101
|
Biswas J, Nunez L, Das S, Yoon YJ, Eliscovich C, Singer RH. Zipcode Binding Protein 1 (ZBP1; IGF2BP1): A Model for Sequence-Specific RNA Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:1-10. [PMID: 32086331 DOI: 10.1101/sqb.2019.84.039396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fate of an RNA, from its localization, translation, and ultimate decay, is dictated by interactions with RNA binding proteins (RBPs). β-actin mRNA has functioned as the classic example of RNA localization in eukaryotic cells. Studies of β-actin mRNA over the past three decades have allowed understanding of how RBPs, such as ZBP1 (IGF2BP1), can control both RNA localization and translational status. Here, we summarize studies of β-actin mRNA and focus on how ZBP1 serves as a model for understanding interactions between RNA and their binding protein(s). Central to the study of RNA and RBPs were technological developments that occurred along the way. We conclude with a future outlook highlighting new technologies that may be used to address still unanswered questions about RBP-mediated regulation of mRNA during its life cycle, within the cell.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leti Nunez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, USA
| |
Collapse
|
102
|
Kim E, Jung H. Local mRNA translation in long-term maintenance of axon health and function. Curr Opin Neurobiol 2020; 63:15-22. [PMID: 32087477 DOI: 10.1016/j.conb.2020.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Distal axons, remote from their cell bodies and nuclei, must survive the lifetime of an organism. Recent studies have provided compelling evidence that proteins are locally synthesized in healthy, mature central nervous system axons and presynaptic terminals in vivo. Presynaptic, mitochondrial and ribosomal proteins are locally synthesized in most adult axons of diverse cell types, linking local translation to axon function and survival. Accordingly, inhibiting the intra-axonal translation of key mRNAs or the function of their translational regulators causes dying-back axon degeneration, and human mutations in RNA metabolic pathways are increasingly being associated with neurodegenerative diseases that accompany axon degeneration. Here, we summarize recent relevant findings in a highly simplified 'RNA operon'-based model and discuss open questions and future directions.
Collapse
Affiliation(s)
- Eunjin Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hosung Jung
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anatomy, Brain Research Institute, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
103
|
von Kügelgen N, Chekulaeva M. Conservation of a core neurite transcriptome across neuronal types and species. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1590. [PMID: 32059075 DOI: 10.1002/wrna.1590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The intracellular localization of mRNAs allows neurons to control gene expression in neurite extensions (axons and dendrites) and respond rapidly to local stimuli. This plays an important role in diverse processes including neuronal growth and synaptic plasticity, which in turn serves as a foundation for learning and memory. Recent high-throughput analyses have revealed that neurites contain hundreds to thousands of mRNAs, but an analysis comparing the transcriptomes derived from these studies has been lacking. Here we analyze 20 datasets pertaining to neuronal mRNA localization across species and neuronal types and identify a conserved set of mRNAs that had robustly localized to neurites in a high number of the studies. The set includes mRNAs encoding for ribosomal proteins and other components of the translation machinery, mitochondrial proteins, cytoskeletal components, and proteins associated with neurite formation. Our combinatorial analysis provides a unique resource for future hypothesis-driven research. This article is categorized under: RNA Export and Localization > RNA Localization RNA Evolution and Genomics > Computational Analyses of RNA RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nicolai von Kügelgen
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
104
|
Kenny PJ, Kim M, Skariah G, Nielsen J, Lannom MC, Ceman S. The FMRP-MOV10 complex: a translational regulatory switch modulated by G-Quadruplexes. Nucleic Acids Res 2020; 48:862-878. [PMID: 31740951 PMCID: PMC7145700 DOI: 10.1093/nar/gkz1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes. We elucidated the mechanism of FMRP's role in suppressing Argonaute (AGO) family members' association with mRNAs by mapping the interacting domains of FMRP, MOV10 and AGO and then showed that the RGG box of FMRP protects a subset of co-bound mRNAs from AGO association. The N-terminus of MOV10 is required for this protection: its over-expression leads to increased levels of the endogenous proteins encoded by this co-bound subset of mRNAs. The N-terminus of MOV10 also leads to increased RGG box-dependent binding to the SC1 RNA G-Quadruplex and is required for outgrowth of neurites. Lastly, we showed that FMRP has a global role in miRNA-mediated translational regulation by recruiting AGO2 to a large subset of RNAs in mouse brain.
Collapse
Affiliation(s)
- Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Miri Kim
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Joshua Nielsen
- Integrative Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
105
|
Hezroni H, Perry RBT, Ulitsky I. Long Noncoding RNAs in Development and Regeneration of the Neural Lineage. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:165-177. [PMID: 31900326 DOI: 10.1101/sqb.2019.84.039347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are gathering increasing attention toward their roles in different biological systems. In mammals, the richest repertoires of lncRNAs are expressed in the brain and in the testis, and the diversity of lncRNAs in the nervous system is thought to be related to the diversity and the complexity of its cell types. Supporting this notion, many lncRNAs are differentially expressed between different regions of the brain or in particular cell types, and many lncRNAs are dynamically expressed during embryonic or postnatal neurogenesis. Less is known about the functions of these genes, if any, but they are increasingly implicated in diverse processes in health and disease. Here, we review the current knowledge about the roles and importance of lncRNAs in the central and peripheral nervous systems and discuss the specific niches within gene regulatory networks that might be preferentially occupied by lncRNAs.
