101
|
Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nat Catal 2021. [DOI: 10.1038/s41929-021-00680-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
102
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Khivantsev K, Wei X, Kovarik L, Jaegers NR, Walter ED, Tran P, Wang Y, Szanyi J. Pd/FER vs Pd/SSZ-13 Passive NOx Adsorbers: Adsorbate-controlled Location of Atomically Dispersed Pd(II) in FER Determines High Activity and Stability. Angew Chem Int Ed Engl 2021; 61:e202107554. [PMID: 34617372 DOI: 10.1002/anie.202107554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/10/2022]
Abstract
Pd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold-start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. NO release temperature of both adsorbers decreases gradually with the increase of CO concentration from a few hundred to a few thousand ppm. This beneficial effect results from local nano-"hot spot" formation during CO oxidation. Dissimilar to Pd/SSZ-13, increasing the CO concentration above ~1,000 ppm improves the NOx storage significantly for Pd/FER, attributed to the presence of Pd ions in FER γ-site that is shielded from NOx. CO mobilizes this Pd atom to the NOx accessible position where it becomes active for PNA. This behavior explains the very high resistance of Pd/FER to hydrothermal aging: Pd/FER materials survive hydrothermal aging at 8000C in 10% H2O vapor for 16 hours with no deterioration in NOx uptake/release behavior. Thus, by allocating Pd ions to the specific microporous pockets in FER, we have produced (hydro)thermally stable and active PNA materials.
Collapse
Affiliation(s)
- Konstantin Khivantsev
- Pacific Northwest National Laboratory, Institute for Integrated Catalysis, 3335 Innovation blvd, EMSL BUILDING, PACIFIC NORTHWEST NATIONAL LABORATORY, 99354, Richland, UNITED STATES
| | - Xinyi Wei
- BASF Corp, Environmental Catalysis, Iselin, UNITED STATES
| | - Libor Kovarik
- Pacific Northwest National Laboratory Hanford Technical Library: Pacific Northwest National Laboratory, PNNL, UNITED STATES
| | - Nicholas R Jaegers
- Pacific Northwest National Laboratory Hanford Technical Library: Pacific Northwest National Laboratory, PNNL, UNITED STATES
| | - Eric D Walter
- Pacific Northwest National Laboratory Hanford Technical Library: Pacific Northwest National Laboratory, PNNL, UNITED STATES
| | | | - Yong Wang
- Washington State University, Chemical Engineering, UNITED STATES
| | - Janos Szanyi
- Pacific Northwest National Laboratory, INSTITUTE FOR INTEGRATED CATALYSIS, 3335 Innovation blvd, EMSL BUILDING, PACIFIC NORTHWEST NATIONAL LABORATORY, Richland, 99354, Richland, UNITED STATES
| |
Collapse
|
104
|
Atomic level fluxional behavior and activity of CeO 2-supported Pt catalysts for CO oxidation. Nat Commun 2021; 12:5789. [PMID: 34608153 PMCID: PMC8490411 DOI: 10.1038/s41467-021-26047-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e., fluxional behavior) of the interface during catalysis. Here, we employ aberration-corrected operando electron microscopy to visualize the structural dynamics occurring at and near Pt/CeO2 interfaces during CO oxidation. We show that the catalytic turnover frequency correlates with fluxional behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the CeO2 support surface. Overall, the results implicate the interfacial Pt-O-Ce bonds anchoring the Pt to the support as being involved also in the catalytically-driven oxygen transfer process, and they suggest that oxygen reduction takes place on the highly reduced CeO2 surface before migrating to the interfacial perimeter for reaction with CO.
Collapse
|
105
|
López-Rodríguez S, Davó-Quiñonero A, Bailón-García E, Lozano-Castelló D, Bueno-López A. Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
106
|
Wei DY, Yue MF, Qin SN, Zhang S, Wu YF, Xu GY, Zhang H, Tian ZQ, Li JF. In Situ Raman Observation of Oxygen Activation and Reaction at Platinum-Ceria Interfaces during CO Oxidation. J Am Chem Soc 2021; 143:15635-15643. [PMID: 34541841 DOI: 10.1021/jacs.1c04590] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the fundamental insights of oxygen activation and reaction at metal-oxide interfaces is of significant importance yet remains a major challenge due to the difficulty in in situ characterization of active oxygen species. Herein, the activation and reaction of molecular oxygen during CO oxidation at platinum-ceria interfaces has been in situ explored using surface-enhanced Raman spectroscopy (SERS) via a borrowing strategy, and different active oxygen species and their evolution during CO oxidation at platinum-ceria interfaces have been directly observed. In situ Raman spectroscopic evidence with isotopic exchange experiments demonstrate that oxygen is efficiently dissociated to chemisorbed O on Pt and lattice Ce-O species simultaneously at interfacial Ce3+ defect sites under CO oxidation, leading to a much higher activity at platinum-ceria interfaces compared to that at Pt alone. Further in situ time-resolved SERS studies and density functional theory simulations reveal a more efficient molecular pathway through the reaction between adsorbed CO and chemisorbed Pt-O species transferred from the interfaces. This work deepens the fundamental understandings on oxygen activation and CO oxidation at metal-oxide interfaces and offers a sensitive technique for the in situ characterization of oxygen species under working conditions.
