101
|
Kobori T, Harada S, Nakamoto K, Tokuyama S. Involvement of PtdIns(4,5)P2 in the regulatory mechanism of small intestinal P-glycoprotein expression. J Pharm Sci 2013; 103:743-51. [PMID: 24311454 DOI: 10.1002/jps.23811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022]
Abstract
Previously, we reported that repeated oral administration of etoposide (ETP) activates the ezrin/radixin/moesin (ERM) scaffold proteins for P-glycoprotein (P-gp) via Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase (ROCK) signaling, leading to increased ileal P-gp expression. Recent studies indicate that phosphatidyl inositol 4,5-bisphosphate [PtdIns(4,5)P2] regulates the plasma-membrane localization of certain proteins, and its synthase, the type I phosphatidyl inositol 4-phosphate 5-kinase (PI4P5K), is largely controlled by RhoA/ROCK. Here, we examined whether PtdIns(4,5)P2 and PI4P5K are involved in the increased expression of ileal P-gp following the ERM activation by ETP treatment. Male ddY mice (4-week-old) were treated with ETP (10 mg/kg/day, per os, p.o.) for 5 days. Protein-expression levels were measured by either western blot or dot blot analysis and molecular interactions were assessed using immunoprecipitation assays. ETP treatment significantly increased PI4P5K, ERM, and P-gp expression in the ileal membrane. This effect was suppressed following the coadministration of ETP with rosuvastatin (a RhoA inhibitor) or fasudil (a ROCK inhibitor). Notably, the PtdIns(4,5)P2 expression in the ileal membrane, as well as both P-gp and ERM levels coimmunoprecipitated with anti-PtdIns(4,5)P2 antibody, were increased by ETP treatment. PtdIns(4,5)P2 and PI4P5K may contribute to the increase in ileal P-gp expression observed following the ETP treatment, possibly through ERM activation via the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | | | | | | |
Collapse
|
102
|
Tolstykh GP, Beier HT, Roth CC, Thompson GL, Payne JA, Kuipers MA, Ibey BL. Activation of intracellular phosphoinositide signaling after a single 600 nanosecond electric pulse. Bioelectrochemistry 2013; 94:23-9. [DOI: 10.1016/j.bioelechem.2013.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/10/2013] [Accepted: 05/13/2013] [Indexed: 02/03/2023]
|
103
|
Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Proc Natl Acad Sci U S A 2013; 110:20093-8. [PMID: 24277843 DOI: 10.1073/pnas.1312483110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The S4 segment and the S4-S5 linker of voltage-gated potassium (Kv) channels are crucial for voltage sensing. Previous studies on the Shaker and Kv1.2 channels have shown that phosphatidylinositol-4,5-bisphosphate (PIP2) exerts opposing effects on Kv channels, up-regulating the current amplitude, while decreasing the voltage sensitivity. Interactions between PIP2 and the S4 segment or the S4-S5 linker in the closed state have been highlighted to explain the effects of PIP2 on voltage sensitivity. Here, we show that PIP2 preferentially interacts with the S4-S5 linker in the open-state KCNQ2 (Kv7.2) channel, whereas it contacts the S2-S3 loop in the closed state. These interactions are different from the PIP2-Shaker and PIP2-Kv1.2 interactions. Consistently, PIP2 exerts different effects on KCNQ2 relative to the Shaker and Kv1.2 channels; PIP2 up-regulates both the current amplitude and voltage sensitivity of the KCNQ2 channel. Disruption of the interaction of PIP2 with the S4-S5 linker by a single mutation decreases the voltage sensitivity and current amplitude, whereas disruption of the interaction with the S2-S3 loop does not alter voltage sensitivity. These results provide insight into the mechanism of PIP2 action on KCNQ channels. In the closed state, PIP2 is anchored at the S2-S3 loop; upon channel activation, PIP2 interacts with the S4-S5 linker and is involved in channel gating.
Collapse
|
104
|
Bernier LP, Ase AR, Séguéla P. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Front Cell Neurosci 2013; 7:226. [PMID: 24324400 PMCID: PMC3838964 DOI: 10.3389/fncel.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023] Open
Abstract
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Department of Psychiatry, Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
105
|
Coutinho-Budd JC, Snider SB, Fitzpatrick BJ, Rittiner JE, Zylka MJ. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons. J Negat Results Biomed 2013; 12:13. [PMID: 24010830 PMCID: PMC3844522 DOI: 10.1186/1477-5751-12-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. RESULTS We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. CONCLUSIONS Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
106
|
Dai G, Peng C, Liu C, Varnum MD. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. ACTA ACUST UNITED AC 2013; 141:413-30. [PMID: 23530136 PMCID: PMC3607822 DOI: 10.1085/jgp.201210944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
107
|
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom;
| |
Collapse
|
108
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
109
|
Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 2013; 110:11642-7. [PMID: 23798435 DOI: 10.1073/pnas.1220552110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nerve functions require phosphatidylinositol-4,5-bisphosphate (PIP2) that binds to ion channels, thereby controlling their gating. Channel properties are also attributed to serotonin transporters (SERTs); however, SERT regulation by PIP2 has not been reported. SERTs control neurotransmission by removing serotonin from the extracellular space. An increase in extracellular serotonin results from transporter-mediated efflux triggered by amphetamine-like psychostimulants. Herein, we altered the abundance of PIP2 by activating phospholipase-C (PLC), using a scavenging peptide, and inhibiting PIP2-synthesis. We tested the effects of the verified scarcity of PIP2 on amphetamine-triggered SERT functions in human cells. We observed an interaction between SERT and PIP2 in pull-down assays. On decreased PIP2 availability, amphetamine-evoked currents were markedly reduced compared with controls, as was amphetamine-induced efflux. Signaling downstream of PLC was excluded as a cause for these effects. A reduction of substrate efflux due to PLC activation was also found with recombinant noradrenaline transporters and in rat hippocampal slices. Transmitter uptake was not affected by PIP2 reduction. Moreover, SERT was revealed to have a positively charged binding site for PIP2. Mutation of the latter resulted in a loss of amphetamine-induced SERT-mediated efflux and currents, as well as a lack of PIP2-dependent effects. Substrate uptake and surface expression were comparable between mutant and WT SERTs. These findings demonstrate that PIP2 binding to monoamine transporters is a prerequisite for amphetamine actions without being a requirement for neurotransmitter uptake. These results open the way to target amphetamine-induced SERT-dependent actions independently of normal SERT function and thus to treat psychostimulant addiction.