Collapse
Affiliation(s)
- Hadas Hezroni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
106
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
107
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
108
|
Koppers M, Cagnetta R, Shigeoka T, Wunderlich LCS, Vallejo-Ramirez P, Qiaojin Lin J, Zhao S, Jakobs MAH, Dwivedy A, Minett MS, Bellon A, Kaminski CF, Harris WA, Flanagan JG, Holt CE. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 2019; 8:e48718. [PMID: 31746735 PMCID: PMC6894925 DOI: 10.7554/elife.48718] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes from receptors and the selective translation of receptor-specific mRNAs. Further, we show that receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal receptor-specific interactomes and suggest a generalizable model for cue-selective control of the local proteome.
Collapse
Affiliation(s)
- Max Koppers
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Roberta Cagnetta
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Toshiaki Shigeoka
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia CS Wunderlich
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Pedro Vallejo-Ramirez
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Julie Qiaojin Lin
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sixian Zhao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian AH Jakobs
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Asha Dwivedy
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael S Minett
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anaïs Bellon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - William A Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - John G Flanagan
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
109
|
Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, Woehler A, Akalin A, Ulitsky I, Chekulaeva M. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res 2019; 47:2560-2573. [PMID: 30590745 PMCID: PMC6411841 DOI: 10.1093/nar/gky1270] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
The proper subcellular localization of RNAs and local translational regulation is crucial in highly compartmentalized cells, such as neurons. RNA localization is mediated by specific cis-regulatory elements usually found in mRNA 3′UTRs. Therefore, processes that generate alternative 3′UTRs—alternative splicing and polyadenylation—have the potential to diversify mRNA localization patterns in neurons. Here, we performed mapping of alternative 3′UTRs in neurites and soma isolated from mESC-derived neurons. Our analysis identified 593 genes with differentially localized 3′UTR isoforms. In particular, we have shown that two isoforms of Cdc42 gene with distinct functions in neuronal polarity are differentially localized between neurites and soma of mESC-derived and mouse primary cortical neurons, at both mRNA and protein level. Using reporter assays and 3′UTR swapping experiments, we have identified the role of alternative 3′UTRs and mRNA transport in differential localization of alternative CDC42 protein isoforms. Moreover, we used SILAC to identify isoform-specific Cdc42 3′UTR-bound proteome with potential role in Cdc42 localization and translation. Our analysis points to usage of alternative 3′UTR isoforms as a novel mechanism to provide for differential localization of functionally diverse alternative protein isoforms.
Collapse
Affiliation(s)
- Camilla Ciolli Mattioli
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Aviv Rom
- Weizmann Institute of Science, Rehovot, Israel
| | - Vedran Franke
- BIMSB Bioinformatics platform, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Gerard Arrey
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mandy Terne
- Developmental Biology / Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Andrew Woehler
- BIMSB Light Microscopy platform, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Altuna Akalin
- BIMSB Bioinformatics platform, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | | | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
110
|
Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019; 366:366/6462/eaav2642. [DOI: 10.1126/science.aav2642] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.
Collapse
Affiliation(s)
- Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Franziska Brüning
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dennis Mircsof
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich–Eidgenosissche Technische Hochschule, Zurich, Switzerland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Maria S. Robles
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
111
|
Martínez JC, Randolph LK, Iascone DM, Pernice HF, Polleux F, Hengst U. Pum2 Shapes the Transcriptome in Developing Axons through Retention of Target mRNAs in the Cell Body. Neuron 2019; 104:931-946.e5. [PMID: 31606248 DOI: 10.1016/j.neuron.2019.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Localized protein synthesis is fundamental for neuronal development, maintenance, and function. Transcriptomes in axons and soma are distinct, but the mechanisms governing the composition of axonal transcriptomes and their developmental regulation are only partially understood. We found that the binding motif for the RNA-binding proteins Pumilio 1 and 2 (Pum1 and Pum2) is underrepresented in transcriptomes of developing axons. Introduction of Pumilio-binding elements (PBEs) into mRNAs containing a β-actin zipcode prevented axonal localization and translation. Pum2 is restricted to the soma of developing neurons, and Pum2 knockdown or blocking its binding to mRNA caused the appearance and translation of PBE-containing mRNAs in axons. Pum2-deficient neurons exhibited axonal growth and branching defects in vivo and impaired axon regeneration in vitro. These results reveal that Pum2 shapes axonal transcriptomes by preventing the transport of PBE-containing mRNAs into axons, and they identify somatic mRNAs retention as a mechanism for the temporal control of intra-axonal protein synthesis.