Collapse
Affiliation(s)
- Di-Ye Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Si-Na Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Sa Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yuan-Fei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Ge-Yang Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
107
|
Tan W, Xie S, Cai Y, Wang M, Yu S, Low KB, Li Y, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12607-12618. [PMID: 34495644 DOI: 10.1021/acs.est.1c02853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering surface defects on metal oxide supports could help promote the dispersion of active sites and catalytic performance of supported catalysts. Herein, a strategy of ZrO2 doping was proposed to create rich surface defects on CeO2 (CZO) and, with these defects, to improve Pt dispersion and enhance its affinity as single sites to the CZO support (Pt/CZO). The strongly anchored Pt single sites on CZO support were initially not efficient for catalytic oxidation of CO/C3H6. However, after a simple activation by H2 reduction, the catalytic oxidation performance over Pt/CZO catalyst was significantly boosted and better than Pt/CeO2. Pt/CZO catalyst also exhibited much higher thermal stability. The structural evolution of Pt active sites by H2 treatment was systematically investigated on aged Pt/CZO and Pt/CeO2 catalysts. With H2 reduction, ionic Pt single sites were transformed into active Pt clusters. Much smaller Pt clusters were created on CZO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm) due to stronger Pt-CeO2 interaction on aged Pt/CZO. Consequently, more exposed active Pt sites were obtained on the smaller clusters surrounded by more oxygen defects and Ce3+ species, which directly translated to the higher catalytic oxidation performance of activated Pt/CZO catalyst in vehicle emission control applications.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Yandi Cai
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Meiyu Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Shuohan Yu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Ke-Bin Low
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Yuejin Li
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
108
|
Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe
2
/Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110335] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zongpeng Wang
- School of Advanced study Taizhou University Taizhou China
| | - Beibei Xiao
- School of Energy and Power Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Zhiping Lin
- School of Advanced study Taizhou University Taizhou China
| | - Yaping Xu
- School of Advanced study Taizhou University Taizhou China
| | - Yan Lin
- School of Advanced study Taizhou University Taizhou China
| | - Fanqi Meng
- Institution of Physics Chinese Academic of Science Beijing China
| | - Qinghua Zhang
- Institution of Physics Chinese Academic of Science Beijing China
| | - Lin Gu
- Institution of Physics Chinese Academic of Science Beijing China
| | - Baizeng Fang
- Department of Chemical & Biological Engineering University of British Columbia 2360 East Mall Vancouver BC V6T 1Z3 Canada
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing China
| | - Wenwu Zhong
- School of Advanced study Taizhou University Taizhou China
| |
Collapse
|
109
|
Wang Y, Kalscheur J, Su YQ, Hensen EJM, Vlachos DG. Real-time dynamics and structures of supported subnanometer catalysts via multiscale simulations. Nat Commun 2021; 12:5430. [PMID: 34521852 PMCID: PMC8440615 DOI: 10.1038/s41467-021-25752-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding the performance of subnanometer catalysts and how catalyst treatment and exposure to spectroscopic probe molecules change the structure requires accurate structure determination under working conditions. Experiments lack simultaneous temporal and spatial resolution and could alter the structure, and similar challenges hinder first-principles calculations from answering these questions. Here, we introduce a multiscale modeling framework to follow the evolution of subnanometer clusters at experimentally relevant time scales. We demonstrate its feasibility on Pd adsorbed on CeO2(111) at various catalyst loadings, temperatures, and exposures to CO. We show that sintering occurs in seconds even at room temperature and is mainly driven by free energy reduction. It leads to a kinetically (far from equilibrium) frozen ensemble of quasi-two-dimensional structures that CO chemisorption and infrared experiments probe. CO adsorption makes structures flatter and smaller. High temperatures drive very rapid sintering toward larger, stable/metastable equilibrium structures, where CO induces secondary structure changes only.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
| | - Jake Kalscheur
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
| | - Ya-Qiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States.
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States.
| |
Collapse
|
110
|
Yan D, Li T, Liu P, Mo S, Zhong J, Ren Q, Sun Y, Cheng H, Fu M, Wu J, Chen P, Huang H, Ye D. In-situ atmosphere thermal pyrolysis of spindle-like Ce(OH)CO 3 to fabricate Pt/CeO 2 catalysts: Enhancing Pt-O-Ce bond intensity and boosting toluene degradation. CHEMOSPHERE 2021; 279:130658. [PMID: 34134427 DOI: 10.1016/j.chemosphere.2021.130658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, a series of spindle-like CeO2 supports with different contents of surface oxygen vacancies were fabricated by an in-situ atmosphere thermal pyrolysis method. Due to the unique surface physicochemical properties of the modified CeO2 supports, the interaction between Pt and CeO2 can be regulated during the synthesis of the Pt/CeO2 catalyst. The abundant oxygen vacancies on the CeO2 support could preferentially trap Pt2+ ions in solution during the Pt impregnation process and enhance the Pt-CeO2 interaction in the subsequent reduction process, which results in the strongest Pt-O-Ce bonds formed on the PCH catalysts successfully (0.6% Pt loading on the CH support, which generated by thermal pyrolysis of Ce(OH)CO3 under H2 atmosphere). The strong Pt-O-Ce bond would trigger abundant surface oxygen species generated and enhanced the lattice oxygen species transfer from CeO2 supports to Pt nanoparticles. It was crucial to boosting the toluene catalytic activity. Therefore, the PCH catalyst exhibits the highest activity for toluene oxidation (T10 = 120 °C, T50 = 138 °C, and T90 = 150 °C with WHSV = 60,000 mL g-1 h-1) and remarkable durability and water resistance among all catalysts. We also conclude that the Pt-O-Ce bond may be the active site for toluene oxidation by calculating the turnover frequencies (TOFPt-O-Ce) value for all Pt/CeO2 catalysts. Moreover, the DFT calculation indicates that the Pt/CeO2 catalyst with a strong Pt-O-Ce bond possesses the lowest oxygen absorption energy and higher CO tolerance ability, which leads to excellent catalytic performance for toluene and CO catalytic oxidation.
Collapse
Affiliation(s)
- Dengfeng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shengpeng Mo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinping Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Quanming Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuhai Sun
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hairong Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China.
| |
Collapse
|
111
|
Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe 2 /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:23388-23393. [PMID: 34370386 DOI: 10.1002/anie.202110335] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/23/2022]
Abstract
PtSe2 is a typical noble metal dichalcogenide (NMD) that holds promising possibility for next-generation electronics and photonics. However, when applied in hydrogen evolution reaction (HER), it exhibits sluggish kinetics due to the insufficient capability of absorbing active species. Here, we construct PtSe2 /Pt heterointerface to boost the reaction dynamics of PtSe2 , enabled by an in situ electrochemical method. It is found that Se vacancies are induced around the heterointerface, reducing the coordination environment. Correspondingly, the exposed Pt atoms at the very vicinity of Se vacancies are activated, with enhanced overlap with H 1s orbital. The adsorption of H. intermediate is thus strengthened, achieving near thermoneutral free energy change. Consequently, the as-prepared PtSe2 /Pt exhibits extraordinary HER activity even superior to Pt/C, with an overpotential of 42 mV at 10 mA cm-2 and a Tafel slope of 53 mV dec-1 . This work raises attention on NMDs toward HER and provides insights for the rational construction of novel heterointerfaces.
