101
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
102
|
Can M, Giles LJ, Ragsdale SW, Sarangi R. X-ray Absorption Spectroscopy Reveals an Organometallic Ni-C Bond in the CO-Treated Form of Acetyl-CoA Synthase. Biochemistry 2017; 56:1248-1260. [PMID: 28186407 DOI: 10.1021/acs.biochem.6b00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-CoA synthase (ACS) is a key enzyme in the Wood-Ljungdahl pathway of anaerobic CO2 fixation, which has long been proposed to operate by a novel mechanism involving a series of protein-bound organometallic (Ni-CO, methyl-Ni, and acetyl-Ni) intermediates. Here we report the first direct structural evidence of the proposed metal-carbon bond. We describe the preparation of the highly active metal-replete enzyme and near-quantitative generation of the kinetically competent carbonylated intermediate. This advance has allowed a combination of Ni and Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure experiments along with density functional theory calculations. The data reveal that CO binds to the proximal Ni of the six-metal metallocenter at the active site and undergoes dramatic structural and electronic perturbation in forming this organometallic Ni-CO intermediate. This direct identification of a Ni-carbon bond in the catalytically competent CO-bound form of the A cluster of ACS provides definitive experimental structural evidence supporting the proposed organometallic mechanism of anaerobic acetyl-CoA synthesis.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Logan J Giles
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University , Stanford, California 94306, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| |
Collapse
|
103
|
Schrapers P, Ilina J, Gregg CM, Mebs S, Jeoung JH, Dau H, Dobbek H, Haumann M. Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy. PLoS One 2017; 12:e0171039. [PMID: 28178309 PMCID: PMC5298270 DOI: 10.1371/journal.pone.0171039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely.
Collapse
Affiliation(s)
- Peer Schrapers
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Julia Ilina
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina M. Gregg
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Jae-Hun Jeoung
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
104
|
Lin CY, Power PP. Complexes of Ni(i): a “rare” oxidation state of growing importance. Chem Soc Rev 2017; 46:5347-5399. [DOI: 10.1039/c7cs00216e] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and diverse structures, reactivity (small molecule activation and catalysis) and magnetic properties of Ni(i) complexes are summarized.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
105
|
Chu X, Xu X, Su H, Raje S, Angamuthu R, Tung CH, Wang W. Heteronuclear assembly of Ni–Cu dithiolato complexes: synthesis, structures, and reactivity studies. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00536e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild route was discovered to synthesize heterometallic [NiIICuI] complexes featuring square-planar Ni(ii) and distorted tetrahedral Cu(i).
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
106
|
Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. EMBO J 2016; 36:291-300. [PMID: 27979921 PMCID: PMC5286356 DOI: 10.15252/embj.201695021] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction.
Collapse
Affiliation(s)
- Satoru Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shimpei Aoe
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jiyoung Kang
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Masaru Tateno
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan .,Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| |
Collapse
|
107
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
108
|
Singharoy A, Teo I, McGreevy R, Stone JE, Zhao J, Schulten K. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. eLife 2016; 5. [PMID: 27383269 PMCID: PMC4990421 DOI: 10.7554/elife.16105] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI:http://dx.doi.org/10.7554/eLife.16105.001 To understand the roles that proteins and other large molecules play inside cells, it is important to determine their structures. One of the techniques that researchers can use to do this is called cryo-electron microscopy (cryo-EM), which rapidly freezes molecules to fix them in position before imaging them in fine detail. The cryo-EM images are like maps that show the approximate position of atoms. These images must then be processed in order to build a three-dimensional model of the protein that shows how its atoms are arranged relative to each other. One computational approach called Molecular Dynamics Flexible Fitting (MDFF) works by flexibly fitting possible atomic structures into cryo-EM maps. Although this approach works well with relatively undetailed (or ‘low resolution’) cryo-EM images, it struggles to handle the high-resolution cryo-EM maps now being generated. Singharoy, Teo, McGreevy et al. have now developed two MDFF methods – called cascade MDFF and resolution exchange MDFF – that help to resolve atomic models of biological molecules from cryo-EM images. Each method can refine poorly guessed models into ones that are consistent with the high-resolution experimental images. The refinement is achieved by interpreting a range of images that starts with a ‘fuzzy’ image. The contrast of the image is then progressively improved until an image is produced that has a resolution that is good enough to almost distinguish individual atoms. The method works because each cryo-EM image shows not just one, but a collection of atomic structures that the molecule can take on, with the fuzzier parts of the image representing the more flexible parts of the molecule. By taking into account this flexibility, the large-scale features of the protein structure can be determined first from the fuzzier images, and increasing the contrast of the images allows smaller-scale refinements to be made to the structure. The MDFF tools have been designed to be easy to use and are available to researchers at low cost through cloud computing platforms. They can now be used to unravel the structure of many different proteins and protein complexes including those involved in photosynthesis, respiration and protein synthesis. DOI:http://dx.doi.org/10.7554/eLife.16105.002