Collapse
Affiliation(s)
- José C Martínez
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lisa K Randolph
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Daniel Maxim Iascone
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Helena F Pernice
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Anatomy and Cell Biology, Biomedical Center, Medical Faculty, Ludwig Maximilians University, 82152 Planegg-Martinsried, Germany
| | - Franck Polleux
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
112
|
Kiltschewskij D, Cairns MJ. Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Res 2019; 47:533-545. [PMID: 30535081 PMCID: PMC6344879 DOI: 10.1093/nar/gky1235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNA are major regulators of neuronal gene expression at the post-transcriptional and translational levels. This layer of control is critical for spatially and temporally restricted gene expression, facilitating highly dynamic changes to cellular structure and function associated with neural plasticity. Investigation of microRNA function in the neural system, however, is at an early stage, and many aspects of the mechanisms employing these small non-coding RNAs remain unclear. In this article, we critically review current knowledge pertaining to microRNA function in neural activity, with emphasis on mechanisms of microRNA repression, their subcellular remodelling and functional impacts on neural plasticity and behavioural phenotypes.
Collapse
Affiliation(s)
- Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| |
Collapse
|
113
|
Campbell BFN, Tyagarajan SK. Cellular Mechanisms Contributing to the Functional Heterogeneity of GABAergic Synapses. Front Mol Neurosci 2019; 12:187. [PMID: 31456660 PMCID: PMC6700328 DOI: 10.3389/fnmol.2019.00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022] Open
Abstract
GABAergic inhibitory neurotransmission contributes to diverse aspects of brain development and adult plasticity, including the expression of complex cognitive processes. This is afforded for in part by the dynamic adaptations occurring at inhibitory synapses, which show great heterogeneity both in terms of upstream signaling and downstream effector mechanisms. Single-particle tracking and live imaging have revealed that complex receptor-scaffold interactions critically determine adaptations at GABAergic synapses. Super-resolution imaging studies have shown that protein interactions at synaptic sites contribute to nano-scale scaffold re-arrangements through post-translational modifications (PTMs), facilitating receptor and scaffold recruitment to synaptic sites. Additionally, plasticity mechanisms may be affected by the protein composition at individual synapses and the type of pre-synaptic input. This mini-review article examines recent discoveries of plasticity mechanisms that are operational within GABAergic synapses and discusses their contribution towards functional heterogeneity in inhibitory neurotransmission.
Collapse
Affiliation(s)
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
114
|
Das S, Singer RH, Yoon YJ. The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 2019; 57:110-116. [PMID: 30784978 PMCID: PMC6650148 DOI: 10.1016/j.conb.2019.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
Neurons are highly polarized cells that can extend processes far from the cell body. As such, transport of messenger RNAs serves as a set of blueprints for the synthesis of specific proteins at distal sites. RNA localization to dendrites and axons confers the ability to regulate translation with extraordinary precision in space and time. Although the rationale for RNA localization is quite compelling, it is unclear how a neuron orchestrates such a complex task of distributing over a thousand different mRNAs to their respective subcellular compartments. Recent single-molecule imaging studies have led to insights into the kinetics of individual mRNAs. We can now peer into the transport dynamics of mRNAs in both dendrites and axons.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
115
|
Farias J, Sotelo JR, Sotelo‐Silveira J. Toward Axonal System Biology: Genome Wide Views of Local mRNA Translation. Proteomics 2019; 19:e1900054. [DOI: 10.1002/pmic.201900054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Joaquina Farias
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Roberto Sotelo
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Sotelo‐Silveira
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Sección Biología CelularFacultad de Ciencias, Universidad de la República Montevideo CP 11400 Uruguay
| |
Collapse
|
116
|
Ylikallio E, Woldegebriel R, Tyynismaa H. Reply: A novel MCM3AP mutation in a Lebanese family with recessive Charcot-Marie-Tooth neuropathy. Brain 2019; 141:e67. [PMID: 29982292 DOI: 10.1093/brain/awy185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rosa Woldegebriel
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
117
|
Chung HW, Weng JC, King CE, Chuang CF, Chow WY, Chang YC. BDNF elevates the axonal levels of hnRNPs Q and R in cultured rat cortical neurons. Mol Cell Neurosci 2019; 98:97-108. [PMID: 31202892 DOI: 10.1016/j.mcn.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases. Among those identified in axons are highly related hnRNPs Q and R. RT-PCR analysis indicated that axons also contained low levels of hnRNPs Q and R mRNAs. We further found that BDNF treatments raised the levels of hnRNPs Q and R proteins in whole neurons and axons. BDNF also increased the level of poly(A) RNA as well as the proportion of poly(A) RNA granules containing hnRNPs Q and R in the axon. However, following severing the connection between the cell bodies and axons, BDNF did not affect the levels of hnRNPs Q and R, the content of poly(A) RNA, or the colocalization of poly(A) RNA and hnRNPs Q and R in the axon any more, although BDNF still stimulated the local translation in severed axons as it did in intact axons. The results are consistent with that BDNF enhances the axonal transport of RNA granules. The results further suggest that hnRNPs Q and R play a role in the mechanism underlying the enhancement of axonal RNA transport by BDNF.