Collapse
Affiliation(s)
- Zongpeng Wang
- School of Advanced study, Taizhou University, Taizhou, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhiping Lin
- School of Advanced study, Taizhou University, Taizhou, China
| | - Yaping Xu
- School of Advanced study, Taizhou University, Taizhou, China
| | - Yan Lin
- School of Advanced study, Taizhou University, Taizhou, China
| | - Fanqi Meng
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Wenwu Zhong
- School of Advanced study, Taizhou University, Taizhou, China
| |
Collapse
|
112
|
Wolski L, Sobańska K, Walkowiak A, Akhmetova K, Gryboś J, Frankowski M, Ziolek M, Pietrzyk P. Enhanced adsorption and degradation of methylene blue over mixed niobium-cerium oxide - Unraveling the synergy between Nb and Ce in advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125665. [PMID: 33773255 DOI: 10.1016/j.jhazmat.2021.125665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Formation of reactive oxygen species (ROS) via H2O2 activation is of vital importance in catalytic environmental chemistry, especially in degradation of organic pollutants. A new mixed niobium-cerium oxide (NbCeOx) was tailored for this purpose. A thorough structural and chemical characterization of NbCeOx along with CeO2 and Nb2O5 reference materials was carried out using TEM/STEM/EDS, SEM, XRD, XPS, EPR, UV-vis and N2 physisorption. The ability of the catalysts to activate H2O2 towards ROS formation was assessed on the basis of EPR and Raman measurements. Catalytic activity of the oxides was evaluated in degradation of methylene blue (MB) as a model pollutant. Very high activity of NbCeOx was attributed to the mixed redox-acidic nature of its surface, which originated from the synergy between Nb and Ce species. These two properties (redox activity and acidity) ensured convenient conditions for efficient activation of H2O2 and degradation of MB. The activity of NbCeOx in MB degradation was found 3 times higher than that of the commercial Nb2O5 CBMM catalyst and 240 times higher than that of CeO2. The mechanism of the degradation reaction was found to be an adsorption-triggered process initiated by hydroxyl radicals, generated on the surface via the transformation of O2-•/O22-.
Collapse
Affiliation(s)
- Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Kamila Sobańska
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Adrian Walkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Kamila Akhmetova
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Joanna Gryboś
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Maria Ziolek
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Piotr Pietrzyk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
113
|
Jiang D, Yao Y, Li T, Wan G, Pereira-Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García-Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single-Atom Pt 1 /CeO 2 Catalysts for Robust Low-Temperature CO Oxidation. Angew Chem Int Ed Engl 2021; 60:26054-26062. [PMID: 34346155 DOI: 10.1002/anie.202108585] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/09/2022]
Abstract
A single-atom Pt1 /CeO2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over-stabilization of Pt2+ in a highly symmetric square-planar Pt1 O4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt2+ by thermal-shock (TS) synthesis leads to a highly active and thermally stable Pt1 /CeO2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO2 to generate Pt single atoms in an asymmetric Pt1 O4 configuration. Owing to this unique coordination, Pt1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low-temperature performance. CO oxidation reactivity on the Pt1 /CeO2 _TS catalyst was retained under oxidizing conditions.
Collapse
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.,Current address: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Xavier Isidro Pereira-Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Carlos E García-Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
114
|
Near-ambient pressure X-ray photoelectron spectroscopy for a bioinert polymer film at a water interface. Polym J 2021. [DOI: 10.1038/s41428-021-00485-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
115
|
Datye AK, Votsmeier M. Opportunities and challenges in the development of advanced materials for emission control catalysts. NATURE MATERIALS 2021; 20:1049-1059. [PMID: 33020611 DOI: 10.1038/s41563-020-00805-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Advances in engine technologies are placing additional demands on emission control catalysts, which must now perform at lower temperatures, but at the same time be robust enough to survive harsh conditions encountered in engine exhaust. In this Review, we explore some of the materials concepts that could revolutionize the technology of emission control systems. These include single-atom catalysts, two-dimensional materials, three-dimensional architectures, core@shell nanoparticles derived via atomic layer deposition and via colloidal synthesis methods, and microporous oxides. While these materials provide enhanced performance, they will need to overcome many challenges before they can be deployed for treating exhaust from cars and trucks. We assess the state of the art for catalysing reactions related to emission control and also consider radical breakthroughs that could potentially completely transform this field.
Collapse
Affiliation(s)
- Abhaya K Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
| | - Martin Votsmeier
- Technical University of Darmstadt, Darmstadt, Germany.
- Umicore AG & Co. KG, Hanau, Germany.
| |
Collapse
|
116
|
Reddy KP, Choi H, Kim D, Choi M, Ryoo R, Park JY. The facet effect of ceria nanoparticles on platinum dispersion and catalytic activity of methanol partial oxidation. Chem Commun (Camb) 2021; 57:7382-7385. [PMID: 34231575 DOI: 10.1039/d1cc02728j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of platinum-supported nano-shaped ceria catalysts on methanol partial oxidation and methyl formate product selectivity has been investigated. A Pt-supported CeO2 nanocube catalyst had a higher turnover frequency than nanosphere catalysts; however, nanosphere catalysts showed higher selectivity towards methyl formate. The observed ceria shape effect in catalysis was associated with the shape-dependent Pt dispersion and its oxidation states. Furthermore, in situ studies revealed that the reduced platinum and mono-dentate methoxy group were responsible for the higher turnover frequency.
