101
|
Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006; 15:949-60. [PMID: 16597831 PMCID: PMC2242497 DOI: 10.1110/ps.052030506] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies.
Collapse
Affiliation(s)
- Louis A Clark
- Biogen Idec, Inc., Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 2006; 103:4586-91. [PMID: 16537393 PMCID: PMC1450215 DOI: 10.1073/pnas.0505379103] [Citation(s) in RCA: 483] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Indexed: 11/18/2022] Open
Abstract
Clefts on protein surfaces are avoided by antigen-combining sites of conventional antibodies, in contrast to heavy-chain antibodies (HCAbs) of camelids that seem to be attracted by enzymes' substrate pockets. The explanation for this pronounced preference of HCAbs was investigated. Eight single domain antigen-binding fragments of HCAbs (VHH) with nanomolar affinities for lysozyme were isolated from three immunized dromedaries. Six of eight VHHs compete with small lysozyme inhibitors. This ratio of active site binders is also found within the VHH pool derived from polyclonal HCAbs purified from the serum of the immunized dromedary. The crystal structures of six VHHs in complex with lysozyme and their interaction surfaces were compared to those of conventional antibodies with the same antigen. The interface sizes of VHH and conventional antibodies to lysozyme are very similar as well as the number and chemical nature of the contacts. The main difference comes from the compact prolate shape of VHH that presents a large convex paratope, predominantly formed by the H3 loop and interacting, although with different structures, into the concave lysozyme substrate-binding pocket. Therefore, a single domain antigen-combining site has a clear structural advantage over a conventional dimeric format for targeting clefts on antigenic surfaces.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Cellular and Molecular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Midelfort KS, Wittrup KD. Context-dependent mutations predominate in an engineered high-affinity single chain antibody fragment. Protein Sci 2006; 15:324-34. [PMID: 16434745 PMCID: PMC2242459 DOI: 10.1110/ps.051842406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A mutational analysis of the femtomolar-affinity anti-fluorescein antibody 4M5.3, compared to its wild-type progenitor, 4-4-20, indicates both context-dependent and -independent mutations are responsible for the 1800-fold affinity improvement. 4M5.3 was engineered from 4-4-20 by directed evolution and contains 14 mutations. The seven mutations identified as present in each of 10 final round affinity maturation clones were studied here. Affinities of the 4-4-20 single mutant addition and 4M5.3 single site reversion mutants were compared. These experiments identified four mutations, of these seven, that were context-dependent in their contribution to higher affinity. A simplified mutant containing only these seven mutations was created to analyze complete double mutant cycles of selected sets of mutations. Specific mutational sets studied included the ligand contact mutations, the heavy chain CDR3 mutations, the heavy chain CDR3 mutations plus the neighboring residue at site H108, and the early and late acquired mutations on the directed evolution pathway. The heavy chain CDR3 mutational set and the ligand-contacting mutations were shown to provide -1.4 and -2.0 kcal/mol, respectively, of the total -3.5 kcal/mol change in free energy of binding of the seven-site consensus mutant. The mutations acquired late in the directed evolution rounds provided much of the change in free energy without the earlier acquired mutations (-3.1 kcal/mol of the total -3.5 kcal/mol). Prior structural data and electrostatic calculations presented several hypotheses for the higher affinity contributions, some of which are supported by these mutational data.
Collapse
Affiliation(s)
- Katarina S Midelfort
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
104
|
Pauyo T, Hilinski GJ, Chiu PT, Hansen DE, Choi YJ, Ratner DI, Shah-Mahoney N, Southern CA, O'Hara PB. Genetic and fluorescence studies of affinity maturation in related antibodies. Mol Immunol 2006; 43:812-21. [PMID: 16137768 DOI: 10.1016/j.molimm.2005.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/06/2005] [Indexed: 11/18/2022]
Abstract
Affinity maturation, the process by which an organism's response to infection becomes more specific and more effective over time, occurs after somatic hypermutation of antibody genes in B-cells. This increase in affinity might be a result of the evolution of either specific interactions between antigen and antibody over time (enthalpic factors) or antibody binding site rigidification (entropic factors) or both. Here, monoclonal antibodies, derived from antibodies elicited at different points in the murine immune response after inoculation with the same diketone hapten, have been characterized both genetically and functionally. Though this hapten has previously been shown to produce the catalytic aldolase antibody 38C2, antibodies described here are not catalytic and unlike 38C2, form no covalent enzyme-substrate complex. Thus, they provide a system in which to assess contributions to the evolution of binding affinity. The genes for these non-catalytic antibodies have been sequenced and analyzed both with regard to their relationships to germ line genes, to each other, and to two commercially available catalytic aldolase antibodies. Consequences of particular mutations for antigen binding behavior are discussed. The protein products of these genes have been expressed, purified, and binding properties measured by two complementary techniques: the hapten-induced quenching of the native antibody fluorescence and the changes in the anisotropy of Prodan (6-propionyl-2-(dimethylamino)naphthalene), a fluorescent hapten analogue. Differences in binding affinity are related back to differences in the lengths and amino acid sequences of the complementary determining region 3 (CDR3) binding loop. Taken together with our earlier results on binding site heterogeneity from tryptophan lifetime analysis [Mohan, G.S., Chiu, P.T., Southern, C.A., O'Hara, P.B., 2004. Steady-state and multifrequency phase fluorometry studies of binding site flexibility in related antibodies. J. Phys. Chem. A 108, 7871-7877], affinity appears to be modulated by a combination of entropic and enthalpic factors, and not dominated by one or the other. Because these antibodies are not related to the same germ line gene, however, these results do not provide evidence for the dominance of enthalpy or entropy in evolving binding affinity in this system.