Collapse
Affiliation(s)
- Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ju-Chen Weng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-En King
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Fan Chuang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wei-Yuan Chow
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
118
|
Chekulaeva M, Rajewsky N. Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032680. [PMID: 30082465 DOI: 10.1101/cshperspect.a032680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most of the eukaryotic genome is pervasively transcribed, yielding hundreds to thousands of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), some of which are well conserved during evolution. Functions have been described for a few lncRNAs and circRNAs but remain elusive for most. Both classes of RNAs play regulatory roles in translation by interacting with messenger RNAs (mRNAs), microRNAs (miRNAs), or mRNA-binding proteins (RBPs), thereby modulating translation in trans Moreover, although initially defined as noncoding, a number of lncRNAs and circRNAs have recently been reported to contain functional open reading frames (ORFs). Here, we review current understanding of the roles played by lncRNAs and circRNAs in protein synthesis and discuss challenges and open questions in the field.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
119
|
Genome-wide analysis of RNA and protein localization and local translation in mESC-derived neurons. Methods 2019; 162-163:31-41. [PMID: 30742998 DOI: 10.1016/j.ymeth.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023] Open
Abstract
The subcellular localization and translation of mRNAs are fundamental biological processes. In neurons, they underlie cell growth and synaptic plasticity, which serves as a foundation of learning and memory. Multiple approaches have been developed to separate neurons on subcellular compartments - cell bodies (soma) and cell extensions (axons and dendrites) - for further biochemical analyses. Here we describe neurite/soma separation approach in combination with RNA sequencing and proteomic analyses to identify localized and locally translated RNAs and proteins. This approach allows quantification of around 7000 of local proteins and the entire local transcriptome. It provides a powerful tool for investigation of the mechanisms underlying RNA localization and local translation in neurons.
Collapse
|
120
|
Aydin B, Kakumanu A, Rossillo M, Moreno-Estellés M, Garipler G, Ringstad N, Flames N, Mahony S, Mazzoni EO. Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat Neurosci 2019; 22:897-908. [PMID: 31086315 PMCID: PMC6556771 DOI: 10.1038/s41593-019-0399-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/28/2019] [Indexed: 11/29/2022]
Abstract
Developmental programs that generate the astonishing neuronal diversity of the nervous system are not completely understood and thus present a significant challenge for clinical applications of guided cell differentiation strategies. Using direct neuronal programming of embryonic stem cells, we found that two main vertebrate proneural factors, Ascl1 and Neurog2, induce different neuronal fates by binding to largely different sets of genomic sites. Their divergent binding patterns are not determined by the previous chromatin state but are distinguished by enrichment of specific E-box sequences which reflect the binding preferences of the DNA-binding domains. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity profiles that differentially shape the binding of downstream transcription factors during neuronal differentiation. This study provides a mechanistic understanding of how transcription factors constrain terminal cell fates, and it delineates the importance of choosing the right proneural factor in neuronal reprogramming strategies.
Collapse
Affiliation(s)
- Begüm Aydin
- Department of Biology, New York University, New York, NY, USA.,Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Akshay Kakumanu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mary Rossillo
- Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, USA
| | - Mireia Moreno-Estellés
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Görkem Garipler
- Department of Biology, New York University, New York, NY, USA.,Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, USA
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, USA. .,Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
121
|
Fluorescence Imaging Methods to Investigate Translation in Single Cells. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032722. [PMID: 30082468 DOI: 10.1101/cshperspect.a032722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translation is the fundamental biological process that converts the genetic information in messenger RNAs (mRNAs) into functional proteins. Translation regulation allows cells to control when, where, and how many proteins are synthesized. Much of what we know about translation comes from ensemble approaches that measure the average of many cells. The cellular and molecular heterogeneity in the regulation of translation remains largely elusive. Fluorescence microscopy allows interrogation of biological problems with single-molecule, single-cell sensitivity. In recent years, improved design of reagents and microscopy tools has led to improved spatial and temporal resolution of translation imaging. It is now possible to track global translation in specific subcellular compartments and follow the translation dynamics of single transcripts. Highlighted here is the recent progress in translation imaging with emphasis on in vivo translation dynamics. These tools will be invaluable to the study of translation regulation.