Collapse
Affiliation(s)
- Kasala Prabhakar Reddy
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryong Ryoo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
117
|
Lu Y, Zhou S, Kuo CT, Kunwar D, Thompson C, Hoffman AS, Boubnov A, Lin S, Datye AK, Guo H, Karim AM. Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01900] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yubing Lu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Shulan Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Chun-Te Kuo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Deepak Kunwar
- Center for Microengineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alexey Boubnov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sen Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Abhaya K. Datye
- Center for Microengineered Materials, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ayman M. Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| |
Collapse
|
118
|
Zhou X, Yan F, Shen B, Zhai J, Hedin N. Enhanced Sunlight-Driven Reactive Species Generation via Polarization Field in Nanopiezoelectric Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29691-29707. [PMID: 34152123 DOI: 10.1021/acsami.1c06912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although it is established that the force-induced electric polarization field of piezoelectric semiconductors can be used to tune the transfer rate of photoexcited charge carriers, there is still a lack of successful strategies to effectively improve the photocatalytic reactivity and solar-to-chemical conversion efficiency (SCC) of piezoelectric materials. Here, we are the first to prepare and study a kind of catalyst based on nanopiezoelectric heterostructures of LiNbO3-type ZnTiO3·TiO2 and tetragonal BaTiO3 with Pt or FeOx nanoparticle modification (i.e., ZBTO-Pt or ZBTO-FeOx) for reactive species generation. With respect to the production of •OH and •O2- radicals, higher amounts were observed in piezophotocatalysis relative to those for individual piezo- and photocatalysis. Benefiting from the charge transfer resistance decreases by the deposition of Pt and FeOx, the amounts of •OH radicals formed on ZBTO-Pt and ZBTO-FeOx were approximately 48 and 21% higher than that on isolated ZBTO during piezophotocatalysis, and for the amounts of •O2- radicals the enhancements were approximately 11 and 6%, respectively. Furthermore, the concentrations of H2O2 formed on ZBTO-Pt and ZBTO-FeOx under piezophotocatalysis reached approximately 315 and 206 μM after 100 min of reaction (and was still increasing) corresponding to 0.10 and 0.06% SCCs, respectively, which were also much higher than the concentrations and SCCs observed for piezo- and photocatalysis. The enhancements of piezophotocatalytic activities with these piezoelectric materials were related to the mechanical strain exerted on ZBTO, which generated a larger electric polarization field than those on ZnTiO3·TiO2 and BaTiO3 as analyzed by a finite element method. This high-intensity electric polarization field accelerated the separation and transportation of photoexcited charge carriers in the highly sunlight responsive nanopiezoelectric heterostructures based on ZBTO-Pt and ZBTO-FeOx.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE 106 91, Sweden
| | - Fei Yan
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Bo Shen
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiwei Zhai
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE 106 91, Sweden
| |
Collapse
|
119
|
Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nat Commun 2021; 12:4016. [PMID: 34188049 PMCID: PMC8242080 DOI: 10.1038/s41467-021-24330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production. Carbons are indispensable as supports for metal-based catalysts in polyvinyl chloride manufacture via acetylene hydrochlorination. In this work, the acetylene interaction, tunable through adjusting microporosity and oxygen sites is identified as central activity and stability descriptor.
Collapse
|
120
|
Wolski L, Lebedev OI, Harmer CP, Kovnir K, Abdelli H, Grzyb T, Daturi M, El-Roz M. Unraveling the Origin of Photocatalytic Deactivation in CeO 2/Nb 2O 5 Heterostructure Systems during Methanol Oxidation: Insight into the Role of Cerium Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12650-12662. [PMID: 34276865 PMCID: PMC8279704 DOI: 10.1021/acs.jpcc.1c02812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The study provides deep insight into the origin of photocatalytic deactivation of Nb2O5 after modification with ceria. Of particular interest was to fully understand the role of ceria species in diminishing the photocatalytic performance of CeO2/Nb2O5 heterostructures. For this purpose, ceria was loaded on niobia surfaces by wet impregnation. The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, UV-visible spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. Photocatalytic activity of parent metal oxides (i.e., Nb2O5 and CeO2) and as-prepared CeO2/Nb2O5 heterostructures with different ceria loadings were tested in methanol photooxidation, a model gas-phase reaction. Deep insight into the photocatalytic process provided by operando-IR techniques combined with results of photoluminescence studies revealed that deactivation of CeO2/Nb2O5 heterostructures resulted from increased recombination of photo-excited electrons and holes. The main factor contributing to more efficient recombination of the charge carriers in the heterostructures was the ultrafine size of the ceria species. The presence of such highly dispersed ceria species on the niobia surface provided a strong interface between these two semiconductors, enabling efficient charge transfer from Nb2O5 to CeO2. However, the ceria species supported on niobia exhibited a high defect site concentration, which acted as highly active recombination centers for the photo-induced charge carriers.
Collapse
Affiliation(s)
- Lukasz Wolski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Oleg I. Lebedev
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire CRISMAT, Caen 14050, France
| | - Colin P. Harmer
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Kirill Kovnir
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Hanen Abdelli
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Tomasz Grzyb
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marco Daturi
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Mohamad El-Roz
- Normandie
Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| |
Collapse
|
121
|
Rodríguez SL, Davó-Quiñonero A, Juan-Juan J, Bailón-García E, Lozano-Castelló D, Bueno-López A. Effect of Pr in CO 2 Methanation Ru/CeO 2 Catalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12038-12049. [PMID: 34630817 PMCID: PMC8494384 DOI: 10.1021/acs.jpcc.1c03539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
CO2 methanation has been studied with Pr-doped Ru/CeO2 catalysts, and a dual effect of Pr has been observed. For low Pr content (i.e., 3 wt %) a positive effect in oxygen mobility prevails, while for high Pr doping (i.e., 25 wt %) a negative effect in the Ru-CeO2 interaction is more relevant. Isotopic experiments evidenced that Pr hinders the dissociation of CO2, which takes place at the Ru-CeO2 interface. However, once the temperature is high enough (200 °C), Pr improves the oxygen mobility in the CeO2 support, and this enhances CO2 dissociation because the oxygen atoms left are delivered faster to the support sink and the dissociation sites at the interface are cleaned up faster. In situ Raman spectroscopy experiments confirmed that Pr improves the creation of oxygen vacancies on the ceria lattice but hinders their reoxidation by CO2, and both opposite effects reach an optimum balance for 3 wt % Pr doping. In addition, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments showed that Pr doping, regardless of the amount, decreases the population of surface carbon species created on the catalysts surface upon CO2 chemisorption under methanation reaction conditions, affecting both productive reaction intermediates (formates and carbonyls) and unproductive carbonates.