Collapse
Affiliation(s)
- Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ryan McGreevy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jianhua Zhao
- Department of Biochemistry and Biophysics, University of California San Francisco School of Medicine, San Francisco, United States
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
109
|
Gregg CM, Goetzl S, Jeoung JH, Dobbek H. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase. J Biol Chem 2016; 291:18129-38. [PMID: 27382049 DOI: 10.1074/jbc.m116.731638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO, CoA, and a methyl-cation to form acetyl-CoA at a unique Ni,Ni-[4Fe4S] cluster (the A-cluster). However, it was unknown which proteins support the assembly of the A-cluster. We analyzed the product of a gene from the cluster containing the ACS gene, cooC2 from Carboxydothermus hydrogenoformans, named AcsFCh, and showed that it acts as a maturation factor of ACS. AcsFCh and inactive ACS form a stable 2:1 complex that binds two nickel ions with higher affinity than the individual components. The nickel-bound ACS-AcsFCh complex remains inactive until MgATP is added, thereby converting inactive to active ACS. AcsFCh is a MinD-type ATPase and belongs to the CooC protein family, which can be divided into homologous subgroups. We propose that proteins of one subgroup are responsible for assembling the Ni,Ni-[4Fe4S] cluster of ACS, whereas proteins of a second subgroup mature the [Ni4Fe4S] cluster of carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Christina M Gregg
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Sebastian Goetzl
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Jae-Hun Jeoung
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
110
|
Gressenbuch M, Kersting B. Hexaaza-dithia Macrocycles Containing Pendant Methoxyethyl Groups: Synthesis and Characterization of Mono and Dinuclear Nickel Complexes. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
111
|
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. mBio 2016; 7:mBio.00427-16. [PMID: 27222467 PMCID: PMC4895105 DOI: 10.1128/mbio.00427-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The future sustainable production of chemicals and fuels from nonpetrochemical resources and reduction of greenhouse gas emissions are two of the greatest societal challenges. Gas fermentation, which utilizes the ability of acetogenic bacteria such as Clostridium autoethanogenum to grow and convert CO2 and CO into low-carbon fuels and chemicals, could potentially provide solutions to both. Acetogens fix these single-carbon gases via the Wood-Ljungdahl pathway. Two enzyme activities are predicted to be essential to the pathway: carbon monoxide dehydrogenase (CODH), which catalyzes the reversible oxidation of CO to CO2, and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which combines with CODH to form a CODH/ACS complex for acetyl-CoA fixation. Despite their pivotal role in carbon fixation, their functions have not been confirmed in vivo. By genetically manipulating all three CODH isogenes (acsA, cooS1, and cooS2) of C. autoethanogenum, we highlighted the functional redundancies of CODH by demonstrating that cooS1 and cooS2 are dispensable for autotrophy. Unexpectedly, the cooS1 inactivation strain showed a significantly reduced lag phase and a higher growth rate than the wild type on H2 and CO2. During heterotrophic growth on fructose, the acsA inactivation strain exhibited 61% reduced biomass and the abolishment of acetate production (a hallmark of acetogens), in favor of ethanol, lactate, and 2,3-butanediol production. A translational readthrough event was discovered in the uniquely truncated (compared to those of other acetogens) C. autoethanogenum acsA gene. Insights gained from studying the function of CODH enhance the overall understanding of autotrophy and can be used for optimization of biotechnological production of ethanol and other commodities via gas fermentation. Gas fermentation is an emerging technology that converts the greenhouse gases CO2 and CO in industrial waste gases and gasified biomass into fuels and chemical commodities. Acetogenic bacteria such as Clostridium autoethanogenum are central to this bioprocess, but the molecular and genetic characterization of this microorganism is currently lacking. By targeting all three of the isogenes encoding carbon monoxide dehydrogenase (CODH) in C. autoethanogenum, we identified the most important CODH isogene for carbon fixation and demonstrated that genetic inactivation of CODH could improve autotrophic growth. This study shows that disabling of the Wood-Ljungdahl pathway via the inactivation of acsA (encodes CODH) significantly impairs heterotrophic growth and alters the product profile by abolishing acetate production. Moreover, we discovered a previously undescribed mechanism for controlling the production of this enzyme. This study provides valuable insights into the acetogenic pathway and can be used for the development of more efficient and productive strains for gas fermentation.
