101
|
Kamdar P, Thomas M, Yoganathan S, Muthusamy K, Koshy B, Oommen SP, Aaron R, Barney A, Abraham SSC, Danda S. Methyl-CpG-binding protein 2 gene mutations and its association with epilepsy: a single centre study from the Indian subcontinent. J Genet 2020. [DOI: 10.1007/s12041-020-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Scrutinizing the molecular, biochemical, and cytogenetic attributes in subjects with Rett syndrome (RTT) and their mothers. Epilepsy Behav 2020; 111:107277. [PMID: 32653844 DOI: 10.1016/j.yebeh.2020.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022]
Abstract
Rett syndrome (RTT) is a stern dominant progressive neurological development disorder linked with X chromosome ranking second for mental slowdown, exclusively in females after few months of birth with normal development and growth period. Genetically any defects in universally expressed methyl-CpG binding protein 2 (MeCP2) transcription regulator gene are considered as radix for RTT in almost all the previous studies. Our study mainly focuses in unraveling the genetic alterations like identifying MeCP2 gene polymorphisms, chromosomal abnormalities, or X-chromosome inactivation (XCI) as underlying cause of RTT in prototypes sorted through Diagnostic and Statistical Manual of Mental Disorders-Text Revised (DSM IV). In addition, we have examined the probable surrogates of brain function disabilities like serotonin, homocysteine (Hcy), calcium, potassium, and lead from blood in both RTT porotypes and their mothers. In our investigation, we have observed varied amino acid substitution of MeCP2 and varied frequency of skewed XCI in RTT prototype. Our study validates that the demonstration of chromosomal analysis, biochemical analysis, and genomic observations helps in concluding RTT condition and can be helpful in providing appropriate treatment and counseling as well as improve the currently available protocol of diagnosis.
Collapse
|
103
|
Flores Gutiérrez J, De Felice C, Natali G, Leoncini S, Signorini C, Hayek J, Tongiorgi E. Protective role of mirtazapine in adult female Mecp2 +/- mice and patients with Rett syndrome. J Neurodev Disord 2020; 12:26. [PMID: 32988385 PMCID: PMC7523042 DOI: 10.1186/s11689-020-09328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. METHODS Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16-47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08-5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. RESULTS In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. CONCLUSIONS This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.
Collapse
Affiliation(s)
- Javier Flores Gutiérrez
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giulia Natali
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Silvia Leoncini
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Pediatric Speciality Center "L'Isola di Bau", 50052 Certaldo, Florence, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy.
| |
Collapse
|
104
|
Ishizuka K, Yoshida T, Kawabata T, Imai A, Mori H, Kimura H, Inada T, Okahisa Y, Egawa J, Usami M, Kushima I, Morikawa M, Okada T, Ikeda M, Branko A, Mori D, Someya T, Iwata N, Ozaki N. Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia. J Neurodev Disord 2020; 12:25. [PMID: 32942984 PMCID: PMC7496212 DOI: 10.1186/s11689-020-09325-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Rare genetic variants contribute to the etiology of both autism spectrum disorder (ASD) and schizophrenia (SCZ). Most genetic studies limit their focus to likely gene-disrupting mutations because they are relatively easier to interpret their effects on the gene product. Interpretation of missense variants is also informative to some pathophysiological mechanisms of these neurodevelopmental disorders; however, their contribution has not been elucidated because of relatively small effects. Therefore, we characterized missense variants detected in NRXN1, a well-known neurodevelopmental disease-causing gene, from individuals with ASD and SCZ. Methods To discover rare variants with large effect size and to evaluate their role in the shared etiopathophysiology of ASD and SCZ, we sequenced NRXN1 coding exons with a sample comprising 562 Japanese ASD and SCZ patients, followed by a genetic association analysis in 4273 unrelated individuals. Impact of each missense variant detected here on cell surface expression, interaction with NLGN1, and synaptogenic activity was analyzed using an in vitro functional assay and in silico three-dimensional (3D) structural modeling. Results Through mutation screening, we regarded three ultra-rare missense variants (T737M, D772G, and R856W), all of which affected the LNS4 domain of NRXN1α isoform, as disease-associated variants. Diagnosis of individuals with T737M, D772G, and R856W was 1ASD and 1SCZ, 1ASD, and 1SCZ, respectively. We observed the following phenotypic and functional burden caused by each variant. (i) D772G and R856W carriers had more serious social disabilities than T737M carriers. (ii) In vitro assay showed reduced cell surface expression of NRXN1α by D772G and R856W mutations. In vitro functional analysis showed decreased NRXN1α-NLGN1 interaction of T737M and D772G mutants. (iii) In silico 3D structural modeling indicated that T737M and D772G mutations could destabilize the rod-shaped structure of LNS2-LNS5 domains, and D772G and R856W could disturb N-glycan conformations for the transport signal. Conclusions The combined data suggest that missense variants in NRXN1 could be associated with phenotypes of neurodevelopmental disorders beyond the diagnosis of ASD and/or SCZ.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Takeshi Kawabata
- Institute for Protein Research, Osaka University, Osaka, 5650871, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 7008558, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 9518510, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba, 2728516, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Aleksic Branko
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, 4668550, Japan.
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 9518510, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
105
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
106
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
107
|
Khalili Alashti S, Fallahi J, Jokar A, Fardaei M. CRISPR/Cas9 knock-in toward creating a Rett syndrome cell model with a synonymous mutation in the MECP2 gene. J Gene Med 2020; 22:e3258. [PMID: 32761967 DOI: 10.1002/jgm.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Rett syndrome is an X-linked dominant neurodevelopmental disease caused by mutation in the methyl-CpG-binding protein 2 (MECP2) gene. This gene encodes a methylated DNA-binding protein, which acts as a transcriptional regulatory factor. The present study aimed to establish a cell model of Rett syndrome with the MECP2 synonymous mutation c.354G>T (p.Gly118Gly). In addition, the molecular mechanism of pathogenesis of this mutation was also investigated. METHODS To create a cell line containing the synonymous variant in MECP2 locus, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated homology-directed repair precise gene editing method was used. In addition, employing the synthesis of cDNA, the effect of this variant on splicing was investigated. RESULTS Using this model and molecular analysis, we found that the c.354G>T synonymous variant created a novel 5' cryptic splice donor site within the exon 3 of MECP2 gene, which resulted in the deletion of 25 nucleotides at the 3' end of exon 3 and presumably protein truncation. CONCLUSIONS The results of the present study show that an apparently neutral synonymous polymorphism, which may be commonly classified as non-pathogenic, may indeed lead to the creation of an aberrant splice site, thereby resulting in disease.