Collapse
Affiliation(s)
- Sergio López Rodríguez
- Inorganic Chemistry Department, University of Alicante, Carrertera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
| | - Arantxa Davó-Quiñonero
- Inorganic Chemistry Department, University of Alicante, Carrertera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Jerónimo Juan-Juan
- Technical Research Services (SSTTI), University of Alicante, Carretera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
| | - Esther Bailón-García
- Inorganic Chemistry Department, University of Alicante, Carrertera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
| | - Dolores Lozano-Castelló
- Inorganic Chemistry Department, University of Alicante, Carrertera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
| | - Agustín Bueno-López
- Inorganic Chemistry Department, University of Alicante, Carrertera de San Vicente del Raspeig s/n, E-03080 Alicante, Spain
| |
Collapse
|
122
|
Nan B, Fu Q, Yu J, Shu M, Zhou LL, Li J, Wang WW, Jia CJ, Ma C, Chen JX, Li L, Si R. Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nat Commun 2021; 12:3342. [PMID: 34099668 PMCID: PMC8184822 DOI: 10.1038/s41467-021-23696-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
As the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt-1·s-1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt-O-Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.
Collapse
Affiliation(s)
- Bing Nan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jing Yu
- Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Miao Shu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Lu Zhou
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jinying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Chao Ma
- Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, China.
| | - Jun-Xiang Chen
- Division of China, TILON Group Technology Limited, Shanghai, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China
| | - Rui Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China.
| |
Collapse
|
123
|
Muravev V, Spezzati G, Su YQ, Parastaev A, Chiang FK, Longo A, Escudero C, Kosinov N, Hensen EJM. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021. [DOI: 10.1038/s41929-021-00621-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
124
|
Xie S, Wang Z, Tan W, Zhu Y, Collier S, Ma L, Ehrlich SN, Xu P, Yan Y, Xu T, Deng J, Liu F. Highly Active and Stable Palladium Catalysts on Novel Ceria-Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7624-7633. [PMID: 33871985 DOI: 10.1021/acs.est.1c00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precious metal catalysts with superior low-temperature activity and excellent thermal stability are highly needed in environmental catalysis field. In this work, a novel two-step incipient wetness impregnation (T-IWI) method was developed for the fabrication of a unique and highly stable CeO2/Al2O3 support (CA-T). Pd anchored on CA-T exhibited a much higher low-temperature catalytic activity and superior thermal stability in carbon monoxide (CO) and hydrocarbon (HC) oxidations, compared to Pd anchored on conventional CeO2/Al2O3 (CA), which was prepared by a one-step IWI method. After aging treatment at 800 °C, the CO oxidation rate on Pd/CA-T (1.69 mmol/(gPd s)) at 120 °C was 4.1 and 84.5 times of those on Pd/CA (0.41 mmol/(gPd s)) and Pd/Al2O3 (0.02 mmol/(gPd s)), respectively. It was revealed that the CA-T support with well-controlled small CeO2 particles (ca. 12 nm) possessed abundant defects for Pd anchoring, which created rich Pd-CeO2 interfaces with strengthened interaction between Pd and CeO2 where oxygen could be efficiently activated. This resulted in the significantly improved oxidation activity and thermal stability of Pd/CA-T catalysts. The T-IWI method developed herein can be applied as a universal approach to prepare highly stable metal oxide-alumina-based supports, which have broad application in environmental catalyst design, especially for automobile exhaust aftertreatment.
Collapse
Affiliation(s)
- Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Zhiwei Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, China
| | - Yatong Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Samantha Collier
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Yan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jiguang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
125
|
Insights into the Structural Dynamics of Pt/CeO2 Single-Site Catalysts during CO Oxidation. Catalysts 2021. [DOI: 10.3390/catal11050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite their high atomic dispersion, single site catalysts with Pt supported on CeO2 were found to have a low activity during oxidation reactions. In this study, we report the behavior of Pt/CeO2 single site catalyst under more complex gas mixtures, including CO, C3H6 and CO/C3H6 oxidation in the absence or presence of water. Our systematic operando high-energy resolution-fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopic study combined with multivariate curve resolution with alternating least squares (MCR-ALS) analysis identified five distinct states in the Pt single site structure during CO oxidation light-off. After desorption of oxygen and autoreduction of Pt4+ to Pt2+ due to the increase of temperature, CO adsorbs and reduces Pt2+ to Ptδ+ and assists its migration with final formation of PtxΔ+ clusters. The derived structure–activity relationships indicate that partial reduction of Pt single sites is not sufficient to initiate the conversion of CO. The reaction proceeds only after the regrouping of several noble metal atoms in small clusters, as these entities are probably able to influence the mobility of the oxygen at the interface with ceria.
Collapse
|
126
|
Yang J, Zhang J, Jiang Q, Su Y, Cui Y, Li X, Zhang S, Li W, Qiao B. Highly active and stable Ir nanoclusters derived from Ir 1/MgAl 2O 4 single-atom catalysts. J Chem Phys 2021; 154:131105. [PMID: 33832279 DOI: 10.1063/5.0048565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-atom catalysts (SACs) prepared by the atom trapping method often possess high stability yet have limited advantages regarding catalytic performance due to the strong metal-support interaction. Using these SACs as seeds to develop supported nanoclusters or nanoparticles has, however, been proven to be effective in improving the catalysts' intrinsic activity. Herein, we have prepared extremely stable Ir SACs supported by MgAl2O4 via atomic trapping and used them as seeds to fabricate highly active and stable Ir nanocluster catalysts by high-temperature reduction. The activity toward N2O decomposition increased by more than ten times compared with that of the parent Ir SACs. This study provides a new avenue to design and develop highly active and stable catalysts for industrial use.
Collapse
Affiliation(s)
- Jingyi Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingcai Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yitao Cui
- Synchrotron Radiation Laboratory, Laser and Synchrotron Research Center (LASOR), The Institute for Solid State Physics, The University of Tokyo, 1-490-2 Kouto, Shingu-cho, Tatsuno, Hyogo 679-5165, Japan
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengxin Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weizhen Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
127
|
Lee J, Li C, Kang S, Park J, Kim JM, Kim DH. Pt nanoparticles encapsulated in CeO2 over-layers synthesized by controlled reductive treatment to suppress CH4 formation in high-temperature water-gas shift reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
128
|
Datye AK, Guo H. Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat Commun 2021; 12:895. [PMID: 33563970 PMCID: PMC7873241 DOI: 10.1038/s41467-021-21152-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
During the past decade, initial skepticism rapidly changed into widespread recognition of the role of single atoms in heterogeneous catalysts. The next decade could usher in the era of industrial applications as manufacturing of durable single atom catalysts is perfected.
