101
|
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, Zhou X, Hou M, Huang Z, Ou X, Xu L. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol 2023; 6:746. [PMID: 37463976 PMCID: PMC10354230 DOI: 10.1038/s42003-023-05137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Conservation genomics often relies on non-invasive methods to obtain DNA fragments which limit the power of multi-omic analyses for threatened species. Here, we report multi-omic analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that was found dead in the mountainous region in Gansu, China. We generate a near-complete genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chromosomes. We characterize the DNA methylation landscape which is correlated with GC content and gene expression. Our phylogenomic analysis suggests Otidiformes and Musophagiformes are sister groups that diverged from each other 46.3 million years ago. The genetic diversity of great bustard is found the lowest among the four available Otidiformes genomes, possibly due to population declines during past glacial periods. As one of the heaviest migratory birds, great bustard possesses several expanded gene families related to cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary stratum on the sex chromosome, a rare case among birds. Together, our study provides insights into the conservation genomics, adaption and chromosome evolution of the great bustard.
Collapse
Affiliation(s)
- Haoran Luo
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinrui Jiang
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Boping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiexin Shen
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zaoxu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Minghao Hou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China.
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
102
|
Mathers TC, Wouters RHM, Mugford ST, Biello R, van Oosterhout C, Hogenhout SA. Hybridisation has shaped a recent radiation of grass-feeding aphids. BMC Biol 2023; 21:157. [PMID: 37443008 PMCID: PMC10347838 DOI: 10.1186/s12915-023-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Aphids are common crop pests. These insects reproduce by facultative parthenogenesis involving several rounds of clonal reproduction interspersed with an occasional sexual cycle. Furthermore, clonal aphids give birth to live young that are already pregnant. These qualities enable rapid population growth and have facilitated the colonisation of crops globally. In several cases, so-called "super clones" have come to dominate agricultural systems. However, the extent to which the sexual stage of the aphid life cycle has shaped global pest populations has remained unclear, as have the origins of successful lineages. Here, we used chromosome-scale genome assemblies to disentangle the evolution of two global pests of cereals-the English (Sitobion avenae) and Indian (Sitobion miscanthi) grain aphids. RESULTS Genome-wide divergence between S. avenae and S. miscanthi is low. Moreover, comparison of haplotype-resolved assemblies revealed that the S. miscanthi isolate used for genome sequencing is likely a hybrid, with one of its diploid genome copies closely related to S. avenae (~ 0.5% divergence) and the other substantially more divergent (> 1%). Population genomics analyses of UK and China grain aphids showed that S. avenae and S. miscanthi are part of a cryptic species complex with many highly differentiated lineages that predate the origins of agriculture. The complex consists of hybrid lineages that display a tangled history of hybridisation and genetic introgression. CONCLUSIONS Our analyses reveal that hybridisation has substantially contributed to grain aphid diversity, and hence, to the evolutionary potential of this important pest species. Furthermore, we propose that aphids are particularly well placed to exploit hybridisation events via the rapid propagation of live-born "frozen hybrids" via asexual reproduction, increasing the likelihood of hybrid lineage formation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
- Tree of Life, Welcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Roland H M Wouters
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Roberto Biello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
103
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
104
|
Benham PM, Cicero C, Escalona M, Beraut E, Marimuthu MPA, Nguyen O, Nachman MW, Bowie RCK. A highly contiguous genome assembly for the California quail (Callipepla californica). J Hered 2023; 114:418-427. [PMID: 36763048 PMCID: PMC10287149 DOI: 10.1093/jhered/esad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
The California quail (Callipepla californica) is an iconic native bird of scrub and oak woodlands in California and the Baja Peninsula of Mexico. Here, we report a draft reference assembly for the species generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 321 scaffolds totaling 1.08 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 5.5 Mb, scaffold N50 of 19.4 Mb, and BUSCO completeness score of 96.5%. Transposable elements (TEs) occupy 16.5% of the genome, more than previous Odontophoridae quail assemblies but in line with estimates of TE content for recent long-read assemblies of chicken and Peking duck. Together these metrics indicate that the present assembly is more complete than prior reference assemblies generated for Odontophoridae quail. This reference will serve as an essential resource for studies on local adaptation, phylogeography, and conservation genetics in this species of significant biological and recreational interest.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
105
|
Pan X, Ma Z, Sun X, Li H, Zhang T, Zhao C, Wang N, Heller R, Hung Wong W, Wang W, Jiang Y, Wang Y. CNEReg Interprets Ruminant-specific Conserved Non-coding Elements by Developmental Gene Regulatory Network. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:632-648. [PMID: 36494035 PMCID: PMC10787174 DOI: 10.1016/j.gpb.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The genetic information coded in DNA leads to trait innovation via a gene regulatory network (GRN) in development. Here, we developed a conserved non-coding element interpretation method to integrate multi-omics data into gene regulatory network (CNEReg) to investigate the ruminant multi-chambered stomach innovation. We generated paired expression and chromatin accessibility data during rumen and esophagus development in sheep, and revealed 1601 active ruminant-specific conserved non-coding elements (active-RSCNEs). To interpret the function of these active-RSCNEs, we defined toolkit transcription factors (TTFs) and modeled their regulation on rumen-specific genes via batteries of active-RSCNEs during development. Our developmental GRN revealed 18 TTFs and 313 active-RSCNEs regulating 7 rumen functional modules. Notably, 6 TTFs (OTX1, SOX21, HOXC8, SOX2, TP63, and PPARG), as well as 16 active-RSCNEs, functionally distinguished the rumen from the esophagus. Our study provides a systematic approach to understanding how gene regulation evolves and shapes complex traits by putting evo-devo concepts into practice with developmental multi-omics data.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Department of Medical Research, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhaoxia Ma
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinqi Sun