Collapse
Affiliation(s)
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
108
|
Cell-Type-Specific Gene Inactivation and In Situ Restoration via Recombinase-Based Flipping of Targeted Genomic Region. J Neurosci 2020; 40:7169-7186. [PMID: 32801153 DOI: 10.1523/jneurosci.1044-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Conditional gene inactivation and restoration are powerful tools for studying gene functions in the nervous system and for modeling neuropsychiatric diseases. The combination of the two is necessary to interrogate specific cell types within defined developmental stages. However, very few methods and animal models have been developed for such purpose. Here we present a versatile method for conditional gene inactivation and in situ restoration through reversibly inverting a critical part of its endogenous genomic sequence by Cre- and Flp-mediated recombinations. Using this method, we generated a mouse model to manipulate Mecp2, an X-linked dosage-sensitive gene whose mutations cause Rett syndrome. Combined with multiple Cre- and Flp-expressing drivers and viral tools, we achieved efficient and reliable Mecp2 inactivation and restoration in the germline and several neuronal cell types, and demonstrated phenotypic reversal and prevention on cellular and behavioral levels in male mice. This study not only provides valuable tools and critical insights for Mecp2 and Rett syndrome, but also offers a generally applicable strategy to decipher other neurologic disorders.SIGNIFICANCE STATEMENT Studying neurodevelopment and modeling neurologic disorders rely on genetic tools, such as conditional gene regulation. We developed a new method to combine conditional gene inactivation and restoration on a single allele without disturbing endogenous expression pattern or dosage. We applied it to manipulate Mecp2, a gene residing on X chromosome whose malfunction leads to neurologic disease, including Rett syndrome. Our results demonstrated the efficiency, specificity, and versatility of this new method, provided valuable tools and critical insights for Mecp2 function and Rett syndrome research, and offered a generally applicable strategy to investigate other genes and genetic disorders.
Collapse
|
109
|
MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 2020; 586:440-444. [PMID: 32698189 DOI: 10.1038/s41586-020-2574-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.
Collapse
|
110
|
Kaur S, Van Bergen NJ, Verhey KJ, Nowell CJ, Budaitis B, Yue Y, Ellaway C, Brunetti-Pierri N, Cappuccio G, Bruno I, Boyle L, Nigro V, Torella A, Roscioli T, Cowley MJ, Massey S, Sonawane R, Burton MD, Schonewolf-Greulich B, Tümer Z, Chung WK, Gold WA, Christodoulou J. Expansion of the phenotypic spectrum of de novo missense variants in kinesin family member 1A (KIF1A). Hum Mutat 2020; 41:1761-1774. [PMID: 32652677 DOI: 10.1002/humu.24079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron-specific ATP-dependent anterograde axonal transporter of synaptic cargo, are well-recognized to cause a spectrum of neurological conditions, commonly known as KIF1A-associated neurological disorders (KAND). Here, we report one mutation-negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH-SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cameron J Nowell
- Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Breane Budaitis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carolyn Ellaway
- Discipline of Genomic Medicine, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Irene Bruno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lia Boyle
- Division of Molecular Genetics, Columbia University Irving Medical Center, New York, New York
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Tony Roscioli
- New South Wales Health Pathology, Randwick, New South Wales, Australia.,Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rhea Sonawane
- Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, Australia
| | - Matthew D Burton
- Flow Cytometry and Imaging Facility, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Bitten Schonewolf-Greulich
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Wendy K Chung
- Departments of Paediatrics and Medicine, Columbia University Medical Center, New York, New York
| | - Wendy A Gold
- Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia.,Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,School of Medical Sciences and Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Discipline of Genomic Medicine, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
111
|
Frasca A, Spiombi E, Palmieri M, Albizzati E, Valente MM, Bergo A, Leva B, Kilstrup‐Nielsen C, Bianchi F, Di Carlo V, Di Cunto F, Landsberger N. MECP2 mutations affect ciliogenesis: a novel perspective for Rett syndrome and related disorders. EMBO Mol Med 2020; 12:e10270. [PMID: 32383329 PMCID: PMC7278541 DOI: 10.15252/emmm.201910270] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Michela Palmieri
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Albizzati
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Maria Maddalena Valente
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Anna Bergo
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Barbara Leva
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | | | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri OttolenghiOrbassanoItaly
- Department of NeuroscienceUniversity of TorinoTorinoItaly
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
112
|
Saby JN, Peters SU, Roberts TPL, Nelson CA, Marsh ED. Evoked Potentials and EEG Analysis in Rett Syndrome and Related Developmental Encephalopathies: Towards a Biomarker for Translational Research. Front Integr Neurosci 2020; 14:30. [PMID: 32547374 PMCID: PMC7271894 DOI: 10.3389/fnint.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Rett syndrome is a debilitating neurodevelopmental disorder for which no disease-modifying treatment is available. Fortunately, advances in our understanding of the genetics and pathophysiology of Rett syndrome has led to the development of promising new therapeutics for the condition. Several of these therapeutics are currently being tested in clinical trials with others likely to progress to clinical trials in the coming years. The failure of recent clinical trials for Rett syndrome and other neurodevelopmental disorders has highlighted the need for electrophysiological or other objective biological markers of treatment response to support the success of clinical trials moving forward. The purpose of this review is to describe the existing studies of electroencephalography (EEG) and evoked potentials (EPs) in Rett syndrome and discuss the open questions that must be addressed before the field can adopt these measures as surrogate endpoints in clinical trials. In addition to summarizing the human work on Rett syndrome, we also describe relevant studies with animal models and the limited research that has been carried out on Rett-related disorders, particularly methyl-CpG binding protein 2 (MECP2) duplication syndrome, CDKL5 deficiency disorder, and FOXG1 disorder.