Collapse
|
112
|
|
113
|
Sultana S, Chandra Sahoo P, Martha S, Parida K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv 2016. [DOI: 10.1039/c6ra05472b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review has summarised single enzyme, multi enzymatic and semiconducting nanomaterial integrated enzymatic systems for CO2 conversion to clean fuels.
Collapse
Affiliation(s)
- Sabiha Sultana
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Prakash Chandra Sahoo
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Satyabadi Martha
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| |
Collapse
|
114
|
Carmona M, Rodríguez R, Lahoz FJ, García-Orduña P, Osante I, Cativiela C, López JA, Carmona D. Half-sandwich complexes of rhodium containing cysteine-derived ligands. Dalton Trans 2016; 45:14203-15. [DOI: 10.1039/c6dt02411d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five distinct coordination modes have been disclosed for rhodium complexes containing modified cysteines. From the spectroscopic, theoretical and crystallographic data, the absolute configuration of the compounds has been established.
Collapse
Affiliation(s)
- María Carmona
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| | - Ricardo Rodríguez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| | - Fernando J. Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| | - Iñaki Osante
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Orgánica
- 50009 Zaragoza
- Spain
| | - Carlos Cativiela
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Orgánica
- 50009 Zaragoza
- Spain
| | - José A. López
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| | - Daniel Carmona
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Departamento de Química Inorgánica
- 50009 Zaragoza
- Spain
| |
Collapse
|
115
|
The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1574-83. [DOI: 10.1016/j.bbabio.2015.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
|
116
|
Diender M, Stams AJM, Sousa DZ. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Front Microbiol 2015; 6:1275. [PMID: 26635746 PMCID: PMC4652020 DOI: 10.3389/fmicb.2015.01275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
117
|
Warner DS, Limberg C, Oldenburg FJ, Braun B. Reaction of a polydentate cysteine-based ligand and its nickel(ii) complex with electrophilic and nucleophilic methyl-transfer reagents - from S-methylation to acetyl coenzyme A synthase reactivity. Dalton Trans 2015; 44:18378-85. [PMID: 26390049 DOI: 10.1039/c5dt02828k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The L-cysteine derived N2S2 ligand precursor H2L and its nickel(ii) complex L2Ni2 were investigated with respect to their behaviour in contact with electrophilic and nucleophilic methylation reagents (H2L = (N,N'-dimethyl-(2R,5R)-bis-(sulfanylmethyl)-piperazine). Treatment of deprotonated L(2-) with MeI led to the selective methylation of the thiolate groups thus generating a novel potential ligand, Me2L, which is neutral and contains two thioether donors. The coordinating properties of Me2L were demonstrated by the synthesis of a first nickel(ii) complex: reaction with NiBr2 led to a mononuclear complex 2 where all donor atoms coordinate to the nickel ion, which completes its octahedral coordination sphere by the two bromide ligands. If, however, the complex [LNi]2 (1) is treated with MeI only one thiolate function per ligand moiety is methylated, while the other one remains a thiolate. This leads to [MeLNi](+) complex metal fragments, which trimerize including a μ3-bridging iodide ion to give the compound 3 that was tested with regards to ACS reactivity. While it behaved inert towards CO, attempts to replace the bridging iodide ligand by methyl units in reactions with nucleophilic methylation reagents led to a product, which could not be identified but reacted with CO. Work-up showed that this protocol had converted the thiolate function of MeL(-) into a thioester function, which corresponds to an ACS-like reactivity.
