101
|
Synthetic Biology Advanced Natural Product Discovery. Metabolites 2021; 11:metabo11110785. [PMID: 34822443 PMCID: PMC8617713 DOI: 10.3390/metabo11110785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.
Collapse
|
102
|
Liao X, Li L, Jameel A, Xing XH, Zhang C. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:9211-9218. [PMID: 34773154 DOI: 10.1007/s00253-021-11688-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Pichia pastoris has gained much attention as a popular microbial cell factory for the production of recombinant proteins and high-value chemicals from laboratory to industrial scale. However, the lack of convenient and efficient genome engineering tools has impeded further applications of Pichia pastoris towards metabolic engineering and synthetic biology. Here, we report a CRISPR-based toolbox for gene editing and transcriptional regulation in P. pastoris. Based on the previous attempts in P. pastoris, we constructed a CRISPR/Cas9 system for gene editing using the RNA Pol-III-driven expression of sgRNA. The system was used to rapidly recycle the selectable marker with an eliminable episomal plasmid and achieved up to 100% knockout efficiency. Via dCas9 fused with transcriptional repressor (Mix1/RD1152) or activator (VPR), a flexible toolbox for regulation of gene expression was developed. The reporter gene eGFP driven by yeast pGAP or pCYC1 promoter showed strong inhibition (above 70%) and up to ~ 3.5-fold activation. To implement the combinatorial genetic engineering strategy, the CRISPR system contained a single Cas9-VPR protein, and engineered gRNA was introduced in P. pastoris for simultaneous gene activation, repression, and editing (CRISPR-ARE). We demonstrated that CRISPR-ARE was highly efficient for eGFP activation, mCherry repression, and ADE2 disruption, individually or in a combinatorial manner with a stable expression of multiplex sgRNAs. The simple and multifunctional toolkit demonstrated in this study will accelerate the application of P. pastoris in metabolic engineering and synthetic biology. KEY POINTS: • An eliminable CRISPR/Cas9 system yielded a highly efficient knockout of genes. • Simplified CRISPR/dCas9-based tools enabled transcriptional regulation of targeted genes. • CRISPR-ARE system achieved simultaneous gene activation, repression, and editing in P. pastoris.
Collapse
Affiliation(s)
- Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Lu Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
103
|
Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021; 42:813-826. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to Bacillus subtilis in 2016 and has been intensely upgraded since then. Many tools have been successfully developed to build a CRISPR toolbox for this Gram-positive model and important industrial chassis. The toolbox includes tools, such as double-strand and single-strand cutting CRISPR for point mutation, gene insertion, and gene deletion up to 38 kb. Moreover, catalytic dead Cas proteins have been used for base editing, as well as for the control of gene expression (CRISPRi and CRISPRa). Many of these tools have been used for multiplex CRISPR with the most successful one targeting up to six loci simultaneously for point mutation. However, tools for efficient multiplex CRISPR for other functionalities are still missing in the toolbox. CRISPR engineering has already resulted in efficient protein and metabolite-producing strains, demonstrating its great potential. In this review, we cover all the important additions made to the B. subtilis CRISPR toolbox since 2016, and strain developments fomented by the technology.
Collapse
Affiliation(s)
- Vitoria Fernanda Bertolazzi Zocca
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Milca Rachel da Costa Ribeiro Lins
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Victor Nunes de Jesus
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Leonardo Ferro Tavares
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Guilherme Engelberto Kundlatsch
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
104
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
105
|
Abstract
The resistance markers could ensure the entry of the CRISPR/Cas9 system into Aspergillus niger cells instead of gene editing. To increase the efficiency of positive colony screening on the primary transformation plates, we designed a visualized multigene editing system (VMS) via a unique tRNA-guide RNA (gRNA) array containing the gRNAs of a pigment gene albA and target genes. Disruption of albA produces white colonies, and the sequences of the endogenous tRNAAla, tRNAPhe, tRNAArg, tRNAIle, and tRNALeu enhance gRNA release. The disruption efficiencies of multigene were analyzed in the A. niger strain AG11 using ammA, amyA, prtT, kusA, and glaA as reporters. In white colonies on the primary transformation plates, the disruption rates of one-, two-, three-, four-, and five-target genes reached 89.2, 70.91, 50, 22.41, and 4.17%, respectively. The VMS developed here provides an effective method for screening homokaryotic multigene editing strains of A. niger.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
106
|
Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites. Essays Biochem 2021; 65:277-291. [PMID: 34061167 PMCID: PMC8314005 DOI: 10.1042/ebc20200137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Fungal secondary metabolites (FSMs) represent a remarkable array of bioactive compounds, with potential applications as pharmaceuticals, nutraceuticals, and agrochemicals. However, these molecules are typically produced only in limited amounts by their native hosts. The native organisms may also be difficult to cultivate and genetically engineer, and some can produce undesirable toxic side-products. Alternatively, recombinant production of fungal bioactives can be engineered into industrial cell factories, such as aspergilli or yeasts, which are well amenable for large-scale manufacturing in submerged fermentations. In this review, we summarize the development of baker's yeast Saccharomyces cerevisiae to produce compounds derived from filamentous fungi and mushrooms. These compounds mainly include polyketides, terpenoids, and amino acid derivatives. We also describe how native biosynthetic pathways can be combined or expanded to produce novel derivatives and new-to-nature compounds. We describe some new approaches for cell factory engineering, such as genome-scale engineering, biosensor-based high-throughput screening, and machine learning, and how these tools have been applied for S. cerevisiae strain improvement. Finally, we prospect the challenges and solutions in further development of yeast cell factories to more efficiently produce FSMs.