Collapse
Affiliation(s)
- Joni N. Saby
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric D. Marsh
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Eric D. Marsh
| |
Collapse
|
113
|
Chen CH, Cheng MC, Huang A, Hu TM, Ping LY, Chang YS. Detection of Rare Methyl-CpG Binding Protein 2 Gene Missense Mutations in Patients With Schizophrenia. Front Genet 2020; 11:476. [PMID: 32457807 PMCID: PMC7227600 DOI: 10.3389/fgene.2020.00476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Deleterious mutations of MECP2 are responsible for Rett syndrome, a severe X-linked childhood neurodevelopmental disorder predominates in females, male patients are considered fatal. However, increasing reports indicate that some MECP2 mutations may also present various neuropsychiatric phenotypes, including intellectual disability, autism spectrum disorder, depression, cocaine addiction, and schizophrenia in both males and females, suggesting varied clinical expressivity in some MECP2 mutations. Most of the MECP2 mutations are private de novo mutations. To understand whether MECP2 mutations are associated with schizophrenia, we systematically screen for mutations at the protein-coding regions of the MECP2 gene in a sample of 404 schizophrenic patients (171 females, 233 males) and 390 non-psychotic controls (171 females, 218 males). We identified six rare missense mutations in this sample, including T197M in one male patient and two female controls, L201V in nine patients (three males and six females) and 4 controls (three females and one male), L213V in one female patient, A358T in one male patient and one female control, P376S in one female patient, and P419S in one male patient. These mutations had been reported to be present in patients with various neuropsychiatric disorders other than Rett syndrome in the literature. Furthermore, we detected a novel double-missense mutation P376S-P419R in a male patient. The family study revealed that his affected sister also had this mutation. The mutation was transmitted from their mother who had a mild cognitive deficit. Our findings suggest that rare MECP2 mutations exist in some schizophrenia patients and the MECP2 gene could be considered a risk gene of schizophrenia.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Ailing Huang
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Yu-Syuan Chang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
114
|
Complete Profiling of Methyl-CpG-Binding Domains for Combinations of Cytosine Modifications at CpG Dinucleotides Reveals Differential Read-out in Normal and Rett-Associated States. Sci Rep 2020; 10:4053. [PMID: 32132616 PMCID: PMC7055227 DOI: 10.1038/s41598-020-61030-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
5-Methylcytosine (mC) exists in CpG dinucleotides of mammalian DNA and plays key roles in chromatin regulation during development and disease. As a main regulatory pathway, fully methylated CpG are recognized by methyl-CpG-binding domain (MBD) proteins that act in concert with chromatin remodelers, histone deacetylases and methyltransferases to trigger transcriptional downregulation. In turn, MBD mutations can alter CpG binding, and in case of the MBD protein MeCP2 can cause the neurological disorder Rett syndrome (RTT). An additional layer of complexity in CpG recognition is added by ten-eleven-translocation (TET) dioxygenases that oxidize mC to 5-hydroxymethyl-, 5-formyl- and 5-carboxylcytosine, giving rise to fifteen possible combinations of cytosine modifications in the two CpG strands. We report a comprehensive, comparative interaction analysis of the human MBD proteins MeCP2, MBD1, MBD2, MBD3, and MBD4 with all CpG combinations and observe individual preferences of each MBD for distinct combinations. In addition, we profile four MeCP2 RTT mutants and reveal that although interactions to methylated CpGs are similarly affected by the mutations, interactions to oxidized mC combinations are differentially affected. These findings argue for a complex interplay between local TET activity/processivity and CpG recognition by MBDs, with potential consequences for the transcriptional landscape in normal and RTT states.
Collapse
|
115
|
Khalili Alashti S, Fallahi J, Mohammadi S, Dehghanian F, Farbood Z, Masoudi M, Poorang S, Jokar A, Fardaei M. Two novel mutations in the MECP2 gene in patients with Rett syndrome. Gene 2020; 732:144337. [DOI: 10.1016/j.gene.2020.144337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022]
|
116
|
Yuan ZF, Mao SS, Shen J, Jiang LH, Xu L, Xu JL, Gao F. Insulin-Like Growth Factor-1 Down-Regulates the Phosphorylation of FXYD1 and Rescues Behavioral Deficits in a Mouse Model of Rett Syndrome. Front Neurosci 2020; 14:20. [PMID: 32063830 PMCID: PMC7000522 DOI: 10.3389/fnins.2020.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/10/2020] [Indexed: 01/02/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disease in children that is mainly caused by mutations in the MeCP2 gene, which codes for a transcriptional regulator. The expression of insulin-like growth factor-1 (IGF-1) is reduced in RTT patients and animal models, and IGF-1 treatment is a promising therapeutic strategy for RTT. However, the mechanism underlying the effects of IGF-1 remains to be further explored. FXYD1 is an auxiliary subunit of Na, K-ATPase. Overexpression of FXYD1 is involved in the pathogenesis of RTT. However, whether IGF-1 exerts its effect through normalizing FXYD1 is completely unknown. To this end, we evaluated the effect of IGF-1 on FXYD1 expression and posttranslational modification in a mouse model of RTT (MeCP2308) using both in vitro and in vivo experiments. The results show that FXYD1 mRNA and phosphorylated protein (p-FXYD1) were significantly elevated in the frontal cortex in RTT mice, compared to wild type. In RTT mice, IGF-1 treatment significantly reduced levels of FXYD1 mRNA and p-FXYD1, in parallel with improvements in behavior, motor coordination, and cognitive function. For mechanistic insight into the effect of IGF-1 on p-FXYD1, we found the decreased phosphorylated forms of PI3K-AKT-mTOR signaling pathway components in the frontal cortex of RTT mice and the normalizing effect of IGF-1 on the phosphorylated forms of these components. Interestingly, blocking the PI3K/AKT pathway by PI3K inhibitor could abolish the effect of IGF-1 on p-FXYD1 level, in addition to the effect of IGF-1 on the phosphorylation of other components in the PI3K/AKT pathway. Thus, our study has provided new insights into the mechanism of IGF-1 treatment for RTT, which appears to involve FXYD1.
