101
|
Indino S, Borzi C, Moscheni C, Sartori P, De Cecco L, Bernardo G, Le Noci V, Arnaboldi F, Triulzi T, Sozzi G, Tagliabue E, Sfondrini L, Gagliano N, Moro M, Sommariva M. The Educational Program of Macrophages toward a Hyperprogressive Disease-Related Phenotype Is Orchestrated by Tumor-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232415802. [PMID: 36555441 PMCID: PMC9779478 DOI: 10.3390/ijms232415802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Hyperprogressive disease (HPD), an aggressive acceleration of tumor growth, was observed in a group of cancer patients treated with anti-PD1/PDL1 antibodies. The presence of a peculiar macrophage subset in the tumor microenvironment is reported to be a sort of "immunological prerequisite" for HPD development. These macrophages possess a unique phenotype that it is not clear how they acquire. We hypothesized that certain malignant cells may promote the induction of an "HPD-related" phenotype in macrophages. Bone-marrow-derived macrophages were exposed to the conditioned medium of five non-small cell lung cancer cell lines. Macrophage phenotype was analyzed by microarray gene expression profile and real-time PCR. We found that human NSCLC cell lines, reported as undergoing HPD-like tumor growth in immunodeficient mice, polarized macrophages towards a peculiar pro-inflammatory phenotype sharing both M1 and M2 features. Lipid-based factors contained in cancer cell-conditioned medium induced the over-expression of several pro-inflammatory cytokines and the activation of innate immune receptor signaling pathways. We also determined that tumor-derived Extracellular Vesicles represent the main components involved in the observed macrophage re-education program. The present study might represent the starting point for the future development of diagnostic tools to identify potential hyperprogressors.
Collapse
Affiliation(s)
- Serena Indino
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Via G. B. Grassi, 74, L.I.T.A. Vialba, 20157 Milan, Italy
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-0250315401
| |
Collapse
|
102
|
Li L, Yu XJ, Gao L, Cheng L, Sun B, Wang G. Diabetic Ferroptosis and Pancreatic Cancer: Foe or Friend? Antioxid Redox Signal 2022; 37:1206-1221. [PMID: 35996983 DOI: 10.1089/ars.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Pancreatic cancer and diabetes have a reciprocal causation relationship. As a potential risk factor, diabetes increases morbidity and promotes pancreatic cancer progression. The main mechanisms include islet dysfunction-induced systemic metabolic disorder, pancreatic stellate cell activation, and immunosuppression. Ferroptosis is regarded as regulated cell death, which participates in chemotherapy resistance and is refractory to radiation therapy and immunotherapy. Diabetes-induced ferroptosis causes many complications, but the underlying mechanism of diabetes-related ferroptosis in pancreatic cancer has not been discussed. Recent Advances: Ferroptosis alleviates pancreatic intraepithelial neoplasia (PanIN) progression by activating chronic inflammation. The specific drugs that cause ferroptosis achieve tumor suppression by inducing lipid peroxidation. Ferroptosis plays pro and con roles in cancer. Both the ferroptosis inhibitor and inducer exhibit antitumor effects through killing cancer cells or directly affecting tumor growth. Diabetes-induced ferroptosis contributes to tumor cell death by different components, including tumor cells, fibroblasts, immune cells, and adipocytes. A better understanding of its role in modulating the tumor microenvironment will reveal diabetes-associated ferroptotic features in cancer development, which can be used to figure out possible treatment strategies for cancer patients with hyperglycemia. Critical Issues: We demonstrate the potential roles of diabetes-related ferroptosis in pancreatic cancer progression and discuss ferroptosis-related antitumor effects and therapeutics for pancreatic cancer treatment. Future Directions: Further studies are required to highlight mechanisms of diabetes-mediated ferroptosis in pancreatic cancer tumorigenesis and progression. The antitumor effects of ferroptosis regulators combined with chemotherapy, targeted therapy, or immunotherapy in diabetic patients should be investigated. We hope that pancreatic cancer patients with diabetes will benefit from ferroptosis-related therapies. Antioxid. Redox Signal. 37, 1206-1221.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Jia Yu
- Department of Centric Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
103
|
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J 2022; 289:7038-7050. [PMID: 34092035 DOI: 10.1111/febs.16059] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
As a type of lytic cell death driven by unrestricted lipid peroxidation and subsequent plasma membrane damage, ferroptosis occurs and develops because of sophisticated signals and regulatory mechanisms. The reactive oxygen species (ROS) used to initiate ferroptosis come from a variety of sources, including iron-mediated Fenton reactions, mitochondrial ROS, and membrane-associated ROS driven by the NOX protein family. Polyunsaturated fatty acid-containing phospholipids are the main substrates of lipid peroxidation in ferroptosis, which is positively regulated by enzymes, such as ACSL4, LPCAT3, ALOXs, or POR. Selective activation of autophagic degradation pathways promotes ferroptosis by increasing iron accumulation to cause lipid peroxidation. In contrast, system xc- -glutathione-GPX4 axis plays a central role in limiting lipid peroxidation, although other antioxidants (such as coenzyme Q10 and tetrahydrobiopterin) can also inhibit ferroptosis. A main nuclear mechanism of cell defense against ferroptosis is the activation of the NFE2L2-dependent antioxidant response by transcriptionally upregulating the expression of antioxidants or cytoprotective genes. Additionally, the membrane damage caused by ferroptotic stimulus can be repaired by ESCRT-III-dependent membrane scission machinery. In this review, we summarize recent progress in understanding the signaling pathways and defense mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
104
|
Wang Y, Zhang Y, Wang Z, Yu L, Chen K, Xie Y, Liu Y, Liang W, Zheng Y, Zhan Y, Ding Y. The interplay of transcriptional coregulator NUPR1 with SREBP1 promotes hepatocellular carcinoma progression via upregulation of lipogenesis. Cell Death Dis 2022; 8:431. [PMID: 36307402 PMCID: PMC9616853 DOI: 10.1038/s41420-022-01213-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Nuclear protein 1 (NUPR1) is a transcriptional coregulator that has been implicated in the development of various cancer types. In addition, de novo fatty acid synthesis plays a pivotal role in hepatocellular carcinoma (HCC) development. However, little is currently known on the role of NUPR1 in hepatocellular carcinoma. In this study, bioinformatics analysis was conducted to analyze the expression level, prognosis value and enriched pathways of NUPR1 in Liver Hepatocellular Carcinoma (LIHC). We found that NUPR1 was significantly upregulated in human hepatocellular carcinoma cells compared with normal hepatocytes from LIHC patients in TCGA cohorts and our patients. Kaplan–Meier analysis and COX proportional hazard progression model showed that high expression of NUPR1 was correlated with a poor prognosis of LIHC patients. CCK-8, EdU and colony formation assays were performed to explore the effect of NUPR1 on the proliferation of HCC cells, then wound healing and transwell migration assays were performed to evaluate the effects of NUPR1 on cell migration. Furthermore, subcutaneous xenograft models were established to study tumor growth. Results showed that NUPR1 overexpression correlated with a highly proliferative and aggressive phenotype. In addition, NUPR1 knockdown significantly inhibited hepatocellular carcinoma cell proliferation and migration in vitro and hindered tumorigenesis in vivo. Mechanistically, endogenous NUPR1 could interact with sterol regulatory element binding protein 1 (SREBP1) and upregulated lipogenic gene expression of fatty acid synthase (FASN), resulting in the accumulation of lipid content. Moreover, pharmacological or genetic blockade of the NUPR1-SREBP1/FASN pathway enhanced anticancer activity in vitro and in vivo. Overall, we identified a novel function of NUPR1 in regulating hepatocellular carcinoma progression via modulation of SREBP1-mediated de novo lipogenesis. Targeting NUPR1-SREBP1/FASN pathway may be a therapeutic alternative for hepatocellular carcinoma.