Collapse
Affiliation(s)
- Abhaya K Datye
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, NM, USA. .,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
129
|
Zhang F, Gutiérrez RA, Lustemberg PG, Liu Z, Rui N, Wu T, Ramírez PJ, Xu W, Idriss H, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA. Metal-Support Interactions and C1 Chemistry: Transforming Pt-CeO 2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catal 2021; 11:1613-1623. [PMID: 34164226 PMCID: PMC8210818 DOI: 10.1021/acscatal.0c04694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Indexed: 12/21/2022]
Abstract
![]()
There
is an ongoing search for materials which can accomplish the
activation of two dangerous greenhouse gases like carbon dioxide and
methane. In the area of C1 chemistry, the reaction between CO2 and CH4 to produce syngas (CO/H2),
known as methane dry reforming (MDR), is attracting a lot of interest
due to its green nature. On Pt(111), high temperatures must be used
to activate the reactants, leading to a substantial deposition of
carbon which makes this metal surface useless for the MDR process.
In this study, we show that strong metal–support interactions
present in Pt/CeO2(111) and Pt/CeO2 powders
lead to systems which can bind CO2 and CH4 well
at room temperature and are excellent and stable catalysts for the
MDR process at moderate temperature (500 °C). The behavior of
these systems was studied using a combination of in situ/operando methods (AP-XPS, XRD, and XAFS) which pointed to an active Pt-CeO2-x interface. In this interface, the
oxide is far from being a passive spectator. It modifies the chemical
properties of Pt, facilitating improved methane dissociation, and
is directly involved in the adsorption and dissociation of CO2 making the MDR catalytic cycle possible. A comparison of
the benefits gained by the use of an effective metal-oxide interface
and those obtained by plain bimetallic bonding indicates that the
former is much more important when optimizing the C1 chemistry associated
with CO2 and CH4 conversion. The presence of
elements with a different chemical nature at the metal-oxide interface
opens the possibility for truly cooperative interactions in the activation
of C–O and C–H bonds.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Ramón A. Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Pablo G. Lustemberg
- Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, Rosario, Santa Fe S2000EZP, Argentina
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Madrid 28049, Spain
| | - Zongyuan Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianpin Wu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, Monterrey 64770, México
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Hicham Idriss
- SABIC Corporate Research & Development (CRD), KAUST, Thuwal 29355, Saudi Arabia
| | | | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
130
|
Xiao Y, Li H, Xie K. Activating Lattice Oxygen at the Twisted Surface in a Mesoporous CeO
2
Single Crystal for Efficient and Durable Catalytic CO Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yongchun Xiao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
- Dalian National Laboratory For Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Advanced Energy Science and Technology Guangdong Laboratory 29 Sanxin North Road Huizhou 116023 China
| |
Collapse
|
131
|
Xiao Y, Li H, Xie K. Activating Lattice Oxygen at the Twisted Surface in a Mesoporous CeO
2
Single Crystal for Efficient and Durable Catalytic CO Oxidation. Angew Chem Int Ed Engl 2021; 60:5240-5244. [DOI: 10.1002/anie.202013633] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yongchun Xiao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
- Dalian National Laboratory For Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Advanced Energy Science and Technology Guangdong Laboratory 29 Sanxin North Road Huizhou 116023 China
| |
Collapse
|
132
|
Guo Z, You Q, Song L, Sun G, Chen G, Li C, Yang X, Hu X, Jiang X. Highly dispersed Pt species anchored onto NH 2-Ce-MOFs and their derived mesoporous catalysts for CO oxidation. NANOSCALE 2021; 13:117-123. [PMID: 33140814 DOI: 10.1039/d0nr05626j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simultaneously maximizing the dispersion of noble metals and demonstrating optimal activity are of significant importance for designing stable metal catalysts. In this study, highly dispersed ultrafine platinum (Pt) particles with a size of <1.5 nm anchored onto a mesoporous CeO2 structure have been synthesized by coordinating Pt ions with amino groups in NH2-Ce-MOFs, followed by high-temperature calcination. It was found that the presence of -NH2 groups in Ce-MOFs played a crucial role in anchoring Pt species with high dispersion on the MOF framework. Interestingly, the anchored Pt species were beneficial for the formation of Ce-Pt sites during the conversion from Ce-BDC to CeO2. As a result, the as-prepared catalysts held dense surface peroxo species, responsible for boosting CO oxidation at low temperatures.
Collapse
Affiliation(s)
- Zeyi Guo
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Morlanés N, Sayas S, Shterk G, Katikaneni SP, Harale A, Solami B, Gascon J. Development of a Ba–CoCe catalyst for the efficient and stable decomposition of ammonia. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02336a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
COx-free hydrogen production; cobalt-based catalysts for ammonia decomposition; cerium–barium promoter in cobalt catalysts.
Collapse
Affiliation(s)
- Natalia Morlanés
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Salvador Sayas
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Genrikh Shterk
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Sai P. Katikaneni
- Carbon Management R&D Division
- Research and Development Center
- Saudi Aramco
- Dhahran
- 31311 Saudi Arabia
| | - Aadesh Harale
- Carbon Management R&D Division
- Research and Development Center
- Saudi Aramco
- Dhahran
- 31311 Saudi Arabia
| | - Bandar Solami
- Carbon Management R&D Division
- Research and Development Center
- Saudi Aramco
- Dhahran
- 31311 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
134
|
Yu H, Yu Z, Yang F, Yan X, Yin H. Enhanced strong metal–support interactions between Pt and WO 3–x nanowires for the selective hydrogenation of p-chloronitrobenzene. NEW J CHEM 2021. [DOI: 10.1039/d1nj03336k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pt/WO3–x nanocatalysts demonstrate significantly enhanced catalytic performance due to the strong interaction between Pt and WO3–x nanowires.