Collapse
|
110
|
Yu WM, Liu X, Shen J, Jovanovic O, Pohl EE, Gerson SL, Finkel T, Broxmeyer HE, Qu CK. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12:62-74. [PMID: 23290137 DOI: 10.1016/j.stem.2012.11.022] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 09/22/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
Abstract
The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.
Collapse
Affiliation(s)
- Wen-Mei Yu
- Department of Medicine, Division of Hematology and Oncology, Center for Stem Cell and Regenerative Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Dai G, Varnum MD. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 2013; 305:C147-59. [PMID: 23552282 DOI: 10.1152/ajpcell.00037.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-7620, USA
| | | |
Collapse
|
112
|
Influence of lipids on protein-mediated transmembrane transport. Chem Phys Lipids 2013; 169:57-71. [PMID: 23473882 DOI: 10.1016/j.chemphyslip.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins are responsible for transporting ions and small molecules across the hydrophobic region of the cell membrane. We are reviewing the evidence for regulation of these transport processes by interactions with the lipids of the membrane. We focus on ion channels, including potassium channels, mechanosensitive and pentameric ligand gated ion channels, and active transporters, including pumps, sodium or proton driven secondary transporters and ABC transporters. For ion channels it has been convincingly shown that specific lipid-protein interactions can directly affect their function. In some cases, a combined approach of molecular and structural biology together with computer simulations has revealed the molecular mechanisms. There are also many transporters whose activity depends on lipids but understanding of the molecular mechanisms is only beginning.
Collapse
|
113
|
Tolstykh GP, Cavazos JE. Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav 2013; 26:410-4. [PMID: 23305781 DOI: 10.1016/j.yebeh.2012.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/06/2012] [Indexed: 01/03/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for 15% of all deaths in people with epilepsy and 50% in refractory epilepsy. The underlying mechanisms are not well understood, but seizure-induced cardiac and respiratory arrests are involved. The cardiovascular and respiratory systems are subject to precise reflex regulation to ensure appropriate oxygen supply under a wide range of circumstances. Barosensory and chemosensory afferents project into the nucleus tractus solitarius (NTS), which relays systemic data to higher brain centers for integration of homeostatic responses in heart rate, peripheral resistance, respiration, and other autonomic reactions. Being the afferent autonomic gatekeeper, NTS plays a critical role in cardiovascular and respiratory regulation. In the course of studying the kainic acid model, we became aware of progressive neuronal loss in the NTS and noted SUDEP-like deaths in rats with frequent convulsions. Increased autonomic susceptibility with inhalation anesthetics was also observed, often seen after impairment of baroreceptor and chemoreceptor reflex loops. Seizure-induced neuron loss in NTS may play a role impairing the integrative functions of NTS resulting in poor homeostatic responses during seizures and leading to SUDEP.
Collapse
Affiliation(s)
- Gleb P Tolstykh
- Research Division - ALM VAMC, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | |
Collapse
|
114
|
Telezhkin V, Thomas AM, Harmer SC, Tinker A, Brown DA. A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P₂. Pflugers Arch 2013; 465:945-53. [PMID: 23291709 PMCID: PMC3696465 DOI: 10.1007/s00424-012-1199-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 12/01/2022]
Abstract
All Kv7 potassium channels require membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for their normal function and hence can be physiologically regulated by neurotransmitters and hormones that stimulate phosphoinositide hydrolysis. Recent mutational analysis indicates that a cluster of basic residues in the proximal C-terminus (K354/K358/R360/K362) is crucial for PI(4,5)P2 activation of cardiac Kv7.1 channels. Since this cluster is largely conserved in all Kv7 subunits, we tested whether homologous residues are also required for activation of Kv7.2 (a subunit of neuronal M-channels). We found that the mutation Kv7.2 (R325A) (corresponding to R360 in Kv7.1) reduced Kv7.2 current amplitude by ∼60 % (P < 0.02) without change in voltage sensitivity and reduced the sensitivity of Kv7.2 channels to dioctanoyl-phosphatidylinositol-4,5-bisphosphate by ∼eightfold (P < 0.001). Taking into account previous experiments (Zhang et al., Neuron 37:963-75, 2003) implicating Kv7.2 (H328), and since R325 and H328 are conserved in homologous positions in all other Kv7 channels, we suggest that this proximal C-terminal domain adjacent to the last transmembrane domain that contains R325 and H328 (in Kv7.2) might play a major role in the activation of all members of the Kv7 channel family by PI(4,5)P2.
Collapse
Affiliation(s)
- Vsevolod Telezhkin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
115
|
Amphipathic antenna of an inward rectifier K+ channel responds to changes in the inner membrane leaflet. Proc Natl Acad Sci U S A 2012; 110:749-54. [PMID: 23267068 DOI: 10.1073/pnas.1217323110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane lipids modulate the function of membrane proteins. In the case of ion channels, they bias the gating equilibrium, although the underlying mechanism has remained elusive. Here we demonstrate that the N-terminal segment (M0) of the KcsA potassium channel mediates the effect of changes in the lipid milieu on channel gating. The M0 segment is a membrane-anchored amphipathic helix, bearing positively charged residues. In asymmetric membranes, the M0 helix senses the presence of negatively charged phospholipids on the inner leaflet. Upon gating, the M0 helix revolves around the axis of the helix on the membrane surface, inducing the positively charged residues to interact with the negative head groups of the lipids so as to stabilize the open conformation (i.e., the "roll-and-stabilize model"). The M0 helix is thus a charge-sensitive "antenna," capturing temporary changes in lipid composition in the fluidic membrane. This unique type of sensory device may be shared by various types of membrane proteins.