Collapse
Affiliation(s)
- Zhe-Feng Yuan
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shan-Shan Mao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jue Shen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Li-Hua Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia-Lu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
117
|
Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020; 9:E240. [PMID: 31963584 PMCID: PMC7016893 DOI: 10.3390/cells9010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dysfunctions in GABAergic inhibitory neural transmission occur in neuronal injuries and neurological disorders. The potassium-chloride cotransporter 2 (KCC2, SLC12A5) is a key modulator of inhibitory GABAergic inputs in healthy adult neurons, as its chloride (Cl-) extruding activity underlies the hyperpolarizing reversal potential for GABAA receptor Cl- currents (EGABA). Manipulation of KCC2 levels or activity improve symptoms associated with epilepsy and neuropathy. Recent works have now indicated that pharmacological enhancement of KCC2 function could reactivate dormant relay circuits in an injured mouse's spinal cord, leading to functional recovery and the attenuation of neuronal abnormality and disease phenotype associated with a mouse model of Rett syndrome (RTT). KCC2 interacts with Huntingtin and is downregulated in Huntington's disease (HD), which contributed to GABAergic excitation and memory deficits in the R6/2 mouse HD model. Here, these recent advances are highlighted, which attest to KCC2's growing potential as a therapeutic target for neuropathological conditions resulting from dysfunctional inhibitory input.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
118
|
Clemens AW, Wu DY, Moore JR, Christian DL, Zhao G, Gabel HW. MeCP2 Represses Enhancers through Chromosome Topology-Associated DNA Methylation. Mol Cell 2020; 77:279-293.e8. [PMID: 31784360 PMCID: PMC6980697 DOI: 10.1016/j.molcel.2019.10.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 01/28/2023]
Abstract
The genomes of mammalian neurons contain uniquely high levels of non-CG DNA methylation that can be bound by the Rett syndrome protein, MeCP2, to regulate gene expression. How patterns of non-CG methylation are established in neurons and the mechanism by which this methylation works with MeCP2 to control gene expression is unclear. Here, we find that genes repressed by MeCP2 are often located within megabase-scale regions of high non-CG methylation that correspond with topologically associating domains of chromatin folding. MeCP2 represses enhancers found in these domains that are enriched for non-CG and CG methylation, with the strongest repression occurring for enhancers located within MeCP2-repressed genes. These alterations in enhancer activity provide a mechanism for how MeCP2 disruption in disease can lead to widespread changes in gene expression. Hence, we find that DNA topology can shape non-CG DNA methylation across the genome to dictate MeCP2-mediated enhancer regulation in the brain.
Collapse
Affiliation(s)
- Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - J Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Diana L Christian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
119
|
Comprehensive Analysis of GABA A-A1R Developmental Alterations in Rett Syndrome: Setting the Focus for Therapeutic Targets in the Time Frame of the Disease. Int J Mol Sci 2020; 21:ijms21020518. [PMID: 31947619 PMCID: PMC7014188 DOI: 10.3390/ijms21020518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
Rett syndrome, a serious neurodevelopmental disorder, has been associated with an altered expression of different synaptic-related proteins and aberrant glutamatergic and γ-aminobutyric acid (GABA)ergic neurotransmission. Despite its severity, it lacks a therapeutic option. Through this work we aimed to define the relationship between MeCP2 and GABAA.-A1 receptor expression, emphasizing the time dependence of such relationship. For this, we analyzed the expression of the ionotropic receptor subunit in different MeCP2 gene-dosage and developmental conditions, in cells lines, and in primary cultured neurons, as well as in different developmental stages of a Rett mouse model. Further, RNAseq and systems biology analysis was performed from post-mortem brain biopsies of Rett patients. We observed that the modulation of the MeCP2 expression in cellular models (both Neuro2a (N2A) cells and primary neuronal cultures) revealed a MeCP2 positive effect on the GABAA.-A1 receptor subunit expression, which did not occur in other proteins such as KCC2 (Potassium-chloride channel, member 5). In the Mecp2+/− mouse brain, both the KCC2 and GABA subunits expression were developmentally regulated, with a decreased expression during the pre-symptomatic stage, while the expression was variable in the adult symptomatic mice. Finally, the expression of the gamma-aminobutyric acid (GABA) receptor-related synaptic proteins from the postmortem brain biopsies of two Rett patients was evaluated, specifically revealing the GABA A1R subunit overexpression. The identification of the molecular changes along with the Rett syndrome prodromic stages strongly endorses the importance of time frame when addressing this disease, supporting the need for a neurotransmission-targeted early therapeutic intervention.
Collapse
|
120
|
Ribeiro MC, MacDonald JL. Sex differences in Mecp2-mutant Rett syndrome model mice and the impact of cellular mosaicism in phenotype development. Brain Res 2020; 1729:146644. [PMID: 31904347 DOI: 10.1016/j.brainres.2019.146644] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
There is currently no effective treatment for Rett syndrome (RTT), a severe X-linked progressive neurodevelopmental disorder caused by mutations in the transcriptional regulator MECP2. Because MECP2 is subjected to X-inactivation, most affected individuals are female heterozygotes who display cellular mosaicism for normal and mutant MECP2. Males who are hemizygous for mutant MECP2 are more severely affected than heterozygous females and rarely survive. Mecp2 loss-of-function is less severe in mice, however, and male hemizygous null mice not only survive until adulthood, they have been the most commonly studied model system. Although heterozygous female mice better recapitulate human RTT, they have not been as thoroughly characterized. This is likely because of the added experimental challenges that they present, including delayed and more variable phenotypic progression and cellular mosaicism due to X-inactivation. In this review, we compare phenotypes of Mecp2 heterozygous female mice and male hemizygous null mouse models. Further, we discuss the complexities that arise from the many cell-type and tissue-type specific roles of MeCP2, as well as the combination of cell-autonomous and non-cell-autonomous disruptions that result from Mecp2 loss-of-function. This is of particular importance in the context of the female heterozygous brain, composed of a mixture of MeCP2+ and MeCP2- cells, the ratio of which can alter RTT phenotypes in the case of skewed X-inactivation. The goal of this review is to provide a clearer understanding of the pathophysiological differences between the mouse models, which is an essential consideration in the design of future pre-clinical studies.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States.
| |
Collapse
|
121
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
122
|
Hinz L, Torrella Barrufet J, Heine VM. KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients. Acta Neuropathol Commun 2019; 7:196. [PMID: 31796123 PMCID: PMC6892240 DOI: 10.1186/s40478-019-0852-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the Methyl CpG binding protein 2 (MECP2) gene. Deficient K+-Cl-co-transporter 2 (KCC2) expression is suggested to play a key role in the neurodevelopmental delay in RTT patients' neuronal networks. KCC2 is a major player in neuronal maturation by supporting the GABAergic switch, through the regulation of neuronal chlorine homeostasis. Previous studies suggest that MeCP2 mutations lead to changed KCC2 expression levels, thereby causing a disturbance in excitation/inhibition (E/I) balance. To investigate this, we performed protein and RNA expression analysis on post mortem brain tissue from RTT patients and healthy controls. We showed that KCC2 expression, in particular the KCC2a isoform, is relatively decreased in RTT patients. The expression of Na+-K+-Cl- co-transporter 1 (NKCC1), responsible for the inward transport of chlorine, is not affected, leading to a reduced KCC2/NKCC1 ratio in RTT brains. Our report confirms KCC2 expression alterations in RTT patients in human brain tissue, which is in line with other studies, suggesting affected E/I balance could underlie neurodevelopmental defects in RTT patients.
Collapse
Affiliation(s)
- Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joan Torrella Barrufet
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands.
