Haiyan Mao
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Junfen Lin
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Juan Hou
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Haocheng Wu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chen Wu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
127
|
Antiviral Effects of Clinically-Relevant Interferon-α and Ribavirin Regimens against Dengue Virus in the Hollow Fiber Infection Model (HFIM). Viruses 2018; 10:v10060317. [PMID: 29890736 PMCID: PMC6024321 DOI: 10.3390/v10060317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne viral illness in humans. Currently, there are no therapeutic agents available to prevent or treat DENV infections. Our objective was to fill this unmet medical need by evaluating the antiviral activity of interferon-α (IFN) and ribavirin (RBV) as a combination therapy against DENV. DENV-infected Vero and Huh-7 cells were exposed to RBV and/or IFN, and the viral burden was quantified over time by plaque assay. Drug-drug interactions for antiviral effect were determined by fitting a mathematical model to the data. We then assessed clinically-relevant exposures of IFN plus RBV using the hollow fiber infection model (HFIM) system. RBV monotherapy was only effective against DENV at toxic concentrations in Vero and Huh-7 cells. IFN, as a single agent, did inhibit DENV replication at physiological concentrations and viral suppression was substantial in Huh-7 cells (Half maximal effective concentration (EC50) = 58.34 IU/mL). As a combination therapy, RBV plus IFN was additive for viral suppression in both cell lines; however, enhancement of antiviral activity at clinically-achievable concentrations was observed only in Huh-7 cells. Finally, clinical exposures of RBV plus IFN suppressed DENV replication by 99% even when treatment was initiated 24 h post-infection in the HFIM. Further evaluation revealed that the antiviral effectiveness of the combination regimen against DENV is mostly attributed to activity associated with IFN. These findings suggest that IFN is a potential therapeutic strategy for the treatment of DENV.
Collapse
|
128
|
Wang X, Liu X, Xiao Y, Hao H, Zhang Y, Tang R. Biomineralization State of Viruses and Their Biological Potential. Chemistry 2018; 24:11518-11529. [PMID: 29377301 DOI: 10.1002/chem.201705936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/06/2022]
Abstract
In nature, viruses can realize self-mineralization under metal-ion-abundant conditions. Interestingly, the mineralized state is a transition state of the virus when the host is not available. Mammalian viruses that share the similar chemical properties also stand a chance of transformation into a mineralized state. In this review, we focus on the possibility of mammalian viruses to undergo mineralization under a physiological environment and the development of biomineralized-based virus engineering. We will introduce the effect of biomineralization on the physiochemical or biological properties of viruses and we will discuss the relationship between mineral composition and biological potentials. The new biological prospects of mineralized-state viruses, including bypassing biological barriers, protection, and virus-host recognition, will provide new insight for the biosecurity and prevention of viral infection. With respect to vaccines, the mineralized state can modulate the immune recognition, change the immunization route, and elevate the vaccine efficacy. Together, these findings of the mineralized state of the virus may lead to a new understanding of virus biology, application, and prevention.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Xueyao Liu
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China.,Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
129
|
Lopez-Jimena B, Bekaert M, Bakheit M, Frischmann S, Patel P, Simon-Loriere E, Lambrechts L, Duong V, Dussart P, Harold G, Fall C, Faye O, Sall AA, Weidmann M. Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl Trop Dis 2018; 12:e0006381. [PMID: 29813062 PMCID: PMC5973574 DOI: 10.1371/journal.pntd.0006381] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 4 one-step, real-time, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed for the detection of dengue virus (DENV) serotypes by considering 2,056 full genome DENV sequences. DENV1 and DENV2 RT-LAMP assays were validated with 31 blood and 11 serum samples from Tanzania, Senegal, Sudan and Mauritania. DENV3 and DENV4 RT-LAMP assays were validated with 25 serum samples from Cambodia. METHODOLOGY/PRINCIPAL FINDINGS 4 final reaction primer mixes were obtained by using a combination of Principal Component Analysis of the full DENV genome sequences, and LAMP primer design based on sequence alignments using the LAVA software. These mixes contained 14 (DENV1), 12 (DENV2), 8 (DENV3) and 3 (DENV4) LAMP primer sets. The assays were evaluated with an External Quality Assessment panel from Quality Control for Molecular Diagnostics. The assays were serotype-specific and did not cross-detect with other flaviviruses. The limits of detection, with 95% probability, were 22 (DENV1), 542 (DENV2), 197 (DENV3) and 641 (DENV4) RNA molecules, and 100% reproducibility in the assays was obtained with up to 102 (DENV1) and 103 RNA molecules (DENV2, DENV3 and DENV4). Validation of the DENV2 assay with blood samples from Tanzania resulted in 23 samples detected by RT-LAMP, demonstrating that the assay is 100% specific and 95.8% sensitive (positive predictive value of 100% and a negative predictive value of 85.7%). All serum samples from Senegal, Sudan and Mauritania were detected and 3 untyped as DENV1. The sensitivity of RT-LAMP for DENV4 samples from Cambodia did not quite match qRT-PCR. CONCLUSIONS/SIGNIFICANCE We have shown a novel approach to design LAMP primers that makes use of fast growing sequence databases. The DENV1 and DENV2 assays were validated with viral RNA extracted clinical samples, showing very good performance parameters.