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tingting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nini Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yong Wang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
106
|
Zhuo X, Hsu S, Purushotham D, Kuntala PK, Harrison JK, Du AY, Chen S, Li D, Wang T. Comparing genomic and epigenomic features across species using the WashU Comparative Epigenome Browser. Genome Res 2023; 33:824-835. [PMID: 37156621 PMCID: PMC10317122 DOI: 10.1101/gr.277550.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Genome browsers have become an intuitive and critical tool to visualize and analyze genomic features and data. Conventional genome browsers display data/annotations on a single reference genome/assembly; there are also genomic alignment viewer/browsers that help users visualize alignment, mismatch, and rearrangement between syntenic regions. However, there is a growing need for a comparative epigenome browser that can display genomic and epigenomic data sets across different species and enable users to compare them between syntenic regions. Here, we present the WashU Comparative Epigenome Browser. It allows users to load functional genomic data sets/annotations mapped to different genomes and display them over syntenic regions simultaneously. The browser also displays genetic differences between the genomes from single-nucleotide variants (SNVs) to structural variants (SVs) to visualize the association between epigenomic differences and genetic differences. Instead of anchoring all data sets to the reference genome coordinates, it creates independent coordinates of different genome assemblies to faithfully present features and data mapped to different genomes. It uses a simple, intuitive genome-align track to illustrate the syntenic relationship between different species. It extends the widely used WashU Epigenome Browser infrastructure and can be expanded to support multiple species. This new browser function will greatly facilitate comparative genomic/epigenomic research, as well as support the recent growing needs to directly compare and benchmark the T2T CHM13 assembly and other human genome assemblies.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Silas Hsu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deepak Purushotham
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Prashant Kumar Kuntala
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jessica K Harrison
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Samuel Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
107
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, et alKirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Show More Authors] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Zhang L, Gao X, Xia T, Yang X, Sun G, Zhao C, Liu G, Zhang H. Chromosome-level genome assembly of the critically endangered Baer's pochard (Aythya baeri). Sci Data 2023; 10:176. [PMID: 36991020 PMCID: PMC10060409 DOI: 10.1038/s41597-023-02063-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Baer's pochard (Aythya baeri) is a critically endangered species historically widespread throughout East Asia, whose population according to a recent estimate has decreased to between 150 and 700 individuals, and faces a long-term risk of extinction. However, the lack of a reference genome limits the study of conservation management and molecular biology of this species. We therefore report the first high-quality genome assembly of Baer's pochard. The genome has a total length of 1.14 Gb with a scaffold N50 of 85,749,954 bp and a contig N50 of 29,098,202 bp. We anchored 97.88% of the scaffold sequences onto 35 chromosomes based on the Hi-C data. BUSCO assessment indicated that 97.00% of the highly conserved Aves genes were completely present in the genome assembly. Furthermore, a total of 157.06 Mb of repetitive sequences were identified and 18,581 protein-coding genes were predicted in the genome, of which 99.00% were functionally annotated. This genome will be useful for understanding Baer's pochard genetic diversity and facilitate the conservation planning of this species.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaodong Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Tian Xia
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiufeng Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Chao Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Guangshuai Liu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
109
|
Rasband SA, Bolton PE, Fang Q, Johnson PLF, Braun MJ. Evolution of the Growth Hormone Gene Duplication in Passerine Birds. Genome Biol Evol 2023; 15:evad033. [PMID: 36848146 PMCID: PMC10016047 DOI: 10.1093/gbe/evad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Birds of the order Passeriformes represent the most speciose order of land vertebrates. Despite strong scientific interest in this super-radiation, genetic traits unique to passerines are not well characterized. A duplicate copy of growth hormone (GH) is the only gene known to be present in all major lineages of passerines, but not in other birds. GH genes plausibly influence extreme life history traits that passerines exhibit, including the shortest embryo-to-fledging developmental period of any avian order. To unravel the implications of this GH duplication, we investigated the molecular evolution of the ancestral avian GH gene (GH or GH1) and the novel passerine GH paralog (GH2), using 497 gene sequences extracted from 342 genomes. Passerine GH1 and GH2 are reciprocally monophyletic, consistent with a single duplication event from a microchromosome onto a macrochromosome in a common ancestor of extant passerines. Additional chromosomal rearrangements have changed the syntenic and potential regulatory context of these genes. Both passerine GH1 and GH2 display substantially higher rates of nonsynonymous codon change than non-passerine avian GH, suggesting positive selection following duplication. A site involved in signal peptide cleavage is under selection in both paralogs. Other sites under positive selection differ between the two paralogs, but many are clustered in one region of a 3D model of the protein. Both paralogs retain key functional features and are actively but differentially expressed in two major passerine suborders. These phenomena suggest that GH genes may be evolving novel adaptive roles in passerine birds.
Collapse
Affiliation(s)
- Shauna A Rasband
- Behavior, Ecology, Evolution and Systematics Graduate Program, University of Maryland, College Park, Maryland
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Peri E Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Qi Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | | | - Michael J Braun
- Behavior, Ecology, Evolution and Systematics Graduate Program, University of Maryland, College Park, Maryland
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| |
Collapse
|
110
|
Hotaling S, Desvignes T, Sproul JS, Lins LSF, Kelley JL. Pathways to polar adaptation in fishes revealed by long-read sequencing. Mol Ecol 2023; 32:1381-1397. [PMID: 35561000 DOI: 10.1111/mec.16501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Long-read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long-read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long-read sequencing data to generate a high-quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage-specific loss of this cluster. Beyond polar fishes, our results highlight the power of long-read sequencing to understand genome evolution.