Collapse
|
107
|
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. Advances in Enhanced Menaquinone-7 Production From Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:695526. [PMID: 34354987 PMCID: PMC8330505 DOI: 10.3389/fbioe.2021.695526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
The production of nutraceutical compounds through biosynthetic approaches has received considerable attention in recent years. For example, Menaquinone-7 (MK-7), a sub-type of Vitamin K2, biosynthesized from Bacillus subtilis (B. subtilis), proved to be more efficiently produced than the conventional chemical synthesis techniques. This is possible due to the development of B. subtilis as a chassis cell during the biosynthesis stages. Hence, it is imperative to provide insights on the B. subtilis membrane permeability modifications, biofilm reactors, and fermentation optimization as advanced techniques relevant to MK-7 production. Although the traditional gene-editing method of homologous recombination improves the biosynthetic pathway, CRISPR-Cas9 could potentially resolve the drawbacks of traditional genome editing techniques. For these reasons, future studies should explore the applications of CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) system gene-editing tools in the MK-7 anabolism pathway.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
108
|
Chen S, Xie ZX, Yuan YJ. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution. FEMS Yeast Res 2021; 20:5809967. [PMID: 32188997 DOI: 10.1093/femsyr/foaa012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variations (SVs) promote the evolution of Saccharomyces cerevisiae, and play an important role in phenotypic diversities. Yeast genomic structures can be remodeled by design and bottom-up synthesis. The synthesis of yeast genome creates novel copy number variations (CNVs) and SVs and develops new strategies to discover gene functions. Further, an inducible evolution system SCRaMbLE, consisted of 3,932 loxPsym sites, was incorporated on synthetic yeast genome. SCRaMbLE enables genomic rearrangements at will and rapidly generates chromosomal number variations, and massive SVs under customized conditions. The impacts of genetic variations on phenotypes can be revealed by genome analysis and chromosome restructuring. Yeast genome synthesis and SCRaMbLE provide a new research paradigm to explore the genotypic mechanisms of phenotype diversities, and can be used to improve biological traits and optimize industrial chassis.
Collapse
Affiliation(s)
- Si Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ze-Xiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
109
|
Pan C, Wu X, Markel K, Malzahn AA, Kundagrami N, Sretenovic S, Zhang Y, Cheng Y, Shih PM, Qi Y. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. NATURE PLANTS 2021; 7:942-953. [PMID: 34168320 DOI: 10.1038/s41477-021-00953-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/27/2021] [Indexed: 05/22/2023]
Abstract
RNA-guided CRISPR activation (CRISPRa) systems have been developed in plants. However, the simultaneous activation of multiple genes remains challenging. Here, we develop a highly robust CRISPRa system working in rice, Arabidopsis and tomato, CRISPR-Act3.0, through systematically exploring different effector recruitment strategies and various transcription activators based on deactivated Streptococcus pyogenes Cas9 (dSpCas9). The CRISPR-Act3.0 system results in fourfold to sixfold higher activation than the state-of-the-art CRISPRa systems. We further develop a tRNA-gR2.0 (single guide RNA 2.0) expression system enabling CRISPR-Act3.0-based robust activation of up to seven genes for metabolic engineering in rice. In addition, CRISPR-Act3.0 allows the simultaneous modification of multiple traits in Arabidopsis, which are stably transmitted to the T3 generations. On the basis of CRISPR-Act3.0, we elucidate guide RNA targeting rules for effective transcriptional activation. To target T-rich protospacer adjacent motifs (PAMs), we transfer this activation strategy to CRISPR-dCas12b and further improve the dAaCas12b-based CRISPRa system. Moreover, we develop a potent near-PAM-less CRISPR-Act3.0 system on the basis of the SpRY dCas9 variant, which outperforms the dCas9-NG system in both activation potency and targeting scope. Altogether, our study has substantially improved the CRISPRa technology in plants and provided plant researchers a powerful toolbox for efficient gene activation in foundational and translational research.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Xincheng Wu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Neil Kundagrami
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Patrick M Shih
- Department of Plant Biology, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
110
|
Gong G, Zhang Y, Wang Z, Liu L, Shi S, Siewers V, Yuan Q, Nielsen J, Zhang X, Liu Z. GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1328-1337. [PMID: 34015926 DOI: 10.1021/acssynbio.0c00560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted genome disruptions and single-nucleotide conversions with the CRISPR/Cas system have greatly facilitated the development of gene therapy, basic biological research, and synthetic biology. With vast progress in this field, there are still aspects to be optimized, including the target range, the ability to multiplex, the mutation efficiency and specificity, as well as the requirement of adjusting protospacer adjacent motifs (PAMs). Here, we report the development of a highly efficient genome disruption and single-nucleotide conversion tool with a gRNA-tRNA array and SpCas9-NG (GTR 2.0). We performed gene disruptions in yeast cells covering all 16 possible NGN PAMs and all 12 possible single-nucleotide conversions (N to N) with near 100% efficiencies. Moreover, we applied GTR 2.0 for multiplexed single-nucleotide conversions, resulting in 66.67% mutation efficiency in simultaneous generation of 4 single-nucleotide conversions in one gene, as well as 100% mutation efficiency for simultaneously generating 2 single-nucleotide conversions in two different genes. GTR 2.0 will substantially expand the scope, efficiency, and capabilities of yeast genome editing, and will be a versatile and invaluable addition to the toolbox of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Guiping Gong
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zibai Wang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luo Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE412 96, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen N DK2200, Denmark
| | - Qipeng Yuan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE412 96, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen N DK2200, Denmark
| | - Xu Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
111
|
Yang J, Tian Y, Liu H, Kan Y, Zhou Y, Wang Y, Luo Y. Harnessing the Endogenous 2μ Plasmid of Saccharomyces cerevisiae for Pathway Construction. Front Microbiol 2021; 12:679665. [PMID: 34220765 PMCID: PMC8249740 DOI: 10.3389/fmicb.2021.679665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2μ plasmid with both improved stability and increased PCN, naming it p2μM, a 2μ-modified plasmid. In the p2μM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2μM plasmid and in a pRS plasmid (pRS423). As a result, the p2μM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2μM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.
Collapse
Affiliation(s)
- Jing Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yujuan Tian
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeyi Kan
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China.,Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
112
|
Yao C, Hu X, Wang X. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Express 2021; 11:70. [PMID: 34009533 PMCID: PMC8134620 DOI: 10.1186/s13568-021-01231-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium glutamicum is widely used as microbial cell factory for various bioproducts, but its genomic editing efficiency needs to be improved. In this study, a highly efficient CRISPR/Cas9-assisted genomic editing system for C. glutamicum was constructed. This system mainly involves a plasmid and can be used for both gene insertion and deletion in the chromosome of C. glutamicum. The recombinant plasmid for the target gene containing all the editing elements, and first constructed it in E. coli, then purified and transformed it into C. glutamicum. This temperature-sensitive plasmid was cured at high temperature after the genomic editing was completed in C. glutamicum. Using this genetic editing system, the genetic editing efficiency in C. glutamicum ATCC 13032 could reach 95%. The whole work of editing could be done in 8-9 days and showed most time-saving compared to the reported. Using this system, the native promoter of gdhA1 in ATCC 13032 has been replaced with the strong promoter PtacM, and more than 10 genes in ATCC 13032 have been deleted. The results demonstrate that this CRISPR/Cas9-assisted system is highly efficient and very suitable for genome editing in C. glutamicum.