Collapse
Affiliation(s)
- Benjamin Lopez-Jimena
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | | | | | - Pranav Patel
- Robert Koch Institute, Centre for biological security 1 (ZBS1), Berlin, Germany
| | - Etienne Simon-Loriere
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée, Paris, France
| | - Louis Lambrechts
- Centre National de la Recherche Scientifique, Unité de Recherche Associée, Paris, France
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Graham Harold
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Cheikh Fall
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Institut Pasteur International Network, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Institut Pasteur International Network, Dakar, Senegal
| | - Amadou Alpha Sall
- Arbovirus and viral haemorrhagic fever unit, Institut Pasteur de Dakar, Institut Pasteur International Network, Dakar, Senegal
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
130
|
Salles TS, da Encarnação Sá-Guimarães T, de Alvarenga ESL, Guimarães-Ribeiro V, de Meneses MDF, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF, Moreira MF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors 2018; 11:264. [PMID: 29690895 PMCID: PMC5937836 DOI: 10.1186/s13071-018-2830-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/03/2018] [Indexed: 12/02/2022] Open
Abstract
Dengue virus (DENV), an arbovirus transmitted by mosquitoes, has become a major threat to American human life, reaching approximately 23 million cases from 1980 to 2017. Brazil is among the countries most affected by this terrible viral disease, with 13.6 million cases. DENV has four different serotypes, DENV1-4, which show a broad clinical spectrum. Dengue creates a staggering epidemiological and economic burden for endemic countries. Without a specific therapy and with a commercial vaccine that presents some problems relative to its full effectiveness, initiatives to improve vector control strategies, early disease diagnostics and the development of vaccines and antiviral drugs are priorities. In this study, we present the probable origins of dengue in America and the trajectories of its spread. Overall, dengue diagnostics are costly, making the monitoring of dengue epidemiology more difficult and affecting physicians' therapeutic decisions regarding dengue patients, especially in developing countries. This review also highlights some recent and important findings regarding dengue in Brazil and the Americas. We also summarize the existing DENV polymerase chain reaction (PCR) diagnostic tests to provide an improved reference since these tests are useful and accurate at discriminating DENV from other flaviviruses that co-circulate in the Americas. Additionally, these DENV PCR assays ensure virus serotyping, enabling epidemiologic monitoring.
Collapse
Affiliation(s)
- Tiago Souza Salles
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 Brazil
| | | | - Evelyn Seam Lima de Alvarenga
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
| | - Victor Guimarães-Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
| | | | | | - Carlucio Rocha dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ 21941-902 Brazil
| | - Ana Claudia do Amaral Melo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-902 RJ Brazil
| | - Marcia Regina Soares
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
| | - Davis Fernandes Ferreira
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, 120 W Broughton Dr, Raleigh, NC USA
| | - Monica Ferreira Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909 Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-902 RJ Brazil
| |
Collapse
|
131
|
Mohan M, Haribalaganesh R, Coico R, Sundar K. HLA-directed bioinformatics approach for genome-wide mapping of dengue CTL epitopes. Future Virol 2018. [DOI: 10.2217/fvl-2017-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: In silico approach was used to predict cytotoxic T lymphocyte (CTL) epitopes from the proteome of all four dengue serotypes. Methods: The immune epitope database analysis resource was used to analyze the CTL epitopes of dengue serotypes. The prediction of epitopes was done against nine high frequency HLA class I alleles occurring worldwide. Results: A total of 2784 epitopes were predicted from all four dengue virus proteomes. Immune epitope database analysis resource tool predicted 202 epitopes as positive for immunogenecity. A total of 39 of 257 consensus epitopes predicted were present in all four serotypes. This study identified nine new class I-restricted epitopes. Conclusion: Mapping of these potentially immunogenic dengue epitopes paves the way for future investigation of their utility as vaccine candidates to prevent or treat dengue virus infections.