Collapse
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - John S Sproul
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Luana S F Lins
- Australian National Insect Collection, CSIRO, Canberra, Australia
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
111
|
Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation. Integr Zool 2023; 18:225-236. [PMID: 36049502 DOI: 10.1111/1749-4877.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Tibetan Partridge (Perdix hodgsoniae) is an endemic species distributed in high-altitude areas of 3600-5600 m on the Qinghai-Tibet Plateau. To explore how the species is adapted to the high elevation environment, we assembled a draft genome based on both the Illumina and PacBio sequencing platforms with its population genetics and genomics analysis. In total, 134.74 Gb short reads and 30.81 Gb long reads raw data were generated. The 1.05-Gb assembled genome had a contig N50 of 4.56 Mb, with 91.94% complete BUSCOs. The 17 457 genes were annotated, and 11.35% of the genome was composed of repeat sequences. The phylogenetic tree showed that P. hodgsoniae was located at the basal position of the clade, including Golden Pheasant (Chrysolophus pictus), Common Pheasant (Phasianus colchicus), and Mikado Pheasant (Syrmaticus mikado). We found that 1014, 2595, and 2732 of the 6641 one-to-one orthologous genes were under positive selection in P. hodgsoniae, detected using PAML, BUSTED, and aBSREL programs, respectively, of which 965 genes were common under positive selection with 3 different programs. Several positively selected genes and immunity pathways relevant to high-altitude adaptation were detected. Gene family evolution showed that 99 gene families experienced significant expansion events, while 6 gene families were under contraction. The total number of olfactory receptor genes was relatively low in P. hodgsoniae. Genomic data provide an important resource for a further study on the evolutionary history of P. hodgsoniae, which provides a new insight into its high-altitude adaptation mechanisms.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engeering, Xi'an University, Xi'an, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
112
|
Li Y, Wen J, Li G, Chen J, Sun Q, Liu W, Guan W, Lai B, Szatkiewicz J, He X, Sullivan P. DeepGWAS: Enhance GWAS Signals for Neuropsychiatric Disorders via Deep Neural Network. RESEARCH SQUARE 2023:rs.3.rs-2399024. [PMID: 36824788 PMCID: PMC9949268 DOI: 10.21203/rs.3.rs-2399024/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genetic dissection of neuropsychiatric disorders can potentially reveal novel therapeutic targets. While genome-wide association studies (GWAS) have tremendously advanced our understanding, we approach a sample size bottleneck (i.e., the number of cases needed to identify >90% of all loci is impractical). Therefore, computationally enhancing GWAS on existing samples may be particularly valuable. Here, we describe DeepGWAS, a deep neural network-based method to enhance GWAS by integrating GWAS results with linkage disequilibrium and brain-related functional annotations. DeepGWAS enhanced schizophrenia (SCZ) loci by ~3X when applied to the largest European GWAS, and 21.3% enhanced loci were validated by the latest multi-ancestry GWAS. Importantly, DeepGWAS models can be transferred to other neuropsychiatric disorders. Transferring SCZ-trained models to Alzheimer's disease and major depressive disorder, we observed 1.3-17.6X detected loci compared to standard GWAS, among which 27-40% were validated by other GWAS studies. We anticipate DeepGWAS to be a powerful tool in GWAS studies.
Collapse
Affiliation(s)
- Yun Li
- University of North Carolina at Chapel Hill
| | | | | | | | - Quan Sun
- University of North Carolina, USA
| | | | | | - Boqiao Lai
- Toyota Technological Institute at Chicago
| | | | | | | |
Collapse
|
113
|
Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Changes in the functional diversity of modern bird species over the last million years. Proc Natl Acad Sci U S A 2023; 120:e2201945119. [PMID: 36745783 PMCID: PMC9963860 DOI: 10.1073/pnas.2201945119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 02/08/2023] Open
Abstract
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Collapse
Affiliation(s)
- Ryan R. Germain
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
| | - Lucas Buffan
- Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon69342 Cedex 07, France
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 51005, Estonia
| | - Guangii Chen
- BGI-Shenzhen, Shenzhen518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Gary R. Graves
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington20560, DC
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, AscotSL5 7PY, UK
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense5230, Denmark
| | - Fumin Lei
- Institute of Zoology, Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, Beijing100101, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - Peter A. Hosner
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, Globe Institute University of Copenhagen, Copenhagen1353, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
114
|
Sun YH, Cui H, Song C, Shen JT, Zhuo X, Wang RH, Yu X, Ndamba R, Mu Q, Gu H, Wang D, Murthy GG, Li P, Liang F, Liu L, Tao Q, Wang Y, Orlowski S, Xu Q, Zhou H, Jagne J, Gokcumen O, Anthony N, Zhao X, Li XZ. Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity. Nat Commun 2023; 14:812. [PMID: 36781861 PMCID: PMC9925758 DOI: 10.1038/s41467-023-36354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongxiao Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiafei Teng Shen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ruoqiao Huiyi Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rudo Ndamba
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Qian Mu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanwen Gu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Duolin Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gayathri Guru Murthy
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pidong Li
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Fan Liang
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Lei Liu
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Qing Tao
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Sara Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, 14850, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Nick Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
115
|
Secomandi S, Gallo GR, Sozzoni M, Iannucci A, Galati E, Abueg L, Balacco J, Caprioli M, Chow W, Ciofi C, Collins J, Fedrigo O, Ferretti L, Fungtammasan A, Haase B, Howe K, Kwak W, Lombardo G, Masterson P, Messina G, Møller AP, Mountcastle J, Mousseau TA, Ferrer Obiol J, Olivieri A, Rhie A, Rubolini D, Saclier M, Stanyon R, Stucki D, Thibaud-Nissen F, Torrance J, Torroni A, Weber K, Ambrosini R, Bonisoli-Alquati A, Jarvis ED, Gianfranceschi L, Formenti G. A chromosome-level reference genome and pangenome for barn swallow population genomics. Cell Rep 2023; 42:111992. [PMID: 36662619 PMCID: PMC10044405 DOI: 10.1016/j.celrep.2023.111992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.
Collapse
Affiliation(s)
- Simona Secomandi
- Department of Biosciences, University of Milan, Milan, Italy; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - Elena Galati
- Department of Biosciences, University of Milan, Milan, Italy
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Manuela Caprioli
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luca Ferretti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Anders P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay Cedex, France
| | | | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Joan Ferrer Obiol
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego Rubolini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Roscoe Stanyon
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
116
|
Osipova E, Barsacchi R, Brown T, Sadanandan K, Gaede AH, Monte A, Jarrells J, Moebius C, Pippel M, Altshuler DL, Winkler S, Bickle M, Baldwin MW, Hiller M. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds. Science 2023; 379:185-190. [PMID: 36634192 DOI: 10.1126/science.abn7050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hummingbirds possess distinct metabolic adaptations to fuel their energy-demanding hovering flight, but the underlying genomic changes are largely unknown. Here, we generated a chromosome-level genome assembly of the long-tailed hermit and screened for genes that have been specifically inactivated in the ancestral hummingbird lineage. We discovered that FBP2 (fructose-bisphosphatase 2), which encodes a gluconeogenic muscle enzyme, was lost during a time period when hovering flight evolved. We show that FBP2 knockdown in an avian muscle cell line up-regulates glycolysis and enhances mitochondrial respiration, coincident with an increased mitochondria number. Furthermore, genes involved in mitochondrial respiration and organization have up-regulated expression in hummingbird flight muscle. Together, these results suggest that FBP2 loss was likely a key step in the evolution of metabolic muscle adaptations required for true hovering flight.