Collapse
Affiliation(s)
- Thierry Pauyo
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Cho S, Swaminathan CP, Yang J, Kerzic MC, Guan R, Kieke MC, Kranz DM, Mariuzza RA, Sundberg EJ. Structural basis of affinity maturation and intramolecular cooperativity in a protein-protein interaction. Structure 2006; 13:1775-87. [PMID: 16338406 PMCID: PMC2746401 DOI: 10.1016/j.str.2005.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/04/2005] [Accepted: 08/10/2005] [Indexed: 11/29/2022]
Abstract
Although protein-protein interactions are involved in nearly all cellular processes, general rules for describing affinity and selectivity in protein-protein complexes are lacking, primarily because correlations between changes in protein structure and binding energetics have not been well determined. Here, we establish the structural basis of affinity maturation for a protein-protein interaction system that we had previously characterized energetically. This model system exhibits a 1500-fold affinity increase. Also, its affinity maturation is restricted by negative intramolecular cooperativity. With three complex and six unliganded variant X-ray crystal structures, we provide molecular snapshots of protein interface remodeling events that span the breadth of the affinity maturation process and present a comprehensive structural view of affinity maturation. Correlating crystallographically observed structural changes with measured energetic changes reveals molecular bases for affinity maturation, intramolecular cooperativity, and context-dependent binding.
Collapse
Affiliation(s)
- Sangwoo Cho
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Chittoor P. Swaminathan
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Jianying Yang
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Melissa C. Kerzic
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Rongjin Guan
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Michele C. Kieke
- Department of Biochemistry University of Illinois Urbana, Illinois 61801
| | - David M. Kranz
- Department of Biochemistry University of Illinois Urbana, Illinois 61801
| | - Roy A. Mariuzza
- Center for Advanced Research in Biotechnology W.M. Keck Laboratory for Structural Biology University of Maryland Biotechnology Institute Rockville, Maryland 20850
| | - Eric J. Sundberg
- Boston Biomedical Research Institute Watertown, Massachusetts 02472
- Correspondence:
| |
Collapse
|
106
|
Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A 2006; 103:1846-51. [PMID: 16446445 PMCID: PMC1413636 DOI: 10.1073/pnas.0508341103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cartilaginous fish are the oldest phylogenetic group in which Igs have been found. Sharks produce a unique Ig isotype, IgNAR, a heavy-chain homodimer that does not associate with light chains. Instead, the variable (V) regions of IgNAR bind antigen as soluble single domains. Our group has shown that IgNAR plays an integral part in the humoral response of nurse sharks (Ginglymostoma cirratum) upon antigen challenge. Here, we generated phage-displayed libraries of IgNAR V regions from an immunized animal and found a family of clones derived from the same rearrangement event but differentially mutated during expansion. Because of the cluster organization of shark Ig genes and the paucicopy nature of IgNAR, we were able to construct the putative ancestor of this family. By studying mutations in the context of clone affinities, we found evidence that affinity maturation occurs for this isotype. Subsequently, we were able to identify mutations important in the affinity improvement of this family. Because the family clones were all obtained after immunization, they provide insight into the in vivo maturation mechanisms, in general, and for single-domain antibody fragments.
Collapse
Affiliation(s)
- Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
107
|
Gupta P, Saleemuddin M, Khan RH. Hydrophobic interactions are the prevalent force in bromelain:Fab’ complex. BIOCHEMISTRY (MOSCOW) 2006; 71 Suppl 1:S31-7. [PMID: 16487065 DOI: 10.1134/s0006297906130050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibromelain polyclonal antibodies against stem bromelain were raised in male albino rabbits and the Fab monomers isolated from the IgG of the immune sera as reported in our earlier communication (Gupta, P., Khan, R. H., and Saleemuddin, M. (2003) Biochim. Biophys. Acta, 1646, 131-135). Further, as evident from that communication bromelain:Fab complex has 1 : 1 stoichiometry. The stability of bromelain:Fab complex (1 : 1 stoichiometry) was investigated by far and near-UV CD and fluorescence measurements. Addition of up to 1.8 M NaCl caused no significant changes in fluorescence signals and near-UV CD peak pattern. However, the spectral studies together with gel filtration studies suggest dissociation of the complex beyond 5% (v/v) methanol. These results show that hydrophobic interactions play a pronounced role in the binding of Fab to bromelain while electrostatic interactions may be less crucial.
Collapse
Affiliation(s)
- P Gupta
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | | | | |
Collapse
|
108
|
Demirel MC, Lesk AM. Molecular forces in antibody maturation. PHYSICAL REVIEW LETTERS 2005; 95:208106. [PMID: 16384106 DOI: 10.1103/physrevlett.95.208106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Indexed: 05/05/2023]
Abstract
Analysis of x-ray crystal structures has clarified the nature of antibody-antigen interactions, and the conformational basis of specificity and affinity, but does not provide a clear picture of the dynamics of antigen recognition. In particular, we know that primary antibodies can bind a wider variety of ligands than their secondary counterparts--which are tuned for high specificity and affinity. Crystal structures show that in the absence of antigen the secondary antibody adopts a structure preformed for binding, but that the primary antibody does not. Our calculations show that the unligated state of the primary antibody has a well-defined structure, fluctuating no more widely than that of the secondary antibody, and undergoes a discrete structural rearrangement in response to ligand.
Collapse
Affiliation(s)
- Melik C Demirel
- College of Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
109
|
Harris A, Belnap DM, Watts NR, Conway JF, Cheng N, Stahl SJ, Vethanayagam JG, Wingfield PT, Steven AC. Epitope diversity of hepatitis B virus capsids: quasi-equivalent variations in spike epitopes and binding of different antibodies to the same epitope. J Mol Biol 2005; 355:562-76. [PMID: 16309704 DOI: 10.1016/j.jmb.2005.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/28/2005] [Accepted: 10/11/2005] [Indexed: 12/21/2022]
Abstract
To investigate the range of antigenic variation of HBV capsids, we have characterized the epitopes for two anti-capsid antibodies by cryo-electron microscopy and image reconstruction of Fab-labeled capsids to approximately 10A resolution followed by molecular modeling. Both antibodies engage residues on the protruding spikes but their epitopes and binding orientations differ. Steric interference effects limit maximum binding to approximately 50% average occupancy in each case. However, the occupancies of the two copies of a given epitope that are present on a single spike differ, reflecting subtle distinctions in structure and hence, binding affinity, arising from quasi-equivalence. The epitope for mAb88 is conformational but continuous, consisting of a loop-helix motif (residues 77-87) on one of the two polypeptide chains in the spike. In contrast, the epitope for mAb842, like most conformational epitopes, is discontinuous, consisting of a loop on one polypeptide chain (residues 74-78) combined with a loop-helix element (residues 78-83) on the other. The epitope of mAb842 is essentially identical with that previously mapped for mAb F11A4, although the binding orientations of the two monoclonal antibodies (mAbs) differ, as do their affinities measured by surface plasmon resonance. From the number of monoclonals (six) whose binding had to be characterized to give the first duplicate epitope, we estimate the total number of core antigen (cAg) epitopes to be of the order of 20. Given that different antibodies may share the same epitope, the potential number of distinct anti-cAg clones should be considerably higher. The observation that the large majority of cAg epitopes are conformational reflects the relative dimensions of a Fab (large) and the small size and close packing of the motifs that are exposed and accessible on the capsid surface.