Collapse
|
105
|
Zhan Y, Zhang Z, Liu Y, Fang Y, Xie Y, Zheng Y, Li G, Liang L, Ding Y. NUPR1 contributes to radiation resistance by maintaining ROS homeostasis via AhR/CYP signal axis in hepatocellular carcinoma. BMC Med 2022; 20:365. [PMID: 36258210 PMCID: PMC9580158 DOI: 10.1186/s12916-022-02554-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is one of the major therapeutic approaches to hepatocellular carcinoma (HCC). Ionizing radiation (IR) inducing the generation of reactive oxygen species (ROS) leads to a promising antitumor effect. However, the dysregulation of the redox system often causes radioresistance and impairs the efficacy of RT. Increasing evidence indicates that nuclear protein 1 (NUPR1) plays a critical role in redox reactions. In this study, we aim to explore the role of NUPR1 in maintaining ROS homeostasis and radioresistance in HCC. METHODS The radioresistant role of NUPR1 was determined by colony formation assay, comet assay in vitro, and xenograft tumor models in vivo. Probes for ROS, apoptosis assay, and lipid peroxidation assay were used to investigate the functional effect of NUPR1 on ROS homeostasis and oxidative stress. RNA sequencing and co-immunoprecipitation assay were performed to clarify the mechanism of NUPR1 inhibiting the AhR/CYP signal axis. Finally, we analyzed clinical specimens to assess the predictive value of NUPR1 and AhR in the radiotherapeutic efficacy of HCC. RESULTS We demonstrated that NUPR1 was upregulated in HCC tissues and verified that NUPR1 increased the radioresistance of HCC in vitro and in vivo. NUPR1 alleviated the generation of ROS and suppressed oxidative stress, including apoptosis and lipid peroxidation by downregulating cytochrome P450 (CYP) upon IR. ROS scavenger N-acetyl-L-cysteine (NAC) and CYP inhibitor alizarin restored the viability of NUPR1-knockdown cells during IR. Mechanistically, the interaction between NUPR1 and aryl hydrocarbon receptor (AhR) promoted the degradation and decreased nuclear translation of AhR via the autophagy-lysosome pathway, followed by being incapable of CYP's transcription. Furthermore, genetically and pharmacologically activating AhR abrogated the radioresistant role of NUPR1. Clinical data suggested that NUPR1 and AhR could serve as novel biomarkers for predicting the radiation response of HCC. CONCLUSIONS Our findings revealed the role of NUPR1 in regulating ROS homeostasis and oxidative stress via the AhR/CYP signal axis upon IR. Strategies targeting the NUPR1/AhR/CYP pathway may have important clinical applications for improving the radiotherapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Yizhi Zhan
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.,Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanqiao Zhang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuechen Liu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yilin Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guoxin Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
106
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
107
|
Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, Hu L, Huang K, He J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ 2022; 29:1982-1995. [PMID: 35383293 PMCID: PMC9525272 DOI: 10.1038/s41418-022-00990-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX), a commonly used antitumor agent, is often accompanied by its dosage-dependent cardiotoxicity, which incorporates ferroptosis in its pathogenesis. Protein arginine methyltransferase 4 (PRMT4) is a transcription regulator involved in the modulation of oxidative stress and autophagy, but its role in DOX-induced cardiomyopathy (DIC) and ferroptosis remains elusive. Herein, we aimed to investigate the involvement and the underlying mechanisms of PRMT4 in the pathogenesis of DIC. Our present study revealed that the expression level of PRMT4 was markedly decreased in DOX-treated cardiomyocytes. Interestingly, it is noted that PRMT4 overexpression accelerated ferroptosis to aggravate DIC, while its gene disruption or pharmaceutical inhibition exhibited the opposite effect. Mechanistically, our observation demonstrated that PRMT4 interacted with the nuclear factor erythroid 2-related factor 2 (Nrf2) to promote its enzymatic methylation, which restricted the nuclear translocation of Nrf2 and subsequently suppressed the transcription of glutathione peroxidase 4 (GPX4). Importantly, the detrimental role of PRMT4 in DOX-induced cardiomyocyte ferroptosis was abolished by Nrf2 activation or Fer-1 administration. Collectively, our data reveal that PRMT4 inhibits Nrf2/GPX4 signaling to accelerate ferroptosis in DIC, suggesting that targeting PRMT4 may present as a potential preventive strategy against the development of DIC.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Liu
- Department of functional medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Fei Deng
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengchao Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuye Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Hu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiangui He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
108
|
Gong Z, Liu ZG, Du KY, Wu JH, Yang N, Malhotra A, Shu JK. RETRACTED: Potential of β-elemene induced ferroptosis through Pole2-mediated p53 and PI3K/AKT signaling in lung cancer cells. Chem Biol Interact 2022; 365:110088. [PMID: 35940278 DOI: 10.1016/j.cbi.2022.110088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. After a thorough investigation, the Editor has concluded that the acceptance of this article was partly based upon the positive advice of one illegitimate reviewer report. The report was submitted from an email account which was provided to the journal as a suggested reviewer during the submission of the article. Although purportedly a real reviewer account, the Editor has concluded that this was not of an appropriate, independent reviewer. Further inquiry revealed that the name of the author Anshoo Malhotra was added after the acceptance of the article without notifying the author and the handling Editor, which is contrary to the journal policy on changes to authorship. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewer whose identity was assumed and to the readers of the journal that this deception was not detected during the submission process.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Thoracic Surgery, Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | - Ze-Gang Liu
- Department of General Surgery, The 920 Hospital of PLA Joint Service Support Force, Kunming, 650000, China
| | - Kun-Yu Du
- Department of Respiratory and Critical Care MedicineⅡ, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Jiang-Hai Wu
- Department of Respiratory and Critical Care MedicineⅡ, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Na Yang
- Department of Respiratory, Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | | | - Jing-Kui Shu
- Department of Respiratory and Critical Care MedicineⅡ, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China.
| |
Collapse
|
109
|
The Emerging Role of Noncoding RNA Regulation of the Ferroptosis in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3595745. [PMID: 36187333 PMCID: PMC9519351 DOI: 10.1155/2022/3595745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) is a significant public health issue due to its high prevalence and considerable contribution to the global disease burden. Recent studies suggest that genetic factors, including noncoding RNAs, have an important role in the progression of CVD. Noncoding RNA plays a critical role in genetic programming and gene regulation during development. Ferroptosis is a form of iron-dependent regulated cell death (RCD), which is mainly caused by increased lipid hydroperoxide and redox imbalance. Ferroptosis is essentially different from other forms of RCD in morphology and mechanism, such as apoptosis, autophagic cell death, pyroptosis, and necroptosis. Much evidence suggested ferroptosis is involved in the development of various CVDs, especially in cardiac ischemia/reperfusion injury, heart failure, and aortic dissection. Here, we review the latest findings based on noncoding RNA regulation of ferroptosis and its involvement in the pathogenesis of CVD and related treatments, aimed at providing insights into the impact of noncoding RNA regulation of ferroptosis for CVD.