Collapse
|
116
|
Buraei Z, Yang J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1530-40. [PMID: 22981275 DOI: 10.1016/j.bbamem.2012.08.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 12/31/2022]
Abstract
The voltage-gated Ca²⁺ channel β subunit (Ca(v)β) is a cytosolic auxiliary subunit that plays an essential role in regulating the surface expression and gating properties of high-voltage activated (HVA) Ca²⁺ channels. It is also crucial for the modulation of HVA Ca²⁺ channels by G proteins, kinases, Ras-related RGK GTPases, and other proteins. There are indications that Ca(v)β may carry out Ca²⁺ channel-independent functions. Ca(v)β knockouts are either non-viable or result in a severe pathophysiology, and mutations in Ca(v)β have been implicated in disease. In this article, we review the structure and various biological functions of Ca(v)β, as well as recent advances. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
117
|
Kim D. K(+) channels in O(2) sensing and postnatal development of carotid body glomus cell response to hypoxia. Respir Physiol Neurobiol 2012; 185:44-56. [PMID: 22801091 DOI: 10.1016/j.resp.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
Abstract
The sensitivity of carotid body chemoreceptors to hypoxia is low just after birth and increases over the first few weeks of the postnatal period. At present, it is believed that the hypoxia-induced excitation of carotid body glomus cells begins with the inhibition of the outward K(+) current via one or more O(2) sensors. Although the nature of the O(2) sensors and their signals that inhibit the K(+) current are not well defined, studies suggest that the postnatal maturation of the glomus cell response to hypoxia is largely due to the increased sensitivity of K(+) channels to hypoxia. As K(V), BK and TASK channels that are O(2)-sensitive contribute to the K(+) current, it is important to identify the O(2) sensor and the signaling molecule for each of these K(+) channels. Various O(2) sensors (mitochondrial hemeprotein, hemeoxygenase-2, NADPH oxidase) and associated signals have been proposed to mediate the inhibition of K(+) channels by hypoxia. Studies suggest that a mitochondrial hemeprotein is likely to serve as an O(2) sensor for K(+) channels, particularly for TASK, and that multiple signals may be involved. Thus, changes in the sensitivity of the mitochondrial O(2) sensor to hypoxia, the sensitivity of K(+) channels to signals generated by mitochondria, and/or the expression levels of K(+) channels are likely to account for the postnatal maturation of O(2) sensing by glomus cells.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
118
|
Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Front Pharmacol 2012; 3:125. [PMID: 22787448 PMCID: PMC3389672 DOI: 10.3389/fphar.2012.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Frank S Choveau
- UMR 1087, Institut National de la Santé et de la Recherche Médicale Nantes, France
| | | | | | | | | | | |
Collapse
|
119
|
Zhang X, Mak S, Li L, Parra A, Denlinger B, Belmonte C, McNaughton PA. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat Cell Biol 2012; 14:851-8. [PMID: 22750945 PMCID: PMC3428855 DOI: 10.1038/ncb2529] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/22/2012] [Indexed: 12/03/2022]
Abstract
Activation of the TRPM8 ion channel in sensory nerve endings produces a sensation of pleasant coolness. Here we show that inflammatory mediators such as bradykinin and histamine inhibit TRPM8 in intact sensory nerves, but do not do so via conventional signalling pathways. The G-protein subunit Gaq instead binds to TRPM8 and when activated by a Gq-coupled receptor directly inhibits ion channel activity. Deletion of Gaq largely abolished inhibition of TRPM8, and inhibition was rescued by a Gaq chimera whose ability to activate downstream signalling pathways was completely ablated. Activated Gaq protein, but not Gβγ, potently inhibits TRPM8 in excised patches. We conclude that Gaq pre-forms a complex with TRPM8 and inhibits activation of TRPM8, following activation of G-protein coupled receptors, by a direct action. This signalling mechanism may underlie the abnormal cold sensation caused by inflammation.
Collapse
Affiliation(s)
- Xuming Zhang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | | | | | | | |
Collapse
|
120
|
Hille B. Diversity of phosphoinositide signaling. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
121
|
Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci U S A 2012; 109:11384-9. [PMID: 22733759 DOI: 10.1073/pnas.1202194109] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides serve as address labels for recruiting peripheral cytoplasmic proteins to specific subcellular compartments, and as endogenous factors for modulating the activity of integral membrane proteins. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is a plasma-membrane (PM)-specific phosphoinositide and a positive cofactor required for the activity of most PM channels and transporters. This requirement for phosphoinositide cofactors has been proposed to prevent PM channel/transporter activity during passage through the biosynthetic/secretory and endocytic pathways. To determine whether intracellularly localized channels are similarly "inactivated" at the PM, we studied PIP(2) modulation of intracellular TRPML1 channels. TRPML1 channels are primarily localized in lysosomes, but can also be detected temporarily in the PM upon lysosomal exocytosis. By directly patch-clamping isolated lysosomes, we previously found that lysosomal, but not PM-localized, TRPML1 is active with PI(3,5)P(2), a lysosome-specific PIP(2), as the underlying positive cofactor. Here we found that "silent" PM-localized TRPML1 could be activated by depleting PI(4,5)P(2) levels and/or by adding PI(3,5)P(2) to inside-out membrane patches. Unlike PM channels, surface-expressed TRPML1 underwent a unique and characteristic run-up upon patch excision, and was potently inhibited by a low micromolar concentration of PI(4,5)P(2). Conversely, depletion of PI(4,5)P(2) by either depolarization-induced activation or chemically induced translocation of 5'-phosphatase potentiated whole-cell TRPML1 currents. PI(3,5)P(2) activation and PI(4,5)P(2) inhibition of TRPML1 were mediated by distinct basic amino acid residues in a common PIP(2)-interacting domain. Thus, PI(4,5)P(2) may serve as a negative cofactor for intracellular channels such as TRPML1. Based on these results, we propose that phosphoinositide regulation sets compartment-specific activity codes for membrane channels and transporters.