Collapse
Affiliation(s)
- Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.,Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.,Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rico Barsacchi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Keren Sadanandan
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Andrea H Gaede
- University of British Columbia, Vancouver, Vancouver, BC V6T 1Z4, Canada.,Structure and Motion Laboratory, Royal Veterinary College, University of London, London, UK
| | - Amanda Monte
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Julia Jarrells
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Claudia Moebius
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.,Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.,Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
117
|
Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications. Animals (Basel) 2022; 13:ani13010096. [PMID: 36611705 PMCID: PMC9817927 DOI: 10.3390/ani13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition, natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolutionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover, MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively. According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further evolutionary studies within Certhioidea.
Collapse
|
118
|
Mohammadi S, Özdemir Hİ, Ozbek P, Sumbul F, Stiller J, Deng Y, Crawford AJ, Rowland HM, Storz JF, Andolfatto P, Dobler S. Epistatic Effects Between Amino Acid Insertions and Substitutions Mediate Toxin resistance of Vertebrate Na+,K+-ATPases. Mol Biol Evol 2022; 39:6874786. [PMID: 36472530 PMCID: PMC9778839 DOI: 10.1093/molbev/msac258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The recurrent evolution of resistance to cardiotonic steroids (CTS) across diverse animals most frequently involves convergent amino acid substitutions in the H1-H2 extracellular loop of Na+,K+-ATPase (NKA). Previous work revealed that hystricognath rodents (e.g., chinchilla) and pterocliform birds (sandgrouse) have convergently evolved amino acid insertions in the H1-H2 loop, but their functional significance was not known. Using protein engineering, we show that these insertions have distinct effects on CTS resistance in homologs of each of the two species that strongly depend on intramolecular interactions with other residues. Removing the insertion in the chinchilla NKA unexpectedly increases CTS resistance and decreases NKA activity. In the sandgrouse NKA, the amino acid insertion and substitution Q111R both contribute to an augmented CTS resistance without compromising ATPase activity levels. Molecular docking simulations provide additional insight into the biophysical mechanisms responsible for the context-specific mutational effects on CTS insensitivity of the enzyme. Our results highlight the diversity of genetic substrates that underlie CTS insensitivity in vertebrate NKA and reveal how amino acid insertions can alter the phenotypic effects of point mutations at key sites in the same protein domain.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- Molecular Evolutionary Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg 20146, Germany.,Max Planck Institute for Chemical Ecology, Research Group Predators and Toxic Prey, Jena 07745, Germany
| | | | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Göztepe, İstanbul 34722, Turkey
| | - Fidan Sumbul
- INSERM, Aix-Marseille Université, Inserm, CNRS, Marseille 13009, France
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yuan Deng
- Villum Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen 2100, Denmark.,BGI-Shenzhen, Shenzhen 518083, China
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Hannah M Rowland
- Max Planck Institute for Chemical Ecology, Research Group Predators and Toxic Prey, Jena 07745, Germany
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg 20146, Germany
| |
Collapse
|
119
|
Gene expression changes during the evolution of the tetrapod limb. Biol Futur 2022; 73:411-426. [PMID: 36355308 DOI: 10.1007/s42977-022-00136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Major changes in the vertebrate anatomy have preceded the conquest of land by the members of this taxon, and continuous changes in limb shape and use have occurred during the later radiation of tetrapods. While the main, conserved mechanisms of limb development have been discerned over the past century using a combination of classical embryological and molecular methods, only recent advances made it possible to identify and study the regulatory changes that have contributed to the evolution of the tetrapod appendage. These advances include the expansion of the model repertoire from traditional genetic model species to non-conventional ones, a proliferation of predictive mathematical models that describe gene interactions, an explosion in genomic data and the development of high-throughput methodologies. These revolutionary innovations make it possible to identify specific mutations that are behind specific transitions in limb evolution. Also, as we continue to apply them to more and more extant species, we can expect to gain a fine-grained view of this evolutionary transition that has been so consequential for our species as well.
Collapse
|
120
|
Wang YM, Ye LQ, Wang MS, Zhang JJ, Khederzadeh S, Irwin DM, Ren XD, Zhang YP, Wu DD. Unveiling the functional and evolutionary landscape of RNA editing in chicken using genomics and transcriptomics. Zool Res 2022; 43:1011-1022. [PMID: 36266925 PMCID: PMC9700494 DOI: 10.24272/j.issn.2095-8137.2022.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 09/10/2024] Open
Abstract
The evolutionary and functional features of RNA editing are well studied in mammals, cephalopods, and insects, but not in birds. Here, we integrated transcriptomic and whole-genomic analyses to exhaustively characterize the expansive repertoire of adenosine-to-inosine (A-to-I) RNA editing sites (RESs) in the chicken. In addition, we investigated the evolutionary status of the chicken editome as a potential mechanism of domestication. We detected the lowest editing level in the liver of chickens, compared to muscles in humans, and found higher editing activity and specificity in the brain than in non-neural tissues, consistent with the brain's functional complexity. To a certain extent, specific editing activity may account for the specific functions of tissues. Our results also revealed that sequences critical to RES secondary structures remained conserved within avian evolution. Furthermore, the RNA editome was shaped by purifying selection during chicken domestication and most RESs may have served as a selection pool for a few functional RESs involved in chicken domestication, including evolution of nervous and immune systems. Regulation of RNA editing in chickens by adenosine deaminase acting on RNA (ADAR) enzymes may be affected by non-ADAR factors whose expression levels changed widely after ADAR knockdown. Collectively, we provide comprehensive lists of candidate RESs and non-ADAR-editing regulators in the chicken, thus contributing to our current understanding of the functions and evolution of RNA editing in animals.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Qun Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Department of Ecology and Evolutionary Biology, Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
121
|
Chromosome-level genome and population genomics reveal evolutionary characteristics and conservation status of Chinese indigenous geese. Commun Biol 2022; 5:1191. [DOI: 10.1038/s42003-022-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGeese are herbivorous birds that play an essential role in the agricultural economy. We construct the chromosome-level genome of a Chinese indigenous goose (the Xingguo gray goose, XGG; Anser cygnoides) and analyze the adaptation of fat storage capacity in the goose liver during the evolution of Anatidae. Genomic resequencing of 994 geese is used to investigate the genetic relationships of geese, which supports the dual origin of geese (Anser cygnoides and Anser anser). Chinese indigenous geese show higher genetic diversity than European geese, and a scientific conservation program can be established to preserve genetic variation for each breed. We also find that a 14-bp insertion in endothelin receptor B subtype 2 (EDNRB2) that determines the white plumage of Chinese domestic geese is a natural mutation, and the linkaged alleles rapidly increase in frequency as a result of genetic hitchhiking, leading to the formation of completely different haplotypes of white geese under strong artificial selection. These genomic resources and our findings will facilitate marker-assisted breeding of geese and provide a foundation for further research on geese genetics and evolution.