Collapse
Affiliation(s)
- Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Zhiyong Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Fan Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Xuedong Yan
- Ningbo Polytechnic, 388 East Lushan Road, Ningbo, Zhejiang, 315800, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
135
|
Feng W, Song Y, Zhang X, Lv H, Liu Q, Wang G, Bao X. Platinum-Decorated Ceria Enhances CO 2 Electroreduction in Solid Oxide Electrolysis Cells. CHEMSUSCHEM 2020; 13:6290-6295. [PMID: 32459062 DOI: 10.1002/cssc.202001002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
CO2 electroreduction by solid oxide electrolysis cells (SOECs) can not only attenuate the greenhouse effect, but also convert surplus electrical energy into chemical energy. The adsorption and activation of CO2 on the cathode play an important role in the SOEC performance. La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ -Ce0.8 Sm0.2 O2-δ (LSCF-SDC; SDC=samarium-doped ceria) is a promising SOEC cathode. However, its electrocatalytic activity still needs to be improved. In this study, Pt/SDC interfaces are constructed by decorating Pt nanoparticles onto the SDC surface. Electrochemical measurements indicate that the polarization resistance of the SOEC is decreased from 0.308 to 0.120 Ω cm2 , and the current density is improved from 0.913 to 1.420 A cm-2 at 1.6 V and 800 °C. Physicochemical characterizations suggest that construction of the Pt/SDC interfaces increases the oxygen vacancy concentration on the cathode and boosts CO2 adsorption and dissociation, which leads to enhanced CO2 electroreduction performance in SOECs.
Collapse
Affiliation(s)
- Weicheng Feng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Yuefeng Song
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Qingxue Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| |
Collapse
|
136
|
Resasco J, Christopher P. Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. J Phys Chem Lett 2020; 11:10114-10123. [PMID: 33191757 DOI: 10.1021/acs.jpclett.0c02904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of experimental and computational tools that give accurate and visual active site descriptions has renewed research interest in atomically dispersed metal catalysts. In this perspective, we describe our approach to synthesizing and understanding atomically dispersed Pt-group metals on oxide supports. Using site-specific characterization, we show that these metal species have distinct reactivity from metal clusters. We argue that producing materials where all metal sites have identical local coordination is key to both accurately assessing catalytic properties and achieving single-site behavior. Methods for assessing site uniformity are considered. We show that producing uniform metal species allows us to describe their structure at the atomic scale and understand how this structure evolves under different conditions. Finally, we suggest pathways to increased functionality for atomically dispersed catalysts, through control of their local coordination and steric environment and through cooperativity with different sites.
Collapse
Affiliation(s)
- Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
137
|
Jeong H, Shin S, Lee H. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS NANO 2020; 14:14355-14374. [PMID: 33140947 DOI: 10.1021/acsnano.0c06610] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent advances in heterogeneous single-atom catalysts (SACs), which have isolated metal atoms dispersed on a support, have enabled a more precise control of their surface metal atomic structure. SACs could reduce the amount of metals used for the surface reaction and have often shown distinct selectivity, which the corresponding nanoparticles would not have. However, SACs typically have the limitations of low-metal content, poor stability, oxidic electronic states, and an absence of ensemble sites. In this review, various efforts to overcome these limitations have been discussed: The metal content in the SACs could increase up to over 10 wt %; highly durable SACs could be prepared by anchoring the metal atoms strongly on the defective support; metallic SACs are reported; and the ensemble catalysts, in which all the metal atoms are exposed at the surface like the SACs but the surface metal atoms are located nearby, are also reported. Metal atomic multimers with distinct catalytic properties have been also reported. Surface metal single-atoms could be decorated with organic ligands with interesting catalytic behavior. Heterogeneous atomic catalysts, whose structure is elaborately controlled and the surface reaction is better understood, can be a paradigm with higher catalytic activity, selectivity, and durability and used in industrial applications.
Collapse
Affiliation(s)
- Hojin Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
138
|
Wang K, Wang X, Liang X. Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem 2020. [DOI: 10.1002/cctc.202001255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kaiying Wang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| | - Xiaofeng Wang
- College of Environmental Science and Engineering Dalian Maritime University Dalian 116026 P.R. China
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| |
Collapse
|
139
|
Lustemberg PG, Zhang F, Gutiérrez RA, Ramírez PJ, Senanayake SD, Rodriguez JA, Ganduglia-Pirovano MV. Breaking Simple Scaling Relations through Metal-Oxide Interactions: Understanding Room-Temperature Activation of Methane on M/CeO 2 (M = Pt, Ni, or Co) Interfaces. J Phys Chem Lett 2020; 11:9131-9137. [PMID: 33052684 DOI: 10.1021/acs.jpclett.0c02109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The clean activation of methane at low temperatures remains an eminent challenge and a field of competitive research. In particular, on late transition metal surfaces such as Pt(111) or Ni(111), higher temperatures are necessary to activate the hydrocarbon molecule, but a massive deposition of carbon makes the metal surface useless for catalytic activity. However, on very low-loaded M/CeO2 (M = Pt, Ni, or Co) surfaces, the dissociation of methane occurs at room temperature, which is unexpected considering simple linear scaling relationships. This intriguing phenomenon has been studied using a combination of experimental techniques (ambient-pressure X-ray photoelectron spectroscopy, time-resolved X-ray diffraction, and X-ray absorption spectroscopy) and density functional theory-based calculations. The experimental and theoretical studies show that the size and morphology of the supported nanoparticles together with strong metal-support interactions are behind the deviations from the scaling relations. These findings point toward a possible strategy for circumventing scaling relations, producing active and stable catalysts that can be employed for methane activation and conversion.