Collapse
|
122
|
Telezhkin V, Brown DA, Gibb AJ. Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2. ACTA ACUST UNITED AC 2012; 140:41-53. [PMID: 22689829 PMCID: PMC3382723 DOI: 10.1085/jgp.201210796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P(2) analog, dioctanoyl-PI(4,5)P(2) (DiC(8)-PI(4,5)P(2)), and channel open probability (P(open)) by fast application of increasing concentrations of DiC(8)-PI(4,5)P(2) to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P(2) concentration. Single-channel conductances from channel current-voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K(+)]. Plots of P(open) against DiC(8)-PI(4,5)P(2) concentration were best fitted using a two-component concentration-P(open) relationship with high and low affinity, half-maximal effective concentration (EC(50)) values of 1.3 ± 0.14 and 75.5 ± 2.5 µM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC(50) values of 76.2 ± 19.9 or 3.6 ± 1.0 µM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P(2), the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P(2) binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P(2) with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC(8)-PI(4,5)P(2), and that maximum channel opening requires binding to all four subunits.
Collapse
Affiliation(s)
- Vsevolod Telezhkin
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E 6BT, England, UK
| | | | | |
Collapse
|
123
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
124
|
Telezhkin V, Reilly JM, Thomas AM, Tinker A, Brown DA. Structural requirements of membrane phospholipids for M-type potassium channel activation and binding. J Biol Chem 2012; 287:10001-10012. [PMID: 22303005 PMCID: PMC3322975 DOI: 10.1074/jbc.m111.322552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
M-channels are voltage-gated potassium channels that regulate cell excitability. They are heterotetrameric assemblies of Kv7.2 and Kv7.3 subunits. Their opening requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the specificity of PI(4,5)P2 as a binding and activating ligand is unknown. Here, we tested the ability of different phosphoinositides and lipid phosphates to activate or bind to M-channel proteins. Activation of functional channels was measured in membrane patches isolated from cells coexpressing Kv7.2 and Kv7.3 subunits. Channels were activated to similar extents (maximum open probability of ∼0.8 at 0 mV) by 0.1–300 μm dioctanoyl homologs of the three endogenous phosphoinositides, PI(4)P, PI(4,5)P2, and PI(3,4,5)P3, with sensitivity increasing with increasing numbers of phosphates. Non-acylated inositol phosphates had no effect up to 100 μm. Channels were also activated with increasing efficacy by 1–300 μm concentrations of the monoacyl monophosphates fingolimod phosphate, sphingosine 1-phosphate, and lysophosphatidic acid but not by phosphate-free fingolimod or sphingosine or by phosphate-masked phosphatidylcholine or phosphatidylglycerol. An overlay assay confirmed that a fusion protein containing the full-length C terminus of Kv7.2 could bind to a broad range of phosphoinositides and phospholipids. A mutated Kv7.2 C-terminal construct with reduced sensitivity to PI(4,5)P showed significantly less binding to most polyphosphoinositides. We concluded that M-channels bind to, and are activated by, a wide range of lipid phosphates, with a minimum requirement for an acyl chain and a phosphate headgroup. In this, they more closely resemble inwardly rectifying Kir6.2 potassium channels than the more PI(4,5)P2-specific Kir2 channels. Notwithstanding, the data also support the view that the main endogenous activator of M-channels is PI(4,5)P2.
Collapse
Affiliation(s)
- Vsevolod Telezhkin
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT and
| | - Joanne M Reilly
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT and
| | - Alison M Thomas
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | - David A Brown
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT and.
| |
Collapse
|
125
|
Nesin V, Pakhomov AG. Inhibition of voltage-gated Na(+) current by nanosecond pulsed electric field (nsPEF) is not mediated by Na(+) influx or Ca(2+) signaling. Bioelectromagnetics 2012; 33:443-51. [PMID: 22234846 DOI: 10.1002/bem.21703] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022]
Abstract
In earlier studies, we found that permeabilization of mammalian cells with nsPEF was accompanied by prolonged inhibition of voltage-gated (VG) currents through the plasma membrane. This study explored if the inhibition of VG Na(+) current (I(Na)) resulted from (i) reduction of the transmembrane Na(+) gradient due to its influx via nsPEF-opened pores, and/or (ii) downregulation of the VG channels by a Ca(2+)-dependent mechanism. We found that a single 300 ns electric pulse at 1.6-5.3 kV/cm triggered sustained Na(+) influx in exposed NG108 cells and in primary chromaffin cells, as detected by increased fluorescence of a Sodium Green Dye. In the whole-cell patch clamp configuration, this influx was efficiently buffered by the pipette solution so that the increase in the intracellular concentration of Na(+) ([Na](i)) did not exceed 2-3 mM. [Na](i) increased uniformly over the cell volume and showed no additional peaks immediately below the plasma membrane. Concurrently, nsPEF reduced VG I(Na) by 30-60% (at 4 and 5.3 kV/cm). In control experiments, even a greater increase of the pipette [Na(+)] (by 5 mM) did not attenuate VG I(Na), thereby indicating that the nsPEF-induced Na(+) influx was not the cause of VG I(Na) inhibition. Similarly, adding 20 mM of a fast Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the pipette solution did not prevent or attenuate the inhibition of the VG I(Na) by nsPEF. These findings point to possible Ca(2+)-independent downregulation of the VG Na(+) channels (e.g., caused by alteration of the lipid bilayer) or the direct effect of nsPEF on the channel.
Collapse
Affiliation(s)
- Vasyl Nesin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | |
Collapse
|
126
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
127
|
Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 2011; 286:42435-42445. [PMID: 22020933 DOI: 10.1074/jbc.m110.212845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).
Collapse
Affiliation(s)
- Bassam G Abu Jawdeh
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Isabelle Deschênes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Malcolm Hoshi
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Monu Goel
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey T Lock
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Krekwit Shinlapawittayatorn
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gerald Babcock
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Garren DeCaro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Satya P Yadav
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | - Maradumane L Mohan
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | | | - William P Schilling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Eckhard Ficker
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.