Collapse
|
110
|
Candido S, Tomasello B, Lavoro A, Falzone L, Gattuso G, Russo A, Paratore S, McCubrey JA, Libra M. Bioinformatic analysis of the LCN2-SLC22A17-MMP9 network in cancer: The role of DNA methylation in the modulation of tumor microenvironment. Front Cell Dev Biol 2022; 10:945586. [PMID: 36211450 PMCID: PMC9532607 DOI: 10.3389/fcell.2022.945586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several features of cancer cells such as proliferation, invasion, metastatic spreading, and drug resistance are affected by their interaction with several tumor microenvironment (TME) components, including neutrophil gelatinase-associated lipocalin (NGAL), solute carrier family 22 member 17 (SLC22A17), and matrix metallopeptidase 9 (MMP9). These molecules play a key role in tumor growth, invasion, and iron-dependent metabolism of cancer cells. However, the precise epigenetic mechanisms underlying the gene regulation of Lipocalin 2 (LCN2), SLC22A17, and MMP9 in cancer still remain unclear. To this purpose, computational analysis was performed on TCGA and GTEx datasets to evaluate the expression and DNA methylation status of LCN2, SLC22A17, and MMP9 genes in different tumor types. Correlation analysis between gene/isoforms expression and DNA methylation levels of LCN2, SLC22A17, and MMP9 was performed to investigate the role of DNA methylation in the modulation of these genes. Protein network analysis was carried out using reverse phase protein arrays (RPPA) data to identify protein-protein interactions of the LCN2-SLC22A17-MMP9 network. Furthermore, survival analysis was performed according to gene expression and DNA methylation levels. Our results demonstrated that LCN2 and MMP9 were mainly upregulated in most tumor types, whereas SLC22A17 was largely downregulated, representing a specific hallmark signature for all gastrointestinal tumors. Notably, the expression of LCN2, SLC22A17, and MMP9 genes was negatively affected by promoter methylation. Conversely, intragenic hypermethylation was associated with the overexpression of SLC22A17 and MMP9 genes. Protein network analysis highlighted the role of the LCN2-SLC22A17-MMP9 network in TME by the interaction with fibronectin 1 and claudin 7, especially in rectal tumors. Moreover, the impact of expression and methylation status of LCN2, SLC22A17, and MMP9 on overall survival and progression free interval was tumor type-dependent. Overall, our analyses provide a detailed overview of the expression and methylation status of LCN2, SLC22A17, and MMP9 in all TCGA tumors, indicating that the LCN2-SLC22A17-MMP9 network was strictly regulated by DNA methylation within TME. Our findings pave the way for the identification of novel DNA methylation hotspots with diagnostic and prognostic values and suitable for epi-drug targeting.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Russo
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - Sabrina Paratore
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
111
|
Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 2022; 51:7752-7778. [PMID: 36052828 DOI: 10.1039/d1cs01167g] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ya-Lin Qi
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Sheng-Yu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
112
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood–brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hongwei Liu,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng,
| |
Collapse
|
113
|
Liu S, Costa M. The role of NUPR1 in response to stress and cancer development. Toxicol Appl Pharmacol 2022; 454:116244. [PMID: 36116561 DOI: 10.1016/j.taap.2022.116244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Stress contributes to the development of many human diseases, including cancer. Based on the source of stress, it can be divided into external stress, such as environmental carcinogens, chemicals, and radiation, and internal stress, like endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Nuclear Protein 1 (NUPR1, p8 or Com-1) is a small, highly basic transcriptional regulator that participates in regulating a variety of cellular processes including DNA repair, ER stress, oxidative stress response, cell cycle, autophagy, apoptosis, ferroptosis and chromatin remodeling. A large number of studies have reported that NUPR1 expression can be stimulated rapidly in response to various stresses. Thus, NUPR1 is also known as a stress-response gene. Since the role of NUPR1 in breast cancer was identified in 1999, an increasing number of studies sought to reveal its function in cancer. High expression of NUPR1 has been identified in oral squamous cell carcinoma, breast cancer, lung cancer, multiple myeloma, liver cancer and renal cancer. In this review, we summarize current studies of NUPR1 in response to multiple external stressors and internal stressors, and its role in mediating stressors to cause different cell signaling responses. In addition, this review discusses the function of NUPR1 in carcinogenesis, tumorigenesis, metastasis, and cancer therapy. Thus, this review gives a comprehensive insight into the role of NUPR1 in mediating signals from stress to different cell responses, and this process plays a role in the development of cancer.
Collapse
Affiliation(s)
- Shan Liu
- Division of Environmental Medicine, Dept of Medicine, New York University School of Medicine, NY, USA.
| | - Max Costa
- Division of Environmental Medicine, Dept of Medicine, New York University School of Medicine, NY, USA.
| |
Collapse
|
114
|
Abstract
ABSTRACT Acute pancreatitis (AP) is a common and potentially life-threatening pancreatic inflammatory disease. Although it is usually self-limiting, up to 20% of patients will develop into severe AP. It may lead to systemic inflammatory response syndrome and multiple organ dysfunction, affecting the lungs, kidneys, liver, heart, etc. Surviving patients usually have sequelae of varying degrees, such as chronic hyperglycemia after AP (CHAP), pancreatic exocrine insufficiency, and chronic pancreatitis. Lacking specific target treatments is the main reason for high mortality and morbidity, which means that more research on the pathogenesis of AP is needed. Ferroptosis is a newly discovered regulated cell death (RCD), originally described in cancer cells, involving the accumulation of iron and the depletion of plasma membrane polyunsaturated fatty acids, and a caspase-independent RCD. It is closely related to neurological diseases, myocardial infarction, ischemia/reperfusion injury, cancer, etc. Research in the past years has also found the effects of ferroptosis in AP, pancreatic cancer, and AP complications, such as acute lung injury and acute kidney injury. This article reviews the research progress of ferroptosis and its association with the pathophysiological mechanisms of AP, trying to provide new insight into the pathogenesis and treatment of AP, facilitating the development of better-targeted drugs.
Collapse
|
115
|
Huang F, Pang J, Xu L, Niu W, Zhang Y, Li S, Li X. Hedyotis diffusa injection induces ferroptosis via the Bax/Bcl2/VDAC2/3 axis in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154319. [PMID: 35853302 DOI: 10.1016/j.phymed.2022.154319] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung cancer has the highest mortality rate among all cancer types. In combination with multiple chemotherapeutic options, traditional Chinese medicine has proven indispensable for the comprehensive treatment of lung cancer. PURPOSE To investigate the effects of Hedyotis diffusa on lung adenocarcinoma cell lines and a BALB/c nude mouse xenograft model, and determine whether HDI could induce ferroptosis in lung adenocarcinoma cells along with the underlying mechanism. METHODS The anti-tumor activity of HDI was determined in vitro by cell counting kit-8, clonogenic, and transwell assays. Subsequently, electron microscopy, a lipid reactive oxygen species assay, ferrous ion staining, and a malondialdehyde assay were performed to determine the effect on ferroptosis in lung adenocarcinoma cells. The mechanism was then further investigated using small molecule inhibitors, siRNA, and plasmid overexpression in vitro. Finally, the effects of HDI were assessed in tumor-bearing BALB/c nude mice, and HE staining was performed to observe tissue damage after HDI treatment. RESULTS In vitro experiments showed that HDI could inhibit the viability of lung adenocarcinoma cells and induce lung adenocarcinoma cells ferroptosis via mechanisms independent of GPX4 and PUFA-PLS pathways but closely associated with VDAC2/3. HDI regulated VDAC2/3 activity by promoting Bax via inhibiting Bcl2, thereby inducing ferroptosis in lung adenocarcinoma cells. Furthermore, in vivo experiments showed that HDI significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice with less organ damage and toxicity, and significantly increased the expression of the ferroptosis-related indicators 4HNE, TFR, and HMOX1 in tumor tissue. CONCLUSION HDI can significantly reduce the survival of lung adenocarcinoma cells in vitro, inhibit the growth of subcutaneously transplanted tumors in BALB/c nude mice in vivo, and induce ferroptosis in lung adenocarcinoma cells via Bcl2 inhibition to promote Bax regulation of VDAC2/3.