Collapse
|
122
|
Liu B, Molinaro G, Shu H, Stackpole EE, Huber KM, Richter JD. Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice. Nucleic Acids Res 2019; 47:e25. [PMID: 30590705 PMCID: PMC6411937 DOI: 10.1093/nar/gky1292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 12/15/2018] [Indexed: 01/23/2023] Open
Abstract
Dysregulated protein synthesis is a major underlying cause of many neurodevelopmental diseases including fragile X syndrome. In order to capture subtle but biologically significant differences in translation in these disorders, a robust technique is required. One powerful tool to study translational control is ribosome profiling, which is based on deep sequencing of mRNA fragments protected from ribonuclease (RNase) digestion by ribosomes. However, this approach has been mainly applied to rapidly dividing cells where translation is active and large amounts of starting material are readily available. The application of ribosome profiling to low-input brain tissue where translation is modest and gene expression changes between genotypes are expected to be small has not been carefully evaluated. Using hippocampal tissue from wide type and fragile X mental retardation 1 (Fmr1) knockout mice, we show that variable RNase digestion can lead to significant sample batch effects. We also establish GC content and ribosome footprint length as quality control metrics for RNase digestion. We performed RNase titration experiments for low-input samples to identify optimal conditions for this critical step that is often improperly conducted. Our data reveal that optimal RNase digestion is essential to ensure high quality and reproducibility of ribosome profiling for low-input brain tissue.
Collapse
Affiliation(s)
- Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emily E Stackpole
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
123
|
Biever A, Donlin-Asp PG, Schuman EM. Local translation in neuronal processes. Curr Opin Neurobiol 2019; 57:141-148. [PMID: 30861464 DOI: 10.1016/j.conb.2019.02.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Neurons exhibit a unique degree of spatial compartmentalization and are able to maintain and remodel their proteomes independently from the cell body. While much effort has been devoted to understanding the capacity and role for local protein synthesis in dendrites and spines, local mRNA translation in mature axons, projecting over distances up to a meter, has received much less attention. Also, little is known about the spatio-temporal dynamics of axonal and dendritic gene expression as function of mRNA abundance, protein synthesis and degradation. Here, we summarize key recent findings that have shaped our knowledge of the precise location of local protein production and discuss unique strategies used by neurons to shape presynaptic and postsynaptic proteomes.
Collapse
Affiliation(s)
- Anne Biever
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
124
|
Lu L, Zhang F, Li Y, Yang A, Guan C, Ding X, Liu Y, Liu Y, Zhang CY, Li L, Zhang Q. Dendritic targeted mRNA expression via a cis-acting RNA UTR element. Biochem Biophys Res Commun 2019; 509:402-406. [PMID: 30594399 DOI: 10.1016/j.bbrc.2018.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Local translation in neurites is considered as an important mechanism to modulate synaptic plasticity of neurons. However, it is hard to specifically express a protein-coding gene in neurites. Recently, the 5'-UTR of Tick-borne encephalitis virus (TBEV) is reported to be able to drive its RNA to the dendrites of infected neurons, as a cis-acting RNA element. To construct a neurite specific gene expression system, present study tested the ability of 5'-UTR of TBEV to bring a mRNA (mCherry CDS) to the neurites for targeted expression. We showed that both the 5'-UTR of TBEV and the 3'-UTR of Actb gene could bring the protein coding mRNA to neurites, and the TBEV 5'-UTR bearing mRNA was more robust targeted into neurites. About the safety of the TBEV 5'-UTR, there was no obvious cytotoxicity to the neurons when adding either cis-acting RNA element to the protein-expressing plasmid vectors. Given the short length and high efficiency of the TBEV 5'-UTR, the 5'-UTR of TBEV were assemble into an AAV plasmid to produce virus particles for expressing protein-coding gene in vivo. After two weeks infection, the TBEV 5'-UTR infected neurons expressed more mCherry protein in their neurites. In conclusion, as a short while high efficient cis-acting RNA element, TBEV 5'-UTR could be useful in neural system research and locally express synaptic proteins more precisely.
Collapse
Affiliation(s)
- Liangsheng Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Yuting Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - AnYong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | | | - Xin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Yuyan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China.
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China.
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
125
|
Li L, Liang J, Luo H, Tam KM, Tse ECM, Li Y. A new chemical approach for proximity labelling of chromatin-associated RNAs and proteins with visible light irradiation. Chem Commun (Camb) 2019; 55:12340-12343. [DOI: 10.1039/c9cc06251c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new nucleus-localized singlet oxygen generator was designed and synthesized.