| |
Collapse
|
128
|
Yudin Y, Lukacs V, Cao C, Rohacs T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 2011; 589:6007-27. [PMID: 22005680 DOI: 10.1113/jphysiol.2011.220228] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activity of the cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels diminishes over time in the presence of extracellular Ca(2+), a phenomenon referred to as desensitization or adaptation. Here we show that activation of TRPM8 by cold or menthol evokes a decrease in cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] levels. The decrease in PtdIns(4,5)P(2) levels was accompanied by increased inositol 1,4,5 trisphosphate (InsP(3)) production, and was inhibited by loading the cells with the Ca(2+) chelator BAPTA-AM, showing that it was the consequence of the activation of phospholipase C (PLC) by increased intracellular Ca(2+) concentrations. PtdIns(4,5)P(2) hydrolysis showed excellent temporal correlation with current desensitization in simultaneous patch clamp and fluorescence-based PtdIns(4,5)P(2) level measurements. Intracellular dialysis of PtdIns(4,5)P(2) inhibited desensitization both in native neuronal and recombinant TRPM8 channels. PtdIns(4)P, the precursor of PtdIns(4,5)P(2), did not inhibit desensitization, consistent with its minimal effect in excised patches. Omission of MgATP from the intracellular solution accelerated desensitization, and MgATP reactivated TRPM8 channels in excised patches in a phosphatidylinositol 4-kinase (PI4K)-dependent manner. PLC-independent depletion of PtdIns(4,5)P(2) using a voltage-sensitive phosphatase (ci-VSP) inhibited TRPM8 currents, and omission of ATP from the intracellular solution inhibited recovery from this inhibition. Inhibitors of PKC had no effect on the kinetics of desensitization. We conclude that Ca(2+) influx through TRPM8 activates a Ca(2+)-sensitive PLC isoform, and the resulting depletion of PtdIns(4,5)P(2) plays a major role in desensitization of both cold and menthol responses.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
129
|
A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. Mol Cell Biol 2011; 31:4902-16. [PMID: 21986498 DOI: 10.1128/mcb.05629-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality. Ptpmt1(-/-) blastocysts failed to outgrow, and inner-cell-mass cells failed to thrive. Depletion of Ptpmt1 in conditional knockout ES cells decreased proliferation without affecting energy homeostasis or cell survival. Differentiation of Ptpmt1-depleted ES cells was essentially blocked. This was accompanied by upregulation of cyclin-dependent kinase inhibitors and a significant cell cycle delay. Reintroduction of wild-type but not of catalytically deficient Ptpmt1 C132S or truncated Ptpmt1 lacking the mitochondrial localization signal restored the differentiation capabilities of Ptpmt1 knockout ES cells. Intriguingly, Ptpmt1 is specifically important for stem cells, as ablation of Ptpmt1 in differentiated embryonic fibroblasts did not disturb cellular function. Further analyses demonstrated that oxygen consumption of Ptpmt1-depleted cells was decreased, while glycolysis was concomitantly enhanced. In addition, mitochondrial fusion/dynamics were compromised in Ptpmt1 knockout cells due to accumulation of PIPs. These studies, while establishing a crucial role for Ptpmt1 phosphatase in embryogenesis, reveal a mitochondrial metabolic stress-activated checkpoint in the control of ES cell differentiation.
Collapse
|
130
|
Aimon S, Manzi J, Schmidt D, Poveda Larrosa JA, Bassereau P, Toombes GES. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 2011; 6:e25529. [PMID: 21998666 PMCID: PMC3188570 DOI: 10.1371/journal.pone.0025529] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We developed a method to reconstitute functional voltage-gated ion channels into cell-sized Giant Unilamellar Vesicles (GUVs) in which membrane composition, tension and geometry can be controlled. First, a voltage-gated potassium channel, KvAP, was purified, fluorescently labeled and reconstituted into small proteoliposomes. Small proteoliposomes were then converted into GUVs via electroformation. GUVs could be formed using different lipid compositions and buffers containing low (5 mM) or near-physiological (100 mM) salt concentrations. Protein incorporation into GUVs was characterized with quantitative confocal microscopy, and the protein density of GUVs was comparable to the small proteoliposomes from which they were formed. Furthermore, patch-clamp measurements confirmed that the reconstituted channels retained potassium selectivity and voltage-gated activation. GUVs containing functional voltage-gated ion channels will allow the study of channel activity, distribution and diffusion while controlling membrane state, and should prove a powerful tool for understanding how the membrane modulates cellular excitability.
Collapse
Affiliation(s)
- Sophie Aimon
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - John Manzi
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - Daniel Schmidt
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, New York, United States of America
| | | | - Patricia Bassereau
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| | - Gilman E. S. Toombes
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
131
|
Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 2011; 477:495-8. [PMID: 21874019 PMCID: PMC3324908 DOI: 10.1038/nature10370] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022]
Abstract
The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP(2)), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP(2) is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell's resting membrane potential. However, the molecular mechanism by which PIP(2) exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP(2). We found that PIP(2) binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP(2)-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 Å and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP(2) can control the resting membrane potential through a specific ion-channel-receptor-ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.
Collapse
Affiliation(s)
- Scott B Hansen
- Laboratory of Molecular Neurobiology & Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
132
|
AL-Shawaf E, Tumova S, Naylor J, Majeed Y, Li J, Beech DJ. GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium 2011; 50:343-50. [PMID: 21742378 PMCID: PMC3195672 DOI: 10.1016/j.ceca.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/16/2022]
Abstract
The Transient Receptor Potential Canonical 5 (TRPC5) protein forms calcium-permeable cationic channels that are stimulated by G protein-coupled receptor agonists. The signaling pathways of such agonist effects are poorly understood. Here we investigated the potential for involvement of lysophosphatidylcholine (LPC) and arachidonic acid generated by group 6 (GVI) phospholipase A2 (PLA2) enzymes, focusing on stimulation of TRPC5 by sphingosine-1-phosphate (S1P) which acts via a pertussis toxin-sensitive (Gi/o protein) pathway without Ca2+-release. Experiments were on HEK 293 cells containing conditional expression of human TRPC5. Channel activity was recorded using an intracellular calcium indicator or whole-cell patch-clamp and PLA2 activity was detected using 3H-arachidonic acid. S1P stimulated PLA2 and TRPC5 activities. Both effects were suppressed by the GVI PLA2 inhibitor bromoenol lactone. Knock-down of GVI PLA2 by RNA interference suppressed channel activity evoked by S1P whereas activity evoked by the direct channel stimulator LPC was unaffected. Arachidonic acid did not stimulate the channels. Prior exposure of channels to LPC but not arachidonic acid suppressed channel activity evoked by S1P but not gadolinium, a putative direct stimulator of the channels. The data suggest roles of LPC and GVI PLA2 in S1P-evoked TRPC5 activity.
