101
|
He Y, Yu H, Dai S, He M, Ma L, Xu Z, Luo F, Wang L. Immune checkpoint inhibitors break whose heart? Perspectives from cardio-immuno-oncology. Genes Dis 2024; 11:807-818. [PMID: 37692505 PMCID: PMC10491874 DOI: 10.1016/j.gendis.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hui Yu
- Cardiovascular Department, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Miao He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Ma
- Department of Rheumatology and Immunology, Deyang People's Hospital, Deyang, Sichuan 618000, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
102
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
103
|
Slart RHJA, Bengel FM, Akincioglu C, Bourque JM, Chen W, Dweck MR, Hacker M, Malhotra S, Miller EJ, Pelletier-Galarneau M, Packard RRS, Schindler TH, Weinberg RL, Saraste A, Slomka PJ. Total-Body PET/CT Applications in Cardiovascular Diseases: A Perspective Document of the SNMMI Cardiovascular Council. J Nucl Med 2024:jnumed.123.266858. [PMID: 38388512 DOI: 10.2967/jnumed.123.266858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Digital PET/CT systems with a long axial field of view have become available and are emerging as the current state of the art. These new camera systems provide wider anatomic coverage, leading to major increases in system sensitivity. Preliminary results have demonstrated improvements in image quality and quantification, as well as substantial advantages in tracer kinetic modeling from dynamic imaging. These systems also potentially allow for low-dose examinations and major reductions in acquisition time. Thereby, they hold great promise to improve PET-based interrogation of cardiac physiology and biology. Additionally, the whole-body coverage enables simultaneous assessment of multiple organs and the large vascular structures of the body, opening new opportunities for imaging systemic mechanisms, disorders, or treatments and their interactions with the cardiovascular system as a whole. The aim of this perspective document is to debate the potential applications, challenges, opportunities, and remaining challenges of applying PET/CT with a long axial field of view to the field of cardiovascular disease.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Cigdem Akincioglu
- Division of Nuclear Medicine, Medical Imaging, Western University, London, Ontario, Canada
| | - Jamieson M Bourque
- Departments of Medicine (Cardiology) and Radiology, University of Virginia, Charlottesville, Virginia
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, and Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - René R S Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Antti Saraste
- Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; and
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
104
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
105
|
Zhang G, Han X, Xu T, Liu M, Chen G, Xie L, Xu H, Hua Y, Pang M, Hu C, Wu Y, Liu B, Zhou Y. Buyang Huanwu Decoction suppresses cardiac inflammation and fibrosis in mice after myocardial infarction through inhibition of the TLR4 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117388. [PMID: 37949329 DOI: 10.1016/j.jep.2023.117388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that cardiac inflammation and fibrosis participate in the development of heart failure (HF) following myocardial infarction (MI). Anti-inflammatory and anti-fibrotic treatments exhibit therapeutic efficacy in MI. Buyang Huanwu Decoction (BYHWD) has cardioprotective properties. However, whether BYHWD regulates cardiac inflammation and fibrosis in HF after MI, and the underlying mechanisms, are still unknown. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of BYHWD on cardiac inflammation and fibrosis after MI. MATERIALS AND METHODS An MI model was constructed through ligation of the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of BYHWD were determined by echocardiography, Masson trichrome staining, wheat germ agglutinin (WGA) staining and haematoxylin and eosin (HE) staining. The effects of BYHWD on inflammation and fibrosis, and on the TLR4 signalling pathway, were explored through immunohistochemistry (IHC), Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in vivo. Next, the effects of BYHWD on primary cardiac fibroblasts (CFs) inflammation and collagen synthesis, and on the TLR4 signalling pathway, were detected using WB, immunofluorescence (IF) and qRT-PCR in vitro. In addition, the suppression and overexpression of TLR4 in CFs were further explored. RESULTS BYHWD dose-dependently reduced cardiac inflammation, fibrosis and ventricular dysfunction. The expression levels of collagen Ⅰ/Ⅲ, IL-1β and IL-18, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, were suppressed by BYHWD in the in vivo experiment. BYHWD inhibited CFs inflammation and collagen synthesis, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, in the in vitro experiment. TLR4 suppression mitigated these inhibitory effects of BYHWD while overexpression of TLR4 markedly reversed these inhibitory effects of BYHWD. CONCLUSION BYHWD exerts anti-inflammatory and anti-fibrotic effects in mice after MI, and suppresses CFs inflammation and collagen synthesis through suppression of the TLR4 signalling pathway.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of geratology, Affliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
106
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
107
|
Chi Z, Yang H, Liu J. Study on the combined toxicity of DEHP and lead on the blood system of rats. CHEMOSPHERE 2024; 349:140908. [PMID: 38072204 DOI: 10.1016/j.chemosphere.2023.140908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/01/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used phthalate ester compound, while lead is a persistent and bioaccumulative heavy metal. Both can be exposed to the body through a variety of ways, which may have an impact on the blood system. In this study, we examined the impact of co-exposure to DEHP (0, 10, 100 mg/kg) and Pb (0, 5, 50 mg/kg) on the blood system of male SD rats. The study revealed that continuous exposure to DEHP and Pb for 20 days resulted in a decrease in leukocytes and lymphocytes, while an increase in neutrophils and monocytes. Co-exposure led to a significant decrease in the spleen coefficients. Furthermore, the combined exposure could increase the ratio of bone marrow cells in G1 phase, and decrease the ratio of cells in S phase and G2 phase. Cytokine testing showed that combined exposure affects the secretion of hematopoietic factors and may cause bone marrow cell apoptosis. Single or combined exposure to DEHP and Pb can cause oxidative stress in serum and bone marrow. Overall, these results indicate that the co-exposure of DEHP and Pb adversely affected the blood system of rats, mainly due to the induction of oxidative stress and ultimately affects the secretion of cytokines. The combined effect of the two substances is primarily antagonistic. These results have important implications for the risk assessment of combined pollution and provide valuable theoretical guidance.
Collapse
Affiliation(s)
- Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310015, China.
| | - Hanfeng Yang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Jia Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| |
Collapse
|
108
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
109
|
Weinberger M, Riley PR. Animal models to study cardiac regeneration. Nat Rev Cardiol 2024; 21:89-105. [PMID: 37580429 DOI: 10.1038/s41569-023-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
110
|
Székely A, Pállinger É, Töreki E, Ifju M, Barta BA, Szécsi B, Losoncz E, Dohy Z, Barabás IJ, Kosztin A, Buzas EI, Radovits T, Merkely B. Recipient Pericardial Apolipoprotein Levels Might Be an Indicator of Worse Outcomes after Orthotopic Heart Transplantation. Int J Mol Sci 2024; 25:1752. [PMID: 38339027 PMCID: PMC10855207 DOI: 10.3390/ijms25031752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND End-stage heart failure (ESHF) leads to hypoperfusion and edema formation throughout the body and is accompanied by neurohormonal and immunological alterations. Orthotopic heart transplantation (HTX) has been used as a beneficial option for ESHF. Due to the shortage of donor hearts, the ideal matching and timing of donors and recipients has become more important. PURPOSE In this study, our aim was to explore the relationship between the clinical outcomes of HTX and the cytokine and apolipoprotein profiles of the recipient pericardial fluid obtained at heart transplantation after opening the pericardial sac. MATERIALS AND METHODS The clinical data and the interleukin, adipokine, and lipoprotein levels in the pericardial fluid of twenty HTX recipients were investigated. Outcome variables included primer graft dysfunction (PGD), the need for post-transplantation mechanical cardiac support (MCS), International Society for Heart and Lung Transplantation grade ≥2R rejection, and mortality. Recipient risk scores were also investigated. RESULTS Leptin levels were significantly lower in patients with PGD than in those without PGD (median: 6.36 (IQR: 5.55-6.62) versus 7.54 (IQR = 6.71-10.44); p = 0.029). Higher ApoCII levels (median: 14.91 (IQR: 11.55-21.30) versus 10.31 (IQR = 10.02-13.07); p = 0.042) and ApoCIII levels (median: 60.32 (IQR: 43.00-81.66) versus 22.84 (IQR = 15.84-33.39); p = 0.005) were found in patients (n = 5) who died in the first 5 years after HTX. In patients who exhibited rejection (n = 4) in the first month after transplantation, the levels of adiponectin (median: 74.48 (IQR: 35.51-131.70) versus 29.96 (IQR: 19.86-42.28); p = 0.039), ApoCII (median: 20.11 (IQR: 13.06-23.54) versus 10.32 (IQR: 10.02-12.84); p = 0.007), and ApoCIII (median: 70.97 (IQR: 34.72-82.22) versus 26.33 (IQR: 17.18-40.17); p = 0.029) were higher than in the nonrejection group. Moreover, the pericardial thyroxine (T4) levels (median: 3.96 (IQR: 3.49-4.46) versus 4.69 (IQR: 4.23-5.77); p = 0.022) were lower in patients with rejection than in patients who did not develop rejection. CONCLUSION Our results indicate that apolipoproteins can facilitate the monitoring of rejection and could be a useful tool in the forecasting of early and late complications.