Collapse
Affiliation(s)
- A Harris
- Laboratory of Structural Biology National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
James LC, Tawfik DS. Structure and kinetics of a transient antibody binding intermediate reveal a kinetic discrimination mechanism in antigen recognition. Proc Natl Acad Sci U S A 2005; 102:12730-5. [PMID: 16129832 PMCID: PMC1200256 DOI: 10.1073/pnas.0500909102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Indexed: 11/18/2022] Open
Abstract
Induced fit is a predominant phenomenon in protein-ligand interactions, yet it is invariably attributed without establishing the existence, let alone the structure, of the initial, low-affinity encounter complex. We determined the crystal structure of the encounter complex on the pathway of ligand binding by IgE antibody SPE7. We show that this complex is formed by a wide range of ligands that initially bind with identical affinity. Nonspecific ligands rapidly dissociate, whereupon the antibody isomerizes to a nonbinding isomer. Specific ligand complexes, however, slowly isomerize to give a high-affinity complex. This isomerization involves backbone and side-chain rearrangements of up to 14 A and the formation of specific hydrogen bonds. The postbinding conformational switch, combined with the prebinding isomerization to an energetically favorable nonbinding isomer, results in a "kinetic discrimination" mechanism that mediates selective binding, by a factor of >10(3), between highly related ligands that initially bind with the same affinity. This model may apply to proteins that bind multiple ligands in a specific manner or other proteins that, although capable of binding many ligands, are activated by only a few.
Collapse
Affiliation(s)
- Leo C James
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 2HQ, United Kingdom.
| | | |
Collapse
|
111
|
Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J 2005; 24:2968-79. [PMID: 16079912 PMCID: PMC1201352 DOI: 10.1038/sj.emboj.7600771] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/14/2005] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis is mediated by T-cell responses to central nervous system antigens such as myelin basic protein (MBP). To investigate self-peptide/major histocompatibility complex (MHC) recognition and T-cell receptor (TCR) degeneracy, we determined the crystal structure, at 2.8 A resolution, of an autoimmune TCR (3A6) bound to an MBP self-peptide and the multiple sclerosis-associated MHC class II molecule, human leukocyte antigen (HLA)-DR2a. The complex reveals that 3A6 primarily recognizes the N-terminal portion of MBP, in contrast with antimicrobial and alloreactive TCRs, which focus on the peptide center. Moreover, this binding mode, which may be frequent among autoimmune TCRs, is compatible with a wide range of orientation angles of TCR to peptide/MHC. The interface is characterized by a scarcity of hydrogen bonds between TCR and peptide, and TCR-induced conformational changes in MBP/HLA-DR2a, which likely explain the low observed affinity. Degeneracy of 3A6, manifested by recognition of superagonist peptides bearing substitutions at nearly all TCR-contacting positions, results from the few specific interactions between 3A6 and MBP, allowing optimization of interface complementarity through variations in the peptide.
Collapse
Affiliation(s)
- Yili Li
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - Yuping Huang
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - Jessica Lue
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - Jacqueline A Quandt
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roland Martin
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy A Mariuzza
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA. Tel.: +1 301 738 6243; Fax: +1 301 738 6255; E-mail:
| |
Collapse
|
112
|
Sandberg E, Bergenholtz G, Kahu H, Dahlgren UI. Low HEMA conjugation induces high autoantibody titer in mice. J Dent Res 2005; 84:537-41. [PMID: 15914591 DOI: 10.1177/154405910508400610] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
2-hydroxyethylmethacrylate (HEMA) is a known causal agent of hypersensitivity to resin composites. We have reported that immunization with HEMA conjugated to mouse serum albumin (MSA) induces an autoantibody response in mice. In this study, we investigated both the activity and the avidity of autoantibodies induced by immunization with various HEMA conjugations to MSA. Female Balb/c mice were given MSA carrying 3, 7, 15, or 22 HEMA molecules. Antigen-specific IgG and IgE antibodies were determined by ELISA, and average antibody avidity by thiocyanate dissociation. Immunization with MSA carrying the lowest number of HEMA molecules induced a significantly higher IgG and IgE anti-MSA autoantibody response, with significantly higher IgG antibody avidity, than did the more heavily conjugated preparations. The results suggest that the lower the degree of HEMA conjugation to self-protein, the higher the risk for autoantibody production to the carrier protein. These findings suggest a mechanism of potential relevance in humans.