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
123
|
Lavery LA, Zoghbi HY. The distinct methylation landscape of maturing neurons and its role in Rett syndrome pathogenesis. Curr Opin Neurobiol 2019; 59:180-188. [PMID: 31542590 PMCID: PMC6892602 DOI: 10.1016/j.conb.2019.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Rett syndrome (RTT) is one of the most common causes of intellectual and developmental disabilities in girls, and is caused by mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). Here we will review our current understanding of RTT, the landscape of pathogenic mutations and function of MeCP2, and culminate with recent advances elucidating the distinct DNA methylation landscape in the brain that may explain why disease symptoms are delayed and selective to the nervous system.
Collapse
Affiliation(s)
- Laura A Lavery
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
124
|
Marco EM. Commentary on “Rett syndrome before regression: A time window of overlooked opportunities for diagnosis and intervention” by Cosentino et al. Neurosci Biobehav Rev 2019; 107:1-2. [DOI: 10.1016/j.neubiorev.2019.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022]
|
125
|
Sysoeva OV, Smirnov K, Stroganova TA. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: Systematic review. Clin Neurophysiol 2019; 131:213-224. [PMID: 31812082 DOI: 10.1016/j.clinph.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Systematically review the abnormalities in event related potential (ERP) recorded in Rett Syndrome (RTT) patients and animals in search of translational biomarkers of deficits related to the particular neurophysiological processes of known genetic origin (MECP2 mutations). METHODS Pubmed, ISI Web of Knowledge and BIORXIV were searched for the relevant articles according to PRISMA standards. RESULTS ERP components are generally delayed across all sensory modalities both in RTT patients and its animal model, while findings on ERPs amplitude strongly depend on stimulus properties and presentation rate. Studies on RTT animal models uncovered the abnormalities in the excitatory and inhibitory transmission as critical mechanisms underlying the ERPs changes, but showed that even similar ERP alterations in auditory and visual domains have a diverse neural basis. A range of novel approaches has been developed in animal studies bringing along the meaningful neurophysiological interpretation of ERP measures in RTT patients. CONCLUSIONS While there is a clear evidence for sensory ERPs abnormalities in RTT, to further advance the field there is a need in a large-scale ERP studies with the functionally-relevant experimental paradigms. SIGNIFICANCE The review provides insights into domain-specific neural basis of the ERP abnormalities and promotes clinical application of the ERP measures as the non-invasive functional biomarkers of RTT pathophysiology.
Collapse
Affiliation(s)
- Olga V Sysoeva
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA; The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; The Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - Kirill Smirnov
- Department of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia.
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG-Center), Moscow State University of Psychology and Education (MSUPE), Moscow, Russia; Autism Research Laboratory, Moscow State University of Psychology and Education (MSUPE), Moscow, Russia.
| |
Collapse
|
126
|
Ma X, Qiu S. Control of cortical synapse development and plasticity by MET receptor tyrosine kinase, a genetic risk factor for autism. J Neurosci Res 2019; 98:2115-2129. [PMID: 31746037 DOI: 10.1002/jnr.24542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
The key developmental milestone events of the human brain, such as neurogenesis, synapse formation, maturation, and plasticity, are determined by a myriad of molecular signaling events, including those mediated by a number of receptor tyrosine kinases (RTKs) and their cognate ligands. Aberrant or mistimed brain development and plasticity can lead to maladaptive changes, such as dysregulated synaptic connectivity and breakdown of circuit functions necessary for cognition and adaptive behaviors, which are hypothesized pathophysiologies of many neurodevelopmental and neuropsychiatric disorders. Here we review recent literature that supports autism spectrum disorder as a likely result of aberrant synapse development due to mistimed maturation and plasticity. We focus on MET RTK, a prominent genetic risk factor for autism, and discuss how a pleiotropic molecular signaling system engaged by MET exemplifies a genetic program that controls cortical circuit development and plasticity by modulating the anatomical and functional connectivity of cortical circuits, thus conferring genetic risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
127
|
Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun 2019; 10:4928. [PMID: 31666522 PMCID: PMC6821803 DOI: 10.1038/s41467-019-12947-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.
Collapse
|
128
|
Takeshita E, Iida A, Abe-Hatano C, Nakagawa E, Sasaki M, Inoue K, Goto YI. Ten novel insertion/deletion variants in MECP2 identified in Japanese patients with Rett syndrome. Hum Genome Var 2019; 6:48. [PMID: 31645986 PMCID: PMC6804785 DOI: 10.1038/s41439-019-0078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked progressive and severe neurological disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MECP2). Among the 49 typical RTT patients examined, we identified 10 novel and eight known insertion/deletion variants, and 31 known pathogenic variants in MECP2. The pathogenic variants presented here should be a useful resource for examining the correlation between the genotypes and phenotypes of RTT.
Collapse
Affiliation(s)
- Eri Takeshita
- 1Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8551 Japan
| | - Aritoshi Iida
- 2Department of Clinical Genome Analysis, Medical Genome Center, NCNP, Kodaira, Tokyo, 187-8551 Japan
| | - Chihiro Abe-Hatano
- 3Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Kodaira, Tokyo, 187-8551 Japan
| | - Eiji Nakagawa
- 1Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8551 Japan
| | - Masayuki Sasaki
- 1Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8551 Japan
| | - Ken Inoue
- 3Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Kodaira, Tokyo, 187-8551 Japan
| | - Yu-Ichi Goto
- 3Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Kodaira, Tokyo, 187-8551 Japan.,4Medical Genome Center, NCNP, Kodaira, Tokyo, 187-8551 Japan
| |
Collapse
|
129
|
Bernstein U, Demuth S, Puk O, Eichhorn B, Schulz S. Novel MECP2 Mutation c.1162_1172del; p.Pro388* in Two Patients with Symptoms of Atypical Rett Syndrome. Mol Syndromol 2019; 10:223-228. [PMID: 31602196 DOI: 10.1159/000501183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 01/19/2023] Open
Abstract
We report 2 cases of girls with MECP2 gene variants who do not have typical clinical features of Rett syndrome except for intellectual disability and seizures. Both patients present with adipositas, macrocephalia, precocious puberty, and seizures. They have prominent eyebrows and a short neck as well as short and plump fingers. Sequencing by NGS revealed a novel variant c.1162_1172del; p.Pro388* in both patients.