Collapse
Affiliation(s)
- Lan Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| | - Jiying Liang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| | - Hao Luo
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| | - K. Ming Tam
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| | - Edmund C. M. Tse
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| | - Ying Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, SAR
- Hong Kong
| |
Collapse
|
126
|
Garcez Palha I, Anselme I, Schneider-Maunoury S, Giudicelli F. An in vivo translation-reporter system for the study of protein synthesis in zebrafish embryos. Biol Open 2018; 7:bio.039362. [PMID: 30404898 PMCID: PMC6310896 DOI: 10.1242/bio.039362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Control of gene expression at the translation level is increasingly regarded as a key feature in many biological processes. Simple, inexpensive and reliable procedures to visualize sites of protein production are required to allow observation of the spatiotemporal patterns of mRNA translation at subcellular resolution. We present a method, named SPoT (for Subcellular Patterns of Translation), developed upon the original TimeStamp technique (
Lin et al., 2008), consisting in the expression of a fluorescent protein fused to a tagged, self-cleavable protease domain. The addition of a cell-permeable protease inhibitor instantly stabilizes newly produced tagged protein allowing us to distinguish recently synthesized proteins from pre-existing ones. After a brief protease inhibitor treatment, the ratio of tagged versus non-tagged forms is highest at sites where proteins are the most recent, i.e. sites of synthesis. Therefore, by comparing tagged and non-tagged proteins it is possible to spotlight sites of translation. By specifically expressing the SPoT cassette in neurons of transgenic zebrafish embryos, we reveal sites of neuronal protein synthesis in diverse cellular compartments during early development. Summary: We describe a transgene-based method, SPoT, that reveals subcellular sites of protein synthesis in neurons of wholemount zebrafish embryos.
Collapse
Affiliation(s)
- Inês Garcez Palha
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), F-75005 Paris, France
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), F-75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), F-75005 Paris, France
| | - François Giudicelli
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), F-75005 Paris, France
| |
Collapse
|
127
|
Li Y, Ke K, Spitale RC. Biochemical Methods To Image and Analyze RNA Localization: From One to Many. Biochemistry 2018; 58:379-386. [DOI: 10.1021/acs.biochem.8b01087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
128
|
Giambruno R, Mihailovich M, Bonaldi T. Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Front Mol Biosci 2018; 5:90. [PMID: 30467545 PMCID: PMC6236024 DOI: 10.3389/fmolb.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets.
Collapse
Affiliation(s)
| | | | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
129
|
Gouveia Roque C, Holt CE. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front Mol Neurosci 2018; 11:399. [PMID: 30459552 PMCID: PMC6232380 DOI: 10.3389/fnmol.2018.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Translationally controlled tumor protein (Tctp) contributes to retinal circuitry formation by promoting axon growth and guidance, but it remains unknown to what extent axonal Tctp specifically influences axon development programs. Various genome-wide profiling studies have ranked tctp transcripts among the most enriched in the axonal compartment of distinct neuronal populations, including embryonic retinal ganglion cells (RGCs), suggesting its expression can be regulated locally and that this may be important during development. Here, we report that growth cone Tctp levels change rapidly in response to Netrin-1 and Ephrin-A1, two guidance cues encountered by navigating RGC growth cones. This regulation is opposite in effect, as we observed protein synthesis- and mTORC1-dependent increases in growth cone Tctp levels after acute treatment with Netrin-1, but a decline upon exposure to Ephrin-A1, an inhibitor of mTORC1. Live imaging with translation reporters further showed that Netrin-1-induced synthesis of Tctp in growth cones is driven by a short 3'untranslated region (3'UTR) tctp mRNA isoform. However, acute inhibition of de novo Tctp synthesis in axons did not perturb the advance of retinal projections through the optic tract in vivo, indicating that locally produced Tctp is not necessary for normal axon growth and guidance.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
130
|
Olesnicky EC, Antonacci S, Popitsch N, Lybecker MC, Titus MB, Valadez R, Derkach PG, Marean A, Miller K, Mathai SK, Killian DJ. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev Biol 2018; 444:116-128. [PMID: 30352216 DOI: 10.1016/j.ydbio.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States.
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Racquel Valadez
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Paul G Derkach
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Amber Marean
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Katherine Miller
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Samuel K Mathai
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
131
|
Bellon A, Mann F. Keeping up with advances in axon guidance. Curr Opin Neurobiol 2018; 53:183-191. [PMID: 30273799 DOI: 10.1016/j.conb.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Twenty-five years after the discovery of the first chemotropic molecules for growing axons, what are the new findings? This review describes the latest progress made in our understanding of the molecular control of axonal guidance in the vertebrate nervous system. Special focus will be given to new molecular players, their source and location in vivo, and the role of membrane/receptor trafficking and RNA-based mechanisms in axon guidance cue signalling.
Collapse
Affiliation(s)
- Anaïs Bellon
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France.
| |
Collapse
|
132
|
Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci U S A 2018; 115:E9697-E9706. [PMID: 30254174 PMCID: PMC6187124 DOI: 10.1073/pnas.1806189115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
De novo protein synthesis in neuronal axons plays important roles in neural circuit formation, maintenance, and disease. Key to the selectivity of axonal protein synthesis is whether an mRNA is present at the right place to be translated, but the mechanisms behind axonal mRNA localization remain poorly understood. In this work, we quantitatively analyze the link between axonal β-actin mRNA trafficking and its localization patterns. By developing a single-molecule approach to live-image β-actin mRNAs in axons, we explore the biophysical drivers behind β-actin mRNA motion and uncover a mechanism for generating increased density at the axon tip by differences in motor protein-driven transport speeds. These results provide mechanistic insight into the control of local translation through mRNA trafficking. During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated. Here, we couple molecular beacon technology with highly inclined and laminated optical sheet microscopy to image single molecules of identified endogenous mRNA in growing axons. By combining quantitative single-molecule imaging with biophysical motion models, we show that β-actin mRNA travels mainly as single copies and exhibits different motion-type frequencies in different axonal subcompartments. We find that β-actin mRNA density is fourfold enriched in the growth cone central domain compared with the axon shaft and that a modicum of directed transport is vital for delivery of mRNA to the axon tip. Through mathematical modeling we further demonstrate that directional differences in motor-driven mRNA transport speeds are sufficient to generate β-actin mRNA enrichment at the growth cone. Our results provide insight into how mRNAs are trafficked in axons and a mechanism for generating different mRNA densities across axonal subcompartments.