Collapse
Affiliation(s)
- Andrea Székely
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (É.P.)
| | - Evelin Töreki
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Mandula Ifju
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | | | - Balázs Szécsi
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (B.S.)
| | - Eszter Losoncz
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (B.S.)
| | - Zsófia Dohy
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Imre János Barabás
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Annamária Kosztin
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Edit I. Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (É.P.)
- HCEMM-SU Extracellular Vesicle Research Group, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
111
|
Toita R, Kitamura M, Tsuchiya A, Kang J, Kasahara S. Releasable, Immune-Instructive, Bioinspired Multilayer Coating Resists Implant-Induced Fibrosis while Accelerating Tissue Repair. Adv Healthc Mater 2024; 13:e2302611. [PMID: 38095751 PMCID: PMC11468989 DOI: 10.1002/adhm.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 12/21/2023]
Abstract
Implantable biomaterials trigger foreign body reactions (FBRs), which reduces the functional life of medical devices and prevents effective tissue regeneration. Although existing therapeutic approaches can circumvent collagen-rich fibrotic encapsulation secondary to FBRs, they disrupt native tissue repair. Herein, a new surface engineering strategy in which an apoptotic-mimetic, immunomodulatory, phosphatidylserine liposome (PSL) is released from an implant coating to induce the formation of a macrophage phenotype that mitigates FBRs and improves tissue healing is described. PSL-multilayers constructed on implant surfaces via the layer-by-layer method release PSLs over a 1-month period. In rat muscles, poly(etheretherketone) (PEEK), a nondegradable polymer implant model, induces FBRs with dense fibrotic scarring under an aberrant cellular profile that recruits high levels of inflammatory infiltrates, foreign body giant cells (FBGCs), scar-forming myofibroblasts, and inflammatory M1-like macrophages but negligible amounts of anti-inflammatory M2-like phenotypes. However, the PSL-multilayer coating markedly diminishes these detrimental signatures by shifting the macrophage phenotype. Unlike other therapeutics, PSL-multilayered coatings also stimulate muscle regeneration. This study demonstrates that PSL-multilayered coatings are effective in eliminating FBRs and promoting regeneration, hence offering potent and broad applications for implantable biomaterials.
Collapse
Affiliation(s)
- Riki Toita
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)1‐8‐31 MidorigaokaIkedaOsaka563‐8577Japan
- AIST‐Osaka University Advanced Photonics and Biosensing Open Innovation LaboratoryAIST2‐1 YamadaokaSuitaOsaka565‐0871Japan
| | - Masahiro Kitamura
- Niterra Co., Ltd.2808 IwasakiKomakiAichi485–8510Japan
- NGK Spark Plug‐AIST Healthcare Materials Cooperative Research Laboratory2266–98 AnagahoraShimoshidami, Moriyama‐kuNagoyaAichi463–8560Japan
| | - Akira Tsuchiya
- Department of BiomaterialsFaculty of Dental ScienceKyushu University3‐1‐1 MaidashiHigashi‐kuFukuoka812–8582Japan
| | - Jeong‐Hun Kang
- Division of Biopharmaceutics and PharmacokineticsNational Cerebral and Cardiovascular Center Research Institute6‐1 Shinmachi, KishibeSuitaOsaka564–8565Japan
| | | |
Collapse
|
112
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
113
|
Pan W, Zhou G, Hu M, Li G, Zhang M, Yang H, Li K, Li J, Liu T, Wang Y, Jin J. Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway. BMC Cardiovasc Disord 2024; 24:76. [PMID: 38281937 PMCID: PMC10822151 DOI: 10.1186/s12872-024-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1β/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1β) signaling pathway. CONCLUSIONS These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1β pathway in macrophages. TRIAL REGISTRATION Date of registration 09/04/2021 (number: ChiCTR2100045256).
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Meiling Hu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jingwei Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ting Liu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
114
|
Esin F, Esen S, Aktürk S, Pekersen Ö, Kiris T, Karaca M. Relationship between systemic immune inflammation index and development of complete atrioventricular block in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC Cardiovasc Disord 2024; 24:73. [PMID: 38267846 PMCID: PMC10809456 DOI: 10.1186/s12872-024-03726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The systemic immune-inflammation index (SII), based on white blood cell, neutrophil, and platelet counts, is a proposed marker of systemic inflammation and immune activation. This study aimed to explore the relationship between SII and complete atrioventricular block (CAVB) development in STEMI patients undergoing primary PCI. METHODS We retrospectively analyzed data from 883 patients who underwent primary PCI for STEMI between January 2009 and December 2017. Patients were categorized into two groups based on CAVB development. SII levels were calculated from blood samples taken on admission. RESULTS Of the included patients, 48 (5.03%) developed CAVB. SII was higher in patients with CAVB compared to those without CAVB (1370 [1050-1779]x109/L vs. 771 [427-1462] x109/L, p < 0.001). Multivariate analysis showed a significant positive correlation between SII and the risk of CAVB development (OR:1.0003, 95%CI:1.0001-1.0005, P = 0.044). The cut-off value for the SII in the estimation of CAVB was 1117.7 × 109/L (area under the ROC curve [AUC]: 0.714, 95% CI = 0.657-0.770 with a sensitivity of 70.8% and specificity of 65.6%, p < 0.001). CONCLUSION This study showed a significant link between high SII levels and CAVB development in STEMI patients undergoing PCI. Our findings suggest that SII may be a valuable, routinely available, and inexpensive marker for identifying patients at increased risk of CAVB.
Collapse
Affiliation(s)
- Fatma Esin
- Atatürk Training and Research Hospital, Department of Cardiology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Saban Esen
- Department of Cardiology, Tunceli State Hospital, Tunceli, Turkey
| | - Semih Aktürk
- Atatürk Training and Research Hospital, Department of Cardiology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Ömer Pekersen
- Atatürk Training and Research Hospital, Department of Cardiology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Tuncay Kiris
- Atatürk Training and Research Hospital, Department of Cardiology, Izmir Katip Çelebi University, Izmir, Turkey.
| | - Mustafa Karaca
- Atatürk Training and Research Hospital, Department of Cardiology, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
115
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
116
|
Ma P, Liu J, Qin J, Lai L, Heo GS, Luehmann H, Sultan D, Bredemeyer A, Bajapa G, Feng G, Jimenez J, He R, Parks A, Amrute J, Villanueva A, Liu Y, Lin CY, Mack M, Amancherla K, Moslehi J, Lavine KJ. Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 2024; 149:48-66. [PMID: 37746718 PMCID: PMC11323830 DOI: 10.1161/circulationaha.122.062551] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.