Collapse
Affiliation(s)
- Ulrike Bernstein
- Center of Human Genetics, Jena University Hospital, Jena, Germany
| | | | | | | | - Solveig Schulz
- Center of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
130
|
Banerjee A, Miller MT, Li K, Sur M, Kaufmann WE. Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain 2019; 142:239-248. [PMID: 30649225 DOI: 10.1093/brain/awy323] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
With the recent 50th anniversary of the first publication on Rett syndrome, and the almost 20 years since the first report on the link between Rett syndrome and MECP2 mutations, it is important to reflect on the tremendous advances in our understanding and their implications for the diagnosis and treatment of this neurodevelopmental disorder. Rett syndrome features an interesting challenge for biologists and clinicians, as the disorder lies at the intersection of molecular mechanisms of epigenetic regulation and neurophysiological alterations in synapses and circuits that together contribute to severe pathophysiological endophenotypes. Genetic, clinical, and neurobiological evidences support the notion that Rett syndrome is primarily a synaptic disorder, and a disease model for both intellectual disability and autism spectrum disorder. This review examines major developments in both recent neurobiological and preclinical findings of Rett syndrome, and to what extent they are beginning to impact our understanding and management of the disorder. It also discusses potential applications of knowledge on synaptic plasticity abnormalities in Rett syndrome to its diagnosis and treatment.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Meghan T Miller
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffman-La Roche, Basel, Switzerland
| | - Keji Li
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
131
|
Hettiarachchi D, Neththikumara NF, Pathirana BAPS, Dissanayake VHW. Variant Profile of MECP2 Gene in Sri Lankan Patients with Rett Syndrome. J Autism Dev Disord 2019; 50:118-126. [DOI: 10.1007/s10803-019-04230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
132
|
Gulmez Karaca K, Brito DV, Oliveira AM. MeCP2: A Critical Regulator of Chromatin in Neurodevelopment and Adult Brain Function. Int J Mol Sci 2019; 20:ijms20184577. [PMID: 31527487 PMCID: PMC6769791 DOI: 10.3390/ijms20184577] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system. It has revealed, however, that MeCP2 has more varied and complex roles than previously thought. Here we review recent insights into the functions of MeCP2 in neurodevelopment and the less explored requirement for MeCP2 in adult brain function. We focus on the emerging view that MeCP2 is a global chromatin organizer. Finally, we discuss how the individual functions of MeCP2 in neurodevelopment and adulthood are linked to its role as a chromatin regulator.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - David V.C. Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
| | - Ana M.M. Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Correspondence: ; Tel.: +49-(0)6221-5416510
| |
Collapse
|
133
|
Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin Neurosci 2019; 73:541-550. [PMID: 31215705 DOI: 10.1111/pcn.12899] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single-spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.
Collapse
Affiliation(s)
- Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
134
|
Adams JW, Cugola FR, Muotri AR. Brain Organoids as Tools for Modeling Human Neurodevelopmental Disorders. Physiology (Bethesda) 2019; 34:365-375. [PMID: 31389776 PMCID: PMC6863377 DOI: 10.1152/physiol.00005.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Brain organoids recapitulate in vitro the specific stages of in vivo human brain development, thus offering an innovative tool by which to model human neurodevelopmental disease. We review here how brain organoids have been used to study neurodevelopmental disease and consider their potential for both technological advancement and therapeutic development.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
- Department of Neurosciences, School of Medicine, University of California San Diego, San Diego, California
| | - Fernanda R Cugola
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
| |
Collapse
|
135
|
Xiol C, Vidal S, Pascual-Alonso A, Blasco L, Brandi N, Pacheco P, Gerotina E, O'Callaghan M, Pineda M, Armstrong J. X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients. Sci Rep 2019; 9:11983. [PMID: 31427717 PMCID: PMC6700087 DOI: 10.1038/s41598-019-48385-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.
Collapse
Affiliation(s)
- Clara Xiol
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Silvia Vidal
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Blasco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria Brandi
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Paola Pacheco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Edgar Gerotina
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mar O'Callaghan
- Neurology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercè Pineda
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Judith Armstrong
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain. .,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain. .,CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
136
|
Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, Wu H, Liu XS, Wang J, Gray NS, Sur M, Jaenisch R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med 2019; 11:eaau0164. [PMID: 31366578 PMCID: PMC8140401 DOI: 10.1126/scitranslmed.aau0164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.
Collapse
Affiliation(s)
- Xin Tang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Keji Li
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Austin J Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA 02139, USA
| | | | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
137
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
138
|
Ruffolo G, Cifelli P, Miranda-Lourenço C, De Felice E, Limatola C, Sebastião AM, Diógenes MJ, Aronica E, Palma E. Rare Diseases of Neurodevelopment: Maintain the Mystery or Use a Dazzling Tool for Investigation? The Case of Rett Syndrome. Neuroscience 2019; 439:146-152. [PMID: 31229630 DOI: 10.1016/j.neuroscience.2019.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
The investigation on neurotransmission function during normal and pathologic development is a pivotal component needed to understand the basic mechanisms underlying neurodevelopmental pathologies. To study these diseases, many animal models have been generated which allowed to face the limited availability of human tissues and, as a consequence, most of the electrophysiology has been performed on these models of diseases. On the other hand, the technique of membrane microtransplantation in Xenopus oocytes allows the study of human functional neurotransmitter receptors thanks to the use of tissues from autopsies or surgeries, even in quantities that would not permit other kinds of functional studies. In this short article, we intend to underline how this technique is well-fit for the study of rare diseases by characterizing the electrophysiological properties of GABAA and AMPA receptors in Rett syndrome. For our purposes, we used both tissues from Rett syndrome patients and Mecp2-null mice, a well validated murine model of the same disease, in order to strengthen the solidity of our results through the comparison of the two. Our findings retrace previous results and, in the light of this, further argue in favor of Prof. Miledi's technique of membrane microtransplantation that proves itself a very useful tool of investigation in the field of neurophysiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
| | | | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy.