Collapse
Affiliation(s)
- Fuhao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Liansong Xu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Wenwen Niu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| |
Collapse
|
116
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
117
|
Bao ZH, Hou XB, Li HL, Mao YF, Wang WR. The mechanism and progress of ferroptosis in pancreatic cancer. Acta Histochem 2022; 124:151919. [PMID: 35772355 DOI: 10.1016/j.acthis.2022.151919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Pancreatic cancer is one of the deadliest cancers in the world, causing hundreds of thousands of deaths worldwide annually. Because of late diagnosis, rapid metastasis and drug resistance to chemotherapy, pancreatic cancer has a poor prognosis. Although the treatment of pancreatic cancer has made tremendous progress, the options for effective treatment are still limited, and new treatment methods are in crying needs to improve prognosis in clinic. Ferroptosis is an iron-dependent non-apoptotic cell death mode, which is mediated by lipid peroxidation and iron accumulation. Ferroptosis plays a momentous role in regulating different cancers in recent years, such as breast cancer, hepatocellular carcinoma, lung cancer and pancreatic cancer. In this present review, we elaborate on the regulatory mechanisms and signaling pathways of ferroptosis in pancreatic cancer, with the intention of delivering directions and new ideas for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhi-Hang Bao
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Xiang-Bin Hou
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Hao-Ling Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Yi-Feng Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Wen-Rui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Life Sciences, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
118
|
Santofimia-Castaño P, Huang C, Liu X, Xia Y, Audebert S, Camoin L, Peng L, Lomberk G, Urrutia R, Soubeyran P, Neira JL, Iovanna J. NUPR1 protects against hyperPARylation-dependent cell death. Commun Biol 2022; 5:732. [PMID: 35869257 PMCID: PMC9307593 DOI: 10.1038/s42003-022-03705-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Proteomic, cellular and biochemical analysis of the stress protein NUPR1 reveals that it binds to PARP1 into the nucleus and inhibits PARP1 activity in vitro. Mutations on residues Ala33 or Thr68 of NUPR1 or treatment with its inhibitor ZZW-115 inhibits this effect. PARylation induced by 5-fluorouracil (5-FU) treatment is strongly enhanced by ZZW-115 and associated with a decrease of NAD+/NADH ratio and rescued by the PARP inhibitor olaparib. Cell death induced by ZZW-115 treatment of pancreas cancer-derived cells is rescued by olaparib and improved with PARG inhibitor PDD00017273. The mitochondrial catastrophe induced by ZZW-115 treatment or by genetic inactivation of NUPR1 is associated to a hyperPARylation of the mitochondria, disorganization of the mitochondrial network, mitochondrial membrane potential decrease, and with increase of superoxide production, intracellular level of reactive oxygen species (ROS) and cytosolic levels of Ca2+. These features are rescued by olaparib or NAD+ precursor nicotinamide mononucleotide in a dose-dependent manner and partially by antioxidants treatments. In conclusion, inactivation of NUPR1 induces a hyperPARylation, which in turn, induces a mitochondrial catastrophe and consequently a cell death through a non-canonical Parthanatos, since apoptosis inducing-factor (AIF) is not translocated out of the mitochondria.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Can Huang
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Xi Liu
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Yi Xia
- grid.190737.b0000 0001 0154 0904Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, PR China
| | - Stephane Audebert
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Luc Camoin
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Ling Peng
- grid.5399.60000 0001 2176 4817Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Parc Scientifique et Technologique de Luminy, Aix-Marseille Université, Marseille, France
| | - Gwen Lomberk
- grid.30760.320000 0001 2111 8460Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI USA
| | - Raul Urrutia
- grid.30760.320000 0001 2111 8460Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI USA
| | - Philippe Soubeyran
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Jose Luis Neira
- grid.26811.3c0000 0001 0586 4893Instituto de Biología Molecular y Celular, Edificio Torregaitán, Universidad Miguel Hernández, Elche, Alicante Spain
| | - Juan Iovanna
- grid.5399.60000 0001 2176 4817Centre de Recherche en Cancérologie de Marseille (CRCM), Parc Scientifique et Technologique de Luminy, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
119
|
Chaya T, Maeda Y, Sugimura R, Okuzaki D, Watanabe S, Varner LR, Motooka D, Gyoten D, Yamamoto H, Kato H, Furukawa T. Multiple knockout mouse and embryonic stem cell models reveal the role of miR-124a in neuronal maturation. J Biol Chem 2022; 298:102293. [PMID: 35868558 PMCID: PMC9418502 DOI: 10.1016/j.jbc.2022.102293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNA-124a (miR-124a) is one of the most abundantly expressed microRNAs in the central nervous system and is encoded in mammals by the three genomic loci miR-124a-1/2/3; however, its in vivo roles in neuronal development and function remain ambiguous. In the present study, we investigated the effect of miR-124a loss on neuronal differentiation in mice and in embryonic stem (ES) cells. Since miR-124a-3 exhibits only background expression levels in the brain and we were unable to obtain miR-124a-1/2/3 triple knockout (TKO) mice by mating, we generated and analyzed miR-124a-1/2 double knockout (DKO) mice. We found that these DKO mice exhibit perinatal lethality. RNA-seq analysis demonstrated that the expression levels of proneural and neuronal marker genes were almost unchanged between the control and miR-124a-1/2 DKO brains; however, genes related to neuronal synaptic formation and function were enriched among downregulated genes in the miR-124a-1/2 DKO brain. In addition, we found the transcription regulator Tardbp/TDP-43, loss of which leads to defects in neuronal maturation and function, was inactivated in the miR-124a-1/2 DKO brain. Furthermore, Tardbp knockdown suppressed neurite extension in cultured neuronal cells. We also generated miR-124a-1/2/3 TKO ES cells using CRISPR-Cas9 as an alternative to TKO mice. Phase-contrast microscopic, immunocytochemical, and gene expression analyses showed that miR-124a-1/2/3 TKO ES cell lines were able to differentiate into neurons. Collectively, these results suggest that miR-124a plays a role in neuronal maturation rather than neurogenesis in vivo and advance our understanding of the functional roles of microRNAs in central nervous system development.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryo Sugimura
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satoshi Watanabe
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah R. Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daichi Gyoten
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hidemasa Kato
- Department of Functional Histology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
120
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
121
|
Tourigny DS, Zucker M, Kim M, Russo P, Coleman J, Lee CH, Carlo MI, Chen YB, Hakimi AA, Kotecha RR, Reznik E. Molecular Characterization of the Tumor Microenvironment in Renal Medullary Carcinoma. Front Oncol 2022; 12:910147. [PMID: 35837094 PMCID: PMC9275834 DOI: 10.3389/fonc.2022.910147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Renal medullary carcinoma (RMC) is a highly aggressive disease associated with sickle hemoglobinopathies and universal loss of the tumor suppressor gene SMARCB1. RMC has a relatively low rate of incidence compared with other renal cell carcinomas (RCCs) that has hitherto made molecular profiling difficult. To probe this rare disease in detail we performed an in-depth characterization of the RMC tumor microenvironment using a combination of genomic, metabolic and single-cell RNA-sequencing experiments on tissue from a representative untreated RMC patient, complemented by retrospective analyses of archival tissue and existing published data. Our study of the tumor identifies a heterogenous population of malignant cell states originating from the thick ascending limb of the Loop of Henle within the renal medulla. Transformed RMC cells displayed the hallmarks of increased resistance to cell death by ferroptosis and proteotoxic stress driven by MYC-induced proliferative signals. Specifically, genomic characterization of RMC tumors provides substantiating evidence for the recently proposed dependence of SMARCB1-difficient cancers on proteostasis modulated by an intact CDKN2A-p53 pathway. We also provide evidence that increased cystine-mTORC-GPX4 signaling plays a role in protecting transformed RMC cells against ferroptosis. We further propose that RMC has an immune landscape comparable to that of untreated RCCs, including heterogenous expression of the immune ligand CD70 within a sub-population of tumor cells. The latter could provide an immune-modulatory role that serves as a viable candidate for therapeutic targeting.