Collapse
Affiliation(s)
- Pan Ma
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Jing Liu
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Juan Qin
- Division of Cardiology, Department of Medicine, University of California San Francisco (J.Q., J.M.)
| | - Lulu Lai
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Hannah Luehmann
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Geetika Bajapa
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Guoshuai Feng
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Jesus Jimenez
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Ruijun He
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Antanisha Parks
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Junedh Amrute
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Ana Villanueva
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, Universitatsklinikum Regensburg Klinik und Poliklinik Innere Medizin II, Regensburg, Germany (M.M.)
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (K.A.)
| | - Javid Moslehi
- Division of Cardiology, Department of Medicine, University of California San Francisco (J.Q., J.M.)
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| |
Collapse
|
117
|
Xiong Y, Zhang Z, Liu S, Shen L, Zheng L, Ding L, Liu L, Wu L, Li L, Hu Z, Zhang Z, Zhou L, Yao Y. Lupeol alleviates autoimmune myocarditis by suppressing macrophage pyroptosis and polarization via PPARα/LACC1/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155193. [PMID: 37976692 DOI: 10.1016/j.phymed.2023.155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Autoimmune myocarditis, with increasing incidence and limited therapeutic strategies, is in urgent need to explore its underlying mechanisms and effective drugs. Pyroptosis is a programmed cell death that may contribute to the pathogenesis of myocarditis. Nonetheless, no direct evidence validated the role of pyroptosis in autoimmune myocarditis. Lupeol (Lup), a pentacyclic triterpene, possesses various biological activities such as antidiabetic properties. However, the effects of Lup on autoimmune myocarditis and pyroptosis remain unelucidated. PURPOSE This study aimed to reveal the role of pyroptosis in autoimmune myocarditis and explore the protective effects of Lup, and its engaged mechanisms. METHODS The experimental autoimmune myocarditis (EAM) mouse model was established by immunization with a fragment of cardiac myosin in Balb/c mice. Lup and MCC950 were administered after EAM induction. The protective effects were assessed by inflammation score, cardiac injury, chronic fibrosis, and cardiac function. Mechanistically, the effects of Lup on the M1 polarization and pyroptosis of macrophages were evaluated. Transcriptome sequencing and molecular docking were subsequently employed, and the underlying mechanisms of Lup were further explored in vitro with small interfering RNA and adenovirus. RESULTS Administration of Lup and MCC950 alleviated EAM progression. Western blotting and immunofluorescence staining identified macrophages as the primary cells undergoing pyroptosis. Lup inhibited the expression of pyroptosis-associated proteins in macrophages during EAM in a dose-dependent manner. Furthermore, Lup suppressed pyroptosis in both bone marrow-derived macrophages (BMDMs) and THP-1-derived macrophages in vitro. In addition, Lup inhibited the M1 polarization of macrophages both in vivo and in vitro. Mechanistically, the protective effects of Lup were demonstrated via the suppression of the nuclear factor-κΒ (NF-κB) signaling pathway. Transcriptome sequencing and molecular docking revealed the potential involvement of peroxisome proliferator-associated receptor α (PPARα). Subsequently, we demonstrated that Lup activated PPARα to reduce the expression level of LACC1, thereby inhibiting the NF-κB pathway and pyroptosis. CONCLUSION Our findings indicated the crucial role of macrophage pyroptosis in the pathogenesis of EAM. Lup ameliorated EAM by inhibiting the M1 polarization and pyroptosis of macrophages through the PPARα/LACC1/NF-κB signaling pathway. Thus, our results provided a novel therapeutic target and agent for myocarditis.
Collapse
Affiliation(s)
- Yulong Xiong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhenhao Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Shangyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lishui Shen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lihui Zheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Ligang Ding
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Limin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lingmin Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Le Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhao Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhuxin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Likun Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China.
| |
Collapse
|
118
|
Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, Zhou H, Wu LM, Liu Z, Yang Y. A Cardiac-Targeted Nanozyme Interrupts the Inflammation-Free Radical Cycle in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308477. [PMID: 37985164 DOI: 10.1002/adma.202308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Severe systemic inflammation following myocardial infarction (MI) is a major cause of patient mortality. MI-induced inflammation can trigger the production of free radicals, which in turn ultimately leads to increased inflammation in cardiac lesions (i.e., inflammation-free radicals cycle), resulting in heart failure and patient death. However, currently available anti-inflammatory drugs have limited efficacy due to their weak anti-inflammatory effect and poor accumulation at the cardiac site. Herein, a novel Fe-Cur@TA nanozyme is developed for targeted therapy of MI, which is generated by coordinating Fe3+ and anti-inflammatory drug curcumin (Cur) with further modification of tannic acid (TA). Such Fe-Cur@TA nanozyme exhibits excellent free radicals scavenging and anti-inflammatory properties by reducing immune cell infiltration, promoting macrophage polarization toward the M2-like phenotype, suppressing inflammatory cytokine secretion, and blocking the inflammatory free radicals cycle. Furthermore, due to the high affinity of TA for cardiac tissue, Fe-Cur@TA shows an almost tenfold greater in cardiac retention and uptake than Fe-Cur. In mouse and preclinical beagle dog MI models, Fe-Cur@TA nanozyme preserves cardiac function and reduces scar size, suggesting promising potential for clinical translation in cardiovascular disease.
Collapse
Affiliation(s)
- Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Binghua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinfeng Dai
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
119
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
120
|
Hu Y, Chen X, Mei X, Luo Z, Wu H, Zhang H, Zeng Q, Ren H, Xu D. Identification of diagnostic immune-related gene biomarkers for predicting heart failure after acute myocardial infarction. Open Med (Wars) 2023; 18:20230878. [PMID: 38152337 PMCID: PMC10751901 DOI: 10.1515/med-2023-0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Post-myocardial infarction heart failure (HF) is a major public health concern. Previous studies have reported the critical role of immune response in HF pathogenesis. However, limited studies have reported predictive immune-associated biomarkers for HF. So we attempted to identify potential immune-related indicators for HF early diagnosis and therapy guidance. This study identified two potential immune-related hub genes (IRHGs), namely CXCR5 and FOS, using bioinformatic approaches. The expression levels of CXCR5 and FOS and their ability to predict long-term HF were analyzed. Functional enrichment analysis revealed that the hub genes were enriched in immune system processes, including the interleukin-17 and nuclear factor-kappa B signaling pathways, which are involved in the pathogenesis of HF. Quantitative real-time polymerase chain reaction revealed that the Fos mRNA levels, but not the Cxcr5 mRNA levels, were downregulated in the mice of the HF group. This study successfully identified two IRHGs that were significantly and differentially expressed in the HF group and could predict long-term HF, providing novel insights for future studies on HF and developing novel therapeutic targets for HF.
Collapse
Affiliation(s)
- Yingchun Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoyu Chen
- Department of Nephrology, Rheumatism and Immunology, Chongqing Jiulongpo People’s Hospital, Chongqing, 400050, China
| | - Xiyuan Mei
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhen Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongguang Wu
- Department of Arrhythmic, Cardiovascular Medical Center, Shenzhen Hospital of University of Hong Kong, Shenzhen, 518040, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University,
Guangzhou, 510515, Guangdong, China
| | - Hao Ren
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University,
Guangzhou, 510515, Guangdong, China
| |
Collapse
|
121
|
Yin Y, Cao L, Wang J, Chen Y, Yang H, Tan S, Cai K, Chen Z, Xiang J, Yang Y, Geng H, Zhou Z, Shen A, Zhou X, Shi Y, Zhao R, Sun K, Ding C, Zhao J. Proteome profiling of early gestational plasma reveals novel biomarkers of congenital heart disease. EMBO Mol Med 2023; 15:e17745. [PMID: 37840432 PMCID: PMC10701625 DOI: 10.15252/emmm.202317745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Prenatal diagnosis of congenital heart disease (CHD) relies primarily on fetal echocardiography conducted at mid-gestational age-the sensitivity of which varies among centers and practitioners. An objective method for early diagnosis is needed. Here, we conducted a case-control study recruiting 103 pregnant women with healthy offspring and 104 cases with CHD offspring, including VSD (42/104), ASD (20/104), and other CHD phenotypes. Plasma was collected during the first trimester and proteomic analysis was performed. Principal component analysis revealed considerable differences between the controls and the CHDs. Among the significantly altered proteins, 25 upregulated proteins in CHDs were enriched in amino acid metabolism, extracellular matrix receptor, and actin skeleton regulation, whereas 49 downregulated proteins were enriched in carbohydrate metabolism, cardiac muscle contraction, and cardiomyopathy. The machine learning model reached an area under the curve of 0.964 and was highly accurate in recognizing CHDs. This study provides a highly valuable proteomics resource to better recognize the cause of CHD and has developed a reliable objective method for the early recognition of CHD, facilitating early intervention and better prognosis.