Collapse
|
113
|
Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol 2021; 19:93. [PMID: 33952264 PMCID: PMC8097969 DOI: 10.1186/s12915-021-01031-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. Results Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. Conclusions This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01031-2.
Collapse
|
114
|
Randazzo P, Bennis NX, Daran JM, Daran-Lapujade P. gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing. CRISPR J 2021; 4:896-913. [PMID: 33900846 DOI: 10.1089/crispr.2020.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Even for the genetically accessible yeast Saccharomyces cerevisiae, the CRISPR-Cas DNA editing technology has strongly accelerated and facilitated strain construction. Several methods have been validated for fast and highly efficient single editing events, and diverse approaches for multiplex genome editing have been described in the literature by means of SpCas9 or FnCas12a endonucleases and their associated guide RNAs (gRNAs). The gRNAs used to guide the Cas endonuclease to the editing site are typically expressed from plasmids using native Pol II or Pol III RNA polymerases. These gRNA expression plasmids require laborious, time-consuming cloning steps, which hampers their implementation for academic and applied purposes. In this study, we explore the potential of expressing gRNA from linear DNA fragments using the T7 RNA polymerase (T7RNAP) for single and multiplex genome editing in Saccharomyces cerevisiae. Using FnCas12a, this work demonstrates that transforming short, linear DNA fragments encoding gRNAs in yeast strains expressing T7RNAP promotes highly efficient single and duplex DNA editing. These DNA fragments can be custom ordered, which makes this approach highly suitable for high-throughput strain construction. This work expands the CRISPR toolbox for large-scale strain construction programs in S. cerevisiae and promises to be relevant for other less genetically accessible yeast species.
Collapse
Affiliation(s)
- Paola Randazzo
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | - Nicole Xanthe Bennis
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | | |
Collapse
|
115
|
Morowvat MH. CRISPeering: Bioengineering the Host Cells through CRISPR-Cas9 Genome Editing System as the Next-Generation of Cell Factories. Recent Pat Biotechnol 2021; 15:137-147. [PMID: 33874877 DOI: 10.2174/1872208315666210419102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, CRISPR-Cas9 genome editing system has become a popular bioengineering-based tool for various applications. Owing to its high-target specificity, efficiency, versatility and simplicity, it has gained attraction as a robust tool for molecular biology research, which unveils the biological functions of unstudied genes. As well as engineering the metabolic pathways. Chinese hamster ovary (CHO) cells, and Escherichia coli, are regarded as the most commonly used expression platforms for industrial-scale production of recombinant proteins. The immergence of CRISPR-Cas9 genome editing system, will promote the current status of expression hosts towards controllable and predictable strains. OBJECTIVES Here, I present the current status of expression hosts for biopharmaceuticals production. Some major accomplishments in utilization of CRISPR-Cas9 genome editing tool in different prokaryotic and eukaryotic system will be discussed and more importantly the future directions of this newly arrived technology to make the next-generation cell factories with improved or novel properties will be suggested. Besides, the challenges facing with recent patents on this field is discussed as well. RESULTS AND CONCLUSION The CRISPR-Cas9 genome-editing tool has been adopted to be utilized in some major expression platforms. CRISPeering has been successfully employed for genome editing in different prokaryotic and eukaryotic host cells. The immergence of systems metabolic engineering, systems biology and synthetic biology will fortify the current situation of CRISPR-Cas9 genome editing system.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz. Iran
| |
Collapse
|
116
|
Koreman GT, Xu Y, Hu Q, Zhang Z, Allen SE, Wolfner MF, Wang B, Han C. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc Natl Acad Sci U S A 2021; 118:e2014255118. [PMID: 33782117 PMCID: PMC8040800 DOI: 10.1073/pnas.2014255118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas9 has emerged as a powerful technology for tissue-specific mutagenesis. However, tissue-specific CRISPR/Cas9 tools currently available in Drosophila remain deficient in three significant ways. First, many existing gRNAs are inefficient, such that further improvements of gRNA expression constructs are needed for more efficient and predictable mutagenesis in both somatic and germline tissues. Second, it has been difficult to label mutant cells in target tissues with current methods. Lastly, application of tissue-specific mutagenesis at present often relies on Gal4-driven Cas9, which hampers the flexibility and effectiveness of the system. Here, we tackle these deficiencies by building upon our previous CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) tools. First, we significantly improved gRNA efficiency in somatic tissues by optimizing multiplexed gRNA design. Similarly, we also designed efficient dual-gRNA vectors for the germline. Second, we developed methods to positively and negatively label mutant cells in tissue-specific mutagenesis by incorporating co-CRISPR reporters into gRNA expression vectors. Lastly, we generated genetic reagents for convenient conversion of existing Gal4 drivers into tissue-specific Cas9 lines based on homology-assisted CRISPR knock-in. In this way, we expand the choices of Cas9 for CRISPR-TRiM analysis to broader tissues and developmental stages. Overall, our upgraded CRISPR/Cas9 tools make tissue-specific mutagenesis more versatile, reliable, and effective in Drosophila These improvements may be also applied to other model systems.