Collapse
Affiliation(s)
- D S Warner
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
118
|
de Ruiter G, Thompson NB, Lionetti D, Agapie T. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes. J Am Chem Soc 2015; 137:14094-106. [PMID: 26390375 DOI: 10.1021/jacs.5b07397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.
Collapse
Affiliation(s)
- Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Niklas B Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Davide Lionetti
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
119
|
Manesis AC, Shafaat HS. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase. Inorg Chem 2015; 54:7959-67. [PMID: 26234790 DOI: 10.1021/acs.inorgchem.5b01103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity.
Collapse
|
120
|
Pulukkody R, Darensbourg MY. Synthetic advances inspired by the bioactive dinitrosyl iron unit. Acc Chem Res 2015; 48:2049-58. [PMID: 26090911 DOI: 10.1021/acs.accounts.5b00215] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resulting from biochemical iron-NO interactions, dinitrosyl iron complexes (DNICs) are small organometallic-like molecules, considered to serve as vehicles for NO transport and storage in vivo. Formed by the interaction of NO with cellular iron sulfur clusters or with the cellular labile iron pool, DNICs have been documented to be the largest NO-derived adduct in cells, even surpassing the well-known nitrosothiols (RSNOs). Continuing efforts in biological chemistry are aimed at understanding the movement of DNICs in and out of cells, and their important role in NO-induced iron efflux leading to apoptosis in cells. Intrigued by the integrity of the unique dinitrosyl iron unit (DNIU) and the possibility of roles for it in human physiology or medicinal applications, the understanding of fundamental properties such as ligand effects on its ability to switch between two redox levels has been pursued through biomimetic complexes. Using metallodithiolates and N-heterocyclic carbenes (NHCs) as ligands to Fe(NO)2, the synthesis of a library of novel DNICs, in both the oxidized, {Fe(NO)2}(9), and reduced, {Fe(NO)2}(10), forms (Enemark-Feltham notation), offers opportunity to examine structural, reactivity, and spectroscopic features. The raison d'etre for the MN2S2·Fe(NO)2 synthesis development is for the potential to exploit the ease of accessing two redox levels on two different metal sites, a property presumably required for achieving two electron redox processes in base metals. Hence such molecules may be viewed as synthetic analogues of [NiFe]- or [FeFe]-hydrogenase active sites in nature, both of which use bridging thiolates for connection of the two centers. A particular success was the development of an Fe(NO)N2S2·Fe(NO)2(+/0) redox pair for proton reduction electrocatalysis. Monomeric, reduced NHC-DNICs of the L2Fe(NO)2 type are synthesized via the Fe(CO)2(NO)2 precursor, and oxidized thiolate-containing forms are derived from the dimeric (μ-RS)2[Fe(NO)2]2. Monomeric NHC-DNICs are four coordinate, pseudotetrahedral compounds with planar Fe(NO)2 units in which the slightly bent Fe-NO groups are directed symmetrically inward at both redox levels. They serve as stable analogues of biological histidine binding sites. In agreement with IR data, Mössbauer spectroscopic parameters, and DFT computations, the prototypic NHC-DNICs indicate extensive delocalization of the electron density of iron via π-backbonding. Such π-delocalization presents an unusual reaction path for the one electron process of RS(-)/RSSR interconversion. Comparisons with imidazole-DNICs find NHCs to be the "better" ligands to Fe(NO)2 and prompted investigations in (a) possible relationships between such imidazole- and NHC-containing DNICs, (b) systems that might mimic the reactivity of DNICs with the endogenous gaseotransmitter CO, and (c) mechanistic details of such processes. In a broader context, these studies aim to further describe the behavior of the {Fe(NO)2} unit as a single molecular entity when subjected to various ligand environments and reaction conditions.