Collapse
Affiliation(s)
- Pablo G Lustemberg
- Instituto de Fı́sica Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
- Instituto de Catálisis y Petroleoquı́mica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Feng Zhang
- Department of Materials Science and Chemical Enginnering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Ramón A Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Pedro J Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- R&D Laboratories, Zoneca-CENEX, Alta Vista, 64770 Monterrey, Mexico
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Department of Materials Science and Chemical Enginnering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | |
Collapse
|
140
|
Liu L, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P, Calvino JJ, Corma A. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
141
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
142
|
Wang Y, Su YQ, Hensen EJM, Vlachos DG. Finite-Temperature Structures of Supported Subnanometer Catalysts Inferred via Statistical Learning and Genetic Algorithm-Based Optimization. ACS NANO 2020; 14:13995-14007. [PMID: 33054171 DOI: 10.1021/acsnano.0c06472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Single-atom catalysts (SACs) minimize noble metal utilization and can alter the activity and selectivity of supported metal nanoparticles. However, the morphology of active centers, including single atoms and subnanometer clusters of a few atoms, remains elusive due to experimental challenges. The computational cost to describe numerous cluster shapes and sizes makes direct first-principles calculations impractical. We present a computational framework to enable structure determination for single-atom and subnanometer cluster catalysts. As a case study, we obtained the low-energy structures of Pdn (n = 1-21) clusters supported on CeO2(111), which are critical components of automobile three-way catalysts. Trained on density functional theory data, a three-dimensional cluster expansion is established using statistical learning to describe the Hamiltonian and predict energies of supported Pdn clusters of any structure. Low-energy stable and metastable structures are identified using a Metropolis Monte Carlo-based genetic algorithm in the canonical ensemble at 300 K. We observe that supported single atoms sinter to form bilayer clusters, and large cluster isomers share similarities in both shape and energy. The findings elucidate the significance of the support and microstructure on cluster stability. We discovered a simple surrogate structure-energy model, where the energy per atom scales with the square root of the average first coordination number, which can be used to estimate energies and compare the stability of clusters. Our framework, applicable to any metal/support system, fills an important methodological gap to predict the stability of supported metal catalysts in the subnanometer regime.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Ya-Qiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
143
|
Kim Y, Lee H, Kwak JH. Mechanism of CO Oxidation on Pd/CeO
2
(100): The Unique Surface‐Structure of CeO
2
(100) and the Role of Peroxide. ChemCatChem 2020. [DOI: 10.1002/cctc.202000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongseon Kim
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hosik Lee
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ja Hun Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
144
|
|
145
|
Ren J, Chen Y. Pitfalls in identifying active catalyst species. Nat Commun 2020; 11:4564. [PMID: 32917853 PMCID: PMC7486908 DOI: 10.1038/s41467-020-18192-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jiazheng Ren
- Energy and Catalysis Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yongsheng Chen
- Energy and Catalysis Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
146
|
Pereira-Hernández XI, DeLaRiva A, Muravev V, Kunwar D, Xiong H, Sudduth B, Engelhard M, Kovarik L, Hensen EJM, Wang Y, Datye AK. Reply to: "Pitfalls in identifying active catalyst species". Nat Commun 2020; 11:4574. [PMID: 32917867 PMCID: PMC7486913 DOI: 10.1038/s41467-020-18193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
| | - Andrew DeLaRiva
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Deepak Kunwar
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haifeng Xiong
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Berlin Sudduth
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Mark Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
147
|
Jeong H, Shin D, Kim BS, Bae J, Shin S, Choe C, Han JW, Lee H. Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angew Chem Int Ed Engl 2020; 59:20691-20696. [PMID: 32720448 DOI: 10.1002/anie.202009776] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/16/2022]
Abstract
Single-atom catalysts (SACs) have emerged as promising materials in heterogeneous catalysis. Previous studies reported controversial results about the relative level in activity for SACs and nanoparticles (NPs). These works have focused on the effect of metal atom arrangement, without considering the oxidation state of the SACs. Here, we immobilized Pt single atoms on defective ceria and controlled the oxidation state of Pt SACs, from highly oxidized (Pt0 : 16.6 at %) to highly metallic states (Pt0 : 83.8 at %). The Pt SACs with controlled oxidation states were then employed for oxidation of CO, CH4 , or NO, and their activities compared with those of Pt NPs. The highly oxidized Pt SACs presented poorer activities than Pt NPs, whereas metallic Pt SACs showed higher activities. The Pt SAC reduced at 300 °C showed the highest activity for all the oxidations. The Pt SACs with controlled oxidation states revealed a crucial missing link between activity and SACs.
Collapse
Affiliation(s)
- Hojin Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dongjae Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Beom-Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Junemin Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chanyeong Choe
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
148
|
Jeong H, Shin D, Kim B, Bae J, Shin S, Choe C, Han JW, Lee H. Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hojin Jeong
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Dongjae Shin
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Gyeongbuk 37673 Republic of Korea
| | - Beom‐Sik Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Junemin Bae
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanyeong Choe
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Gyeongbuk 37673 Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
149
|
Liu X, Jia S, Yang M, Tang Y, Wen Y, Chu S, Wang J, Shan B, Chen R. Activation of subnanometric Pt on Cu-modified CeO 2 via redox-coupled atomic layer deposition for CO oxidation. Nat Commun 2020; 11:4240. [PMID: 32843647 PMCID: PMC7447628 DOI: 10.1038/s41467-020-18076-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Improving the low-temperature activity (below 100 °C) and noble-metal efficiency of automotive exhaust catalysts has been a continuous effort to eliminate cold-start emissions, yet great challenges remain. Here we report a strategy to activate the low-temperature performance of Pt catalysts on Cu-modified CeO2 supports based on redox-coupled atomic layer deposition. The interfacial reducibility and structure of composite catalysts have been precisely tuned by oxide doping and accurate control of Pt size. Cu-modified CeO2-supported Pt sub-nanoclusters demonstrate a remarkable performance with an onset of CO oxidation reactivity below room temperature, which is one order of magnitude more active than atomically-dispersed Pt catalysts. The Cu-O-Ce site with activated lattice oxygen anchors deposited Pt sub-nanoclusters, leading to a moderate CO adsorption strength at the interface that facilitates the low-temperature CO oxidation performance.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Ming Yang
- General Motors Global Research and Development, Chemical Sciences and Materials Systems Lab, 3500 Mound Road, Warren, Michigan, 48090, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Yuanting Tang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Shengqi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China.
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
150
|
Jiang D, Wan G, García-Vargas CE, Li L, Pereira-Hernández XI, Wang C, Wang Y. Elucidation of the Active Sites in Single-Atom Pd1/CeO2 Catalysts for Low-Temperature CO Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02480] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Gang Wan
- SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Carlos E. García-Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Linze Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xavier Isidro Pereira-Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|