Collapse
Affiliation(s)
- David S. Tourigny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, United States
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Mark Zucker
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Russo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jonathan Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria I. Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A. Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ritesh R. Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| |
Collapse
|
122
|
Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis 2022; 13:544. [PMID: 35688814 PMCID: PMC9187756 DOI: 10.1038/s41419-022-04927-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a type of cell death that depends on iron and reactive oxygen species (ROS). The accumulation of iron and lipid peroxidation primarily initiates oxidative membrane damage during ferroptosis. The core molecular mechanism of ferroptosis includes the regulation of oxidation and the balance between damage and antioxidant defense. Tumor cells usually contain a large amount of H2O2, and ferrous/iron ions will react with excessive H2O2 in cells to produce hydroxyl radicals and induce ferroptosis in tumor cells. Here, we reviewed the latest studies on the regulation of ferroptosis in tumor cells and introduced the tumor-related signaling pathways of ferroptosis. We paid particular attention to the role of noncoding RNA, nanomaterials, the role of drugs, and targeted treatment using ferroptosis drugs for mediating the ferroptosis process in tumor cells. Finally, we discussed the currently unresolved problems and future research directions for ferroptosis in tumor cells and the prospects of this emerging field. Therefore, we have attempted to provide a reference for further understanding of the pathogenesis of ferroptosis and proposed new targets for cancer treatment.
Collapse
|
123
|
Gao M, Fan K, Chen Y, Zhang G, Chen J, Zhang Y. Understanding the mechanistic regulation of ferroptosis in cancer: gene matters. J Genet Genomics 2022; 49:913-926. [PMID: 35697272 DOI: 10.1016/j.jgg.2022.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Ferroptosis has emerged as a crucial regulated cell death involved in a variety of physiological processes or pathological diseases, such as tumor suppression. Though initially being found from anti-cancer drug screening and considered not essential as apoptosis for growth and development, numerous studies have demonstrated that ferroptosis is tightly regulated by key genetic pathways and/or genes, including several tumor suppressors and oncogenes. In this review, we will first introduce the basic concepts of ferroptosis, characterized by the features of non-apoptotic, iron-dependent and overwhelmed accumulation of lipid peroxides, and the underlying regulated circuits are considered to be pro-ferroptotic pathways. Then we discuss several established lipid peroxidation defending systems within cells, including SLC7A11/GPX4, FSP1/CoQ, GCH1/BH4, and mitochondria DHODH/CoQ, all of which serve as anti-ferroptoic pathways to prevent ferroptosis. Moreover, we provide a comprehensive summary of the genetic regulation of ferroptosis via targeting the above-mentioned pro-ferroptotic or anti-ferroptotic pathways. The regulation of pro- and anti-ferroptotic pathways gives rise to more specific responses to the tumor cells in a context-dependent manner, highlighting the unceasing study and deeper understanding of mechanistic regulation of ferroptosis for the purpose of applying ferroptosis induction in cancer therapy.
Collapse
Affiliation(s)
- Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuhan Chen
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Chen
- Department of Obstetrics, New Changan International Maternity Hospital, Xi'an, Shaanxi 710001, China; Shaanxi Stem Cell Engineering Application Technology Research Center, Shaanxi Jiuzhou Biomedical Technology Group Co., Ltd. Xi'an, Shaanxi 710065, China.
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
124
|
Ma H, Yan X, Liu J, Lu Y, Feng Y, Lai J. Secondary ferroptosis promotes thrombogenesis after venous injury in rats. Thromb Res 2022; 216:59-73. [DOI: 10.1016/j.thromres.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
|
125
|
Wu L, Tian X, Zuo H, Zheng W, Li X, Yuan M, Tian X, Song H. miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts. J Nanobiotechnology 2022; 20:196. [PMID: 35459211 PMCID: PMC9026664 DOI: 10.1186/s12951-022-01407-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Steatotic livers tolerate ischemia–reperfusion injury (IRI) poorly, increasing the risk of organ dysfunction. Ferroptosis is considered the initiating factor of organ IRI. Heme oxygenase oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) (HO-1/BMMSCs) can reduce hepatic IRI; however, the role of ferroptosis in IRI of steatotic grafts and the effect of HO-1/BMMSCs-derived exosomes (HM-exos) on ferroptosis remain unknown. Methods A model of rat liver transplantation (LT) with a severe steatotic donor liver and a model of hypoxia and reoxygenation (H/R) of steatotic hepatocytes were established. Exosomes were obtained by differential centrifugation, and the differentially expressed genes (DEGs) in liver after HM-exo treatment were detected using RNA sequencing. The expression of ferroptosis markers was analyzed. microRNA (miRNA) sequencing was used to analyze the miRNA profiles in HM-exos. Results We verified the effect of a candidate miRNA on ferroptosis of H/R treated hepatocytes, and observed the effect of exosomes knockout of the candidate miRNA on hepatocytes ferroptosis. In vitro, HM-exo treatment reduced the IRI in steatotic grafts, and enrichment analysis of DEGs suggested that HM-exos were involved in the regulation of the ferroptosis pathway. In vitro, inhibition of ferroptosis by HM-exos reduced hepatocyte injury. HM-exos contained more abundant miR-124-3p, which reduced ferroptosis of H/R-treated cells by inhibiting prostate six transmembrane epithelial antigen 3 (STEAP3), while overexpression of Steap3 reversed the effect of mir-124-3p. In addition, HM-exos from cell knocked out for miR-124-3p showed a weakened inhibitory effect on ferroptosis. Similarly, HM-exo treatment increased the content of miR-124-3p in grafts, while decreasing the level of STEAP3 and reducing the degree of hepatic ferroptosis. Conclusion Ferroptosis is involved in the IRI during LT with a severe steatotic donor liver. miR-124-3p in HM-exos downregulates Steap3 expression to inhibit ferroptosis, thereby attenuating graft IRI, which might be a promising strategy to treat IRI in steatotic grafts. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01407-8.