Collapse
|
133
|
Rendleman J, Choi H, Vogel C. Integration of large-scale multi-omic datasets: a protein-centric view. ACTA ACUST UNITED AC 2018; 11:74-81. [PMID: 30906903 DOI: 10.1016/j.coisb.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Innovative mass spectrometry-based proteomics has enabled routine measurements of protein abundance, localization, interactions, and modifications, covering unique aspects of gene expression regulation and function. It is now time to move from isolated analyses of these datasets toward true integration of proteomics with other data types to gain insights from the interactions and interdependencies of biomolecules. When combined with genomic or transcriptomic data, proteomics expands genome annotation to identify variant or missing genes. Dynamic proteomic measurements can move analysis from predominantly concentration-based framework to that of synthesis and degradation of proteins. Proteomic data from thousands of cancer patients can foster identification of novel pathogenic mutations via detection of protein sequence changes that lead to dysregulated pathways in various tumors. Such comprehensive efforts can exploit the synergy arising from large and complex datasets to advance virtually every field of biology.
Collapse
Affiliation(s)
- Justin Rendleman
- Center for Genomics and Systems Biology, New York University, Department of Biology, New York, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Christine Vogel
- Center for Genomics and Systems Biology, New York University, Department of Biology, New York, USA
| |
Collapse
|
134
|
Gershoni-Emek N, Altman T, Ionescu A, Costa CJ, Gradus-Pery T, Willis DE, Perlson E. Localization of RNAi Machinery to Axonal Branch Points and Growth Cones Is Facilitated by Mitochondria and Is Disrupted in ALS. Front Mol Neurosci 2018; 11:311. [PMID: 30233312 PMCID: PMC6134038 DOI: 10.3389/fnmol.2018.00311] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Local protein synthesis in neuronal axons plays an important role in essential spatiotemporal signaling processes; however, the molecular basis for the post-transcriptional regulation controlling this process in axons is still not fully understood. Here we studied the axonal mechanisms underlying the transport and localization of microRNA (miRNA) and the RNAi machinery along the axon. We first identified miRNAs, Dicer, and Argonaute-2 (Ago2) in motor neuron (MN) axons. We then studied the localization of RNAi machinery and demonstrated that mitochondria associate with miR-124 and RNAi proteins in axons. Importantly, this co-localization occurs primarily at axonal branch points and growth cones. Moreover, using live cell imaging of a functional Cy3-tagged miR-124, we revealed that this miRNA is actively transported with acidic compartments in axons, and associates with stalled mitochondria at growth cones and axonal branch points. Finally, we observed enhanced retrograde transport of miR-124-Cy3, and a reduction in its localization to static mitochondria in MNs expressing the ALS causative gene hSOD1G93A. Taken together, our data suggest that mitochondria participate in the axonal localization and transport of RNAi machinery, and further imply that alterations in this mechanism may be associated with neurodegeneration in ALS.
Collapse
Affiliation(s)
- Noga Gershoni-Emek
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Topaz Altman
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Gradus-Pery
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, United States.,Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Eran Perlson
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
135
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
136
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
137
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
138
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
139
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
140
|
Dermit M, Dodel M, Mardakheh FK. Methods for monitoring and measurement of protein translation in time and space. MOLECULAR BIOSYSTEMS 2018; 13:2477-2488. [PMID: 29051942 PMCID: PMC5795484 DOI: 10.1039/c7mb00476a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of protein translation constitutes a crucial step in control of gene expression. Here we review recent methods for system-wide monitoring and measurement of protein translation.