Collapse
Affiliation(s)
- Gabriel T Koreman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Yineng Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Bei Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Chun Han
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
117
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
118
|
Baek S, Utomo JC, Lee JY, Dalal K, Yoon YJ, Ro DK. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Metab Eng 2021; 64:111-121. [PMID: 33549837 DOI: 10.1016/j.ymben.2021.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
Saccharomyces cerevisiae is a versatile microbial platform to build synthetic metabolic pathways for production of diverse chemicals. To expedite the construction of complex metabolic pathways by multiplex CRISPR-Cas9 genome-edit, eight desirable intergenic loci, located adjacent to highly expressed genes selected from top 100 expressers, were identified and fully characterized for three criteria after integrating green fluorescent protein (GFP) gene - CRISPR-mediated GFP integration efficiency, expression competency assessed by levels of GFP fluorescence, and assessing growth rates of GFP integrated strains. Five best performing intergenic loci were selected to build a multiplex CRISPR platform, and a synthetic 23-bp DNA comprised of 20-bp synthetic DNA with a protospacer adjacent motif (PAM) was integrated into the five loci using CRISPR-Cas9 in a sequential manner. This process resulted in five different yeast strains harbouring 1-5 synthetic gRNA-binding sites in their genomes. Using these pre-engineered yeast strains, simultaneous integrations of 2-, 3-, 4-, or 5-genes to the targeted loci were demonstrated with efficiencies from 85% to 98% using beet pigment betalain (3-gene pathway), hygromycin and geneticin resistance markers. Integrations of the multiple, foreign genes in the targeted loci with 100% precision were validated by genotyping. Finally, we further developed the strain to have 6th synthetic gRNA-binding site, and the resulting yeast strain was used to generate a yeast strain producing a sesquiterpene lactone, kauniolide by simultaneous 6-gene integrations. This study demonstrates the effectiveness of a single gRNA-mediated CRISPR platform to build complex metabolic pathways in yeast.
Collapse
Affiliation(s)
- Sihyun Baek
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | | | - Ji Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kunal Dalal
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
119
|
Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng 2021; 118:2043-2052. [PMID: 33605428 DOI: 10.1002/bit.27717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.
Collapse
Affiliation(s)
- Yijin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
120
|
Spasskaya DS, Kotlov MI, Lekanov DS, Tutyaeva VV, Snezhkina AV, Kudryavtseva AV, Karpov VL, Karpov DS. CRISPR/Cas9-Mediated Genome Engineering Reveals the Contribution of the 26S Proteasome to the Extremophilic Nature of the Yeast Debaryomyces hansenii. ACS Synth Biol 2021; 10:297-308. [PMID: 33501828 DOI: 10.1021/acssynbio.0c00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.
Collapse
Affiliation(s)
- Daria S. Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Mikhail I. Kotlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Dmitriy S. Lekanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vera V. Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Anastasiya V. Snezhkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| |
Collapse
|
121
|
Fu Y, Zhu Z, Meng G, Zhang R, Zhang Y. A CRISPR-Cas9 based shuffle system for endogenous histone H3 and H4 combinatorial mutagenesis. Sci Rep 2021; 11:3298. [PMID: 33558622 PMCID: PMC7870972 DOI: 10.1038/s41598-021-82774-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Post-translational modifications of histone proteins greatly impact gene expression and cell fate decisions in eukaryotes. To study these, it is important to develop a convenient, multiplex, and efficient method to precisely introduce mutations to histones. Because eukaryotic cells usually contain multiple copies of histone genes, it is a challenge to mutate all histones at the same time by the traditional homologous recombination method. Here, we developed a CRISPR-Cas9 based shuffle system in Saccharomyces cerevisiae, to generate point mutations on both endogenous histone H3 and H4 genes in a rapid, seamless and multiplex fashion. Using this method, we generated yeast strains containing histone triple H3–K4R–K36R–K79R mutants and histone combinatorial H3–K56Q–H4–K59A double mutants with high efficiencies (70–80%). This CRISPR-Cas9 based mutagenesis system could be an invaluable tool to the epigenetics field.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Geng Meng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Yueping Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| |
Collapse
|
122
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
123
|
Utomo JC, Hodgins CL, Ro DK. Multiplex Genome Editing in Yeast by CRISPR/Cas9 - A Potent and Agile Tool to Reconstruct Complex Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:719148. [PMID: 34421973 PMCID: PMC8374951 DOI: 10.3389/fpls.2021.719148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 05/22/2023]
Abstract
Numerous important pharmaceuticals and nutraceuticals originate from plant specialized metabolites, most of which are synthesized via complex biosynthetic pathways. The elucidation of these pathways is critical for the applicable uses of these compounds. Although the rapid progress of the omics technology has revolutionized the identification of candidate genes involved in these pathways, the functional characterization of these genes remains a major bottleneck. Baker's yeast (Saccharomyces cerevisiae) has been used as a microbial platform for characterizing newly discovered metabolic genes in plant specialized metabolism. Using yeast for the investigation of numerous plant enzymes is a streamlined process because of yeast's efficient transformation, limited endogenous specialized metabolism, partially sharing its primary metabolism with plants, and its capability of post-translational modification. Despite these advantages, reconstructing complex plant biosynthetic pathways in yeast can be time intensive. Since its discovery, CRISPR/Cas9 has greatly stimulated metabolic engineering in yeast. Yeast is a popular system for genome editing due to its efficient homology-directed repair mechanism, which allows precise integration of heterologous genes into its genome. One practical use of CRISPR/Cas9 in yeast is multiplex genome editing aimed at reconstructing complex metabolic pathways. This system has the capability of integrating multiple genes of interest in a single transformation, simplifying the reconstruction of complex pathways. As plant specialized metabolites usually have complex multigene biosynthetic pathways, the multiplex CRISPR/Cas9 system in yeast is suited well for functional genomics research in plant specialized metabolism. Here, we review the most advanced methods to achieve efficient multiplex CRISPR/Cas9 editing in yeast. We will also discuss how this powerful tool has been applied to benefit the study of plant specialized metabolism.
Collapse
|
124
|
Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel) 2020; 11:13. [PMID: 33375364 PMCID: PMC7823794 DOI: 10.3390/life11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae has been for a long time a common model for fundamental biological studies and a popular biotechnological engineering platform to produce chemicals, fuels, and pharmaceuticals due to its peculiar characteristics. Both lines of research require an effective editing of the native genetic elements or the inclusion of heterologous pathways into the yeast genome. Although S. cerevisiae is a well-known host with several molecular biology tools available, a more precise tool is still needed. The clustered, regularly interspaced, short palindromic repeats-associated Cas9 (CRISPR-Cas9) system is a current, widespread genome editing tool. The implementation of a reprogrammable, precise, and specific method, such as CRISPR-Cas9, to edit the S. cerevisiae genome has revolutionized laboratory practices. Herein, we describe and discuss some applications of the CRISPR-Cas9 system in S. cerevisiae from simple gene knockouts to more complex processes such as artificial heterologous pathway integration, transcriptional regulation, or tolerance engineering.