Collapse
Affiliation(s)
- Manikandan Mohan
- Department of Biotechnology, Kalasalingam University, Krishnankoil, 626 126, Tamil Nadu, India
| | | | - Richard Coico
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam University, Krishnankoil, 626 126, Tamil Nadu, India
| |
Collapse
|
132
|
Mari L, Casagrandi R, Rinaldo A, Gatto M. Epidemicity thresholds for water-borne and water-related diseases. J Theor Biol 2018; 447:126-138. [PMID: 29588168 DOI: 10.1016/j.jtbi.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/02/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections.
Collapse
Affiliation(s)
- Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; Dipartimento ICEA, Università di Padova, Padova 35131, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
133
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
134
|
Li WL, Wu MS, Guo PL, Hu FY, Li LH, Tang XP. Overexpression of A20 inhibits the inflammatory response during dengue fever infection. Future Virol 2018. [DOI: 10.2217/fvl-2017-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Dengue hemorrhagic fever is a devastating disease. This study aimed to investigate the role of A20 in dengue fever infection. Materials & methods: DENV2-infected human umbilical vein endothelial cells were transfected with shRNA-A20/CD14 and A20/CD14-mimics, respectively. The expressions of inflammatory and anti-inflammatory factors, A20 and downstream proteins of the NF-κB signaling pathway were detected. Results: A20 knockdown increased the expression of IL-6, IL-10, IL-8 and CD14 during dengue virus infection, whereas overexpression of A20 had the opposite effect. FACS revealed that A20 negatively regulated the expression of CD14. Conclusion: In DENV2-infected human umbilical vein endothelial cells overexpressing A20, TNF-α stimulation inhibited NF-κB-mediated inflammatory response by negative feedback. Furthermore, A20 could affect the release of inflammatory factors via negative regulation of CD14, thus affecting the entire inflammatory response.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mao-Sheng Wu
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Peng-Le Guo
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Feng-Yu Hu
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Ling-Hua Li
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Xiao-Ping Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| |
Collapse
|
135
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
136
|
Bang J, Park H, Choi WI, Sung D, Lee JH, Lee KY, Kim S. Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj02244e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The anti-NS1 affibody-functionalized gold nanoparticles based ELISA resulted in a 14.2-fold signal amplification performance for dengue NS1 detection.
Collapse
Affiliation(s)
- Jinho Bang
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
- Department of Bioengineering
| | - Heesun Park
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Won Il Choi
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Daekyung Sung
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Jin Hyung Lee
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Kuen Yong Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- South Korea
| | - Sunghyun Kim
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| |
Collapse
|
137
|
Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, Brusic V, Tan TW, Thomas August J. Analysis of viral diversity for vaccine target discovery. BMC Med Genomics 2017; 10:78. [PMID: 29322922 PMCID: PMC5763473 DOI: 10.1186/s12920-017-0301-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets. RESULTS This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis. CONCLUSION These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.