Collapse
Affiliation(s)
- Randara Pulukkody
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
121
|
CO Metabolism in the Acetogen Acetobacterium woodii. Appl Environ Microbiol 2015; 81:5949-56. [PMID: 26092462 DOI: 10.1128/aem.01772-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023] Open
Abstract
The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed.
Collapse
|
122
|
Greco C, Ciancetta A, Bruschi M, Kulesza A, Moro G, Cosentino U. Influence of key amino acid mutation on the active site structure and on folding in acetyl-CoA synthase: a theoretical perspective. Chem Commun (Camb) 2015; 51:8551-4. [PMID: 25896878 DOI: 10.1039/c5cc01575h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ad hoc quantum chemical modeling of the acetyl-CoA synthase local structure and folding allowed us to identify an unprecedented coordination mode of histidine sidechain to protein-embedded metal ions.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Earth and Environmental Sciences, Milano-Bicocca University, P.zza della Scienza 1, Milan, 20126, Italy.
| | | | | | | | | | | |
Collapse
|
123
|
Majumdar A. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Trans 2015; 43:12135-45. [PMID: 24984248 DOI: 10.1039/c4dt00729h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carbon monoxide dehydrogenases (CODHs) use CO as their sole source of carbon and energy and are found in both aerobic and anaerobic carboxidotrophic bacteria. Reversible transformation of CO to CO2 is catalyzed by a bimetallic [Mo-(μ2-S)-Cu] system in aerobic and by a highly asymmetric [Ni-Fe-S] cluster in anaerobic CODH active sites. The CODH activity in the microorganisms effects the removal of almost 10(8) tons of CO annually from the lower atmosphere and earth and thus help to maintain a sub-toxic concentration of CO. Despite an appreciable amount of work, the mechanism of CODH activity is not clearly understood yet. Moreover, biomimetic chemistry directed towards the active sites of CODHs faces several synthetic challenges. The synthetic problems associated with the modeling chemistry and strategies adopted to overcome those problems are discussed along with their limitations. A critical analysis of the exciting results delineating the present status of CODH modeling chemistry and its future prospects are presented.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
124
|
Denny JA, Darensbourg MY. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 2015; 115:5248-73. [PMID: 25948147 DOI: 10.1021/cr500659u] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
125
|
Morrison CN, Hoy JA, Zhang L, Einsle O, Rees DC. Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 2015; 54:2052-60. [PMID: 25710326 PMCID: PMC4590346 DOI: 10.1021/bi501313k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
In
the nitrogenase molybdenum-iron (MoFe) protein, we have identified
five potential substrate access pathways from the protein surface
to the FeMo-cofactor (the active site) or the P-cluster using experimental
structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including
those from Klebsiella pneumoniae, were analyzed for
the presence of nonwater, small molecules bound to the protein interior.
Each pathway is based on identification of plausible routes from buried
small molecule binding sites to both the protein surface and a metallocluster.
Of these five pathways, two have been previously suggested as substrate
access pathways. While the small molecule binding sites are not conserved
among the three species of MoFe protein, residues lining the pathways
are generally conserved, indicating that the proposed pathways may
be accessible in all three species. These observations imply that
there is unlikely a unique pathway utilized for substrate access from
the protein surface to the active site; however, there may be preferred
pathways such as those described here.