Collapse
Affiliation(s)
- Longlong Wu
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xuan Tian
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Xiang Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China.
| |
Collapse
|
126
|
Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation. Cancers (Basel) 2022; 14:cancers14071826. [PMID: 35406596 PMCID: PMC8998032 DOI: 10.3390/cancers14071826] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In recent decades, scientific discoveries brought up several new treatments and improvements for patients suffering from hepatocellular carcinoma (HCC). However, increasing resistance to current therapies, such as sorafenib, worsen the outcome of HCC patients, leading to a search for alternative therapeutic strategies. The term ferroptosis describes a novel form of regulated cell death, which is different from apoptosis and necroptosis in a mechanistical and morphological manner. The main mechanism, which leads to cell death, is lipid peroxidation, caused by iron overload and the accumulation of polyunsaturated fatty acids. Recent studies demonstrate that ferroptosis can hamper the carcinogenesis in several tumor entities and in HCC. Therefore, a better understanding and a deeper insight in the processes of ferroptosis in HCC and the possible application of it in the clinical practice are of extreme importance. Abstract Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively and therefore may be used as a novel anti-cancer strategy. Hepatocellular carcinoma (HCC) is a deadly malignancy with poor chances of survival and is the second leading cause of cancer deaths worldwide. Diagnosis at an already late stage and general resistance to current therapies may be responsible for the dismal outcome. As the liver acts as a key factor in iron metabolism, ferroptosis is shown to play an important role in HCC carcinogenesis and, more importantly, may hold the potential to eradicate HCC. In this review, we summarize the current knowledge we have of the role of ferroptosis in HCC and the application of ferroptosis as a therapy option and provide an overview of the potential translation of ferroptosis in the clinical practice of HCC.
Collapse
|
127
|
Shan L, Hao C, Jun Z, Qinghe C. Histone methyltransferase Dot1L inhibits pancreatic cancer cell apoptosis by promoting NUPR1 expression. J Int Med Res 2022; 50:3000605221088431. [PMID: 35350907 PMCID: PMC8973069 DOI: 10.1177/03000605221088431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective To explore functions of the histone H3 lysine 79 (K79) methyltransferase Dot1L in the development of pancreatic cancer and evaluate the possibility of targeting Dot1L to inhibit pancreatic cancer progression. Methods Patient samples were used to detect differences in Dot1L expression between tumor and adjacent tissues and to determine correlations between Dot1L expression in patients with different stages of pancreatic cancer. Lentiviral-mediated knockdown of Dot1L expression and flow cytometry were used to detect apoptosis in pancreatic cancer lacking Dot1L expression; chromatin immunoprecipitation and quantitative PCR were used to detect downstream target genes of Dot1L. Results We show that Dot1L is highly expressed in pancreatic cancer, and that its expression is related to pancreatic cancer stage. Knocking down Dot1L significantly promoted apoptosis in pancreatic cancer cells, while overexpressing Dot1L inhibited apoptosis. Mechanistically, Dot1L regulated apoptosis in pancreatic cancer cells by promoting NUPR1 expression. The enriched H3K79 trimethylation in the transcription initiation region of NUPR1 promoted its expression. Overexpressing NUPR1 inhibited the pancreatic cancer cell apoptosis caused by Dot1L knockdown. Conclusions Dot1L inhibits pancreatic cancer cell apoptosis by targeting NUPR1; thus, Dot1L is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lin Shan
- Affiliated Hospital of Putian University
| | - Chen Hao
- Affiliated Hospital of Putian University
| | - Zheng Jun
- Affiliated Hospital of Putian University
| | - Cai Qinghe
- Affiliated Hospital of Putian University
| |
Collapse
|
128
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front Pharmacol 2022; 12:808480. [PMID: 35273493 PMCID: PMC8902236 DOI: 10.3389/fphar.2021.808480] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
129
|
Park EJ, Jin SW, Kang MS, Yang MJ, Kim SH, Han HY, Kang JW. Pulmonary inflammation and cellular responses following exposure to benzalkonium chloride: Potential impact of disrupted pulmonary surfactant homeostasis. Toxicol Appl Pharmacol 2022; 440:115930. [PMID: 35202710 DOI: 10.1016/j.taap.2022.115930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Benzalkonium chloride (BKC) is a prototypical quaternary ammonium disinfectant. Previously, we suggested a no lethal dose level (0.005%) and an LD50 range (0.5-0.05%) of BKC following a single pharyngeal aspiration. Herein, we exposed BKC repeatedly by pharyngeal aspiration for 14 days (0.005 and 0.01%, female mice, total five times with interval of two days, 5 mice/group) and 28 days (0, 0.001, 0.005, and 0.01%, male and female mice, weekly, 16 mice/sex/group). Death following 14 days-repeated exposure did not occur. Meanwhile, chronic pathological lesions were observed in the lung tissues of mice exposed to BKC for 28 days. The total number of bronchial alveolar lavage cells increased, and pulmonary homeostasis of immunologic messenger molecules was disturbed. Following, we investigated BKC-induced cellular responses using human bronchial epithelial cells. The cytotoxicity increased rapidly with concentration. Lysosomal volume, NO production, and lipid peroxidation increased in BKC-treated cells, whereas intracellular ROS level decreased accompanying structural and functional damage of mitochondria. We also found that BKC affected the expression level of immune response, DNA damage, and amino acid biosynthesis-related molecules. More interestingly, lamellar body- and autophagosome-like structures were notably observed in cells exposed to BKC, and necrotic and apoptotic cell death were identified accompanying cell accumulation in the G2/M phase. Therefore, we suggest that repeated respiratory exposure of BKC causes pulmonary inflammation and lung tissue damage and that dead and damaged cells may contribute to the inflammatory response. In addition, the formation process of lamellar body-like structures may function as a key toxicity mechanism.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea; Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea.
| | - Seung-Woo Jin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea; Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Hyoung-Yun Han
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Won Kang
- Department of Chemical and Biological Engineering, Korea University, 0284, Republic of Korea; Graduate School of Energy and Environment, Korea University, 0284, Republic of Korea
| |
Collapse
|
130
|
黄 毓, 张 共, 梁 欢, 曹 珍, 叶 红, 高 琴. [Inhibiting ferroptosis attenuates myocardial injury in septic mice: the role of lipocalin-2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:256-262. [PMID: 35365451 PMCID: PMC8983367 DOI: 10.12122/j.issn.1673-4254.2022.02.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the contribution of ferroptosis to myocardial injury in mouse models of sepsis and the role lipocalin-2 (Lcn2) in ferroptosis. METHODS Adult male C57BL/6 mice were randomized equally into sham-operated group, cecal ligation and puncture (CLP)-induced sepsis group, and CLP + Fer-1 group where the mice received intraperitoneal injection of 5 mg/mL Fer-1 (5 mg/kg) 1 h before CLP. The left ventricular functions (including LVEF%, LVFS%, LVIDd and LVIDs) of the mice were assessed by echocardiography at 24 h after CLP. Myocardial injury in the mice was observed with HE staining, and the changes of myocardial ultrastructure and mitochondria were observed using transmission electron microscopy (TEM). Serum TNF-α level was measured with ELISA, and the changes of myocardial iron content were detected using tissue iron kit. The protein expressions of myocardial Lcn2, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) were determined with Western blotting. RESULTS The septic mice showed significantly decreased LVEF%, LVFS% and LVIDd and increased LVIDs at 24 h after CLP (P < 0.05), and these changes were significantly improved by Fer-1 treatment. Sepsis caused obvious myocardial pathologies and changes in myocardial ultrastructure and mitochondria, which were significantly improved by Fer-1 treatment. Fer-1 treatment also significantly ameliorated sepsis-induced elevations of serum TNF-α level, myocardial tissue iron content, and Lcn2 protein expression and the reduction of GPX4 and FSP1 protein expression levels (P < 0.05). CONCLUSION GPX4- and FSP1-mediated ferroptosis are involved in myocardial injury in mice with CLP-induced sepsis, and inhibition of ferroptosis can attenuate septic myocardial injury, in which Lcn2 may play a role.