Collapse
Affiliation(s)
- Ya‐Nan Yin
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life SciencesInstitutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Li Cao
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Jie Wang
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Yu‐Ling Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hai‐Ou Yang
- International Peace Maternity and Child Health Hospital of China Welfare InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Su‐Bei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life SciencesInstitutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhe‐Qi Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Jie Xiang
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Yuan‐Xin Yang
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Hao‐Ran Geng
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Ze‐Yu Zhou
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - An‐Na Shen
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Xiang‐Yu Zhou
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, School of Life SciencesObstetrics and Gynecology Hospital of Fudan University, Children's Hospital of Fudan University, Fudan UniversityShanghaiChina
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kun Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life SciencesInstitutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Jian‐Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- International Human Phenome Institutes (Shanghai)ShanghaiChina
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
122
|
Xu S, Xu C, Xu J, Zhang K, Zhang H. Macrophage Heterogeneity and Its Impact on Myocardial Ischemia-Reperfusion Injury: An Integrative Review. J Inflamm Res 2023; 16:5971-5987. [PMID: 38088942 PMCID: PMC10712254 DOI: 10.2147/jir.s436560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 10/21/2024] Open
Abstract
The coronary reperfusion following acute myocardial infarction can paradoxically trigger myocardial ischemia-reperfusion (IR) injury. This complex phenomenon involves the intricate interplay of different subsets of macrophages. These macrophages are crucial players in the post-infarction inflammatory response and subsequent myocardial anti-inflammatory repair. However, their diverse functions can lead to both beneficial and detrimental effects. On one hand, these macrophages play a crucial role in orchestrating the inflammatory response, aiding in the clearance of cellular debris and initiating tissue repair mechanisms. On the other hand, their excessive infiltration and activation can contribute to the perpetuation of the inflammatory cascade, leading to additional myocardial injury and adverse cardiac remodeling. Multiple mechanisms contribute to the IR injury mediated by macrophages, including oxidative stress, apoptosis, and autophagy. These processes further exacerbate the damage to the already vulnerable myocardial tissue. To address this delicate balance, therapeutic strategies aiming to target and modulate macrophage polarization and function are being explored. By fine-tuning the immune inflammatory response, such interventions hold promise in mitigating post-infarction myocardial injury and fostering a more favorable environment for myocardial healing and recovery. Through advancements in this area of research, potential anti-inflammatory interventions may pave the way for improved clinical outcomes and better management of patients after acute myocardial infarction.
Collapse
Affiliation(s)
- Shuwan Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jiahua Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Huanji Zhang
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
123
|
Calder PC, Bach-Faig A, Bevacqua T, Caballero Lopez CG, Chen ZY, Connolly D, Koay WL, Meydani SN, Pinar AS, Ribas-Filho D, Pierre A. Vital role for primary healthcare providers: urgent need to educate the community about daily nutritional self-care to support immune function and maintain health. BMJ Nutr Prev Health 2023; 6:392-401. [PMID: 38618551 PMCID: PMC11009526 DOI: 10.1136/bmjnph-2023-000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 04/16/2024] Open
Abstract
The importance of self-care to improve health and social well-being is well recognised. Nevertheless, there remains a need to encourage people to better understand how their body works, and how to keep it healthy. Because of its important role, part of this understanding should be based on why the immune system must be supported. This highly complex system is essential for defending against pathogens, but also for maintaining health throughout the body by preserving homeostasis and integrity. Accordingly, the immune system requires active management for optimal functioning and to reduce the risk of chronic diseases. In addition to regular exercise, healthy sleeping patterns, cultivating mental resilience, adequate nutrition through healthy and diverse dietary habits is key to the daily support of immune function. Diet and the immune system are closely intertwined, and a poor diet will impair immunity and increase the risk of acute and chronic diseases. To help elucidate the roles of primary healthcare providers in supporting individuals to engage in self-care, an international group of experts reviewed the evidence for the roles of the immune system in maintaining health and for nutrition in daily immune support, and discussed implications for population health and clinical practice.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Reseaech Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anna Bach-Faig
- Faculty of Health Sciences, Open University of Catalonia, Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | | | | | - Zheng-Yu Chen
- International Pharmaceutical Federation, Shanghai, China
| | | | | | - Simin N Meydani
- Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | - Durval Ribas-Filho
- Padre Albino Foundation, Faculty of Medicine, Catanduva, São Paulo, Brazil
| | | |
Collapse
|
124
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
125
|
Zhang S, Paccalet A, Rohde D, Cremer S, Hulsmans M, Lee IH, Mentkowski K, Grune J, Schloss MJ, Honold L, Iwamoto Y, Zheng Y, Bredella MA, Buckless C, Ghoshhajra B, Thondapu V, van der Laan AM, Piek JJ, Niessen HWM, Pallante F, Carnevale R, Perrotta S, Carnevale D, Iborra-Egea O, Muñoz-Guijosa C, Galvez-Monton C, Bayes-Genis A, Vidoudez C, Trauger SA, Scadden D, Swirski FK, Moskowitz MA, Naxerova K, Nahrendorf M. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1277-1290. [PMID: 38344689 PMCID: PMC10857823 DOI: 10.1038/s44161-023-00388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI. Blockade of fatty acid oxidation by deleting carnitine palmitoyltransferase (Cpt1A) in hematopoietic cells of Vav1Cre/+Cpt1Afl/fl mice limited hematopoietic progenitor proliferation and myeloid cell expansion after MI. We also observed reduced bone marrow adiposity in humans, pigs and mice following MI. Inhibiting lipolysis in adipocytes using AdipoqCreERT2Atglfl/fl mice or local depletion of bone marrow adipocytes in AdipoqCreERT2iDTR mice also curbed emergency hematopoiesis. Furthermore, systemic and regional sympathectomy prevented bone marrow adipocyte shrinkage after MI. These data establish a critical role for fatty acid metabolism in post-MI emergency hematopoiesis.
Collapse
Affiliation(s)
- Shuang Zhang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre Paccalet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sebastian Cremer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyle Mentkowski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa Honold
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi Zheng
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Colleen Buckless
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vikas Thondapu
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anja M van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Piek
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Fabio Pallante
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Pozzilli, Italy
| | - Raimondo Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Pozzilli, Italy
| | - Sara Perrotta
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Pozzilli, Italy
| | - Daniela Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Pozzilli, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA, USA
| | - David Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Moskowitz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
126
|
Zlatanova I, Sun F, Wu RS, Chen X, Lau BH, Colombier P, Sinha T, Celona B, Xu SM, Materna SC, Huang GN, Black BL. An injury-responsive mmp14b enhancer is required for heart regeneration. SCIENCE ADVANCES 2023; 9:eadh5313. [PMID: 38019918 PMCID: PMC10686572 DOI: 10.1126/sciadv.adh5313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roland S. Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan H. Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan C. Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guo N. Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
127
|
Gupta T, Najumuddin, Rajendran D, Gujral A, Jangra A. Metabolism configures immune response across multi-systems: Lessons from COVID-19. Adv Biol Regul 2023; 90:100977. [PMID: 37690286 DOI: 10.1016/j.jbior.2023.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Several studies over the last decade demonstrate the recruitment of immune cells, increased inflammatory cytokines, and chemokine in patients with metabolic diseases, including heart failure, parenchymal inflammation, obesity, tuberculosis, and diabetes mellitus. Metabolic rewiring of immune cells is associated with the severity and prevalence of these diseases. The risk of developing COVID-19/SARS-CoV-2 infection increases in patients with metabolic dysfunction (heart failure, diabetes mellitus, and obesity). Several etiologies, including fatigue, dyspnea, and dizziness, persist even months after COVID-19 infection, commonly known as Post-Acute Sequelae of CoV-2 (PASC) or long COVID. A chronic inflammatory state and metabolic dysfunction are the factors that contribute to long COVID. Here, this study explores the potential link between pathogenic metabolic and immune alterations across different organ systems that could underlie COVID-19 and PASC. These interactions could be utilized for targeted future therapeutic approaches.