Collapse
Affiliation(s)
- E Sandberg
- Section for Oral Immunology, Faculty of Medicine, The Sahlgrenska Academy, Göteborg University, Box 450, SE 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
113
|
Srilatha NS, Selvi PT, Murthy GS. Epitope mapping from real time kinetic studies - role of crosslinked disulphides and incidental interacting regions in affinity measurements: study with human chorionic gonadotropin and monoclonal antibodies. J Biosci 2005; 30:359-70. [PMID: 16052074 DOI: 10.1007/bf02703673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Real time kinetic studies were used to map conformational epitopes in human chorionic gonadotropin (hCG) for two monoclonal antibodies (MAbs). The epitopes were identified in the regions (alpha 5--14 and alpha 55--62). The association rate constant (k+1) was found to be altered by chemical modification of hCG, and the ionic strength of the reaction medium. Based on these changes, we propose the presence of additional interactions away from the epitope- paratope region in the hCG-MAb reaction. We have identified such incidental interacting regions (IIRs) in hCG to be the loop region alpha 35--47 and alpha 60--84. The IIRs contribute significantly towards the KA of the interaction. Therefore, in a macromolecular interaction of hCG and its MAb, KA is determined not only by epitopeparatope interaction but also by the interaction of the nonepitopic-nonparatopic IIRs. However, the specificity of the interaction resides exclusively with the epitope-paratope pair.
Collapse
|
114
|
Li Y, Huang Y, Swaminathan CP, Smith-Gill SJ, Mariuzza RA. Magnitude of the hydrophobic effect at central versus peripheral sites in protein-protein interfaces. Structure 2005; 13:297-307. [PMID: 15698573 DOI: 10.1016/j.str.2004.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/02/2004] [Accepted: 12/06/2004] [Indexed: 11/26/2022]
Abstract
Hydrophobic interactions are essential for stabilizing protein-protein complexes, whose interfaces generally consist of a central cluster of hot spot residues surrounded by less important peripheral residues. According to the O-ring hypothesis, a condition for high affinity binding is solvent exclusion from interacting residues. This hypothesis predicts that the hydrophobicity at the center is significantly greater than at the periphery, which we estimated at 21 cal mol(-1) A(-2). To measure the hydrophobicity at the center, structures of an antigen-antibody complex where a buried phenylalanine was replaced by smaller hydrophobic residues were determined. By correlating structural changes with binding free energies, we estimate the hydrophobicity at this central site to be 46 cal mol(-1) A(-2), twice that at the periphery. This context dependence of the hydrophobic effect explains the clustering of hot spots at interface centers and has implications for hot spot prediction and the design of small molecule inhibitors.
Collapse
Affiliation(s)
- Yili Li
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20859, USA
| | | | | | | | | |
Collapse
|
115
|
Adams EJ, Chien YH, Garcia KC. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science 2005; 308:227-31. [PMID: 15821084 DOI: 10.1126/science.1106885] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gammadelta T cell receptors (TCRs), alphabeta TCRs, and antibodies are the three lineages of somatically recombined antigen receptors. The structural basis for ligand recognition is well defined for alphabeta TCR and antibodies but is lacking for gammadelta TCRs. We present the 3.4 A structure of the murine gammadelta TCR G8 bound to its major histocompatibility complex (MHC) class Ib ligand, T22. G8 predominantly uses germline-encoded residues of its delta chain complementarity-determining region 3 (CDR3) loop to bind T22 in an orientation substantially different from that seen in alphabeta TCR/peptide-MHC. That junctionally encoded G8 residues play an ancillary role in binding suggests a fusion of innate and adaptive recognition strategies.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94035-5124, USA
| | | | | |
Collapse
|
116
|
Li S, Schmitz KR, Jeffrey PD, Wiltzius JJW, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005; 7:301-11. [PMID: 15837620 DOI: 10.1016/j.ccr.2005.03.003] [Citation(s) in RCA: 796] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Revised: 02/25/2005] [Accepted: 03/02/2005] [Indexed: 02/06/2023]
Abstract
Recent structural studies of epidermal growth factor receptor (EGFR) family extracellular regions have identified an unexpected mechanism for ligand-induced receptor dimerization that has important implications for activation and inhibition of these receptors. Here we describe the 2.8 angstroms resolution X-ray crystal structure of the antigen binding (Fab) fragment from cetuximab (Erbitux), an inhibitory anti-EGFR antibody, in complex with the soluble extracellular region of EGFR (sEGFR). The sEGFR is in the characteristic "autoinhibited" or "tethered" inactive configuration. Cetuximab interacts exclusively with domain III of sEGFR, partially occluding the ligand binding region on this domain and sterically preventing the receptor from adopting the extended conformation required for dimerization. We suggest that both these effects contribute to potent inhibition of EGFR activation.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
117
|
Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NCV, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005; 23:344-8. [PMID: 15723048 DOI: 10.1038/nbt1067] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 01/05/2005] [Indexed: 11/09/2022]
Abstract
Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.
Collapse
|
118
|
Batori V, Friis EP, Nielsen H, Roggen EL. Anin silico method using an epitope motif database for predicting the location of antigenic determinants on proteins in a structural context. J Mol Recognit 2005; 19:21-9. [PMID: 16193533 DOI: 10.1002/jmr.752] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Presently X-ray crystallography of protein-antibody complexes is still the most direct way of identifying B-cell epitopes. The objective of this study was to assess the potential of a computer-based epitope mapping tool (EMT) using antigenic amino acid motifs as a fast alternative in a number of applications not requiring detailed information, e.g. development of pharmaceutical proteins, vaccines and industrial enzymes. Using Gal d 4 as a model protein, the EMT was capable of identifying, in the context of the folded protein, amino acid positions known to be involved in antibody binding. The high sensitivity and positive predictive value of the EMT as well as the relevance of the structural associations suggested by the EMT indicated the existence of amino acid motifs that are likely to be involved in antigenic determinants. In addition, differential mapping revealed that sensitivity and positive predictive value were dependent on the minimum relative surface accessibility (RSA) of the amino acids included in the mapping, demonstrating that the EMTs accommodated for the fact that epitopes are three-dimensional entities with various degrees of accessibility. The comparison with existing prediction scales demonstrated the superiority of the EMT with respect to physico-chemical scales. The mapping tool also performed better than the available structural scales, but the significance of the differences remains to be established. Thus, the EMT has the potential of becoming a fast and simple alternative to X-ray crystallography for predicting structural antigenic determinants, if detailed epitope information is not required.