Collapse
Affiliation(s)
- Eman AL-Shawaf
- Multidisciplinary Cardiovascular Research Centre and the Institute of Membrane & Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
133
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
134
|
Hertel F, Switalski A, Mintert-Jancke E, Karavassilidou K, Bender K, Pott L, Kienitz MC. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 2011; 6:e20855. [PMID: 21695261 PMCID: PMC3111442 DOI: 10.1371/journal.pone.0020855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane. For controlled and reversible depletion of PtdIns(4,5)P2, voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Methods and Results Expression and correct targeting of ECFP-PH-PLCδ1, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K+ (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P2 was identified. Conclusions Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.
Collapse
Affiliation(s)
- Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Agathe Switalski
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Kirsten Bender
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | | |
Collapse
|
135
|
Wythe JD, Jurynec MJ, Urness LD, Jones CA, Sabeh MK, Werdich AA, Sato M, Yost HJ, Grunwald DJ, Macrae CA, Li DY. Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Dis Model Mech 2011; 4:607-21. [PMID: 21628396 PMCID: PMC3180224 DOI: 10.1242/dmm.002204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH)-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca2+ handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca2+ handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4)P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca2+ handling in the heart through its interaction with phosphatidylinositols.
Collapse
Affiliation(s)
- Joshua D Wythe
- Department of Oncological Sciences and Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Lindner M, Leitner MG, Halaszovich CR, Hammond GRV, Oliver D. Probing the regulation of TASK potassium channels by PI4,5P₂ with switchable phosphoinositide phosphatases. J Physiol 2011; 589:3149-62. [PMID: 21540350 DOI: 10.1113/jphysiol.2011.208983] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TASK channels are background K+ channels that contribute to the resting conductance in many neurons. A key feature of TASK channels is the reversible inhibition by Gq-coupled receptors, thereby mediating the dynamic regulation of neuronal activity by modulatory transmitters. The mechanism that mediates channel inhibition is not fully understood. While it is clear that activation of Gαq is required, the immediate signal for channel closure remains controversial. Experimental evidence pointed to either phospholipase C (PLC)-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) as the cause for channel closure or to a direct inhibitory interaction of active Gαq with the channel. Here, we address the role of PI(4,5)P2 for G-protein-coupled receptor (GPCR)-mediated TASK inhibition by using recently developed genetically encoded tools to alter phosphoinositide (PI) concentrations in the living cell.When expressed in CHO cells, TASK-1- and TASK-3-mediated currents were not affected by depletion of plasma membrane PI(4,5)P2 either via the voltage-activated phosphatase Ci-VSP or via chemically triggered recruitment of a PI(4,5)P2-5'-phosphatase. Depletion of both PI(4,5)P2 and PI(4)P via membrane recruitment of a novel engineered dual-specificity phosphatase also did not inhibit TASK currents. In contrast, each of these methods produced robust inhibition of the bona fide PI(4,5)P2-dependent channel KCNQ4. Efficient depletion of PI(4,5)P2 and PI(4)P was further confirmed with a fluorescent phosphoinositide sensor. Moreover, TASK channels recovered normally from inhibition by co-expressed muscarinic M1 receptors when resynthesis of PI(4,5)P2 was prevented by depletion of cellular ATP. These results demonstrate that TASK channel activity is independent of phosphoinositide concentrations within the physiological range. Consequently, Gq-mediated inhibition of TASK channels is not mediated by depletion of PI(4,5)P2.
Collapse
Affiliation(s)
- Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
137
|
Zakharian E, Thyagarajan B, French R, Pavlov E, Rohacs T. Inorganic Polyphosphate Modulates TRPM8 Channels. Inorg Chem 2011. [DOI: 10.1201/b12873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
138
|
Jung G, Barylko B, Lu D, Shu H, Yin H, Albanesi JP. Stabilization of phosphatidylinositol 4-kinase type IIbeta by interaction with Hsp90. J Biol Chem 2011; 286:12775-84. [PMID: 21330372 DOI: 10.1074/jbc.m110.178616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells express two isoforms of type II phosphatidylinositol 4-kinase: PI4KIIα and PI4KIIβ. PI4KIIα exists almost exclusively as a constitutively active integral membrane protein because of its palmitoylation (Barylko, B., Gerber, S. H., Binns, D. D., Grichine, N., Khvotchev, M., Südhof, T. C., and Albanesi, J. P. (2001) J. Biol. Chem. 276, 7705-7708). In contrast, PI4KIIβ is distributed almost evenly between membranes and cytosol. Whereas the palmitoylated membrane-bound pool is catalytically active, the cytosolic kinase is inactive (Wei, Y. J., Sun, H. Q., Yamamoto, M., Wlodarski, P., Kunii, K., Martinez, M., Barylko, B., Albanesi, J. P., and Yin, H. L. (2002) J. Biol. Chem. 277, 46586-46593; Jung, G., Wang, J., Wlodarski, P., Barylko, B., Binns, D. D., Shu, H., Yin, H. L., and Albanesi, J. P. (2008) Biochem. J. 409, 501-509). In this study, we identify the molecular chaperone Hsp90 as a binding partner of PI4KIIβ, but not of PI4KIIα. Geldanamycin (GA), a specific Hsp90 inhibitor, disrupts the Hsp90-PI4KIIβ interaction and destabilizes PI4KIIβ, reducing its half-life by 40% and increasing its susceptibility to ubiquitylation and proteasomal degradation. Cytosolic PI4KIIβ is much more sensitive to GA treatment than is the integrally membrane-associated species. Exposure to GA induces a partial redistribution of PI4KIIβ from the cytosol to membranes and, with brief GA treatments, a corresponding increase in cellular phosphatidylinositol 4-kinase activity. Stimuli such as PDGF receptor activation that also induce recruitment of the kinase to membranes disrupt the Hsp90-PI4KIIβ interaction to a similar extent as GA treatment. These results support a model wherein Hsp90 interacts predominantly with the cytosolic, inactive pool of PI4KIIβ, shielding it from proteolytic degradation but also sequestering it to the cytosol until an extracellular stimulus triggers its translocation to the Golgi or plasma membrane and subsequent activation.