Collapse
Affiliation(s)
| | | | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (J.R.); (J.L.R.)
| |
Collapse
|
125
|
Chung SH, Sin TN, Ngo T, Yiu G. CRISPR Technology for Ocular Angiogenesis. Front Genome Ed 2020; 2:594984. [PMID: 34713223 PMCID: PMC8525361 DOI: 10.3389/fgeed.2020.594984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Among genome engineering tools, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based approaches have been widely adopted for translational studies due to their robustness, precision, and ease of use. When delivered to diseased tissues with a viral vector such as adeno-associated virus, direct genome editing can be efficiently achieved in vivo to treat different ophthalmic conditions. While CRISPR has been actively explored as a strategy for treating inherited retinal diseases, with the first human trial recently initiated, its applications for complex, multifactorial conditions such as ocular angiogenesis has been relatively limited. Currently, neovascular retinal diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration, which together constitute the majority of blindness in developed countries, are managed with frequent and costly injections of anti-vascular endothelial growth factor (anti-VEGF) agents that are short-lived and burdensome for patients. By contrast, CRISPR technology has the potential to suppress angiogenesis permanently, with the added benefit of targeting intracellular signals or regulatory elements, cell-specific delivery, and multiplexing to disrupt different pro-angiogenic factors simultaneously. However, the prospect of permanently suppressing physiologic pathways, the unpredictability of gene editing efficacy, and concerns for off-target effects have limited enthusiasm for these approaches. Here, we review the evolution of gene therapy and advances in adapting CRISPR platforms to suppress retinal angiogenesis. We discuss different Cas9 orthologs, delivery strategies, and different genomic targets including VEGF, VEGF receptor, and HIF-1α, as well as the advantages and disadvantages of genome editing vs. conventional gene therapies for multifactorial disease processes as compared to inherited monogenic retinal disorders. Lastly, we describe barriers that must be overcome to enable effective adoption of CRISPR-based strategies for the management of ocular angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
126
|
Meng J, Qiu Y, Shi S. CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories. Front Bioeng Biotechnol 2020; 8:594347. [PMID: 33330425 PMCID: PMC7710542 DOI: 10.3389/fbioe.2020.594347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Synthetic yeast cell factories provide a remarkable solution for the sustainable supply of a range of products, ranging from large-scale industrial chemicals to high-value pharmaceutical compounds. Synthetic biology is a field in which metabolic pathways are intensively studied and engineered. The clustered, regularly interspaced, short, palindromic repeat-associated (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has emerged as the state-of-the-art gene editing technique for synthetic biology. Recently, the use of different CRISPR/Cas9 systems has been extended to the field of yeast engineering for single-nucleotide resolution editing, multiple-gene editing, transcriptional regulation, and genome-scale modifications. Such advancing systems have led to accelerated microbial engineering involving less labor and time and also enhanced the understanding of cellular genetics and physiology. This review provides a brief overview of the latest research progress and the use of CRISPR/Cas9 systems in genetic manipulation, with a focus on the applications of Saccharomyces cerevisiae cell factory engineering.
Collapse
Affiliation(s)
- Jie Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yue Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
127
|
Qin N, Li L, Ji X, Li X, Zhang Y, Larsson C, Chen Y, Nielsen J, Liu Z. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synth Biol 2020; 9:3236-3244. [PMID: 33186034 DOI: 10.1021/acssynbio.0c00264] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central carbon metabolite acetyl-CoA and the cofactor NADPH are important for the synthesis of a wide array of biobased products. Here, we constructed a platform yeast strain for improved provision of acetyl-CoA and NADPH, and used the production of 3-hydroxypropionic acid (3-HP) as a case study. We first demonstrated that the integration of phosphoketolase and phosphotransacetylase improved 3-HP production by 41.9% and decreased glycerol production by 48.1% compared with that of the control strain. Then, to direct more carbon flux toward the pentose phosphate pathway, we reduced the expression of phosphoglucose isomerase by replacing its native promoter with a weaker promoter, and increased the expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase by replacing their native promoters with stronger promoters. This further improved 3-HP production by 26.4%. Furthermore, to increase the NADPH supply we overexpressed cytosolic aldehyde dehydrogenase, and improved 3-HP production by another 10.5%. Together with optimizing enzyme expression of acetyl-CoA carboxylase and malonyl-CoA reductase, the final strain is able to produce 3-HP with a final titer of 864.5 mg/L, which is a more than 24-fold improvement compared with that of the starting strain. Our strategy combines the PK pathway with the oxidative pentose phosphate pathway for the efficient provision of acetyl-CoA and NADPH, which provides both a higher theoretical yield and overall yield than the reported yeast-based 3-HP production strategies via the malonyl-CoA reductase-dependent pathway and sheds light on the construction of efficient platform cell factories for other products.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Xu Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Christer Larsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
128
|
Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:226. [PMID: 33302960 PMCID: PMC7730738 DOI: 10.1186/s12934-020-01493-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
129
|
Zhao J, Fang H, Zhang D. Expanding application of CRISPR-Cas9 system in microorganisms. Synth Syst Biotechnol 2020; 5:269-276. [PMID: 32913902 PMCID: PMC7451738 DOI: 10.1016/j.synbio.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022] Open
Abstract
The development of CRISPR-Cas9 based genetic manipulation tools represents a huge breakthrough in life sciences and has been stimulating research on metabolic engineering, synthetic biology, and systems biology. The CRISPR-Cas9 and its derivative tools are one of the best choices for precise genome editing, multiplexed genome editing, and reversible gene expression control in microorganisms. However, challenges remain for applying CRISPR-Cas9 in novel microorganisms, especially those industrial microorganism hosts that are intractable using traditional genetic manipulation tools. How to further extend CRISPR-Cas9 to these microorganisms is being an urgent matter. In this review, we first introduce the mechanism and application of CRISPR-Cas9, then discuss how to optimize CRISPR-Cas9 as genome editing tools, including but not limited to how to reduce off-target effects and Cas9 related toxicity, and how to increase on-target efficiency by optimizing crRNA and sgRNA design.