Collapse
Affiliation(s)
- Vincent Batori
- Molecular Biotechnology, Novozymes A/S, Bagsvaerd, Denmark
| | | | | | | |
Collapse
|
119
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
120
|
Ho M, Kreitman RJ, Onda M, Pastan I. In Vitro Antibody Evolution Targeting Germline Hot Spots to Increase Activity of an Anti-CD22 Immunotoxin. J Biol Chem 2005; 280:607-17. [PMID: 15491997 DOI: 10.1074/jbc.m409783200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant immunotoxin BL22, containing the Fv portion of an anti-CD22 antibody, produced complete remissions in most patients with drug-resistant hairy cell leukemia but had less activity in leukemias with low CD22 expression. Complementarity-determining region (CDR) mutagenesis is used to increase antibody affinity but can be difficult to perform successfully. We previously showed that antibodies with increased affinity and immunotoxins with increased activity could be obtained by directing mutations at specific DNA residues called hot spots. Because hot spots can arise either by somatic mutation or be present in the germline, we examined which type of hot spot is preferred for increasing antibody affinity. Initially, a second generation antibody phage-display library targeting a germline hot spot (Ser(30)-Asn(31)) within CDR1 of the antibody light chain was mutated. Substitution of serine 30 or asparagine 31 with arginine produced mutant immunotoxins with an affinity (0.8 nM) increased 7-fold over BL22 (5.8 nM) and 3-fold over the first generation mutant HA22 (2.3 nM). More importantly, a 10-fold increase in activity over BL22 and a 2-3-fold increase over HA22 were observed in various B lymphoma cell lines including WSU-CLL that contains only 5500 CD22 sites per cell. For comparison, two phage-display libraries targeting non-germline hot spots in heavy chain CDR1 and CDR3 were generated but did not produce Fv with increased affinity. Our results demonstrate that germline hot spots but not non-germline hot spots are effective for in vitro antibody affinity maturation.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
121
|
Crill WD, Chang GJJ. Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 2004; 78:13975-86. [PMID: 15564505 PMCID: PMC533943 DOI: 10.1128/jvi.78.24.13975-13986.2004] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flavivirus E glycoprotein, the primary antigen that induces protective immunity, is essential for membrane fusion and mediates binding to cellular receptors. Human flavivirus infections stimulate virus species-specific as well as flavivirus cross-reactive immune responses. Flavivirus cross-reactive antibodies in human sera create a serious problem for serodiagnosis, especially for secondary flavivirus infections, due to the difficulty of differentiating primary from secondary cross-reactive serum antibodies. The presence of subneutralizing levels of flavivirus cross-reactive serum antibodies may result in a dramatic increase in the severity of secondary flavivirus infections via antibody-dependent enhancement. An understanding of flavivirus E-glycoprotein cross-reactive epitopes is therefore critical for improving public health responses to these serious diseases. We identified six E-glycoprotein residues that are incorporated into three distinct flavivirus cross-reactive epitopes. Two of these epitopes which are recognized by distinct monoclonal antibodies contain overlapping continuous residues located within the highly conserved fusion peptide. The third epitope consists of discontinuous residues that are structurally related to the strictly conserved tryptophan at dengue virus serotype 2 E-glycoprotein position 231.
Collapse
Affiliation(s)
- Wayne D Crill
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, P.O. Box 2087, Fort Collins, CO 80522, USA.
| | | |
Collapse
|
122
|
Hülsmeyer M, Chames P, Hillig RC, Stanfield RL, Held G, Coulie PG, Alings C, Wille G, Saenger W, Uchanska-Ziegler B, Hoogenboom HR, Ziegler A. A major histocompatibility complex-peptide-restricted antibody and t cell receptor molecules recognize their target by distinct binding modes: crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with FAB-HYB3. J Biol Chem 2004; 280:2972-80. [PMID: 15537658 DOI: 10.1074/jbc.m411323200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies with T cell receptor-like specificity possess a considerable diagnostic and therapeutic potential, but the structural basis of the interaction between an antibody and an histocompatibility antigen has so far not been determined. We present here the crystal structure (at 2.15 A resolution) of the recombinant, affinity-matured human antibody fragment Fab-Hyb3 bound to the tumor-associated human leukocyte antigen (HLA)/peptide complex HLA-A1.MAGE-A1. Fab-Hyb3 employs a diagonal docking mode resembling that of T cell receptors. However, other than these natural ligands, the antibody uses only four of its six complementarity-determining regions for direct interactions with the target. It recognizes the C-terminal half of the MAGE-A1 peptide, the HLA-A1 alpha1-helix, and N-terminal residues of the alpha2-helix, accompanied by a large tilting angle between the two types of molecules within the complex. Interestingly, only a single hydrogen bond between a peptide side chain and Fab-Hyb3 contributes to the interaction, but large buried surface areas with pronounced shape complementarity assure high affinity and specificity for MAGE-A1. The HLA-A1.MAGE-A1.antibody structure is discussed in comparison with those of natural ligands recognizing HLA.peptide complexes.
Collapse
Affiliation(s)
- Martin Hülsmeyer
- Institut für Chemie/Kristallographie, Freie Universität Berlin, 14195 Berlin, Germany, Cellectis, 93235 Romainville, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD. Substantial Energetic Improvement with Minimal Structural Perturbation in a High Affinity Mutant Antibody. J Mol Biol 2004; 343:685-701. [PMID: 15465055 DOI: 10.1016/j.jmb.2004.08.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 07/27/2004] [Accepted: 08/09/2004] [Indexed: 11/17/2022]
Abstract
Here, we compare an antibody with the highest known engineered affinity (K(d)=270 fM) to its high affinity wild-type (K(d)=700 pM) through thermodynamic, kinetic, structural, and theoretical analyses. The 4M5.3 anti-fluorescein single chain antibody fragment (scFv) contains 14 mutations from the wild-type 4-4-20 scFv and has a 1800-fold increase in fluorescein-binding affinity. The dissociation rate is approximately 16,000 times slower in the mutant; however, this substantial improvement is offset somewhat by the association rate, which is ninefold slower in the mutant. Enthalpic contributions to binding were found by calorimetry to predominate in the differential binding free energy. The crystal structure of the 4M5.3 mutant complexed with antigen was solved to 1.5A resolution and compared with a previously solved structure of an antigen-bound 4-4-20 Fab fragment. Strikingly, the structural comparison shows little difference between the two scFv molecules (backbone RMSD of 0.6A), despite the large difference in affinity. Shape complementarity exhibits a small improvement between the variable light chain and variable heavy chain domains within the antibody, but no significant improvement in shape complementarity of the antibody with the antigen is observed in the mutant over the wild-type. Theoretical modeling calculations show electrostatic contributions to binding account for -1.2 kcal/mol to -3.5 kcal/mol of the binding free energy change, of which -1.1 kcal/mol is directly associated with the mutated residue side-chains. The electrostatic analysis reveals several mechanistic explanations for a portion of the improvement. Collectively, these data provide an example where very high binding affinity is achieved through the cumulative effect of many small structural alterations.