Collapse
Affiliation(s)
- Gwanghyun Jung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75239, USA
| | | | | | | | | | | |
Collapse
|
139
|
Doerner JF, Hatt H, Ramsey IS. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. ACTA ACUST UNITED AC 2011; 137:271-88. [PMID: 21321070 PMCID: PMC3047606 DOI: 10.1085/jgp.200910388] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293–derived cell line stably expressing muscarinic M1-type acetylcholine receptors. Stimulation of PI(4,5)P2 hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P2 synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P2 depletion and selectively decreased by PI(4,5)P2 compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P2 on channel function, suggesting that PI(4,5)P2 directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P2-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors.
Collapse
Affiliation(s)
- Julia F Doerner
- Department of Cell Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | |
Collapse
|
140
|
Ion channels in inflammation. Pflugers Arch 2011; 461:401-21. [PMID: 21279380 DOI: 10.1007/s00424-010-0917-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/19/2010] [Accepted: 12/19/2010] [Indexed: 12/12/2022]
Abstract
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
Collapse
|
141
|
Affiliation(s)
- Nikita Gamper
- Institute ofMembrane and Systems Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
142
|
Zaika O, Zhang J, Shapiro MS. Combined phosphoinositide and Ca2+ signals mediating receptor specificity toward neuronal Ca2+ channels. J Biol Chem 2011; 286:830-41. [PMID: 21051544 PMCID: PMC3013042 DOI: 10.1074/jbc.m110.166033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/08/2010] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulates Ca(2+) (I(Ca)) and M-type K(+) currents in superior cervical ganglion sympathetic neurons. In those cells, M(1) muscarinic and AT(1) angiotensin types do not elicit Ca(2+)(i) signals and suppress both currents via depletion of PIP(2), whereas the B(2) bradykinin and P2Y purinergic types elicit robust IP(3)-mediated [Ca(2+)](i) rises and neither deplete PIP(2) nor inhibit I(Ca). We have suggested that this specificity arises from differential Ca(2+)(i) signals underlying receptor-specific stimulation of PIP(2) synthesis by phosphatidylinositol (PI) 4-kinase. Here, we investigate which PI 4-kinase isoform underlies this signal, whether stimulation of PI 4-phosphate 5-kinase is also required, and the origin of receptor-specific Ca(2+)(i) signals. Recordings of I(Ca) were used as a PIP(2) "biosensor." In control, stimulation of M(1), but not B(2) or P2Y, receptors robustly suppressed I(Ca). However, when PI 4-kinase IIIβ, diacylglycerol kinase, Rho, or Rho-kinase was blocked, agonists of all three receptors robustly suppressed I(Ca). Overexpression of exogenous M(1) receptors yielded large [Ca(2+)](i) rises by muscarinic agonist, and transfection of wild-type IRBIT decreased Ca(2+)(i) signals, whereas dominant negative IRBIT-S68A had little effect on B(2) or P2Y responses but greatly increased muscarinic responses. We conclude that overlaid on microdomain organization is IRBIT, setting a "threshold" for [IP(3)], assisting in fidelity of receptor specificity.
Collapse
Affiliation(s)
- Oleg Zaika
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Jie Zhang
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Mark S. Shapiro
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
143
|
Bébarová M, Matejovič P, Pásek M, Ohlídalová D, Jansová D, Simurdová M, Simurda J. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes. Acta Physiol (Oxf) 2010; 200:301-14. [PMID: 20618172 DOI: 10.1111/j.1748-1716.2010.02162.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Even though alcohol intoxication is often linked to arrhythmias, data describing ethanol effect on cardiac ionic channels are rare. In addition, ethanol is used as a solvent of hydrophobic compounds in experimental studies. We investigated changes of the action potential (AP) configuration and main ionic membrane currents in rat cardiomyocytes under 20-1500 m(M) ethanol. METHODS Experiments were performed on enzymatically isolated rat right ventricular myocytes using the whole cell patch-clamp technique at room temperature. RESULTS Ethanol reversibly decelerated the upstroke velocity and decreased AP amplitude and duration at 0.2 and 3 Hz. The fast sodium current I(Na) , l-type calcium current I(Ca) and transient outward potassium current I(to) were reversibly inhibited in a concentration-dependent manner (50% inhibition at 446 ± 12, 553 ± 49 and 1954 ± 234 m(M), respectively, with corresponding Hill coefficients 3.1 ± 0.3, 1.1 ± 0.2 and 0.9 ± 0.1). Suppression of I(Na) and I(Ca) magnitude was slightly voltage dependent. The effect on I(Ca) and I(to) was manifested mainly as an acceleration of their apparent inactivations with a decreased slow and fast time constant respectively. As a consequence of marked differences in n(H) , sensitivity of the currents to ethanol at 10% inhibition decreases in the following order: I(Ca) (75 mm, 3.5‰), I(to) (170 m(M), 7.8‰) and I(Na) (220 m(M), 10.1‰). CONCLUSION Our results suggest a slight inhibition of all the currents at ethanol concentrations relevant to deep alcohol intoxication. The concentration dependence measured over a wide range may serve as a guideline when using ethanol as a solvent.
Collapse
Affiliation(s)
- M Bébarová
- Department of Physiology, Masaryk University, Brno - Bohunice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
144
|
Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflugers Arch 2010; 461:387-97. [PMID: 21107857 DOI: 10.1007/s00424-010-0904-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2) or PIP(2)] is a direct modulator of a diverse array of proteins in eukaryotic cells. The functional integrity of transmembrane proteins, such as ion channels and transporters, is critically dependent on specific interactions with PIP(2) and other phosphoinositides. Here, we report a novel requirement for PIP(2) in the activation of the epidermal growth factor receptor (EGFR). Down-regulation of PIP(2) levels either via pharmacological inhibition of PI kinase activity, or via manipulation of the levels of the lipid kinase PIP5K1α and the lipid phosphatase synaptojanin, reduced EGFR tyrosine phosphorylation, whereas up-regulation of PIP(2) levels via overexpression of PIP5K1α had the opposite effect. A cluster of positively charged residues in the juxtamembrane domain (basic JD) of EGFR is likely to mediate binding of EGFR to PIP(2) and PIP(2)-dependent regulation of EGFR activation. A peptide mimicking the EGFR juxtamembrane domain that was assayed by surface plasmon resonance displayed strong binding to PIP(2). Neutralization of positively charged amino acids abolished EGFR/PIP(2) interaction in the context of this peptide and down-regulated epidermal growth factor (EGF)-induced EGFR auto-phosphorylation and EGF-induced EGFR signaling to ion channels in the context of the full-length receptor. These results suggest that EGFR activation and downstream signaling depend on interactions of EGFR with PIP(2) and point to the basic JD's critical involvement in these interactions. The addition of this very different class of membrane proteins to ion channels and transporters suggests that PIP(2) may serve as a general modulator of the activity of many diverse eukaryotic transmembrane proteins through their basic JDs.