Collapse
|
122
|
Kanamori S, Díaz LM, Cádiz A, Yamaguchi K, Shigenobu S, Kawata M. Draft genome of six Cuban Anolis lizards and insights into genetic changes during their diversification. BMC Ecol Evol 2022; 22:129. [PMID: 36333669 PMCID: PMC9635203 DOI: 10.1186/s12862-022-02086-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. Results We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba’s geohistory. Conclusions We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02086-7.
Collapse
Affiliation(s)
- Shunsuke Kanamori
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Luis M. Díaz
- National Museum of Natural History of Cuba, Havana, Cuba
| | - Antonio Cádiz
- grid.412165.50000 0004 0401 9462Faculty of Biology, University of Havana, Havana, Cuba ,grid.26790.3a0000 0004 1936 8606Department of Biology, University of Miami, Coral Gables, USA
| | - Katsushi Yamaguchi
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan ,grid.275033.00000 0004 1763 208XDepartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Masakado Kawata
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
123
|
Eliason CM, Hains T, McCullough J, Andersen MJ, Hackett SJ. Genomic novelty within a "great speciator" revealed by a high-quality reference genome of the collared kingfisher (Todiramphus chloris collaris). G3 (BETHESDA, MD.) 2022; 12:jkac260. [PMID: 36156134 PMCID: PMC9635628 DOI: 10.1093/g3journal/jkac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Islands are natural laboratories for studying patterns and processes of evolution. Research on island endemic birds has revealed elevated speciation rates and rapid phenotypic evolution in several groups (e.g. white-eyes, Darwin's finches). However, understanding the evolutionary processes behind these patterns requires an understanding of how genotypes map to novel phenotypes. To date, there are few high-quality reference genomes for species found on islands. Here, we sequence the genome of one of Ernst Mayr's "great speciators," the collared kingfisher (Todiramphus chloris collaris). Utilizing high molecular weight DNA and linked-read sequencing technology, we assembled a draft high-quality genome with highly contiguous scaffolds (scaffold N50 = 19 Mb). Based on universal single-copy orthologs, we estimated a gene space completeness of 96.6% for the draft genome assembly. The population demographic history analyses reveal a distinct pattern of contraction and expansion in population size throughout the Pleistocene. Comparative genomic analysis of gene family evolution revealed that species-specific and rapidly expanding gene families in the collared kingfisher (relative to other Coraciiformes) are mainly involved in the ErbB signaling pathway and focal adhesion. Todiramphus kingfishers are a species-rich group that has become a focus of speciation research. This draft genome will be a platform for future taxonomic, phylogeographic, and speciation research in the group. For example, target genes will enable testing of changes in sensory structures associated with changes in vision and taste genes across kingfishers.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Taylor Hains
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jenna McCullough
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Andersen
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
124
|
Bentz EJ, Ophir AG. Chromosome-scale genome assembly of the African giant pouched rat (Cricetomys ansorgei) and evolutionary analysis reveals evidence of olfactory specialization. Genomics 2022; 114:110521. [PMID: 36351561 DOI: 10.1016/j.ygeno.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Southern giant pouched rat, Cricetomys ansorgei, is a large rodent best known for its ability to detect landmines using its impressive sense of smell. Their powerful chemosensory abilities enable subtle discrimination of chemical social signals, and female pouched rats demonstrate a unique reproductive physiology hypothesized to be mediated by pheromonal mechanisms. Thus, C. ansorgei represents a novel mammalian model for chemosensory physiology, social behavior, and pheromonal control of reproductive physiology. We present the first chromosome-scale genomic sequence of the pouched rat encoding 22,671 protein coding genes, including 1571 olfactory receptors, and provide a glance into the evolutionary history of this species. Functional enrichment analysis reveals genetic expansions specific to the pouched rat are enriched for functions related to olfactory specialization. Overall, this assembly is of reference-quality, and will serve as a useful and informative genomic sequence on which we can confidently base future molecular research involving the pouched rat.
Collapse
Affiliation(s)
- Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
125
|
Hu L, Long J, Lin Y, Gu Z, Su H, Dong X, Lin Z, Xiao Q, Batbayar N, Bold B, Deutschová L, Ganusevich S, Sokolov V, Sokolov A, Patel HR, Waters PD, Graves JAM, Dixon A, Pan S, Zhan X. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nat Commun 2022; 13:6413. [PMID: 36302769 PMCID: PMC9613686 DOI: 10.1038/s41467-022-34138-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP), possesses a climate as cold as that of the Arctic, and also presents uniquely low oxygen concentrations and intense ultraviolet (UV) radiation. QTP animals have adapted to these extreme conditions, but whether they obtained genetic variations from the Arctic during cold adaptation, and how genomic mutations in non-coding regions regulate gene expression under hypoxia and intense UV environment, remain largely unknown. Here, we assemble a high-quality saker falcon genome and resequence populations across Eurasia. We identify female-biased hybridization with Arctic gyrfalcons in the last glacial maximum, that endowed eastern sakers with alleles conveying larger body size and changes in fat metabolism, predisposing their QTP cold adaptation. We discover that QTP hypoxia and UV adaptations mainly involve independent changes in non-coding genomic variants. Our study highlights key roles of gene flow from Arctic relatives during QTP hypothermia adaptation, and cis-regulatory elements during hypoxic response and UV protection.