| |
Collapse
|
139
|
Squillaro T, Alessio N, Capasso S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U. Senescence Phenomena and Metabolic Alteration in Mesenchymal Stromal Cells from a Mouse Model of Rett Syndrome. Int J Mol Sci 2019; 20:ijms20102508. [PMID: 31117273 PMCID: PMC6567034 DOI: 10.3390/ijms20102508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Chromatin modifiers play a crucial role in maintaining cell identity through modulation of gene expression patterns. Their deregulation can have profound effects on cell fate and functions. Among epigenetic regulators, the MECP2 protein is particularly attractive. Mutations in the Mecp2 gene are responsible for more than 90% of cases of Rett syndrome (RTT), a progressive neurodevelopmental disorder. As a chromatin modulator, MECP2 can have a key role in the government of stem cell biology. Previously, we showed that deregulated MECP2 expression triggers senescence in mesenchymal stromal cells (MSCs) from (RTT) patients. Over the last few decades, it has emerged that senescent cells show alterations in the metabolic state. Metabolic changes related to stem cell senescence are particularly detrimental, since they contribute to the exhaustion of stem cell compartments, which in turn determine the falling in tissue renewal and functionality. Herein, we dissect the role of impaired MECP2 function in triggering senescence along with other senescence-related aspects, such as metabolism, in MSCs from a mouse model of RTT. We found that MECP2 deficiencies lead to senescence and impaired mitochondrial energy production. Our results support the idea that an alteration in mitochondria metabolic functions could play an important role in the pathogenesis of RTT.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Advanced Medical and Surgical Sciences, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Stefania Capasso
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| | - Gianfranco Peluso
- USA Research Institute on Terrestrial Ecosystems, National Research Council, via Pietro Castellino, 111, 80131 Naples, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| |
Collapse
|
140
|
From Basic Visual Science to Neurodevelopmental Disorders: The Voyage of Environmental Enrichment-Like Stimulation. Neural Plast 2019; 2019:5653180. [PMID: 31198418 PMCID: PMC6526521 DOI: 10.1155/2019/5653180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Genes and environmental stimuli cooperate in the regulation of brain development and formation of the adult neuronal architecture. Genetic alterations or exposure to perturbing environmental conditions, therefore, can lead to altered neural processes associated with neurodevelopmental disorders and brain disabilities. In this context, environmental enrichment emerged as a promising and noninvasive experimental treatment for favoring recovery of cognitive and sensory functions in different neurodevelopmental disorders. The aim of this review is to depict, mainly through the much explicative examples of amblyopia, Down syndrome, and Rett syndrome, the increasing interest in the potentialities and applications of enriched environment-like protocols in the field of neurodevelopmental disorders and the understanding of the molecular mechanisms underlying the beneficial effects of these protocols, which might lead to development of pharmacological interventions.
Collapse
|
141
|
Kells PA, Gautam SH, Fakhraei L, Li J, Shew WL. Strong neuron-to-body coupling implies weak neuron-to-neuron coupling in motor cortex. Nat Commun 2019; 10:1575. [PMID: 30952848 PMCID: PMC6450901 DOI: 10.1038/s41467-019-09478-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cortical neurons can be strongly or weakly coupled to the network in which they are embedded, firing in sync with the majority or firing independently. Both these scenarios have potential computational advantages in motor cortex. Commands to the body might be more robustly conveyed by a strongly coupled population, whereas a motor code with greater information capacity could be implemented by neurons that fire more independently. Which of these scenarios prevails? Here we measure neuron-to-body coupling and neuron-to-population coupling for neurons in motor cortex of freely moving rats. We find that neurons with high and low population coupling coexist, and that population coupling was tunable by manipulating inhibitory signaling. Importantly, neurons with different population coupling tend to serve different functional roles. Those with strong population coupling are not involved with body movement. In contrast, neurons with high neuron-to-body coupling are weakly coupled to other neurons in the cortical population. Some cortical neurons fire together like a synchronized chorus, while others fire independently like soloists. Here, the authors show that soloist neurons in motor cortex tend to control body movements, while the choristers do not, and that soloists can become choristers by increasing inhibition.
Collapse
Affiliation(s)
- Patrick A Kells
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Leila Fakhraei
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Jingwen Li
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Woodrow L Shew
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, USA.
| |
Collapse
|
142
|
Cocca S, Viviano M, Loglisci M, Parrini S, Monciatti G, Paganelli II, Livi W, Mezzedimi C. Correlation Between Dysphagia and Malocclusion in Rett Syndrome: A preliminary study. Sultan Qaboos Univ Med J 2019; 18:e489-e493. [PMID: 30988968 DOI: 10.18295/squmj.2018.18.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/07/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Rett syndrome (RS) is a severe neurological developmental disorder characterised by stereotypical hand movements, epileptic seizures, craniofacial dysmorphism and digestive dysfunction. This study aimed to examine the correlation between the severity of malocclusion and dysphagia in patients with RS. Methods This preliminary study was conducted at the Ear, Nose & Throat Clinic of the University Hospital of Siena, Siena, Italy, from January 2014 to December 2017. A total of 56 patients with RS were examined and grouped according to the severity of dysphagia (absent, mild, moderate or severe) and malocclusion (<2 mm, 2-3 mm, 3-4 mm or >4 mm). Results All of the patients were female and the mean age was 11.3 years. Eight (14.3%) patients had mild, 18 (32.1%) had moderate and 30 (53.6%) had severe dysphagia. Four (7.1%) patients had <2 mm occlusion, 10 (17.9%) had 2-3 mm occlusion, 26 (46.4%) had 3-4 mm occlusion and 16 (28.6%) had >4 mm occlusion. Mild dysphagia was observed in 100% and 40% of patients with <2 and 2-3 mm malocclusion, respectively, while moderate dysphagia was present in 60% and 38.5% of patients with 2-3 and 3-4 mm malocclusion, respectively. Severe dysphagia was observed in 28.6% and 87.5% of patients with 3-4 and >4 mm malocclusion, respectively. There was a significant correlation between dysphagia and malocclusion severity (P <0.001). Conclusion A higher degree of malocclusion was associated with more severe dysphagia among a cohort of patients with RS.