Collapse
Affiliation(s)
- 毓慧 黄
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 共鹏 张
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 欢 梁
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 珍珍 曹
- 蚌埠医学院第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 红伟 叶
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 琴 高
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
131
|
Yoshioka H, Kawamura T, Muroi M, Kondoh Y, Honda K, Kawatani M, Aono H, Waldmann H, Watanabe N, Osada H. Identification of a Small Molecule That Enhances Ferroptosis via Inhibition of Ferroptosis Suppressor Protein 1 (FSP1). ACS Chem Biol 2022; 17:483-491. [PMID: 35128925 DOI: 10.1021/acschembio.2c00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glutathione peroxidase 4 (GPX4) is an intracellular enzyme that oxidizes glutathione while reducing lipid peroxides and is a promising target for cancer therapy. To date, several GPX4 inhibitors have been reported to exhibit cytotoxicity against cancer cells. However, some cancer cells are less sensitive to the known GPX4 inhibitors. This study aimed to explore compounds showing synergistic effects with GPX4 inhibitors. We screened a chemical library and identified a compound named NPD4928, whose cytotoxicity was enhanced in the presence of a GPX4 inhibitor. Furthermore, we identified ferroptosis suppressor protein 1 as its target protein. The results indicate that NPD4928 enhanced the sensitivity of various cancer cells to GPX4 inhibitors, suggesting that the combination might have therapeutic potential via the induction of ferroptosis.
Collapse
Affiliation(s)
- Hiromasa Yoshioka
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuro Kawamura
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
132
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
133
|
Liu J, Kang R, Tang D. The Art of War: Ferroptosis and Pancreatic Cancer. Front Pharmacol 2021; 12:773909. [PMID: 34955844 PMCID: PMC8702849 DOI: 10.3389/fphar.2021.773909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer, characterized by late diagnosis, low treatment success rate, and poor survival prognosis. The most common pathological type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which is mainly driven by the K-Ras oncogene. Ferroptosis was originally described as Ras-dependent cell death, but is now defined as lipid peroxidation-mediated regulated necrosis, accompanied by excessive activation of the autophagy degradation pathway and limited membrane repair capacity. The impaired ferroptotic pathway is involved in many types of cancer, including PDAC. On the one hand, the chronic inflammation caused by ferroptotic damage contributes to the formation of K-Ras-driven PDAC. On the other hand, drug-induced ferroptosis is an emerging strategy to suppress tumor growth in established PDAC. In this mini-review, we outline the core process of ferroptosis, discuss the regulatory mechanism of ferroptosis in PDAC, and highlight some of the challenges of targeting ferroptosis in PDAC therapy.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
134
|
Yi J, Wu S, Tan S, Qin Y, Wang X, Jiang J, Liu H, Wu B. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov 2021; 7:374. [PMID: 34864819 PMCID: PMC8643357 DOI: 10.1038/s41420-021-00768-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Berberine (BBR) has been explored as a potential anti-liver fibrosis agent, but the underlying mechanisms are unknown. In the current study, we aimed to investigate the molecular mechanisms underlying the effect of BBR against liver fibrogenesis in thioacetamide (TAA) and carbon tetrachloride (CCl4) induced mouse liver fibrosis. In addition to i.p. injection with TAA or CCl4, mice in the treatment group received BBR intragastrically. Concurrently, combined with TAA and BBR treatment, mice in the inhibitor group were injected i.p. with ferrostatin-1 (Fer-1). Hepatic stellate cells (HSCs) were also used in the study. Our results showed that BBR obviously alleviated mouse liver fibrosis and restored mouse liver function; however, the pharmacological effects of BBR against liver fibrosis were significantly diminished by Fer-1 treatment. Mechanically, BBR impaired the autophagy-lysosome pathway (ALP) and increased cell reactive oxygen species (ROS) production in HSCs. ROS accelerated the breakdown of the iron-storage protein ferritin and sped up iron release from ferritin, which resulted in redox-active iron accumulation in HSCs. Lipid peroxidation and glutathione (GSH) depletion triggered by the Fenton reaction promoted ferroptosis and attenuated liver fibrosis. Furthermore, impaired autophagy enhanced BBR-mediated ferritin proteolysis to increase cellular ferrous overload via the ubiquitin-proteasome pathway (UPS) in HSCs and triggered HSC ferroptosis. Collectively, BBR alleviated liver fibrosis by inducing ferrous redox to activate ROS-mediated HSC ferroptosis. Our findings may be exploited clinically to provide a potential novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Jiazhi Yi
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Shuyun Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Yunfei Qin
- Department of The Biological Therapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China
| | - Xing Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China.
| |
Collapse
|
135
|
Rishi G, Huang G, Subramaniam VN. Cancer: The role of iron and ferroptosis. Int J Biochem Cell Biol 2021; 141:106094. [PMID: 34628027 DOI: 10.1016/j.biocel.2021.106094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023]
Abstract
Iron is an essential element for virtually all living things. Body iron levels are tightly controlled as both increased iron levels and iron deficiency are associated with many clinical conditions. Increased iron levels are associated with a worse prognosis in some cancers, so understanding the role of iron in cancer development has thus been an active area of research. Regulated forms of cell death are important in development and disease pathogenesis. In this Medicine in Focus review article, we discuss the role of iron in cancer, and ferroptosis, a new form of iron-regulated cell death triggered by increased iron and peroxidation of lipids. We also review the pathogenesis of cancer, potential therapeutics for targeting the increased requirement of iron, as well as how ferroptosis activation may have a role in treatment of cancers.
Collapse
Affiliation(s)
- Gautam Rishi
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld 4059, Australia
| | - Gary Huang
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld 4059, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld 4059, Australia.
| |
Collapse
|
136
|
Xu C, Liu Z, Xiao J. Ferroptosis: A Double-Edged Sword in Gastrointestinal Disease. Int J Mol Sci 2021; 22:ijms222212403. [PMID: 34830285 PMCID: PMC8620748 DOI: 10.3390/ijms222212403] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis is a novel form of regulated cell death (RCD) that is typically accompanied by iron accumulation and lipid peroxidation. In contrast to apoptosis, autophagy, and necroptosis, ferroptosis has unique biological processes and pathophysiological characteristics. Since it was first proposed in 2012, ferroptosis has attracted attention worldwide. Ferroptosis is involved in the progression of multiple diseases and could be a novel therapeutic target in the future. Recently, tremendous progress has been made regarding ferroptosis and gastrointestinal diseases, including intestinal ischemia/reperfusion (I/R) injury, inflammatory bowel disease (IBD), gastric cancer (GC), and colorectal cancer (CRC). In this review, we summarize the recent progress on ferroptosis and its interaction with gastrointestinal diseases. Understanding the role of ferroptosis in gastrointestinal disease pathogenesis could provide novel therapeutic targets for clinical treatment.
Collapse
|
137
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
138
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
139
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
140
|
Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res 2021; 9:82. [PMID: 34742351 PMCID: PMC8572460 DOI: 10.1186/s40364-021-00338-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Although medical treatment has made impressive progress in recent years, it is still one of the leading causes of cancer-related deaths in men and women. Ferroptosis is a type of non-apoptotic cell death modality, usually characterized by iron-dependent lipid peroxidation, rather than caspase-induced protein cleavage. Excessive or lack of ferroptosis is associated with a variety of diseases, including cancer and ischaemia-reperfusion injury. Recent preclinical evidence suggests that targeting ferroptotic pathway is a potential strategy for the treatment of lung cancer. In this review, we summarize the core mechanism and regulatory network of ferroptosis in lung cancer cells, and highlight ferroptosis induction-related tumor therapies. The reviewed information may provide new insights for targeted lung cancer therapy.