Collapse
Affiliation(s)
- Christine N Morrison
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Julie A Hoy
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Limei Zhang
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States
| | - Oliver Einsle
- ‡Institut für Biochemie and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Douglas C Rees
- †Division of Chemistry and Chemical Engineering, California Institute of Technology 114-96, Pasadena, California 91125, United States.,§Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
126
|
Liu XF, Li X, Yan J. Synthetic and structural studies of the mononuclear nickel(II) ethanedithiolate complexes with chelating N-substituted bis(diphenylphosphanyl)amine. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
127
|
Mondragón A, Flores-Alamo M, Martínez-Alanis PR, Aullón G, Ugalde-Saldívar VM, Castillo I. Electrocatalytic Proton Reduction by Dimeric Nickel Complex of a Sterically Demanding Pincer-type NS2 Aminobis(thiophenolate) Ligand. Inorg Chem 2014; 54:619-27. [DOI: 10.1021/ic502547y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Gabriel Aullón
- Departament de Química Inorgànica and Institut de Química
Teòrica i Computacional, Universitat de Barcelona, Martí
i Franquès 1-11, 08028 Barcelona, Spain
| | | | | |
Collapse
|
128
|
Pelzmann AM, Mickoleit F, Meyer O. Insights into the posttranslational assembly of the Mo-, S- and Cu-containing cluster in the active site of CO dehydrogenase of Oligotropha carboxidovorans. J Biol Inorg Chem 2014; 19:1399-414. [PMID: 25377894 PMCID: PMC4240915 DOI: 10.1007/s00775-014-1201-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022]
Abstract
Oligotropha carboxidovorans is characterized by the aerobic chemolithoautotrophic utilization of CO. CO oxidation by CO dehydrogenase proceeds at a unique bimetallic [CuSMoO2] cluster which matures posttranslationally while integrated into the completely folded apoenzyme. Kanamycin insertional mutants in coxE, coxF and coxG were characterized with respect to growth, expression of CO dehydrogenase, and the type of metal center present. These data along with sequence information were taken to delineate a model of metal cluster assembly. Biosynthesis starts with the MgATP-dependent, reductive sulfuration of [Mo(VI)O3] to [Mo(V)O2SH] which entails the AAA+-ATPase chaperone CoxD. Then Mo(V) is reoxidized and Cu(1+)-ion is integrated. Copper is supplied by the soluble CoxF protein which forms a complex with the membrane-bound von Willebrand protein CoxE through RGD-integrin interactions and enables the reduction of CoxF-bound Cu(2+), employing electrons from respiration. Copper appears as Cu(2+)-phytate, is mobilized through the phytase activity of CoxF and then transferred to the CoxF putative copper-binding site. The coxG gene does not participate in the maturation of the bimetallic cluster. Mutants in coxG retained the ability to utilize CO, although at a lower growth rate. They contained a regular CO dehydrogenase with a functional catalytic site. The presence of a pleckstrin homology (PH) domain on CoxG and the observed growth rates suggest a role of the PH domain in recruiting CO dehydrogenase to the cytoplasmic membrane enabling electron transfer from the enzyme to the respiratory chain. CoxD, CoxE and CoxF combine motifs of a DEAD-box RNA helicase which would explain their mutual translation.
Collapse
Affiliation(s)
- Astrid M. Pelzmann
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Ortwin Meyer
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
129
|
Huh DN, Gibbons JB, Haywood RS, Moore CE, Rheingold AL, Ferguson MJ, Daley CJ. Metal-amidato complexes: Synthesis, characterization, and reactivity of a diamidato-bis(phosphine) nickel(II) complex. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
130
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
131
|
Liu XF. Condensation reactions of the mononuclear nickel(II) complexes [RN(PPh 2 ) 2 ]NiCl 2 with 1,2-ethanedithiol or 1,3-propanedithiol. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
132
|
Pinder TA, Montalvo SK, Hsieh CH, Lunsford AM, Bethel RD, Pierce BS, Darensbourg MY. Metallodithiolates as Ligands to Dinitrosyl Iron Complexes: Toward the Understanding of Structures, Equilibria, and Spin Coupling. Inorg Chem 2014; 53:9095-105. [DOI: 10.1021/ic501117f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiffany A. Pinder
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Steven K. Montalvo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-Hung Hsieh
- Department of Chemistry, Tamkang University, New Taipei
City 25157, Taiwan
| | - Allen M. Lunsford
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan D. Bethel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | | |
Collapse
|
133
|