Collapse
Affiliation(s)
- Li Hu
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Juan Long
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Yi Lin
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhongru Gu
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Han Su
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Xuemin Dong
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhenzhen Lin
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qian Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,grid.20513.350000 0004 1789 9964Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Nyambayar Batbayar
- Wildlife Science and Conservation Center, Union Building B-802, Ulaanbaatar, 14210 Mongolia
| | - Batbayar Bold
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,Wildlife Science and Conservation Center, Union Building B-802, Ulaanbaatar, 14210 Mongolia
| | - Lucia Deutschová
- grid.455051.0Raptor Protection of Slovakia, Trhová 54, SK-841 01, Bratislava, Slovakia
| | - Sergey Ganusevich
- Wild Animal Rescue Centre, Krasnostudencheskiy pr., 21-45, Moscow, 125422 Russia
| | - Vasiliy Sokolov
- grid.426536.00000 0004 1760 306XInstitute of Plant and Animal Ecology, Ural Division Russian Academy of Sciences, 202-8 Marta Street, Ekaterinburg, 620144 Russia
| | - Aleksandr Sokolov
- Arctic Research Station of the Institute of Plant and Animal Ecology, Ural Division Russian Academy of Sciences, 21 Zelenaya Gorka, Labytnangi, Yamalo-Nenetski District 629400 Russia
| | - Hardip R. Patel
- grid.1001.00000 0001 2180 7477The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Paul D. Waters
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052 Australia
| | | | - Andrew Dixon
- Emirates Falconers’ Club, Al Mamoura Building (A), P.O. Box 47716, Muroor Road, Abu Dhabi, UAE ,grid.511767.30000 0004 5895 0922International Wildlife Consultants, P.O. Box 19, Carmarthen, SA33 5YL UK
| | - Shengkai Pan
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangjiang Zhan
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
126
|
Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proc Natl Acad Sci U S A 2022; 119:e2109326119. [PMID: 35609205 PMCID: PMC9995833 DOI: 10.1073/pnas.2109326119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.
Collapse
|
127
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
128
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
129
|
Magid M, Wold JR, Moraga R, Cubrinovska I, Houston DM, Gartrell BD, Steeves TE. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird. Mol Ecol Resour 2022; 22:2810-2825. [PMID: 35635119 PMCID: PMC9543821 DOI: 10.1111/1755-0998.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchūriwat'/tūturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchūriwat'/tūturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.
Collapse
Affiliation(s)
- Molly Magid
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Jana R. Wold
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Ilina Cubrinovska
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Dave M. Houston
- Department of ConservationBiodiversity GroupAucklandNew Zealand
| | - Brett D. Gartrell
- Institute of Veterinary, Animal, and Biomedical SciencesWildbase, Massey UniversityPalmerston NorthNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
130
|
Ko BJ, Lee C, Kim J, Rhie A, Yoo DA, Howe K, Wood J, Cho S, Brown S, Formenti G, Jarvis ED, Kim H. Widespread false gene gains caused by duplication errors in genome assemblies. Genome Biol 2022; 23:205. [PMID: 36167596 PMCID: PMC9516828 DOI: 10.1186/s13059-022-02764-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 12/22/2022] Open
Abstract
Background False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna’s Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. Results Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. Conclusions This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02764-1.
Collapse
Affiliation(s)
- Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Samara Brown
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giulio Formenti
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
131
|
Sigeman H, Zhang H, Ali Abed S, Hansson B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J Evol Biol 2022; 35:1797-1805. [PMID: 36156325 PMCID: PMC10087220 DOI: 10.1111/jeb.14096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome-sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
132
|
Faiß M, Riede T, Goller F. Tonality over a broad frequency range is linked to vocal learning in birds. Proc Biol Sci 2022; 289:20220792. [PMID: 36100028 PMCID: PMC9470270 DOI: 10.1098/rspb.2022.0792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Many birds emit tonal song syllables even though the sound sources generate sound with rich upper harmonic energy content. This tonality is thought to arise in part from dynamically adjusted filtering of harmonic content. Here, we compare tonality of song syllables between vocal learners and non-learners to assess whether this characteristic is linked to the increased neural substrate that evolved with vocal learning. We hypothesize that vocal learning ability is correlated with enhanced ability for generating tonal sounds, because vocal production learners might also have an enhanced ability to articulate their vocal tracts and sound source for producing tonality. To test this hypothesis, we compared vocal learners and non-learners from two groups (186 passerines and 42 hummingbirds) by assessing tonality of song syllables. The data suggest that vocal learners in both clades have evolved to sing songs with higher tonality than the related, non-vocal learning clades, which is consistent with stronger roles for broadband dynamic filtering and adjustments to the sound source. In addition, oscine songs display higher tonality than those of hummingbirds. A complex interplay of vocal tract biomechanics, anatomical differences of the sound source as well as increased motor control through vocal learning facilitates generation of broad tonality.
Collapse
Affiliation(s)
- Marius Faiß
- Institute for Zoophysiology, University of Münster, Münster, Germany
| | - Tobias Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| | - Franz Goller
- Institute for Zoophysiology, University of Münster, Münster, Germany
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
133
|
Li X, Gao R, Chen G, Price AL, Øksnebjerg DB, Hosner PA, Zhou Y, Zhang G, Feng S. Draft genome assemblies of four manakins. Sci Data 2022; 9:564. [PMID: 36100590 PMCID: PMC9470731 DOI: 10.1038/s41597-022-01680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Manakins are a family of small suboscine passerine birds characterized by their elaborate courtship displays, non-monogamous mating system, and sexual dimorphism. This family has served as a good model for the study of sexual selection. Here we present genome assemblies of four manakin species, including Cryptopipo holochlora, Dixiphia pipra (also known as Pseudopipra pipra), Machaeropterus deliciosus and Masius chrysopterus, generated by Single-tube Long Fragment Read (stLFR) technology. The assembled genome sizes ranged from 1.10 Gb to 1.19 Gb, with average scaffold N50 of 29 Mb and contig N50 of 169 Kb. On average, 12,055 protein-coding genes were annotated in the genomes, and 9.79% of the genomes were annotated as repetitive elements. We further identified 75 Mb of Z-linked sequences in manakins, containing 585 to 751 genes and an ~600 Kb pseudoautosomal region (PAR). One notable finding from these Z-linked sequences is that a possible Z-to-autosome/PAR reversal could have occurred in M. chrysopterus. These de novo genomes will contribute to a deeper understanding of evolutionary history and sexual selection in manakins.