Collapse
Affiliation(s)
- K S Midelfort
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
124
|
Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Structure 2004; 12:277-88. [PMID: 14962388 PMCID: PMC3923524 DOI: 10.1016/j.str.2004.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 10/15/2003] [Accepted: 10/16/2003] [Indexed: 01/24/2023]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular TCR Vbeta elements. Here we report the crystal structure of MAM complexed with a major histocompatibility complex (MHC) antigen, HLA-DR1, loaded with haemagglutinin peptide 306-318 (HA). The structure reveals that MAM has a novel fold composed of two alpha-helical domains. This fold is entirely different from that of the pyrogenic superantigens, consisting of a beta-grasped motif and a beta barrel. In the complex, the N-terminal domain of MAM binds orthogonally to the MHC alpha1 domain and the bound HA peptide, and to a lesser extent to the MHC beta1 domain. Two MAM molecules form an asymmetric dimer and cross-link two MHC antigens to form a plausible, dimerized MAM-MHC complex. These data provide the first crystallographic evidence that superantigens can dimerize MHC molecules. Based on our structure, a model of the TCR2MAM2MHC2 complex is proposed.
Collapse
Affiliation(s)
- Yiwei Zhao
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Sandra J. Drozd
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Yi Guo
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Walid Mourad
- Centre de Recherche en Immunologie, et Rhumatologie, CHUQ, Pavillon CHUL, Université Laval, Québec, Québec G1V-4G2, Canada
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
- Correspondence:
| |
Collapse
|
125
|
De Genst E, Handelberg F, Van Meirhaeghe A, Vynck S, Loris R, Wyns L, Muyldermans S. Chemical basis for the affinity maturation of a camel single domain antibody. J Biol Chem 2004; 279:53593-601. [PMID: 15383540 DOI: 10.1074/jbc.m407843200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Affinity maturation of classic antibodies supposedly proceeds through the pre-organization of the reactive germ line conformational isomer. It is less evident to foresee how this can be accomplished by camelid heavy-chain antibodies lacking light chains. Although these antibodies are subjected to somatic hypermutation, their antigen-binding fragment consists of a single domain with restricted flexibility in favor of binding energy. An antigen-binding domain derived from a dromedary heavy-chain antibody, cAb-Lys3, accumulated five amino acid substitutions in CDR1 and CDR2 upon maturation against lysozyme. Three of these residues have hydrophobic side chains, replacing serines, and participate in the hydrophobic core of the CDR1 in the mature antibody, suggesting that conformational rearrangements might occur in this loop during maturation. However, transition state analysis of the binding kinetics of mature cAb-Lys3 and germ line variants show that the maturation of this antibody relies on events late in the reaction pathway. This is reflected by a limited perturbation of k(a) and a significantly decreased k(d) upon maturation. In addition, binding reactions and the maturation event are predominantly enthalpically driven. Therefore, maturation proceeds through the increase of favorable binding interactions, or by the reduction of the enthalpic penalty for desolvation, as opposed to large entropic penalties associated with conformational changes and structural plasticity. Furthermore, the crystal structure of the mutant with a restored germ line CDR2 sequence illustrates that the matured hydrophobic core of CDR1 in cAb-Lys3 might be compensated in the germ line precursor by burying solvent molecules engaged in a stable hydrogen-bonding network with CDR1 and CDR2.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
126
|
Terzyan S, Ramsland PA, Voss EW, Herron JN, Edmundson AB. Three-dimensional structures of idiotypically related Fabs with intermediate and high affinity for fluorescein. J Mol Biol 2004; 339:1141-51. [PMID: 15178254 DOI: 10.1016/j.jmb.2004.03.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 03/18/2004] [Accepted: 03/22/2004] [Indexed: 11/24/2022]
Abstract
Multi-disciplinary studies of fluorescein-protein conjugates have led to the generation of a family of antibodies with common idiotypes and affinities for fluorescein ranging over five orders of magnitude. The high affinity 4-4-20 prototype traps the ligand in a highly complementary binding slot, which is lined by multiple aromatic side-chains. An antibody (9-40) of intermediate affinity belongs to the same idiotypic family as 4-4-20 and shares substantial amino acid identities within the VL and VH domains. To establish the structural basis for the affinity differences, we solved the crystal structure of the 9-40 Fab-fluorescein complex at a resolution of 2.3A. Similar to 4-4-20, 9-40 binds fluorescein in a tight aromatic slot with its xanthenonyl ring system accommodated by end-on insertion. However, the combined effects of the amino acid substitutions have resulted in reorganization of the binding site, with the HCDR3 loops showing the greatest differences in conformations. Access to the binding site of 9-40 is substantially more open, leaving the fluorescein's phenylcarboxylate moiety partially exposed to solvent. In addition to the usage of a different D (diversity) mini-gene encoding the HCDR3 loop, the decrease in fluorescein affinity in the 9-40 antibody family appears to be correlated with the substitution of histidine (9-40) for arginine (4-4-20) in position 34 of the antibody light chains.