Collapse
Affiliation(s)
- Asif M. Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan 43400 Malaysia
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA
| | - Yongli Hu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Olivo Miotto
- Centre for Genomics and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Rajthevee, Bangkok, Thailand
| | - Natascha M. Thevasagayam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Rashmi Sukumaran
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Hadia Syahirah Abd Raman
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Vladimir Brusic
- Menzies Health Institute Queensland, Griffith University, Parklands Dr, Southport, 4215 QLD Australia
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA
| |
Collapse
|
138
|
Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnol Lett 2017; 40:315-324. [PMID: 29063288 DOI: 10.1007/s10529-017-2462-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To develop an RNA aptamer specific for the methyltransferase (MTase) of dengue virus (DENV) which is essential for viral genome replication and translation acting directly on N-7 and 2'-O-methylation of the type-I cap structure of the viral RNA. RESULTS We identified 2'-fluoro-modified RNA aptamers that can specifically bind DENV serotype 2 (DENV2) MTase using systematic evolution of ligands by exponential enrichment technology. We truncated the chosen aptamer into a 45-mer RNA sequence that can bind DENV2 MTase with K d ~ 28 nM and inhibit N-7 methylation activity of the protein. Moreover, the 45-mer truncated aptamer could not only bind with an K d ~ 15.6 nM but also inhibit methylation activity of DENV serotype 3 (DENV3) MTase. The 45-mer aptamer competitively impeded binding of both DENV2 and DENV3 genomic RNA to MTase of each serotype. CONCLUSION The selected 45-mer truncated RNA aptamer specifically and avidly bound DENV MTase and competitively inhibited its methylation activity, and thus could be useful for the development of anti-DENV agents.
Collapse
|
139
|
Aubry M, Laughhunn A, Santa Maria F, Lanteri MC, Stassinopoulos A, Musso D. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione. Transfusion 2017; 57:2888-2896. [DOI: 10.1111/trf.14318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Maite Aubry
- Pôle de Recherche et de Veille sur les Maladies Infectieuses Émergentes, Institut Louis Malardé; Tahiti, Polynésie Française
| | | | | | - Marion C. Lanteri
- Scientific Affairs Department; Cerus Corporation; Concord California
| | | | - Didier Musso
- Pôle de Recherche et de Veille sur les Maladies Infectieuses Émergentes, Institut Louis Malardé; Tahiti, Polynésie Française
| |
Collapse
|
140
|
Fernandez EA. Moving to a Dengue Preventive Treatment Through New Vaccines. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
141
|
Houser KV, Broadbent AJ, Gretebeck L, Vogel L, Lamirande EW, Sutton T, Bock KW, Minai M, Orandle M, Moore IN, Subbarao K. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog 2017; 13:e1006565. [PMID: 28817732 PMCID: PMC5574614 DOI: 10.1371/journal.ppat.1006565] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/29/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV. New Zealand white rabbits display an increase in lung inflammation following reinfection with MERS-CoV that is associated with non-neutralizing antibodies and complement proteins. The development of neutralizing antibodies resulted in protection from infection. These findings may have implications for individuals that fail to develop a neutralizing antibody response, or for those whose response wanes over time, upon re-exposure to MERS-CoV.
Collapse
Affiliation(s)
- Katherine V. Houser
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Andrew J. Broadbent
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Lisa Gretebeck
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Leatrice Vogel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Elaine W. Lamirande
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Troy Sutton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevin W. Bock
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahnaz Minai
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Marlene Orandle
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Ian N. Moore
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|
142
|
Leal ES, Aucar MG, Gebhard LG, Iglesias NG, Pascual MJ, Casal JJ, Gamarnik AV, Cavasotto CN, Bollini M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg Med Chem Lett 2017; 27:3851-3855. [DOI: 10.1016/j.bmcl.2017.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
143
|
Liao Q, Shan Z, Wang M, Huang J, Xu R, Huang K, Tang X, Zhang W, Nelson K, Li C, Fu Y, Rong X. An evaluation of asymptomatic Dengue infections among blood donors during the 2014 Dengue outbreak in Guangzhou, China. J Med Virol 2017. [DOI: 10.1002/jmv.24883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qiao Liao
- Guangzhou Blood Center; Guangzhou Guangdong China
| | | | - Min Wang
- Guangzhou Blood Center; Guangzhou Guangdong China
| | | | - Ru Xu
- Guangzhou Blood Center; Guangzhou Guangdong China
| | - Ke Huang
- Guangzhou Blood Center; Guangzhou Guangdong China
| | - Xi Tang
- Department of Transfusion Medicine; School of Biotechnology; Southern Medical University; Guangzhou Guangdong China
| | - Weiyun Zhang
- Department of Transfusion Medicine; School of Biotechnology; Southern Medical University; Guangzhou Guangdong China
| | - Kenrad Nelson