Collapse
Affiliation(s)
- Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
141
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
142
|
Sui X, Hu N, Zhang Z, Wang Y, Wang P, Xiu G. ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis. Pathol Int 2021; 71:741-751. [PMID: 34658100 DOI: 10.1111/pin.13158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD) is difficult to cureradically. Long non-coding RNAs (lncRNAs) in LUAD are a hotspot in molecular research, however, the role of lncRNA ASMTL-AS1 in LUAD is still unknown. Our study explores the role and mechanisms of ASMTL-AS1 in LUAD. Quantitative reverse transcription PCR or western blot was utilized to analyze the expression of RNAs or proteins. The influences of ASMTL-AS1 and SAT1 on LUAD cells were analyzed by functional assays. Biological instruments were applied to observe ferroptosis-related markers. In vivo assays were performed to uncover the impact of ASMTL-AS1 on LUAD. Moreover, mechanism assays were done to confirm the relationship among ASMTL-AS1, SAT1 and U2AF2. Results showed that ASMTL-AS1 was down-regulated in LUAD cells and ASMTL-AS1 up-regulation resulted in retarded LUAD cell and xenograft tumor growth along with stimulated ferroptosis. ASMTL-AS1 recruited U2AF2 to stabilize SAT1 mRNA. Furthermore, SAT1 exerted a cancer suppressor role in LUAD cells. In conclusion, we first demonstrated that ASMTL-AS1 positively regulated SAT1 to promote ferroptosis and could stabilize SAT1 mRNA via recruiting U2AF2, shedding a light on a novel molecular mechanism in LUAD progression.
Collapse
Affiliation(s)
- Xiujie Sui
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| | - Na Hu
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| | - Ze Zhang
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| | - Yirong Wang
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| | - Pengbo Wang
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| | - Guanghong Xiu
- Department of Radiotherapy, Yantaishan Hospital of Yantai, Yantai, Shandong, China
| |
Collapse
|
143
|
NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner. Cell Death Discov 2021; 7:269. [PMID: 34599149 PMCID: PMC8486797 DOI: 10.1038/s41420-021-00662-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death characterized by the accumulation of hydroperoxided phospholipids. Here, we report that the NUPR1 inhibitor ZZW-115 induces ROS accumulation followed by a ferroptotic cell death, which could be prevented by ferrostatin-1 (Fer-1) and ROS-scavenging agents. The ferroptotic activity can be improved by inhibiting antioxidant factors in pancreatic ductal adenocarcinoma (PDAC)- and hepatocellular carcinoma (HCC)-derived cells. In addition, ZZW-115-treatment increases the accumulation of hydroperoxided lipids in these cells. We also found that a loss of activity and strong deregulation of key enzymes involved in the GSH- and GPX-dependent antioxidant systems upon ZZW-115 treatment. These results have been validated in xenografts induced with PDAC- and HCC-derived cells in nude mice during the treatment with ZZW-115. More importantly, we demonstrate that ZZW-115-induced mitochondrial morphological changes, compatible with the ferroptotic process, as well as mitochondrial network disorganization and strong mitochondrial metabolic dysfunction, which are rescued by both Fer-1 and N-acetylcysteine (NAC). Of note, the expression of TFAM, a key regulator of mitochondrial biogenesis, is downregulated by ZZW-115. Forced expression of TFAM is able to rescue morphological and functional mitochondrial alterations, ROS production, and cell death induced by ZZW-115 or genetic inhibition of NUPR1. Altogether, these results demonstrate that the mitochondrial cell death mediated by NUPR1 inhibitor ZZW-115 is fully rescued by Fer-1 but also via TFAM complementation. In conclusion, TFAM could be considered as an antagonist of the ferroptotic cell death.
Collapse
|
144
|
Chen X, Kang R, Kroemer G, Tang D. Organelle-specific regulation of ferroptosis. Cell Death Differ 2021; 28:2843-2856. [PMID: 34465893 PMCID: PMC8481335 DOI: 10.1038/s41418-021-00859-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis, a cell death modality characterized by iron-dependent lipid peroxidation, is involved in the development of multiple pathological conditions, including ischemic tissue damage, infection, neurodegeneration, and cancer. The cellular machinery responsible for the execution of ferroptosis integrates multiple pro-survival or pro-death signals from subcellular organelles and then 'decides' whether to engage the lethal process or not. Here, we outline the evidence implicating different organelles (including mitochondria, lysosomes, endoplasmic reticulum, lipid droplets, peroxisomes, Golgi apparatus, and nucleus) in the ignition or avoidance of ferroptosis, while emphasizing their potential relevance for human disease and their targetability for pharmacological interventions.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
145
|
Dong S, Li X, Jiang W, Chen Z, Zhou W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int 2021; 21:480. [PMID: 34503532 PMCID: PMC8427874 DOI: 10.1186/s12935-021-02166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Shi Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Gansu Province, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, 730000, China.
| |
Collapse
|
146
|
Abstract
Although some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.
| |
Collapse
|
147
|
Han L, Bai L, Fang X, Liu J, Kang R, Zhou D, Tang D, Dai E. SMG9 drives ferroptosis by directly inhibiting GPX4 degradation. Biochem Biophys Res Commun 2021; 567:92-98. [PMID: 34146907 DOI: 10.1016/j.bbrc.2021.06.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that plays an integral role in eliminating abnormal mRNA and corresponding proteins. It is unclear whether the NMD pathway is involved in regulating ferroptosis, which is a type of iron-dependent cell death mainly caused by the inhibition of the antioxidant SLC7A11-GPX4 axis. In this study, we conducted a small-scale RNAi screen and proved that SMG9, a component of the NMD machinery, is a selective driver for ferroptosis in human cancer cells. SMG9 positively regulates ferroptosis independent of its activity in NMD. Instead, SMG9 is a direct binding protein of GPX4 to promote the degradation of GPX4 in response to RSL3 (a GPX4 inhibitor), but not erastin (a SLC7A11 inhibitor). The genetic inhibition of SMG9 increases the accumulation of GPX4 in the mitochondria, thereby preventing mitochondrial oxidative damage, and ultimately favoring ferroptosis resistance in vitro or in xenograft mouse models. Overall, these findings establish a new mitochondrial regulation mechanism that can affect ferroptosis-mediated tumor suppression.
Collapse
Affiliation(s)
- Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Lulu Bai
- Department of Pediatric Hematology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xue Fang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Di Zhou
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
148
|
Huang C, Santofimia-Castaño P, Iovanna J. NUPR1: A Critical Regulator of the Antioxidant System. Cancers (Basel) 2021; 13:cancers13153670. [PMID: 34359572 PMCID: PMC8345110 DOI: 10.3390/cancers13153670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nuclear protein 1 (NUPR1) is activated in cellular stress and is expressed at high levels in cancer cells. Much evidence has been gathered supporting its critical role in regulating the antioxidant system. Our review aims to summarize the literature data on the impact of NUPR1 on the oxidative stress response via such a regulatory role and how its inhibition induces reactive oxygen species-mediated cell death, such as ferroptosis. Abstract Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
Collapse
|
149
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
150
|
|