Collapse
Affiliation(s)
- Serena Cocca
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| | - Massimo Viviano
- Department of Dentistry & Ophthalmology, University Hospital of Siena, Siena, Italy
| | - Michele Loglisci
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| | - Stefano Parrini
- Department of Medical Biotechnology, University Hospital of Siena, Siena, Italy
| | - Giovanni Monciatti
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| | - Ilaria I Paganelli
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| | - Walter Livi
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| | - Chiara Mezzedimi
- Department of Ear, Nose & Throat, University Hospital of Siena, Siena, Italy
| |
Collapse
|
143
|
Sabus A, Feinstein J, Romani P, Goldson E, Blackmer A. Management of Self-injurious Behaviors in Children with Neurodevelopmental Disorders: A Pharmacotherapy Overview. Pharmacotherapy 2019; 39:645-664. [PMID: 30793794 DOI: 10.1002/phar.2238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodevelopmental disorders (NDDs), a group of disorders affecting ~1-2% of the general population, are caused by changes in brain development that result in behavioral and cognitive alterations, sensory and motor changes, and speech and language deficits. Neurodevelopmental disorders encompass a heterogeneous group of disorders including, but not limited to, Smith-Magenis syndrome, Lesch-Nyhan disease, cri du chat syndrome, Prader-Willi syndrome, pervasive developmental disorders, fragile X syndrome, Rett syndrome, Cornelia de Lange syndrome, and Down syndrome. Self-injurious behaviors (SIBs) are common in children with NDDs; depending on the specific NDD, the incidence of SIBs is nearly 100%. The management of SIBs in this population is complex, and little high-quality data exist to guide a consistent approach to therapy. However, managing SIBs is of the utmost importance for the child as well as the family and caregivers. Behavior therapies must be implemented as first-line therapy. If behavioral interventions alone fail, pharmacotherapy becomes an essential part of management plans. The limited available evidence for the use of common pharmacologic agents, such as second-generation antipsychotics, and less common agents, such as clonidine, n-acetylcysteine, riluzole, naltrexone, and topical anesthetics, is reviewed. Additional data from well-designed studies in children with NDDs are needed to gain a better understanding of this common and troublesome problem including efficacy and safety implications associated with pharmacotherapy. Until then, clinicians must rely on the limited available data, clinical expertise, and ongoing systematic monitoring when managing SIBs in children with NDDs.
Collapse
Affiliation(s)
- Ashley Sabus
- Department of Pharmacy, Children's Hospital Colorado, Aurora, Colorado
| | - James Feinstein
- Adult and Child Consortium for Health Outcomes Research & Delivery Science, University of Colorado and Children's Hospital Colorado, Aurora, Colorado.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Children's Hospital Colorado, Aurora, Colorado
| | - Patrick Romani
- Child and Adolescent Psychiatry, Children's Hospital Colorado, Aurora, Colorado.,Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| | - Edward Goldson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Children's Hospital Colorado, Aurora, Colorado
| | - Allison Blackmer
- Department of Pharmacy, Children's Hospital Colorado, Aurora, Colorado.,Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,Special Care Clinic, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
144
|
Iourov IY, Vorsanova SG, Yurov YB, Bertrand T. VIII World Rett Syndrome Congress & Symposium of rare diseases, Kazan, Russia. Mol Cytogenet 2018; 11:61. [PMID: 30603047 PMCID: PMC6304760 DOI: 10.1186/s13039-018-0412-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND VIII World Rett Syndrome Congress & Symposium of Rare Diseases was held in Kazan, Russia from 13 to 17 May 2016. Although it has been a while since the event, specific problems highlighted by the contributors to the scientific program have stood the test of time. The Symposium of Rare Diseases has shown that studying Rett syndrome provides clues on molecular and cellular mechanisms for a variety of rare genetic/genomic disorders. Moreover, rare diseases associated with Rett-syndrome-like phenotype or MECP2 mutations/copy number variations have been thoroughly covered by a number of contributors. In this respect, we have found that a review dedicated to the scientific program of the VIII World Rett Syndrome Congress & Symposium of Rare Diseases could be an important addition to current literature. CONCLUSION Taking the opportunity to review the World Rett Syndrome Congress & Symposium of Rare Diseases at Kazan, we have made an attempt to describe a number of achievements and developments in the field of studying Rett syndrome and rare diseases in Russia. Furthermore, chromosomal abnormalities/disorders have been considered in the rare disease context. Such approach to chromosomal abnormalities/disorders has been found to be rather new for an appreciable part of international researchers and health care providers. We do hope that this congress review may be helpful not only for those who are interested in local development of research and management of rare genetic disorders, but also for international researchers and clinical community of rare disease specialists.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
- Department of Medical Genetics, Russian Medical Academy of Continuous Professional Education, Moscow, 125993 Russia
| | - Svetlana G. Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B. Yurov
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | | |
Collapse
|
145
|
Liao W. Psychomotor Dysfunction in Rett Syndrome: Insights into the Neurochemical and Circuit Roots. Dev Neurobiol 2018; 79:51-59. [PMID: 30430747 DOI: 10.1002/dneu.22651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/29/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Patients with RTT develop symptoms after 6-18 months of age, exhibiting characteristic movement deficits, such as ambulatory difficulties and loss of hand skills, in addition to breathing abnormalities and intellectual disability. Given the striking psychomotor dysfunction, numerous studies have investigated the underlying neurochemical and circuit mechanisms from different aspects. Here, I review the evidence linking MeCP2 deficiency to alterations in neurotransmission and neural circuits that govern the psychomotor function and discuss a recently identified pathological origin underlying the psychomotor deficits in RTT.
Collapse
Affiliation(s)
- Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 11605, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 11605, Taiwan
| |
Collapse
|
146
|
Balakrishnan S, Mironov SL. Regenerative glutamate release in the hippocampus of Rett syndrome model mice. PLoS One 2018; 13:e0202802. [PMID: 30256804 PMCID: PMC6157837 DOI: 10.1371/journal.pone.0202802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Excess glutamate during intense neuronal activity is not instantly cleared and may accumulate in the extracellular space. This has various long-term consequences such as ectopic signaling, modulation of synaptic efficacy and excitotoxicity; the latter implicated in various neurodevelopmental and neurodegenerative diseases. In this study, the quantitative imaging of glutamate homeostasis of hippocampal slices from methyl-CpG binding protein 2 knock-out (Mecp2-/y) mice, a model of Rett syndrome (RTT), revealed unusual repetitive glutamate transients. They appeared in phase with bursts of action potentials in the CA1 neurons. Both glutamate transients and bursting activity were suppressed by the blockade of sodium, AMPA and voltage-gated calcium channels (T- and R-type), and enhanced after the inhibition of HCN channels. HCN and calcium channels in RTT and wild-type (WT) CA1 neurons displayed different voltage-dependencies and kinetics. Both channels modulated postsynaptic integration and modified the pattern of glutamate spikes in the RTT hippocampus. Spontaneous glutamate transients were much less abundant in the WT preparations, and, when observed, had smaller amplitude and frequency. The basal ambient glutamate levels in RTT were higher and transient glutamate increases (spontaneous and evoked by stimulation of Schaffer collaterals) decayed slower. Both features indicate less efficient glutamate uptake in RTT. To explain the generation of repetitive glutamate spikes, we designed a novel model of glutamate-induced glutamate release. The simulations correctly predicted the patterns of spontaneous glutamate spikes observed under different experimental conditions. We propose that pervasive spontaneous glutamate release is a hallmark of Mecp2-/y hippocampus, stemming from and modulating the hyperexcitability of neurons.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| | - Sergej L. Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|