- Department of Epidemiology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore Maryland
| | - Chengyao Li
- Department of Transfusion Medicine; School of Biotechnology; Southern Medical University; Guangzhou Guangdong China
| | - Yongshui Fu
- Guangzhou Blood Center; Guangzhou Guangdong China
- Department of Transfusion Medicine; School of Biotechnology; Southern Medical University; Guangzhou Guangdong China
| | - Xia Rong
- Guangzhou Blood Center; Guangzhou Guangdong China
- Department of Transfusion Medicine; School of Biotechnology; Southern Medical University; Guangzhou Guangdong China
| |
Collapse
|
144
|
Lin GL, Chang HH, Lien TS, Chen PK, Chan H, Su MT, Liao CY, Sun DS. Suppressive effect of dengue virus envelope protein domain III on megakaryopoiesis. Virulence 2017. [PMID: 28622093 DOI: 10.1080/21505594.2017.1343769] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) infection can cause severe, life-threatening events, and no specific treatments of DENV infection are currently approved. Although thrombocytopenia is frequently observed in dengue patients, its pathogenesis is still not fully understood. Previous studies have suggested that DENV-induced thrombocytopenia occurs through viral-replication-mediated megakaryopoiesis inhibition in the bone marrow; however, the exact mechanism for megakaryopoiesis suppression remains elusive. In this study, a reductionist approach was applied, in which C57B/6J mice were inoculated with recombinant DENV-envelope protein domain III (DENV-EIII) instead of the full viral particle. Our results demonstrated that DENV-EIII-suppressed megakaryopoiesis is similar to those observed with DENV infection. Furthermore, in agreement with our in vivo analyses, DENV-EIII sufficiently suppressed the megakaryopoiesis of progenitor cells from murine bone marrow and human cord blood in vitro. Additional analyses suggested that autophagy impairment and apoptosis are involved in DENV-EIII-mediated suppression of megakaryopoiesis. These data suggest that, even without viral replication, the binding of DENV-EIII to the cell surface is sufficient to suppress megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Hsin-Hou Chang
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan.,b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Te-Sheng Lien
- b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Po-Kong Chen
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Hao Chan
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Mei-Tzu Su
- b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Chi-Yuan Liao
- c Department of Obstetrics and Gynecology , Mennonite Christian Hospital , Hualien , Taiwan
| | - Der-Shan Sun
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan.,b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| |
Collapse
|
145
|
Wang X, Ma D, Huang X, Li L, Li D, Zhao Y, Qiu L, Pan Y, Chen J, Xi J, Shan X, Sun Q. Complete genome analysis of dengue virus type 3 isolated from the 2013 dengue outbreak in Yunnan, China. Virus Res 2017. [PMID: 28648850 DOI: 10.1016/j.virusres.2017.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the past few decades, dengue has spread rapidly and is an emerging disease in China. An unexpected dengue outbreak occurred in Xishuangbanna, Yunnan, China, resulting in 1331 patients in 2013. In order to obtain the complete genome information and perform mutation and evolutionary analysis of causative agent related to this largest outbreak of dengue fever. The viruses were isolated by cell culture and evaluated by genome sequence analysis. Phylogenetic trees were then constructed by Neighbor-Joining methods (MEGA6.0), followed by analysis of nucleotide mutation and amino acid substitution. The analysis of the diversity of secondary structure for E and NS1 protein were also performed. Then selection pressures acting on the coding sequences were estimated by PAML software. The complete genome sequences of two isolated strains (YNSW1, YNSW2) were 10,710 and 10,702 nucleotides in length, respectively. Phylogenetic analysis revealed both strain were classified as genotype II of DENV-3. The results indicated that both isolated strains of Xishuangbanna in 2013 and Laos 2013 stains (KF816161.1, KF816158.1, LC147061.1, LC147059.1, KF816162.1) were most similar to Bangladesh (AY496873.2) in 2002. After comparing with the DENV-3SS (H87) 62 amino acid substitutions were identified in translated regions, and 38 amino acid substitutions were identified in translated regions compared with DENV-3 genotype II stains Bangladesh (AY496873.2). 27(YNSW1) or 28(YNSW2) single nucleotide changes were observed in structural protein sequences with 7(YNSW1) or 8(YNSW2) non-synonymous mutations compared with AY496873.2. Of them, 4 non-synonymous mutations were identified in E protein sequences with (2 in the β-sheet, 2 in the coil). Meanwhile, 117(YNSW1) or 115 (YNSW2) single nucleotide changes were observed in non-structural protein sequences with 31(YNSW1) or 30 (YNSW2) non-synonymous mutations. Particularly, 14 single nucleotide changes were observed in NS1 sequences with 4/14 non-synonymous substitutions (4 in the coil). Selection pressure analysis revealed no positive selection in the amino acid sites of the genes encoding for structural and non-structural proteins. This study may help understand the intrinsic geographical relatedness of dengue virus 3 and contributes further to research on their infectivity, pathogenicity and vaccine development.