Collapse
Affiliation(s)
- Simon Terzyan
- Crystallography Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
127
|
Harvey BR, Georgiou G, Hayhurst A, Jeong KJ, Iverson BL, Rogers GK. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 2004; 101:9193-8. [PMID: 15197275 PMCID: PMC438952 DOI: 10.1073/pnas.0400187101] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anchored periplasmic expression (APEx) is a technology for the isolation of ligand-binding proteins from combinatorial libraries anchored on the periplasmic face of the inner membrane of Escherichia coli. After disruption of the outer membrane by Tris-EDTA-lysozyme, the inner-membrane-anchored proteins readily bind fluorescently labeled ligands as large as 240 kDa. Fluorescently labeled cells are isolated by flow cytometry, and the DNA of isolated clones is rescued by PCR. By using two rounds of APEx, the affinity of a neutralizing antibody to the Bacillus anthracis protective antigen was improved >200-fold, exhibiting a final K(D) of 21 pM. This approach has several technical advantages compared with previous library screening technologies, including the unique ability to screen for ligand-binding proteins that bind endogenously expressed ligands fused to a short-lived GFP. Further, APEx is able to display proteins either as an N-terminal fusion to a six-residue sequence derived from the native E. coli lipoprotein NlpA, or as a C-terminal fusion to the phage gene three minor coat protein of M13. The latter fusions allow hybrid phage display/APEx strategies without the need for further subcloning.
Collapse
Affiliation(s)
- Barrett R Harvey
- Institute for Cellular and Molecular Biology, University of Texas, Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
128
|
Geva M, Eisenstein M, Addadi L. Antibody recognition of chiral surfaces. Structural models of antibody complexes with leucine-leucine-tyrosine crystal surfaces. Proteins 2004; 55:862-73. [PMID: 15146485 DOI: 10.1002/prot.20042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular models are built of the recognition domains of two antibodies, which are raised and selected against crystals of (L)leucine-(L)leucine-(L)tyrosine. The model of one antibody, which is stereo- and enantioselective, reveals astounding chemical and structural complementarity to the recognized crystal surface. The enantioselective binding of this antibody is explained by the significantly fewer chemical interactions arising in the complex, after docking of the antibody to the (D)Leu-(D)Leu-(D)Tyr crystal face, relative to its enantiomer, the (L)Leu-(L)Leu-(L)Tyr crystal face. The modeling and docking of the second antibody, which is poorly stereoselective and is not enantioselective, indicates that binding is based on electrostatic interactions. The docking models of the antibody-crystal complexes provide a rationale for the experimental results while demonstrating the power of modeling techniques to meet the challenge of describing antibody-antigen interactions in detail.
Collapse
Affiliation(s)
- Merav Geva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
129
|
Cauerhff A, Goldbaum FA, Braden BC. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci U S A 2004; 101:3539-44. [PMID: 14988501 PMCID: PMC373498 DOI: 10.1073/pnas.0400060101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Indexed: 11/18/2022] Open
Abstract
In the immune response against a typical T cell-dependent protein antigen, the affinity maturation process is fast and is associated with the early class switch from IgM to IgG. As such, a comprehension of the molecular basis of affinity maturation could be of great importance in biomedical and biotechnological applications. Affinity maturation of anti-protein antibodies has been reported to be the result of small structural changes, mostly confined to the periphery of the antigen-combining site. However, little is understood about how these small structural changes account for the increase in the affinity toward the antigen. Herein, we present the three-dimensional structure of the Fab fragment from BALB/c mouse mAb F10.6.6 in complex with the antigen lysozyme. This antibody was obtained from a long-term exposure to the antigen. mAb F10.6.6, and the previously described antibody D44.1, are the result of identical or nearly identical somatic recombination events. However, different mutations in the framework and variable regions result in an approximately 10(3) higher affinity for the F10.6.6 antibody. The comparison of the three-dimensional structures of these Fab-lysozyme complexes reveals that the affinity maturation produces a fine tuning of the complementarity of the antigen-combining site toward the epitope, explaining at the molecular level how the immune system is able to increase the affinity of an anti-protein antibody to subnanomolar levels.
Collapse
Affiliation(s)
- Ana Cauerhff
- Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1405 Buenos Aires, Argentina
| | | | | |
Collapse
|
130
|
Krogsgaard M, Prado N, Adams EJ, He XL, Chow DC, Wilson DB, Garcia KC, Davis MM. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol Cell 2004; 12:1367-78. [PMID: 14690592 DOI: 10.1016/s1097-2765(03)00474-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While in many cases the half-life of T cell receptor (TCR) binding to a particular ligand is a good predictor of activation potential, numerous exceptions suggest that other physical parameter(s) must also play a role. Accordingly, we analyzed the thermodynamics of TCR binding to a series of peptide-MHC ligands, three of which are more stimulatory than their stability of binding would predict. Strikingly, we find that during TCR binding these outliers show anomalously large changes in heat capacity, an indicator of conformational change or flexibility in a binding interaction. By combining the values for heat capacity (DeltaCp) and the half-life of TCR binding (t(1/2)), we find that we can accurately predict the degree of T cell stimulation. Structural analysis shows significant changes in the central TCR contact residue of the peptide-MHC, indicating that structural rearrangements within the TCR-peptide-MHC interface can contribute to T cell activation.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Boulanger MJ, Chow DC, Brevnova E, Martick M, Sandford G, Nicholas J, Garcia KC. Molecular mechanisms for viral mimicry of a human cytokine: activation of gp130 by HHV-8 interleukin-6. J Mol Biol 2004; 335:641-54. [PMID: 14672670 DOI: 10.1016/j.jmb.2003.10.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, or HHV-8) encodes a pathogenic viral homologue of human interleukin-6 (IL-6). In contrast to human IL-6 (hIL-6), viral IL-6 (vIL-6) binds directly to, and activates, the shared human cytokine signaling receptor gp130 without the requirement for pre-complexation to a specific alpha-receptor. Here, we dissect the biochemical and functional basis of vIL-6 mimicry of hIL-6. We find that, in addition to the "alpha-receptor-independent" tetrameric vIL-6/gp130 complex, the viral cytokine can engage the human alpha-receptor (IL-6Ralpha) to form a hexameric vIL-6/IL-6Ralpha/gp130 complex with enhanced signaling potency. In contrast to the assembly sequence of the hIL-6 hexamer, the preformed vIL-6/gp130 tetramer can be decorated with IL-6Ralpha, post facto, in a "vIL-6-dependent" fashion. A detailed comparison of the viral and human cytokine/gp130 interfaces indicates that vIL-6 has evolved a unique molecular strategy to interact with gp130, as revealed by an almost entirely divergent structural makeup of its receptor binding sites. Viral IL-6 appears to utilize an elegant combination of both convergent, and unexpectedly divergent, molecular strategies to oligomerize gp130 and activate similar downstream signaling cascades as its human counterpart.