Regulation of protein translation constitutes a crucial step in control of gene expression. In comparison to transcriptional regulation, however, translational control has remained a significantly under-studied layer of gene expression. This trend is now beginning to shift thanks to recent advances in next-generation sequencing, proteomics, and microscopy based methodologies which allow accurate monitoring of protein translation rates, from single target messenger RNA molecules to genome-wide scale studies. In this review, we summarize these recent advances, and discuss how they are enabling researchers to study translational regulation in a wide variety of in vitro and in vivo biological systems, with unprecedented depth and spatiotemporal resolution.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Martin Dodel
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Faraz K Mardakheh
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
141
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
142
|
Corbett AH. Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol 2018; 52:96-104. [PMID: 29518673 PMCID: PMC5988930 DOI: 10.1016/j.ceb.2018.02.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
Abstract
A large number of mutations in genes that encode RNA binding proteins cause human disease. Many of these RNA binding proteins mediate key steps in post-transcriptional regulation of gene expression from mRNA processing to eventual decay in the cytoplasm. Surprisingly, these RNA binding proteins, which are ubiquitously expressed and play fundamental roles in gene expression, are often altered in tissue-specific disease. Mutations linked to disease impact nearly every post-transcriptional processing step and cause diverse disease phenotypes in a variety of specific tissues. This review summarizes steps in post-transcriptional regulation of gene expression that have been linked to disease providing specific examples of some of the many genes affected. Finally, recent advances that hold promise for treatment of some of these diseases are presented.
Collapse
Affiliation(s)
- Anita H Corbett
- Department of Biology, RRC 1021, Emory University, 1510 Clifton Road, NE, Atlanta 30322, GA, United States.
| |
Collapse
|
143
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
144
|
Cioni JM, Koppers M, Holt CE. Molecular control of local translation in axon development and maintenance. Curr Opin Neurobiol 2018; 51:86-94. [PMID: 29549711 DOI: 10.1016/j.conb.2018.02.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 11/27/2022]
Abstract
The tips of axons are often far away from the cell soma where most proteins are synthesized. Recent work has revealed that axonal mRNA transport and localised translation are key regulatory mechanisms that allow these distant outposts of the cell to respond rapidly to extrinsic factors and maintain axonal homeostasis. Here, we review recent evidence pointing to an increasingly broad role for local protein synthesis in controlling axon shape, synaptogenesis and axon survival by regulating diverse cellular processes such as vesicle trafficking, cytoskeletal remodelling and mitochondrial integrity. We further highlight current research on the regulatory mechanisms that coordinate the localization and translation of functionally linked mRNAs in axons.
Collapse
Affiliation(s)
- Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Max Koppers
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
145
|
Gaiti F, Hatleberg WL, Tanurdžić M, Degnan BM. Sponge Long Non-Coding RNAs Are Expressed in Specific Cell Types and Conserved Networks. Noncoding RNA 2018; 4:ncrna4010006. [PMID: 29657303 PMCID: PMC5890393 DOI: 10.3390/ncrna4010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Although developmental regulation by long non-coding RNAs (lncRNAs) appears to be a widespread feature amongst animals, the origin and level of evolutionary conservation of this mode of regulation remain unclear. We have previously demonstrated that the sponge Amphimedon queenslandica—a morphologically-simple animal—developmentally expresses an array of lncRNAs in manner akin to more complex bilaterians (insects + vertebrates). Here, we first show that Amphimedon lncRNAs are expressed in specific cell types in larvae, juveniles and adults. Thus, as in bilaterians, sponge developmental regulation involves the dynamic, cell type- and context-specific regulation of specific lncRNAs. Second, by comparing gene co-expression networks between Amphimedon queenslandica and Sycon ciliatum—a distantly-related calcisponge—we identify several putative co-expression modules that appear to be shared in sponges; these network-embedded sponge lncRNAs have no discernable sequence similarity. Together, these results suggest sponge lncRNAs are developmentally regulated and operate in conserved gene regulatory networks, as appears to be the case in more complex bilaterians.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Medicine, Weill Cornell Medicine, and New York Genome Center, New York, NY 10021, USA.
| | - William L Hatleberg
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
146
|
Van Driesche SJ, Martin KC. New frontiers in RNA transport and local translation in neurons. Dev Neurobiol 2018; 78:331-339. [DOI: 10.1002/dneu.22574] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah J. Van Driesche
- Department of Biological Chemistry; University of California; Los Angeles California
| | - Kelsey C. Martin
- Department of Biological Chemistry; University of California; Los Angeles California
| |
Collapse
|
147
|
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations/deletions within the survival of motor neuron 1 (SMN1) gene that lead to a pathological reduction of SMN protein levels. SMN is part of a multiprotein complex, functioning as a molecular chaperone that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNP). In addition to its role in spliceosome formation, SMN has also been found to interact with mRNA-binding proteins (mRBPs), and facilitate their assembly into mRNP transport granules. The association of protein and RNA in RNP complexes plays an important role in an extensive and diverse set of cellular processes that regulate neuronal growth, differentiation, and the maturation and plasticity of synapses. This review discusses the role of SMN in RNP assembly and localization, focusing on molecular defects that affect mRNA processing and may contribute to SMA pathology.
Collapse
|
148
|
Abstract
Koppel & Fainzilber review translatomics and proteomics methods for studying protein synthesis at subcellular resolution.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| |
Collapse
|
149
|
Verheijen BM, Pasterkamp RJ. Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Front Mol Neurosci 2017; 10:412. [PMID: 29311805 PMCID: PMC5732946 DOI: 10.3389/fnmol.2017.00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|