Collapse
Affiliation(s)
- Xuemei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Rongsheng Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Alivia Lee Price
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Daniel Bilyeli Øksnebjerg
- GLOBE Institute, Section for Evolutionary Genomics, University of Copenhagen, Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Peter Andrew Hosner
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Villum Center for Global Mountain Biodiversity, Biodiversity Section, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China
| | - Shaohong Feng
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China.
| |
Collapse
|
134
|
Ji Y, Feng S, Wu L, Fang Q, Brüniche-Olsen A, DeWoody JA, Cheng Y, Zhang D, Hao Y, Song G, Qu Y, Suh A, Zhang G, Hackett SJ, Lei F. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. SCIENCE ADVANCES 2022; 8:eabo0099. [PMID: 36044583 PMCID: PMC9432842 DOI: 10.1126/sciadv.abo0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The rate of mutation accumulation in germline cells can be affected by cell replication and/or DNA damage, which are further related to life history traits such as generation time and body mass. Leveraging the existing datasets of 233 neoavian bird species, here, we investigated whether generation time and body mass contribute to the interspecific variation of orthologous microsatellite length, transposable element (TE) length, and deletion length and how these genomic attributes affect genome sizes. In nonpasserines, we found that generation time is correlated to both orthologous microsatellite length and TE length, and body mass is negatively correlated to DNA deletions. These patterns are less pronounced in passerines. In all species, we found that DNA deletions relate to genome size similarly as TE length, suggesting a role of body mass dynamics in genome evolution. Our results indicate that generation time and body mass shape the evolution of genomic attributes in neoavian birds.
Collapse
Affiliation(s)
- Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Evolutionary and Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anna Brüniche-Olsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - J. Andrew DeWoody
- Departments of Forestry and Natural Resources and Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alexander Suh
- School of Biological Sciences, Organism and Environment, University of East Anglia, NR4 7TU, Norwich, UK
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala SE-752 36, Sweden
| | - Guojie Zhang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Evolutionary and Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Women’s Hospital, School of Medicine, Zhejiang University, Shangcheng District, Hangzhou, 310006, China
| | - Shannon J. Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
135
|
Kille B, Balaji A, Sedlazeck FJ, Nute M, Treangen TJ. Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biol 2022; 23:182. [PMID: 36038949 PMCID: PMC9421119 DOI: 10.1186/s13059-022-02735-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
Collapse
Affiliation(s)
- Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Advait Balaji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
136
|
Černý D, Natale R. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes). Mol Phylogenet Evol 2022; 177:107620. [PMID: 36038056 DOI: 10.1016/j.ympev.2022.107620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/20/2023]
Abstract
Shorebirds (Charadriiformes) are a globally distributed clade of modern birds and, due to their ecological and morphological disparity, a frequent subject of comparative studies. While molecular phylogenies have been key to establishing the suprafamilial backbone of the charadriiform tree, a number of relationships at both deep and shallow taxonomic levels remain poorly resolved. The timescale of shorebird evolution also remains uncertain as a result of extensive disagreements among the published divergence dating studies, stemming largely from different choices of fossil calibrations. Here, we present the most comprehensive non-supertree phylogeny of shorebirds to date, based on a total-evidence dataset comprising 353 ingroup taxa (90% of all extant or recently extinct species), 27 loci (15 mitochondrial and 12 nuclear), and 69 morphological characters. We further clarify the timeline of charadriiform evolution by time-scaling this phylogeny using a set of 14 up-to-date and thoroughly vetted fossil calibrations. In addition, we assemble a taxonomically restricted 100-locus dataset specifically designed to resolve outstanding problems in higher-level charadriiform phylogeny. In terms of tree topology, our results are largely congruent with previous studies but indicate that some of the conflicts among earlier analyses reflect a genuine signal of pervasive gene tree discordance. Monophyly of the plovers (Charadriidae), the position of the ibisbill (Ibidorhyncha), and the relationships among the five subfamilies of the gulls (Laridae) could not be resolved even with greatly increased locus and taxon sampling. Moreover, several localized regions of uncertainty persist in shallower parts of the tree, including the interrelationships of the true auks (Alcinae) and anarhynchine plovers. Our node-dating and macroevolutionary rate analyses find support for a Paleocene origin of crown-group shorebirds, as well as exceptionally rapid recent radiations of Old World oystercatchers (Haematopodidae) and select genera of gulls. Our study underscores the challenges involved in estimating a comprehensively sampled and carefully calibrated time tree for a diverse avian clade, and highlights areas in need of further research.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA.
| | - Rossy Natale
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA
| |
Collapse
|
137
|
Montoya P, Cadena CD, Claramunt S, Duchêne DA. Environmental niche and flight intensity are associated with molecular evolutionary rates in a large avian radiation. BMC Ecol Evol 2022; 22:95. [PMID: 35918644 PMCID: PMC9347078 DOI: 10.1186/s12862-022-02047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Metabolic activity and environmental energy are two of the most studied putative drivers of molecular evolutionary rates. Their extensive study, however, has resulted in mixed results and has rarely included the exploration of interactions among various factors impacting molecular evolutionary rates across large clades. Taking the diverse avian family Furnariidae as a case study, we examined the association between several estimates of molecular evolutionary rates with proxies of metabolic demands imposed by flight (wing loading and wing shape) and proxies of environmental energy across the geographic ranges of species (temperature and UV radiation). RESULTS We found weak evidence of a positive effect of environmental and morphological variables on mitochondrial substitution rates. Additionally, we found that temperature and UV radiation interact to explain molecular rates at nucleotide sites affected by selection and population size (non-synonymous substitutions), contrary to the expectation of their impact on sites associated with mutation rates (synonymous substitutions). We also found a negative interaction between wing shape (as described by the hand-wing index) and body mass explaining mitochondrial molecular rates, suggesting molecular signatures of positive selection or reduced population sizes in small-bodied species with greater flight activity. CONCLUSIONS Our results suggest that the demands of flight and environmental energy pose multiple evolutionary pressures on the genome either by driving mutation rates or via their association with natural selection or population size. Data from whole genomes and detailed physiology across taxa will bring a more complete picture of the impact of metabolism, population size, and the environment on avian genome evolution.
Collapse
Affiliation(s)
- Paola Montoya
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar # 16-20, Bogotá, Colombia.
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia.
| | - Carlos Daniel Cadena
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Crescent, Toronto, ON, M5S 2C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David Alejandro Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| |
Collapse
|
138
|
de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 2022; 11:e80008. [PMID: 35916372 PMCID: PMC9439683 DOI: 10.7554/elife.80008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.