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Yang J, Swaminathan CP, Huang Y, Guan R, Cho S, Kieke MC, Kranz DM, Mariuzza RA, Sundberg EJ. Dissecting Cooperative and Additive Binding Energetics in the Affinity Maturation Pathway of a Protein-Protein Interface. J Biol Chem 2003; 278:50412-21. [PMID: 14514664 DOI: 10.1074/jbc.m306848200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When two proteins associate they form a molecular interface that is a structural and energetic mosaic. Within such interfaces, individual amino acid residues contribute distinct binding energies to the complex. In combination, these energies are not necessarily additive, and significant positive or negative cooperative effects often exist. The basis of reliable algorithms to predict the specificities and energies of protein-protein interactions depends critically on a quantitative understanding of this cooperativity. We have used a model protein-protein system defined by an affinity maturation pathway, comprising variants of a T cell receptor Vbeta domain that exhibit an overall affinity range of approximately 1500-fold for binding to the superantigen staphylococcal enterotoxin C3, in order to dissect the cooperative and additive energetic contributions of residues within an interface. This molecular interaction has been well characterized previously both structurally, by x-ray crystallographic analysis, and energetically, by scanning alanine mutagenesis. Through analysis of group and individual maturation and reversion mutations using surface plasmon resonance spectroscopy, we have identified energetically important interfacial residues, determined their cooperative and additive energetic properties, and elucidated the kinetic and thermodynamic bases for molecular evolution in this system. The summation of the binding free energy changes associated with the individual mutations that define this affinity maturation pathway is greater than that of the fully matured variant, even though the affinity gap between the end point variants is relatively large. Two mutations in particular, both located in the complementarity determining region 2 loop of the Vbeta domain, exhibit negative cooperativity.
Collapse
Affiliation(s)
- Jianying Yang
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Nguyen HP, Seto NOL, MacKenzie CR, Brade L, Kosma P, Brade H, Evans SV. Germline antibody recognition of distinct carbohydrate epitopes. Nat Struct Mol Biol 2003; 10:1019-25. [PMID: 14625588 DOI: 10.1038/nsb1014] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 10/09/2003] [Indexed: 11/09/2022]
Abstract
High-resolution structures reveal how a germline antibody can recognize a range of clinically relevant carbohydrate epitopes. The germline response to a carbohydrate immunogen can be critical to survivability, with selection for antibody gene segments that both confer protection against common pathogens and retain the flexibility to adapt to new disease organisms. We show here that antibody S25-2 binds several distinct inner-core epitopes of bacterial lipopolysaccharides (LPSs) by linking an inherited monosaccharide residue binding site with a subset of complementarity-determining regions (CDRs) of limited flexibility positioned to recognize the remainder of an array of different epitopes. This strategy allows germline antibodies to adapt to different epitopes while minimizing entropic penalties associated with the immobilization of labile CDRs upon binding of antigen, and provides insight into the link between the genetic origin of individual CDRs and their respective roles in antigen recognition.
Collapse
Affiliation(s)
- Hoa P Nguyen
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
134
|
Mohan S, Sinha N, Smith-Gill SJ. Modeling the binding sites of anti-hen egg white lysozyme antibodies HyHEL-8 and HyHEL-26: an insight into the molecular basis of antibody cross-reactivity and specificity. Biophys J 2003; 85:3221-36. [PMID: 14581222 PMCID: PMC1303598 DOI: 10.1016/s0006-3495(03)74740-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Accepted: 07/24/2003] [Indexed: 11/24/2022] Open
Abstract
Three antibodies, HyHEL-8 (HH8), HyHEL-10 (HH10), and HyHEL-26 (HH26) are specific for the same epitope on hen egg white lysozyme (HEL), and share >90% sequence homology. Their affinities vary by several orders of magnitude, and among the three antibodies, HH8 is the most cross-reactive with kinetics of binding that are relatively invariable compared to HH26, which is highly specific and has quite variable kinetics. To investigate structural correlates of these functional variations, the Fv regions of HH8 and HH26 were homology-modeled using the x-ray structure of the well-characterized HH10-HEL complex as template. The binding site of HH26 is most charged, least hydrophobic, and has the greatest number of intramolecular salt bridges, whereas that of HH8 is the least charged, most hydrophobic and has the fewest intramolecular salt bridges. The modeled HH26-HEL structure predicts the recently determined x-ray structure of HH26, (Li et al., 2003, Nat. Struct. Biol. 10:482-488) with a root-mean-square deviation of 1.03 A. It is likely that the binding site of HH26 is rendered rigid by a network of intramolecular salt bridges whereas that of HH8 is flexible due to their absence. HH26 also has the most intermolecular contacts with the antigen whereas HH8 has the least. HH10 has these properties intermediate to HH8 and HH26. The structurally rigid binding site with numerous specific contacts bestows specificity on HH26 whereas the flexible binding site with correspondingly fewer contacts enables HH8 to be cross-reactive. Results suggest that affinity maturation may select for high affinity antibodies with either "lock-and-key" preconfigured binding sites, or "preconfigured flexibility" by modulating combining site flexibility.
Collapse
Affiliation(s)
- S Mohan
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
135
|
LeBrasseur N. A view of antibody maturation. J Biophys Biochem Cytol 2003. [PMCID: PMC2246917 DOI: 10.1083/jcb1615rr1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|