Collapse
Affiliation(s)
- Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India
| | - Najumuddin
- Program of Biotechnology, Department of Applied Sciences, Faculty of Engineering, Science and Technology, Hamdard University, Karachi, Pakistan
| | - Dhanya Rajendran
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Akash Gujral
- Department of Medicine, Nyu Grossman School of Medicine, NY, USA
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
128
|
Pappritz K, Puhl SL, Matz I, Brauer E, Shia YX, El-Shafeey M, Koch SE, Miteva K, Mucha C, Duda GN, Petersen A, Steffens S, Tschöpe C, Van Linthout S. Sex- and age-related differences in the inflammatory properties of cardiac fibroblasts: impact on the cardiosplenic axis and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1117419. [PMID: 38054090 PMCID: PMC10694208 DOI: 10.3389/fcvm.2023.1117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Background Age and sex are prominent risk factors for heart failure and determinants of structural and functional changes of the heart. Cardiac fibroblasts (cFB) are beyond their task as extracellular matrix-producing cells further recognized as inflammation-supporting cells. The present study aimed to evaluate the impact of sex and age on the inflammatory potential of cFB and its impact on the cardiosplenic axis and cardiac fibrosis. Materials Left ventricles (LV) of 3- and 12-months old male and female C57BL/6J mice were harvested for immunohistochemistry, immunofluorescence and cFB outgrowth culture and the spleen for flow cytometry. LV-derived cFB and respective supernatants were characterized. Results LV-derived cFB from 3-months old male mice exhibited a higher inflammatory capacity, as indicated by a higher gene expression of CC-chemokine ligand (CCL) 2, and CCL7 compared to cFB derived from 3-months old female mice. The resulting higher CCL2/chemokine C-X3-C motif ligand (Cx3CL1) and CCL7/Cx3CL1 protein ratio in cell culture supernatants of 3-months old male vs. female cFB was reflected by a higher migration of Ly6Chigh monocytes towards supernatant from 3-months old male vs. female cFB. In vivo a lower ratio of splenic pro-inflammatory Ly6Chigh to anti-inflammatory Ly6Clow monocytes was found in 3-months old male vs. female mice, suggesting a higher attraction of Ly6Chigh compared to Ly6Clow monocytes towards the heart in male vs. female mice. In agreement, the percentage of pro-inflammatory CD68+ CD206- macrophages was higher in the LV of male vs. female mice at this age, whereas the percentage of anti-inflammatory CD68+ CD206+ macrophages was higher in the LV of 3-months old female mice compared to age-matched male animals. In parallel, the percentage of splenic TGF-β+ cells was higher in both 3- and 12-months old female vs. male mice, as further reflected by the higher pro-fibrotic potential of female vs. male splenocytes at both ages. In addition, female mice displayed a higher total LV collagen content compared to age-matched male mice, whereby collagen content of female cFB was higher compared to male cFB at the age of 12-months. Conclusion Age- and sex-dependent differences in cardiac fibrosis and inflammation are related to age- and sex-dependent variations in the inflammatory properties of cardiac fibroblasts.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sarah-Lena Puhl
- Comprehensive Heart Failure Center, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Isabel Matz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Erik Brauer
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Yi Xuan Shia
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Muhammad El-Shafeey
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Suzanne E. Koch
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christin Mucha
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Ansgar Petersen
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department Cardiology, Angiology, and Intensive Medicine (CVK) at the German Heart Center of the Charite (DHZC), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
129
|
Ashour D, Rebs S, Arampatzi P, Saliba AE, Dudek J, Schulz R, Hofmann U, Frantz S, Cochain C, Streckfuß-Bömeke K, Campos Ramos G. An interferon gamma response signature links myocardial aging and immunosenescence. Cardiovasc Res 2023; 119:2458-2468. [PMID: 37141306 PMCID: PMC10651211 DOI: 10.1093/cvr/cvad068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Aging entails profound immunological transformations that can impact myocardial homeostasis and predispose to heart failure. However, preclinical research in the immune-cardiology field is mostly conducted in young healthy animals, which potentially weakens its translational relevance. Herein, we sought to investigate how the aging T-cell compartment associates with changes in myocardial cell biology in aged mice. METHODS AND RESULTS We phenotyped the antigen-experienced effector/memory T cells purified from heart-draining lymph nodes of 2-, 6-, 12-, and 18-month-old C57BL/6J mice using single-cell RNA/T cell receptor sequencing. Simultaneously, we profiled all non-cardiomyocyte cell subsets purified from 2- to 18-month-old hearts and integrated our data with publicly available cardiomyocyte single-cell sequencing datasets. Some of these findings were confirmed at the protein level by flow cytometry. With aging, the heart-draining lymph node and myocardial T cells underwent clonal expansion and exhibited an up-regulated pro-inflammatory transcription signature, marked by an increased interferon-γ (IFN-γ) production. In parallel, all major myocardial cell populations showed increased IFN-γ responsive signature with aging. In the aged cardiomyocytes, a stronger IFN-γ response signature was paralleled by the dampening of expression levels of transcripts related to most metabolic pathways, especially oxidative phosphorylation. Likewise, induced pluripotent stem cells-derived cardiomyocytes exposed to chronic, low grade IFN-γ treatment showed a similar inhibition of metabolic activity. CONCLUSIONS By investigating the paired age-related alterations in the T cells found in the heart and its draining lymph nodes, we provide evidence for increased myocardial IFN-γ signaling with age, which is associated with inflammatory and metabolic shifts typically seen in heart failure.
Collapse
Affiliation(s)
- DiyaaElDin Ashour
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, 4-62 HMRC, 11207 87 Ave NW, Edmonton, Alberta T6G, 2S2 Canada
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Clément Cochain
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katrin Streckfuß-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| |
Collapse
|
130
|
Kott KA, Chan AS, Vernon ST, Hansen T, Kim T, de Dreu M, Gunasegaran B, Murphy AJ, Patrick E, Psaltis PJ, Grieve SM, Yang JY, Fazekas de St Groth B, McGuire HM, Figtree GA. Mass cytometry analysis reveals altered immune profiles in patients with coronary artery disease. Clin Transl Immunology 2023; 12:e1462. [PMID: 37927302 PMCID: PMC10621005 DOI: 10.1002/cti2.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objective The importance of inflammation in atherosclerosis is well accepted, but the role of the adaptive immune system is not yet fully understood. To further explore this, we assessed the circulating immune cell profile of patients with coronary artery disease (CAD) to identify discriminatory features by mass cytometry. Methods Mass cytometry was performed on patient samples from the BioHEART-CT study, gated to detect 82 distinct cell subsets. CT coronary angiograms were analysed to categorise patients as having CAD (CAD+) or having normal coronary arteries (CAD-). Results The discovery cohort included 117 patients (mean age 61 ± 12 years, 49% female); 79 patients (68%) were CAD+. Mass cytometry identified changes in 15 T-cell subsets, with higher numbers of proliferating, highly differentiated and cytotoxic cells and decreases in naïve T cells. Five T-regulatory subsets were related to an age and gender-independent increase in the odds of CAD incidence when expressing CCR2 (OR 1.12), CCR4 (OR 1.08), CD38 and CD45RO (OR 1.13), HLA-DR (OR 1.06) and Ki67 (OR 1.22). Markers of proliferation and differentiation were also increased within B cells, while plasmacytoid dendritic cells were decreased. This combination of changes was assessed using SVM models in discovery and validation cohorts (area under the curve = 0.74 for both), confirming the robust nature of the immune signature detected. Conclusion We identified differences within immune subpopulations of CAD+ patients which are indicative of a systemic immune response to coronary atherosclerosis. This immune signature needs further study via incorporation into risk scoring tools for the precision diagnosis of CAD.