Kure B, Sano M, Nakajima T, Tanase T. Systematic Heterodinuclear Complexes with MM′(μ-meppp) Centers That Tune the Properties of a Nesting Hydride (M = Ni, Pd, Pt; M′ = Rh, Ir; H2meppp = meso-1,3-Bis[(mercaptoethyl)phenylphosphino]propane). Organometallics 2014. [DOI: 10.1021/om500410f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bunsho Kure
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Mikie Sano
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Takayuki Nakajima
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Tomoaki Tanase
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| |
Collapse
|
134
|
Hsieh CH, Ding S, Erdem ÖF, Crouthers DJ, Liu T, McCrory CCL, Lubitz W, Popescu CV, Reibenspies JH, Hall MB, Darensbourg MY. Redox active iron nitrosyl units in proton reduction electrocatalysis. Nat Commun 2014; 5:3684. [DOI: 10.1038/ncomms4684] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/18/2014] [Indexed: 11/09/2022] Open
|
135
|
Inoue T, Takao K, Fukuyama Y, Yoshida T, Sako Y. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction. Biosci Biotechnol Biochem 2014; 78:582-7. [PMID: 25036953 DOI: 10.1080/09168451.2014.890027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carbon monoxide dehydrogenase-I (CODH-I) from the CO-utilizing bacterium Carboxydothermus hydrogenoformans are expected to be utilized as a part of reproducible carbon dioxide photoreduction system. However, the over-expression system for CODH-I remains to be constructed. CODH-I constitutes a hydrogenase/CODH gene cluster including a gene encoding a Ni-insertion accessory protein, CooC (cooC3). Through co-expression of CooC3, we found an over-expression system with higher activity. The Rec-CODH-I with the co-expression exhibits 8060 U/mg which was approximately threefold than that without co-expression (2270 U/mg). In addition, co-expression resulted in Ni(2+) content increase; the amount of Ni atoms of Rec-CODH-I was approximately thrice than that without co-expression.
Collapse
Affiliation(s)
- Takahiro Inoue
- a Division of Applied Biosciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | | | | | |
Collapse
|
136
|
Can M, Armstrong F, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 2014; 114:4149-74. [PMID: 24521136 PMCID: PMC4002135 DOI: 10.1021/cr400461p] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mehmet Can
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fraser
A. Armstrong
- Inorganic
Chemistry Laboratory, University of Oxford Oxford, OX1 3QR, United Kingdom
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
137
|
Lee SC, Lo W, Holm RH. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. Chem Rev 2014; 114:3579-600. [PMID: 24410527 PMCID: PMC3982595 DOI: 10.1021/cr4004067] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Wayne Lo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada and the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Corresponding Authors: S. C. Lee: . R. H. Holm:
| |
Collapse
|
138
|
Affiliation(s)
- Daniel L. DuBois
- Center for Molecular Electrocatalysis, Chemical and Materials
Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| |
Collapse
|
139
|
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014; 544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.
Collapse
Affiliation(s)
- Jodi L Boer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
140
|
|
141
|
Abstract
Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.
Collapse
|
142
|
Pinder TA, Montalvo SK, Lunsford AM, Hsieh CH, Reibenspies JH, Darensbourg MY. Versatile N2S2nickel-dithiolates as mono- and bridging bidentate, S-donor ligands to gold(i). Dalton Trans 2014; 43:138-44. [DOI: 10.1039/c3dt52295d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
143
|
Volkmann N. The joys and perils of flexible fitting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:137-55. [PMID: 24446360 DOI: 10.1007/978-3-319-02970-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While performing their functions, biological macromolecules often form large, dynamically changing macromolecular assemblies. Only a relatively small number of such assemblies have been accessible to the atomic-resolution techniques X-ray crystallography and NMR. Electron microscopy in conjunction with image reconstruction has become the preferred alternative for revealing the structures of such macromolecular complexes. However, for most assemblies the achievable resolution is too low to allow accurate atomic modeling directly from the data. Yet, useful models often can be obtained by fitting atomic models of individual components into a low-resolution reconstruction of the entire assembly. Several algorithms for achieving optimal fits in this context were developed recently, many allowing considerable degrees of flexibility to account for binding-induced conformational changes of the assembly components. This chapter describes the advantages and potential pitfalls of these methods and puts them into perspective with alternative approaches such as iterative modular fitting of rigid-body domains.