Collapse
Affiliation(s)
- Jing Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
130
|
Yang Z, Blenner M. Genome editing systems across yeast species. Curr Opin Biotechnol 2020; 66:255-266. [PMID: 33011454 PMCID: PMC7744358 DOI: 10.1016/j.copbio.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023]
Abstract
Yeasts are used to produce a myriad of value-added compounds. Engineering yeasts into cost-efficient cell factories is greatly facilitated by the availability of genome editing tools. While traditional engineering techniques such as homologous recombination-based gene knockout and pathway integration continue to be widely used, novel genome editing systems including multiplexed approaches, bacteriophage integrases, CRISPR-Cas systems, and base editors are emerging as more powerful toolsets to accomplish rapid genome scale engineering and phenotype screening. In this review, we summarized the techniques which have been successfully implemented in model yeast Saccharomyces cerevisiae as well as non-conventional yeast species. The mechanisms and applications of various genome engineering systems are discussed and general guidelines to expand genome editing systems from S. cerevisiae to other yeast species are also highlighted.
Collapse
Affiliation(s)
- Zhiliang Yang
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
131
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
132
|
Malcı K, Walls LE, Rios-Solis L. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Front Bioeng Biotechnol 2020; 8:589468. [PMID: 33195154 PMCID: PMC7658401 DOI: 10.3389/fbioe.2020.589468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
133
|
Mao Y, Chen Z, Lu L, Jin B, Ma H, Pan Y, Chen T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol 2020; 322:29-32. [PMID: 32653638 DOI: 10.1016/j.jbiotec.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Over the past decade, 5-aminolevulinic acid (5-ALA) has been highlighted as a promising functional feed additive and immunomodulator for improving the general health, immune response, and resistance to disease of livestock and poultry. However, it is very costly to produce 5-ALA using conventional chemical synthesis methods. Classical microbial fermentation fulfills the criteria of environmental friendliness, but the unsatisfactory titers still hinder actual industrial production. This study aimed to develop a solid-state fermentation (SSF) process that can be used to efficiently enrich feed with 5-ALA at a low cost. First, the endogenous 5-ALA synthase was overexpressed in Saccharomyces cerevisiae via integrating a copy of HEM1 gene into the chromosome and introducing a multi-copy plasmid pRS416-HEM1 which constitutively overexpresses HEM1 gene. The resulting strain ScA3 was able to produce 63.82 mg/L 5-ALA in shake-flask fermentation. After process optimization, a titer of 225.63 mg/kg dry materials, exceeding the usual effective dosage reported in animal trials, was achieved within 48 h through SSF of 20 kg feed in a 90-L steel drum. To our knowledge, this is the first report on combining microbial 5-ALA production with SSF in feed processing, which will hopefully promote the application and popularization of 5-ALA in the feed industry.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zetian Chen
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China
| | - Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yun Pan
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China.
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
134
|
Kuanyshev N, Rao CV, Dien B, Jin YS. Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii. Biotechnol Bioeng 2020; 118:372-382. [PMID: 33030791 DOI: 10.1002/bit.27576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid-tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN-ARS-based CRISPR-Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site-specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR-Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.
Collapse
Affiliation(s)
- Nurzhan Kuanyshev
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V Rao
- The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce Dien
- The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
135
|
Guirimand G, Kulagina N, Papon N, Hasunuma T, Courdavault V. Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends Biotechnol 2020; 39:488-504. [PMID: 33008642 DOI: 10.1016/j.tibtech.2020.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic engineering (ME) aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. We summarize recent developments in ME methods for tailoring different yeast cell factories (YCFs). In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathway optimization (including genome-editing tools), combinatorial transcriptional and post-transcriptional engineering (cis/trans regulators), dynamic control of metabolic fluxes (e.g., rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss challenges and perspectives for adaptive laboratory evolution (ALE) of yeast to advance ME of microbial cell factories.
Collapse
Affiliation(s)
- Gregory Guirimand
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA 3142, Université Angers and Université Brest, Structure Féderative de Recherche (SFR) 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Angers, France
| | - Tomohisa Hasunuma
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
| |
Collapse
|
136
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synth Biol 2020; 9:2228-2238. [PMID: 32794766 DOI: 10.1021/acssynbio.0c00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The well-designed microbial cell factory finds wide applications in chemical, pharmaceutical, and food industries due to its sustainable and environmentally friendly features. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems have been developed into powerful tools to perform genome editing and transcriptional regulation in prokaryotic and eukaryotic cells. Accordingly, these tools are useful to build microbial cell factories not only by reconstructing the genome but also by reprogramming the metabolic network. In this review, we summarize the recent significant headway and potential uses of the CRISPR technology in the construction of efficient microbial cell factories. Moreover, the future perspectives on the improvement and upgradation of CRISPR-based tools are also discussed.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
137
|
Yang B, Feng X, Li C. Microbial Cell Factory for Efficiently Synthesizing Plant Natural Products via Optimizing the Location and Adaptation of Pathway on Genome Scale. Front Bioeng Biotechnol 2020; 8:969. [PMID: 32923436 PMCID: PMC7457125 DOI: 10.3389/fbioe.2020.00969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Plant natural products (PNPs) possess important pharmacological activities and are widely used in cosmetics, health care products, and as food additives. Currently, most PNPs are mainly extracted from cultivated plants, and the yield is limited by the long growth cycle, climate change and complex processing steps, which makes the process unsustainable. However, the complex structure of PNPs significantly reduces the efficiency of chemical synthesis. With the development of metabolic engineering and synthetic biology, heterologous biosynthesis of PNPs in microbial cell factories offers an attractive alternative. Based on the in-depth mining and analysis of genome and transcriptome data, the biosynthetic pathways of a number of natural products have been successfully elucidated, which lays the crucial foundation for heterologous production. However, there are several problems in the microbial synthesis of PNPs, including toxicity of intermediates, low enzyme activity, multiple auxotrophic dependence, and uncontrollable metabolic network. Although various metabolic engineering strategies have been developed to solve these problems, optimizing the location and adaptation of pathways on the whole-genome scale is an important strategy in microorganisms. From this perspective, this review introduces the application of CRISPR/Cas9 in editing PNPs biosynthesis pathways in model microorganisms, the influences of pathway location, and the approaches for optimizing the adaptation between metabolic pathways and chassis hosts for facilitating PNPs biosynthesis.