Collapse
Affiliation(s)
- Katharine A Kott
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Adam S Chan
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Stephen T Vernon
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Thomas Hansen
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
| | - Taiyun Kim
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Macha de Dreu
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Bavani Gunasegaran
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | | | - Ellis Patrick
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | | | - Stuart M Grieve
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of RadiologyRoyal Prince Alfred HospitalSydneyNSWAustralia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jean Y Yang
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Barbara Fazekas de St Groth
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Gemma A Figtree
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
131
|
Wang X, Shi H, Huang S, Zhang Y, He X, Long Q, Qian B, Zhong Y, Qi Z, Zhao Q, Ye X. Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction. Biomaterials 2023; 302:122364. [PMID: 37883909 DOI: 10.1016/j.biomaterials.2023.122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
A challenge in treating cardiac injury is the low heart-specificity of the drugs. Nanostructured lipid carriers (NLCs) are a relatively new format of lipid nanoparticles which have been used to deliver RNA and drugs. However, lipid nanoparticles exhibit higher affinity to the liver than the heart. To improve the delivery efficiency of NLCs into the heart, NLCs can be embedded into a scaffold and be locally released. In this study, a cardiac extracellular matrix (ECM) hydrogel-NLC composite was developed as a platform for cardiac repair. ECM-NLC composite gels at physiological conditions and releases payloads into the heart over weeks. ECM-NLC hydrogel carrying colchicine, an anti-inflammation agent, improved cardiac repair after myocardial infarction in mice. Transcriptome analysis indicated that Egfr downstream effectors participated in ECM-NLC-colchicine induced heart repair. In conclusion, ECM-NLC hydrogel is a potential platform for sustained and localized delivery of biomolecules into the heart, and loading appropriate medicines further increases the therapeutic efficacy of ECM-NLC hydrogel for cardiovascular diseases.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
132
|
Knuuti J, Tuisku J, Kärpijoki H, Iida H, Maaniitty T, Latva-Rasku A, Oikonen V, Nesterov SV, Teuho J, Jaakkola MK, Klén R, Louhi H, Saunavaara V, Nuutila P, Saraste A, Rinne J, Nummenmaa L. Quantitative Perfusion Imaging with Total-Body PET. J Nucl Med 2023; 64:11S-19S. [PMID: 37918848 DOI: 10.2967/jnumed.122.264870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.
Collapse
Affiliation(s)
- Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland;
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Jouni Tuisku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Henri Kärpijoki
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Aino Latva-Rasku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Sergey V Nesterov
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Riku Klén
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Louhi
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
133
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
134
|
Xu Y, Jiang K, Su F, Deng R, Cheng Z, Wang D, Yu Y, Xiang Y. A transient wave of Bhlhe41 + resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep 2023; 42:113174. [PMID: 37751357 DOI: 10.1016/j.celrep.2023.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The immune system plays a critical role during myocardial injury, contributing to repair and remodeling post myocardial infarction (MI). The myocardial infarct and border zone exhibit high heterogeneity, in turn leading to reconstructing macrophage subsets and specific functions. Here we use a combination of single-cell RNA sequencing, spatial transcriptomes, and reporter mice to characterize temporal-spatial dynamics of cardiac macrophage subtype in response to MI. We identify that transient appearance of monocyte-derived Bhlhe41+ Mφs in the "developing" infarct zone peaked at day 7, while other monocyte-derived macrophages are identified in "old" infarct zone. Functional characterization by co-culture of Bhlhe41+ Mφs with cardiomyocytes and fibroblasts or depletion of Bhlhe41+ Mφs unveils a crucial contribution of Bhlhe41+ Mφs in suppression of myofibroblast activation. This work highlights the importance of Bhlhe41+ Mφ phenotype and plasticity in preventing excessive fibrosis and limiting the expansion of developing infarct area.
Collapse
Affiliation(s)
- Yue Xu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fanghua Su
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruhua Deng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyang Cheng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Wang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
135
|
Zhang L, Liu Y, Wang K, Ou X, Zhou J, Zhang H, Huang M, Du Z, Qiang S. Integration of machine learning to identify diagnostic genes in leukocytes for acute myocardial infarction patients. J Transl Med 2023; 21:761. [PMID: 37891664 PMCID: PMC10612217 DOI: 10.1186/s12967-023-04573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) has two clinical characteristics: high missed diagnosis and dysfunction of leukocytes. Transcriptional RNA on leukocytes is closely related to the course evolution of AMI patients. We hypothesized that transcriptional RNA in leukocytes might provide potential diagnostic value for AMI. Integration machine learning (IML) was first used to explore AMI discrimination genes. The following clinical study was performed to validate the results. METHODS A total of four AMI microarrays (derived from the Gene Expression Omnibus) were included in bioanalysis (220 sample size). Then, the clinical validation was finished with 20 AMI and 20 stable coronary artery disease patients (SCAD). At a ratio of 5:2, GSE59867 was included in the training set, while GSE60993, GSE62646, and GSE48060 were included in the testing set. IML was explicitly proposed in this research, which is composed of six machine learning algorithms, including support vector machine (SVM), neural network (NN), random forest (RF), gradient boosting machine (GBM), decision trees (DT), and least absolute shrinkage and selection operator (LASSO). IML had two functions in this research: filtered optimized variables and predicted the categorized value. Finally, The RNA of the recruited patients was analyzed to verify the results of IML. RESULTS Thirty-nine differentially expressed genes (DEGs) were identified between controls and AMI individuals from the training sets. Among the thirty-nine DEGs, IML was used to process the predicted classification model and identify potential candidate genes with overall normalized weights > 1. Finally, two genes (AQP9 and SOCS3) show their diagnosis value with the area under the curve (AUC) > 0.9 in both the training and testing sets. The clinical study verified the significance of AQP9 and SOCS3. Notably, more stenotic coronary arteries or severe Killip classification indicated higher levels of these two genes, especially SOCS3. These two genes correlated with two immune cell types, monocytes and neutrophils. CONCLUSION AQP9 and SOCS3 in leukocytes may be conducive to identifying AMI patients with SCAD patients. AQP9 and SOCS3 are closely associated with monocytes and neutrophils, which might contribute to advancing AMI diagnosis and shed light on novel genetic markers. Multiple clinical characteristics, multicenter, and large-sample relevant trials are still needed to confirm its clinical value.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, People's Republic of China
| | - Yue Liu
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Kaiyue Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, People's Republic of China
| | - Xiangqin Ou
- The First Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, People's Republic of China
| | - Jiashun Zhou
- Tianjin Jinghai District Hospital, 14 Shengli Road, Jinghai, Tianjin, 301699, People's Republic of China
| | - Houliang Zhang
- Tianjin Jinghai District Hospital, 14 Shengli Road, Jinghai, Tianjin, 301699, People's Republic of China
| | - Min Huang
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Zhenfang Du
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| | - Sheng Qiang
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| |
Collapse
|
136
|
Tan CY, Chan PS, Tan H, Tan SW, Lee CJM, Wang JW, Ye S, Werner H, Loh YJ, Lee YL, Ackers-Johnson M, Foo RSY, Jiang J. Systematic in vivo candidate evaluation uncovers therapeutic targets for LMNA dilated cardiomyopathy and risk of Lamin A toxicity. J Transl Med 2023; 21:690. [PMID: 37840136 PMCID: PMC10577912 DOI: 10.1186/s12967-023-04542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfβ/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfβ signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.