Collapse
Affiliation(s)
- Niels Volkmann
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA,
| |
Collapse
|
144
|
Wang V, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci 2014; 14:71-97. [PMID: 25416391 PMCID: PMC4261625 DOI: 10.1007/978-94-017-9269-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carbon monoxide dehydrogenases (CODH) play an important role in utilizing carbon monoxide (CO) or carbon dioxide (CO2) in the metabolism of some microorganisms. Two distinctly different types of CODH are distinguished by the elements constituting the active site. A Mo-Cu containing CODH is found in some aerobic organisms, whereas a Ni-Fe containing CODH (henceforth simply Ni-CODH) is found in some anaerobes. Two members of the simplest class (IV) of Ni-CODH behave as efficient, reversible electrocatalysts of CO2/CO interconversion when adsorbed on a graphite electrode. Their intense electroactivity sets an important benchmark for the standard of performance at which synthetic molecular and material electrocatalysts comprised of suitably attired abundant first-row transition elements must be able to operate. Investigations of CODHs by protein film electrochemistry (PFE) reveal how the enzymes respond to the variable electrode potential that can drive CO2/CO interconversion in each direction, and identify the potential thresholds at which different small molecules, both substrates and inhibitors, enter or leave the catalytic cycle. Experiments carried out on a much larger (Class III) enzyme CODH/ACS, in which CODH is complexed tightly with acetyl-CoA synthase, show that some of these characteristics are retained, albeit with much slower rates of interfacial electron transfer, attributable to the difficulty in making good electronic contact at the electrode. The PFE results complement and clarify investigations made using spectroscopic investigations.
Collapse
|
145
|
Chmielowska A, Lodowski P, Jaworska M. Redox Potentials and Protonation of the A-Cluster from Acetyl-CoA Synthase. A Density Functional Theory Study. J Phys Chem A 2013; 117:12484-96. [DOI: 10.1021/jp402616e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Piotr Lodowski
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Maria Jaworska
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
146
|
Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster. Biochem Biophys Res Commun 2013; 441:13-7. [DOI: 10.1016/j.bbrc.2013.09.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
|
147
|
Zhang L, Kaiser JT, Meloni G, Yang KY, Spatzal T, Andrade SLA, Einsle O, Howard JB, Rees DC. The Sixteenth Iron in the Nitrogenase MoFe Protein. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
148
|
Zhang L, Kaiser JT, Meloni G, Yang KY, Spatzal T, Andrade SLA, Einsle O, Howard JB, Rees DC. The sixteenth iron in the nitrogenase MoFe protein. Angew Chem Int Ed Engl 2013; 52:10529-32. [PMID: 23963815 DOI: 10.1002/anie.201303877] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 11/10/2022]
Abstract
Another iron in the fire: X-ray anomalous diffraction studies on the nitrogenase MoFe protein show the presence of a mononuclear iron site, designated as Fe16, which was previously identified as either Ca(2+) or Mg(2+). The position of the absorption edge indicates that this site is in the oxidation state +2. The high sequence conservation of the residues coordinated to Fe16 emphasizes the potential importance of the site in nitrogenase.
Collapse
Affiliation(s)
- Limei Zhang
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 (USA)
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013; 113:6621-58. [PMID: 23767781 PMCID: PMC3895110 DOI: 10.1021/cr300463y] [Citation(s) in RCA: 1304] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron M. Appel
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John E. Bercaw
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel L. DuBois
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michel Dupuis
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Paul J. A. Kenis
- Department of Chemical and Biochemical Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Cheryl A. Kerfeld
- DOE Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California 94598, United States, and Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall Berkeley, California 94720, United States
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charles H. F. Peden
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Archie R. Portis
- Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Joost N. H. Reek
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Strasse 10, D-35043 Marburg, Germany
| | - Grover L. Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
150
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|