Collapse
Affiliation(s)
- Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
138
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
139
|
Song Q, Ni K, Liu M, Li Y, Wang L, Wang Y, Liu Y, Yu Z, Qi Y, Lu Z, Ma L. Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen. Genome Biol 2020; 21:136. [PMID: 32513233 PMCID: PMC7278172 DOI: 10.1186/s13059-020-02044-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR-based genome perturbation provides a new avenue to conveniently change DNA sequences, transcription, and epigenetic modifications in genetic screens. However, it remains challenging to assay the complex molecular readouts after perturbation at high resolution and at scale. By introducing an A/G mixed capture sequence into the gRNA scaffold, we demonstrate that gRNA transcripts could be directly reverse transcribed by poly (dT) primer together with the endogenous mRNA, followed by high-content molecular phenotyping in scRNA-seq (Direct-seq). With this method, the CRISPR perturbation and its transcriptional readouts can be profiled together in a streamlined workflow.
Collapse
Affiliation(s)
- Qingkai Song
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Ni
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Min Liu
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yini Li
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lixia Wang
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yingying Wang
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yingzheng Liu
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Zhenxing Yu
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yinyao Qi
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Zhike Lu
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
140
|
Rui Y, Varanasi M, Mendes S, Yamagata HM, Wilson DR, Green JJ. Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:661-672. [PMID: 32380416 PMCID: PMC7210380 DOI: 10.1016/j.omtn.2020.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The CRISPR-Cas9 system is a powerful gene-editing tool with wide-ranging applications, but the safe and efficient intracellular delivery of CRISPR components remains a challenge. In this study, we utilized biodegradable poly(beta-amino ester) nanoparticles to codeliver plasmid DNA encoding Cas9 and short guide RNA (sgRNA), respectively, to enable gene knockout following a CRISPR-mediated cleavage at one genomic site (1-cut edit), as well as gene deletion following DNA cleavage at two sites flanking a region of interest (2-cut edits). We designed a reporter system that allows for easy evaluation of both types of edits: gene knockout can be assessed by a decrease in near-infrared fluorescent protein (iRFP) fluorescence, whereas deletion of an expression stop cassette turns on a red-enhanced nanolantern fluorescence/luminescence dual reporter. Nanoparticles enabled up to 70% gene knockout due to small indels, as well as 45% gain-of-function expression after a 600-bp deletion edit. The efficiency of 2-cut edits is more sensitive than 1-cut edits to Cas9 and the sgRNA expression level. We demonstrate promising biodegradable nanoparticle formulations for gene editing. Our findings also provide new insights into the screening and transfection requirements for different types of gene edits, which are applicable for designing nonviral delivery systems for the CRISPR-Cas9 platform.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mahita Varanasi
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shanelle Mendes
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hannah M Yamagata
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David R Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
141
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
142
|
Adiego-Pérez B, Randazzo P, Daran JM, Verwaal R, Roubos JA, Daran-Lapujade P, van der Oost J. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 2020; 366:5489186. [PMID: 31087001 PMCID: PMC6522427 DOI: 10.1093/femsle/fnz086] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
Collapse
Affiliation(s)
- Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Paola Randazzo
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - René Verwaal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Johannes A Roubos
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
143
|
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 2020; 20:263-273. [PMID: 32251397 PMCID: PMC8011456 DOI: 10.1038/s41568-020-0252-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
In precision oncology, two major strategies are being pursued for predicting clinically relevant tumour behaviours, such as treatment response and emergence of drug resistance: inference based on genomic, transcriptomic, epigenomic and/or proteomic analysis of patient samples, and phenotypic assays in personalized cancer avatars. The latter approach has historically relied on in vivo mouse xenografts and in vitro organoids or 2D cell cultures. Recent progress in rapid combinatorial genetic modelling, the development of a genetically immunocompromised strain for xenotransplantation of human patient samples in adult zebrafish and the first clinical trial using xenotransplantation in zebrafish larvae for phenotypic testing of drug response bring this tiny vertebrate to the forefront of the precision medicine arena. In this Review, we discuss advances in transgenic and transplantation-based zebrafish cancer avatars, and how these models compare with and complement mouse xenografts and human organoids. We also outline the unique opportunities that these different models present for prediction studies and current challenges they face for future clinical deployment.
Collapse
Affiliation(s)
- Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yan Chuan
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - David M Langenau
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
144
|
Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. ABIOTECH 2020; 1:123-134. [PMID: 36304720 PMCID: PMC9590505 DOI: 10.1007/s42994-019-00014-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 01/16/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spatiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized transgene-free and multiplex genome editing. In this review, we discuss current strategies and future perspectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.