Collapse
Affiliation(s)
- Chia Yee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Pui Shi Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hansen Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Sung Wei Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Chang Jie Mick Lee
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jiong-Wei Wang
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Centre for NanoMedicine, Nanomedicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Shu Ye
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hendrikje Werner
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Ying Jie Loh
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Yin Loon Lee
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore, 138665, Singapore
| | - Matthew Ackers-Johnson
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Roger S Y Foo
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jianming Jiang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore.
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore.
| |
Collapse
|
137
|
Okyere AD, Nayak TK, Patwa V, Teplitsky D, McEachern E, Carter RL, Xu H, Gao E, Zhou Y, Tilley DG. Myeloid cell-specific deletion of epidermal growth factor receptor aggravates acute cardiac injury. Clin Sci (Lond) 2023; 137:1513-1531. [PMID: 37728308 PMCID: PMC10758753 DOI: 10.1042/cs20230804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.
Collapse
Affiliation(s)
- Ama D. Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Tapas K. Nayak
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - David Teplitsky
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Rhonda L. Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
| | - Douglas G. Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
138
|
Miquelestorena-Standley E, da Silva AVV, Monnier M, Chadet S, Piollet M, Héraud A, Lemoine R, Bochaton T, Derumeaux G, Roger S, Ivanes F, Angoulvant D. Human peripheral blood mononuclear cells display a temporal evolving inflammatory profile after myocardial infarction and modify myocardial fibroblasts phenotype. Sci Rep 2023; 13:16745. [PMID: 37798364 PMCID: PMC10556078 DOI: 10.1038/s41598-023-44036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France.
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France.
| | - Ana Valéria Vinhais da Silva
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marina Monnier
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Stéphanie Chadet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marie Piollet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Audrey Héraud
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Thomas Bochaton
- Service de Cardiologie, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Derumeaux
- Service de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Sébastien Roger
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Fabrice Ivanes
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Denis Angoulvant
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| |
Collapse
|
139
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
140
|
Jiang H, Fang T, Cheng Z. Mechanism of heart failure after myocardial infarction. J Int Med Res 2023; 51:3000605231202573. [PMID: 37818767 PMCID: PMC10566288 DOI: 10.1177/03000605231202573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the widespread use of early revascularization and drugs to regulate the neuroendocrine system, the impact of such measures on alleviating the development of heart failure (HF) after myocardial infarction (MI) remains limited. Therefore, it is important to discuss the development of new therapeutic strategies to prevent or reverse HF after MI. This requires a better understanding of the potential mechanisms involved. HF after MI is the result of complex pathophysiological processes, with adverse ventricular remodeling playing a major role. Adverse ventricular remodeling refers to the heart's adaptation in terms of changes in ventricular size, shape, and function under the influence of various regulatory factors, including the mechanical, neurohormonal, and cardiac inflammatory immune environments; ischemia/reperfusion injury; energy metabolism; and genetic correlation factors. Additionally, unique right ventricular dysfunction can occur secondary to ischemic shock in the surviving myocardium. HF after MI may also be influenced by other factors. This review summarizes the main pathophysiological mechanisms of HF after MI and highlights sex-related differences in the prognosis of patients with acute MI. These findings provide new insights for guiding the development of targeted treatments to delay the progression of HF after MI and offering incremental benefits to existing therapies.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Fang
- Department of Cardiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zeyi Cheng
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
141
|
Zhang Y, Wang Y, Li J, Li C, Liu W, Long X, Wang Z, Zhao R, Ge J, Shi B. ANNEXIN A2 FACILITATES NEOVASCULARIZATION TO PROTECT AGAINST MYOCARDIAL INFARCTION INJURY VIA INTERACTING WITH MACROPHAGE YAP AND ENDOTHELIAL INTEGRIN Β3. Shock 2023; 60:573-584. [PMID: 37832154 DOI: 10.1097/shk.0000000000002198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
ABSTRACT Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure. In this study, we observed that expression levels of ANXA2 were dynamically altered in mouse hearts upon MI and peaked on the second day post-MI. Using adeno-associated virus vector-mediated overexpression or silencing of ANXA2 in the heart, we also found that elevation of ANXA2 in the infarcted myocardium significantly improved cardiac function, reduced cardiac fibrosis, and promoted peri-infarct angiogenesis, compared with controls. By contrast, reduction of cardiac ANXA2 exhibited opposite effects. Furthermore, using in vitro coculture system, we found that ANXA2-engineered macrophages promoted cardiac microvascular endothelial cell (CMEC) proliferation, migration, and neovascularization. Mechanistically, we identified that ANXA2 interacted with yes-associated protein (YAP) in macrophages and skewed them toward pro-angiogenic phenotype by inhibiting YAP activity. In addition, ANXA2 directly interacted with integrin β3 in CMECs and enhanced their growth, migration, and tubule formation. Our results indicate that increased expression of ANXA2 could confer protection against MI-induced injury by promoting neovascularization in the infarcted area, partly through the inhibition of YAP in macrophages and activation of integrin β3 in endothelial cells. Our study provides new therapeutic strategies for the treatment of MI injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jiao Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
142
|
Chen P, Pan Y, Ning X, Shi X, Zhong J, Fan X, Li W, Teng Y, Liu X, Yu B, Yang Y, Li H, Ou C. Targeted heart repair by Tβ4-loaded cardiac-resident macrophage-derived extracellular vesicles modified with monocyte membranes. Acta Biomater 2023; 169:372-386. [PMID: 37597679 DOI: 10.1016/j.actbio.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Recent studies have demonstrated the critical role of cardiac-resident macrophages (cMacs) in the maintenance of physiological homeostasis. However, recruitment of circulating monocyte-derived macrophages decreases cMac levels post-myocardial infarction (MI). Transplanting cMacs is not an ideal option due to their low survival rates and the risk of immunological rejection. However, extracellular vesicle therapy has the potential to provide a feasible and safe alternative for cardiac repair. In this study, cell membrane-modified extracellular vesicles (MmEVs) were developed for heart repair by modifying cMac-derived extracellular vesicles (mEVs) with monocyte membranes, resulting in immune evasion and sequential targeted localization to damaged regions through expression of CD47 on MmEVs and strong affinity between monocyte membrane proteins and CCL2. Additionally, to fully exploit the potential clinical application of MmEVs and achieve a better curative effect, thymosin β4 (Tβ4) was loaded into the nanoparticles, resulting in Tβ4-MmEVs. In vitro experiments indicated that both the MmEVs and Tβ4-MmEVs promoted cardiomyocyte proliferation and endothelial cell migration. Animal experiments suggested that MI mice treated with MmEVs and Tβ4-MmEVs exhibited reduced myocardial fibrosis and increased vascular density compared to the control group. Thus, we posit that these targeted nanoparticles hold significant potential for MI adjuvant therapy and may open new avenues for cardiac repair and regeneration. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) derived from bioactive parent cell sources involved in pathological and repair processes for cardiovascular disease have emerged as a compelling strategy for regenerative therapy. In this study, we constructed monocyte membrane-modified extracellular vesicles loaded with a drug (Tβ4-MmEVs) for heart repair that exhibit extraordinary abilities of immune evasion and sequential localization to damaged regions owing to the presence of CD47 and the strong affinity between monocytes and damaged cardiomyocytes and endothelial cells. The bioactivities of Tβ4-MmEVs on enhancing cardiomyocyte and endothelial cell proliferation were validated both in vitro and in vivo. Effective development and implementation of therapeutically membrane-modified nanoparticles from homologous origins can provide a reference for adjuvant therapy in clinical MI management.