Collapse
Affiliation(s)
- Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, 666100, PR China
| | - Xinwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Lihua Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Duo Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, 666100, PR China.
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, PR China; Peking Union Medical College, Kunming, 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, 650118, PR China.
| |
Collapse
|
146
|
Willis E, Hensley SE. Characterization of Zika virus binding and enhancement potential of a large panel of flavivirus murine monoclonal antibodies. Virology 2017; 508:1-6. [PMID: 28475924 DOI: 10.1016/j.virol.2017.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Zika viruses (ZIKVs) are circulating in parts of the world endemic for other flavivirus infections. Some cross-reactive antibodies (Abs) elicited by prior flavivirus exposures can bind to ZIKV and enhance infection of Fc receptor-bearing cells. Here, we measured ZIKV binding of 54 murine monoclonal Abs (mAbs) elicited by exposure with Dengue virus and West Nile virus antigens. We found that 8 of 54 mAbs recognized the envelope protein of ZIKV in conventional binding assays. These 8 cross-reactive mAbs have different specificities; most recognize the DI/II region of the envelope protein but one mAb recognized the DIII lateral ridge of the envelope protein. Interestingly, only 3 of these cross-reactive mAbs were able to enhance ZIKV infection in vitro, and enhancing potential was not strictly correlated with relative binding ability. These data suggest that the ability of flavivirus Abs to enhance ZIKV is dependent on multiple factors.
Collapse
Affiliation(s)
- Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
147
|
Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. J Transl Med 2017; 97:602-614. [PMID: 28240747 DOI: 10.1038/labinvest.2017.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.
Collapse
|
148
|
Muthusamy K, Gopinath K, Nandhini D. Computational prediction of immunodominant antigenic regions & potential protective epitopes for dengue vaccination. Indian J Med Res 2017; 144:587-591. [PMID: 28256468 PMCID: PMC5345306 DOI: 10.4103/0971-5916.200894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background & objectives: Epitope-based vaccines (EVs) are specific, safe and easy to produce. However, vaccine failure has been frequently reported due to variation within epitopic regions. Therefore, development of vaccines based on conserved epitopes may prevent such vaccine failure. This study was undertaken to identify highly conserved antigenic regions in the four dengue serotypes to produce an epitope-based dengue vaccine. Methods: Polyprotein sequences of all four dengue serotypes were collected and aligned using MAFFT multiple sequence alignment plugin with Geneious Pro v6.1. Consensus sequences of the polyproteins for all four dengue serotypes were designed and screened against experimentally proven epitopes to predict potential antigenic regions that are conserved among all four dengue serotypes. Results: The antigenic region VDRGWGNGCGLFGKG was 100 per cent conserved in the consensus polyprotein sequences of all four dengue serotypes. Fifteen experimentally proven epitopes were identical to the immunodominant antigenic region. Interpretation & conclusions: Computationally predicted antigenic regions may be considered for use in the development of EVs for protection against dengue virus. Such vaccines would be expected to provide protection against dengue infections caused by all dengue serotypes because these would contain antigenic regions highly conserved across those serotypes. Therefore, the immunodominant antigenic region (VDRGWGNGCGLFGKG) and 15 potential epitopes may be considered for use in dengue vaccines.
Collapse
Affiliation(s)
| | - Krishnasamy Gopinath
- Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, India
| | | |
Collapse
|
149
|
Pang EL, Loh HS. Towards development of a universal dengue vaccine – How close are we? ASIAN PAC J TROP MED 2017; 10:220-228. [DOI: 10.1016/j.apjtm.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/16/2022] Open
|
150
|
Nikin-Beers R, Ciupe SM. Modelling original antigenic sin in dengue viral infection. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:257-272. [DOI: 10.1093/imammb/dqx002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Affiliation(s)
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|