Collapse
|
145
|
Levi O, Arava Y. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae. Curr Microbiol 2020; 77:468-478. [PMID: 31901956 DOI: 10.1007/s00284-019-01851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
The yeast S. cerevisiae serves as a model organism for many decades. Numerous molecular tools have been developed throughout the years to engineer its genome. Specifically, homologous recombination protocols allowed gene deletion, replacement and tagging of almost every S. cerevisiae gene, thus enabling mechanistic understanding of various cellular processes. Recently, CRISPR/Cas9-based approaches have been adapted to the yeast system, simplifying the protocols to manipulate this organism. In CRISPR/Cas9 systems, guide-RNA directs a site-specific double-strand DNA cleavage by the Cas9 nuclease. The directed cleavage enhances homologous recombination events, thereby facilitating changes to desired genomic loci. The use of a single vector to express both guide-RNA and Cas9 enzyme may simplify genomic manipulations and was used to introduce double-strand breaks at artificial sites (Anand et al. in Nature 544(7650):377-380, 2017. https://doi.org/10.1038/nature22046) or within selection markers (Ryan et al. in Cold Spring Harbor Protoc, 2014. https://doi.org/10.1101/pdb.prot086827). Here, we generalize this approach to demonstrate its utility in modifying natural genomic loci. We devise vectors to perform common genetic manipulations in S. cerevisiae, including gene deletion, single-base mutations, introduction of site-specific polymorphism and tag insertion. Notably, a vector that efficiently cleaves within GFP was generated, allowing replacing a GFP tag with other sequences. This vector may be of utility for replacing any gene tagged with GFP by a sequence of choice. Importantly, we demonstrate the efficiency of chemically synthesized 80-mer homologous DNA as a substrate for recombination, alleviating the need for PCR steps in the procedure. In all presented applications, high efficiency of the expected gene alteration and no other change in the genomic loci were obtained. Overall, this work expands the repertoire of single-plasmid CRISPR/cas9 approaches and provides a facile alternative to manipulate the yeast genome.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
146
|
Dalvie NC, Leal J, Whittaker CA, Yang Y, Brady JR, Love KR, Love JC. Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in Komagataella phaffii. ACS Synth Biol 2020; 9:26-35. [PMID: 31825599 PMCID: PMC7814401 DOI: 10.1021/acssynbio.9b00372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Justin Leal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Joseph R. Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
147
|
Zhang L, Zhang H, Liu Y, Zhou J, Shen W, Liu L, Li Q, Chen X. A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis. Biotechnol Bioeng 2019; 117:531-542. [PMID: 31654413 DOI: 10.1002/bit.27207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic manipulation is among the most important tools for synthetic biology; however, modifying multiple genes is extremely time-consuming and can sometimes be impossible when dealing with gene families. Here, we present a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system for use in the diploid yeast Candida tropicalis that is vastly superior to traditional techniques. This system enables the rapid and reliable introduction of multiple genetic deletions or mutations, as well as a stable expression using an integrated CRISPR-Cas9 cassette or a transient CRISPR-Cas9 cassette, together with a short donor DNA. We further show that the system can be used to promote the in vivo assembly of multiple DNA fragments and their stable integration into a target locus (or loci) in C. tropicalis. Based on this system, we present a platform for the biosynthesis of β-carotene and its derivatives. These results enable the practical application of C. tropicalis and the application of the system to other organisms.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haibing Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yufei Liu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liming Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
148
|
CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun 2019; 10:e00112. [PMID: 31867213 PMCID: PMC6906711 DOI: 10.1016/j.mec.2019.e00112] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 has been widely adopted as the basic toolkit for precise genome-editing and engineering in various organisms. Alternative to Cas9, Cas12 or Cpf1 uses a simple crRNA as a guide and expands the protospacer adjacent motif (PAM) sequence to TTTN. This unique PAM sequence of Cpf1 may significantly increase the on-target editing efficiency due to lower chance of Cpf1 misreading the PAMs on a high GC genome. To demonstrate the utility of CRISPR-Cpf1, we have optimized the CRISPR-Cpf1 system and achieved high-editing efficiency for two counter-selectable markers in the industrially-relevant oleaginous yeast Yarrowia lipolytica: arginine permease (93% for CAN1) and orotidine 5′-phosphate decarboxylase (~96% for URA3). Both mutations were validated by indel mutation sequencing. For the first time, we further expanded this toolkit to edit three sulfur house-keeping genetic markers (40%–75% for MET2, MET6 and MET25), which confers yeast distinct colony color changes due to the formation of PbS (lead sulfide) precipitates. Different from Cas9, we demonstrated that the crRNA transcribed from a standard type II RNA promoter was sufficient to guide Cpf1 endonuclease activity. Furthermore, modification of the crRNA with 3′ polyUs facilitates the faster maturation and folding of crRNA and improve the genome editing efficiency. We also achieved multiplexed genome editing, and the editing efficiency reached 75%–83% for duplex genomic targets (CAN1-URA3 and CAN1-MET25) and 41.7% for triplex genomic targets (CAN1-URA3-MET25). Taken together, this work expands the genome-editing toolbox for oleaginous yeast species and may accelerate our ability to engineer oleaginous yeast for both biotechnological and biomedical applications. Cpf1 expands the PAM to TTTN and increases the on-target editing efficiency. CRISPR-Cpf1 is optimized to edit genetic markers CAN1, URA3, MET2, MET6 and MET25. A type II RNA promoter was sufficient to guide Cpf1 endonuclease activity. CrRNA modified with 3′ polyUs improves the on-target genome editing efficiency. Duplex genome-editing reaches 75%–83% and triplex editing reaches 42% in Y. lipolytica.
Collapse
|
149
|
Deaner M, Alper HS. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:foz076. [PMID: 31665284 DOI: 10.1093/femsyr/foz076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Although only 6 years old, the CRISPR system has blossomed into a tool for rapid, on-demand genome engineering and gene regulation in Saccharomyces cerevisiae. In this minireview, we discuss fundamental CRISPR technologies, tools to improve the efficiency and capabilities of gene targeting, and cutting-edge techniques to explore gene editing and transcriptional regulation at genome scale using pooled approaches. The focus is on applications to metabolic engineering with topics including development of techniques to edit the genome in multiplex, tools to enable large numbers of genetic modifications using pooled single-guide RNA libraries and efforts to enable programmable transcriptional regulation using endonuclease-null Cas enzymes.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
150
|
The Use of CRISPR-Cas9 Genome Editing to Determine the Importance of Glycerol Uptake in Wine Yeast During Icewine Fermentation. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high concentration of sugars in Icewine juice causes formidable stress for the fermenting Saccharomyces cerevisiae, causing cells to lose water and shrink in size. Yeast can combat this stress by increasing the internal concentration of glycerol by activating the high osmolarity glycerol response to synthesize glycerol and by actively transporting glycerol into the cell from the environment. The H+/glycerol symporter, Stl1p, has been previously characterized as being glucose repressed and inactivated, despite osmotic stress induction. To further investigate the role of Stl1p in Icewine fermentations, we developed a rapid single plasmid CRISPR-Cas9-based genome editing method to construct a strain of the common Icewine yeast, S. cerevisiae K1-V1116, that lacks STL1. In an Icewine fermentation, the ∆STL1 strain had reduced fermentation performance, and elevated glycerol and acetic acid production compared to the parent. These results demonstrate that glycerol uptake by Stl1p has a significant role during osmotically challenging Icewine fermentations in K1-V1116 despite potential glucose downregulation.
Collapse
|