Collapse
|
145
|
Thomas AM, Harmer SC, Khambra T, Tinker A. Characterization of a binding site for anionic phospholipids on KCNQ1. J Biol Chem 2010; 286:2088-100. [PMID: 21084310 DOI: 10.1074/jbc.m110.153551] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The KCNQ family of potassium channels underlie a repolarizing K(+) current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current I(Ks) in the heart. Characteristically these channels are regulated via G(q/11)-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP(2)) depletion. It is not clear how KCNQ1 recognizes PIP(2) and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP(2) levels through activation of a G(q/11)-coupled receptor. Conversely, the addition of diC8-PIP(2) to the wild-type channel, but not a PIP(2) binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.
Collapse
Affiliation(s)
- Alison M Thomas
- Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom
| | | | | | | |
Collapse
|
146
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
147
|
The scaffold protein NHERF2 determines the coupling of P2Y1 nucleotide and mGluR5 glutamate receptor to different ion channels in neurons. J Neurosci 2010; 30:11068-72. [PMID: 20720114 DOI: 10.1523/jneurosci.2597-10.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expressed metabotropic group 1 glutamate mGluR5 receptors and nucleotide P2Y1 receptors (P2Y1Rs) show promiscuous ion channel coupling in sympathetic neurons: their stimulation inhibits M-type [Kv7, K(M)] potassium currents and N-type (Ca(V)2.2) calcium currents (Kammermeier and Ikeda, 1999; Brown et al., 2000). These effects are mediated by G(q) and G(i/o) G-proteins, respectively. Via their C-terminal tetrapeptide, these receptors also bind to the PDZ domain of the scaffold protein NHERF2, which enhances their coupling to G(q)-mediated Ca(2+) signaling (Fam et al., 2005; Paquet et al., 2006b). We investigated whether NHERF2 could modulate coupling to neuronal ion channels. We find that coexpression of NHERF2 in sympathetic neurons (by intranuclear cDNA injections) does not affect the extent of M-type potassium current inhibition produced by either receptor but strongly reduced Ca(V)2.2 inhibition by both P2Y1R and mGluR5 activation. NHERF2 expression had no significant effect on Ca(V)2.2 inhibition by norepinephrine (via alpha(2)-adrenoceptors, which do not bind NHERF2), nor on Ca(V)2.2 inhibition produced by an expressed P2Y1R lacking the NHERF2-binding DTSL motif. Thus, NHERF2 selectively restricts downstream coupling of mGluR5 and P2Y1Rs in neurons to G(q)-mediated responses such as M-current inhibition. Differential distribution of NHERF2 in neurons may therefore determine coupling of mGluR5 receptors and P2Y1 receptors to calcium channels.
Collapse
|
148
|
Mohan S, Tse CM, Gabelli SB, Sarker R, Cha B, Fahie K, Nadella M, Zachos NC, Tu-Sekine B, Raben D, Amzel LM, Donowitz M. NHE3 activity is dependent on direct phosphoinositide binding at the N terminus of its intracellular cytosolic region. J Biol Chem 2010; 285:34566-78. [PMID: 20736165 DOI: 10.1074/jbc.m110.165712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small intestinal BB Na(+)/H(+) antiporter NHE3 accounts for the majority of intestinal sodium and water absorption. It is highly regulated with both postprandial inhibition and stimulation sequentially occurring. Phosphatidylinositide 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositide 3,4,5-trisphosphate (PI(3,4,5)P(3)) binding is involved with regulation of multiple transporters. We tested the hypothesis that phosphoinositides bind NHE3 under basal conditions and are necessary for its acute regulation. His(6) proteins were made from the NHE3 C-terminal region divided into four parts as follows: F1 (amino acids 475-589), F2 (amino acids 590-667), F3 (amino acids 668-747), and F4 (amino acids 748-832) and purified by a nickel column. Mutations were made in the F1 region of NHE3 and cloned in pet30a and pcDNA3.1 vectors. PI(4,5)P(2) and PI(3,4,5)P(3) bound only to the NHE3 F1 fusion protein (amino acids 475-589) on liposomal pulldown assays. Mutations were made in the putative lipid binding region of the F1 domain and studied for alterations in lipid binding and Na(+)/H(+) exchange as follows: Y501A/R503A/K505A; F509A/R511A/R512A; R511L/R512L; R520/FR527F; and R551L/R552L. Our results indicate the following. 1) The F1 domain of the NHE3 C terminus has phosphoinositide binding regions. 2) Mutations of these regions alter PI(4,5)P(2) and PI(3,4,5)P(3) binding and basal NHE3 activity. 3) The magnitude of serum stimulation of NHE3 correlates with PI(4,5)P(2) and PI(3,4,5)P(3) binding of NHE3. 4) Wortmannin inhibition of PI3K did not correlate with PI(4,5)P(2) or PI(3,4,5)P(3) binding of NHE3. Two functionally distinct phosphoinositide binding regions (Tyr(501)-Arg(512) and Arg(520)-Arg(552)) are present in the NHE3 F1 domain; both regions are important for serum stimulation, but they display differences in phosphoinositide binding, and the latter but not the former alters NHE3 surface expression.
Collapse
Affiliation(s)
- Sachin Mohan
- Department of Physiology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Bobkov YV, Pezier A, Corey EA, Ache BW. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons. ACTA ACUST UNITED AC 2010; 213:1417-24. [PMID: 20400625 DOI: 10.1242/jeb.037234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.
Collapse
Affiliation(s)
- Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
150
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|