Collapse
Affiliation(s)
- Peier Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Yuxuan Pan
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xiaodong Ning
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xu Shi
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Jianfeng Zhong
- Department of Cardiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, China
| | - Xianglin Fan
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Weirun Li
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Yintong Teng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xueting Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanhua Yang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China.
| | - Hekai Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China.
| |
Collapse
|
143
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
144
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
145
|
Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, Beckman TN, Slezak AJ, Mizukami Y, Mansurov A, Gomes S, Ishihara J, Hubbell JA. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med 2023; 8:49. [PMID: 37696884 PMCID: PMC10495343 DOI: 10.1038/s41536-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.
Collapse
Affiliation(s)
- Abigail L Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Taryn N Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
146
|
Uebing A, Hitz MP. How can we improve the evidence base for the treatment and care for patients with congenital heart disease? Eur Heart J 2023; 44:3261-3263. [PMID: 36747474 DOI: 10.1093/eurheartj/ehad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Anselm Uebing
- Department of Congenital Heart Disease and Paediatric Cardiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, D-24105 Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Kiel, Germany
- Competence Network for Congenital Heart Defects, Berlin, Germany
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Paediatric Cardiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, D-24105 Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Kiel, Germany
- Competence Network for Congenital Heart Defects, Berlin, Germany
- Department for Medical Genetics, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
147
|
Diller GP, Lammers AE, Fischer A, Orwat S, Nienhaus K, Schmidt R, Radke RM, De-Torres-Alba F, Kaleschke G, Marschall U, Bauer UM, Roth J, Gerß J, Bormann E, Baumgartner H. Immunodeficiency is prevalent in congenital heart disease and associated with increased risk of emergency admissions and death. Eur Heart J 2023; 44:3250-3260. [PMID: 36747318 DOI: 10.1093/eurheartj/ehad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS To provide population-based data on the prevalence and clinical significance of immune deficiency syndromes (IDS) associated with congenital heart disease (CHD). METHODS AND RESULTS Utilizing administrative German Health System data the prevalence of increased susceptibility to infection (ISI) or confirmed IDS was assessed in CHD patients and compared with an age-matched non-congenital control group. Furthermore, the prognostic significance of IDS was assessed using all-cause mortality and freedom from emergency hospital admission. A total of 54 449 CHD patients were included. Of these 14 998 (27.5%) had ISI and 3034 (5.6%) had a documented IDS (compared with 2.9% of the age-matched general population). During an observation period of 394 289 patient-years, 3824 CHD patients died, and 31 017 patients experienced a combined event of all-cause mortality or emergency admission. On multivariable Cox proportional-hazard analysis, the presence of ISI [hazard ratio (HR): 2.14, P < 0.001] or documented IDS (HR: 1.77, P = 0.035) emerged as independent predictors of all-cause mortality. In addition, ISI and confirmed IDS were associated with a significantly higher risk of emergency hospital admission (P = 0.01 for both on competing risk analysis) during follow-up. CONCLUSION Limited immune competence is common in CHD patients and associated with an increased risk of morbidity and mortality. This highlights the need for structured IDS screening and collaboration with immunology specialists as immunodeficiency may be amenable to specific therapy. Furthermore, studies are required to assess whether IDS patients might benefit from intensified antibiotic shielding or tailored prophylaxis.
Collapse
Affiliation(s)
- Gerhard-Paul Diller
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Adult Congenital Heart Disease Unit, Royal Brompton Hospital and King's College, Sydney Street, Sw3 6NP London, UK
- National Register for Congenital Heart Disease, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Astrid Elisabeth Lammers
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of Paediatric Cardiology, University Hospital Münster Germany, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Alicia Fischer
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stefan Orwat
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Klara Nienhaus
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Renate Schmidt
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Robert M Radke
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Fernando De-Torres-Alba
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gerrit Kaleschke
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ursula Marschall
- Department of Medicine and Health Services Research, BARMER Health Insurance, Lichtscheider Str., 8942285 Wuppertal, Germany
| | - Ulrike M Bauer
- National Register for Congenital Heart Disease, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Oudenarder Str. 16, 13347 Berlin, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Joachim Gerß
- Department for Biostatistics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Eike Bormann
- Department for Biostatistics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Helmut Baumgartner
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- National Register for Congenital Heart Disease, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
148
|
Zhuang L, Zong X, Yang Q, Fan Q, Tao R. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine 2023; 95:104744. [PMID: 37556943 PMCID: PMC10433018 DOI: 10.1016/j.ebiom.2023.104744] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear. METHODS IL-34 knock-out mice were used to determine the role of IL-34 on cardiac remodeling after IR surgery. Then, immunofluorescence, flow cytometry assays, and RNA-seq analysis were performed to explore the underlying mechanisms of IL-34-induced macrophage recruitment and polarization, and further heart failure after IR. FINDINGS By re-analyzing single-cell RNA-seq and single-nucleus RNA-seq data of murine and human ischemic hearts, we showed that IL-34 expression was upregulated after IR. IL-34 knockout mitigated cardiac remodeling, cardiac dysfunction, and fibrosis after IR and vice versa. RNA-seq analysis revealed that IL-34 deletion correlated negatively with immune responses and chemotaxis after IR injury. Consistently, immunofluorescence and flow cytometry assays demonstrated that IL-34 deletion attenuated macrophage recruitment and CCR2+ macrophage polarization. Mechanistically, IL-34 deficiency repressed both the canonical and noncanonical NF-κB signaling pathway, leading to marked reduction of P-IKKβ and P-IκBα kinase levels; downregulation of NF-κB p65, RelB, and p52 expression, which drove the decline in chemokine CCL2 expression. Finally, IL-34 and CCL2 levels were increased in the serum of acute coronary syndrome patients, with a positive correlation between circulating IL-34 and CCL2 levels in clinical patients. INTERPRETATION In conclusion, IL-34 sustains NF-κB pathway activation to elicit increased CCL2 expression, which contributes to macrophage recruitment and polarization, and subsequently exacerbates cardiac remodeling and heart failure post-IR. Strategies targeting IL-34-centered immunomodulation may provide new therapeutic approaches to prevent and reverse cardiac remodeling and heart failure in clinical MI patients after percutaneous coronary intervention. FUNDING This study was supported by the National Nature Science Foundation of China (81670352 and 81970327 to R T, 82000368 to Q F).
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao Zong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Rong Tao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
149
|
Simon-Chica A, Wülfers EM, Kohl P. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol 2023; 325:H475-H491. [PMID: 37417876 PMCID: PMC10538996 DOI: 10.1152/ajpheart.00184.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eike M Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
150
|
Fu Y, Zi R, Xiong S. Infection by exosome-carried Coxsackievirus B3 induces immune escape resulting in an aggravated pathogenesis. Microbes Infect 2023; 25:105148. [PMID: 37156458 DOI: 10.1016/j.micinf.2023.105148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Increasing evidence has shown that extracellular vesicles or exosomes released from virus-infected cells contain viral particles, genomes, or other pathogenic factors that move to neighbor cells, contributing to virus dissemination and productive infection. Our recent study demonstrated that exosomes carrying CVB3 virions exhibited greater infection efficiency than free virions because they accessed various entry routes, overcoming restrictions to viral tropism. However, the pathogenicity of exosomes carried CVB3 and their effect on immunological properties have not yet been completely explained. In the current study, we sought to explore whether exosomes exert their effect on the CVB3-induced pathogenesis or evade the immune attack. Our results showed that exosomes-carried CVB3 could effectively infect viral receptor-negative immune cells in vivo, resulting in inducing immune system loss. Importantly, the exosomes-carried CVB3 had the ability to escape the neutralizing antibodies activity resulting in inducing the severe onset of myocarditis. Using the genetically engineered mouse with deficiency of exosomes, we observed that the exosomes-carried CVB3 reinforced an aggravated pathogenesis. By understanding how exosomes promote the course of viral disease, clinical applications of exosomes can be developed.
Collapse
Affiliation(s)
- Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ruidong Zi
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|