Collapse
Affiliation(s)
- Marc de Manuel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Felix L Wu
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
139
|
Genomic insights into the secondary aquatic transition of penguins. Nat Commun 2022; 13:3912. [PMID: 35853876 PMCID: PMC9296559 DOI: 10.1038/s41467-022-31508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth. This study examines the tempo and drivers of penguin diversification by combining genomes from all extant and recently extinct penguin lineages, stratigraphic data from fossil penguins and morphological and biogeographic data from all extant and extinct species. Together, these datasets provide new insights into the genetic basis and evolution of adaptations in penguins.
Collapse
|
140
|
Wang P, Hou R, Wu Y, Zhang Z, Que P, Chen P. Genomic status of yellow-breasted bunting following recent rapid population decline. iScience 2022; 25:104501. [PMID: 35733787 PMCID: PMC9207672 DOI: 10.1016/j.isci.2022.104501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Global biodiversity is facing serious threats. However, knowledge of the genomic consequences of recent rapid population declines of wild organisms is limited. Do populations experiencing recent rapid population decline have the same genomic status as wild populations that experience long-term declines? Yellow-breasted Bunting (Emberiza aureola) is a critically endangered species that has been experiencing a recent rapid population decline. To answer the question, we assembled and annotated the whole genome of Yellow-breasted Bunting. Furthermore, we found high genetic diversity, low linkage disequilibrium, and low proportion of long runs of homozygosity in Yellow-breasted Bunting, suggesting that the populations following recent rapid declines have different genomic statuses from the population that experienced long-term population decline.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, P. R. China
| | - Yang Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Pinjia Que
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, P. R. China
- Sichuan Academy of Giant Panda, Chengdu 610086, P. R. China
| | - Peng Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, P. R. China
- Sichuan Academy of Giant Panda, Chengdu 610086, P. R. China
| |
Collapse
|
141
|
Gibb GC, Shepherd LD. Recent evolution of extreme sexual dimorphism in the huia (Heteralocha acutirostris; Callaeidae). Mol Phylogenet Evol 2022; 175:107575. [PMID: 35835426 DOI: 10.1016/j.ympev.2022.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
The New Zealand wattlebirds (Callaeidae) are an endemic New Zealand passerine family whose species show extreme variation in bill morphology. In particular, the extinct huia (Heteralocha acutirostris) has attracted considerable attention because it exhibited extreme sexual dimorphism in bill morphology. However, the phylogenetic relationships within the Callaeidae, crucial for understanding bill evolution in the family, have not been resolved to date. Here we present phylogenies based on complete mitochondrial genome sequences and nuclear ultraconserved elements. Kōkako (Callaeas spp.) is strongly supported as sister taxon to saddleback/tīeke (Philesturnus spp.) and huia, diverging around 6.8 Ma. Saddleback and huia are estimated to have split from each other 5 Ma, indicating that the extreme sexual bill dimorphism in huia has evolved within this time frame. Our estimates for the divergences within the Callaetidae are similar to, or younger than, those of most other endemic New Zealand avian families, therefore the observed bill variation is not a consequence of a longer divergence time. Instead, the expansion of the huia into the wood-foraging niche, combined with the sexual dimorphism it evolved in order to optimise feeding on this resource, has been the main contributor to the large variation of bill morphologies within this family.
Collapse
Affiliation(s)
- Gillian C Gibb
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lara D Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand.
| |
Collapse
|
142
|
Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, Hogan MP, Yooseph S, Rokyta DR, Parkinson CL. De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae). Genome Biol Evol 2022; 14:evac082. [PMID: 35670514 PMCID: PMC9256536 DOI: 10.1093/gbe/evac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
143
|
Hanić M, Schuhmann F, Frederiksen A, Langebrake C, Manthey G, Liedvogel M, Xu J, Mouritsen H, Solov'yov IA. Computational Reconstruction and Analysis of Structural Models of Avian Cryptochrome 4. J Phys Chem B 2022; 126:4623-4635. [PMID: 35704801 DOI: 10.1021/acs.jpcb.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study by Xu et al. (Nature, 2021, 594, 535-540) provided strong evidence that cryptochrome 4 (Cry4) is a key protein to endow migratory birds with the magnetic compass sense. The investigation compared the magnetic field response of Cry4 from migratory and nonmigratory bird species and suggested that a difference in magnetic sensitivity could exist. This finding prompted an in-depth investigation into Cry4 protein differences on the structural and dynamic levels. In the present study, the pigeon Cry4 (ClCry4) crystal structure was used to reconstruct the missing avian Cry4 protein structures via homology modeling for carefully selected bird species. The reconstructed Cry4 structure from European robin, Eurasian blackcap, zebra finch, chicken, and pigeon were subsequently simulated dynamically and analyzed. The studied avian Cry4 structures show flexibility in analogous regions pointing to similar activation mechanisms and/or signaling interaction partners. It can be concluded that the experimentally recorded difference in the magnetic field sensitivity of Cry4 from different birds is unlikely to be due to solely intrinsic dynamics of the proteins but requires additional factors that have not yet been identified.
Collapse
Affiliation(s)
- Maja Hanić
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Anders Frederiksen
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Georg Manthey
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Miriam Liedvogel
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany.,Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jingjing Xu
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
144
|
Gatesy J, Springer MS. Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes (Basel) 2022; 13:1167. [PMID: 35885951 PMCID: PMC9324441 DOI: 10.3390/genes13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Retroelement insertions (RIs) are low-homoplasy characters that are ideal data for addressing deep evolutionary radiations, where gene tree reconstruction errors can severely hinder phylogenetic inference with DNA and protein sequence data. Phylogenomic studies of Neoaves, a large clade of birds (>9000 species) that first diversified near the Cretaceous−Paleogene boundary, have yielded an array of robustly supported, contradictory relationships among deep lineages. Here, we reanalyzed a large RI matrix for birds using recently proposed quartet-based coalescent methods that enable inference of large species trees including branch lengths in coalescent units, clade-support, statistical tests for gene flow, and combined analysis with DNA-sequence-based gene trees. Genome-scale coalescent analyses revealed extremely short branches at the base of Neoaves, meager branch support, and limited congruence with previous work at the most challenging nodes. Despite widespread topological conflicts with DNA-sequence-based trees, combined analyses of RIs with thousands of gene trees show emergent support for multiple higher-level clades (Columbea, Passerea, Columbimorphae, Otidimorphae, Phaethoquornithes). RIs express asymmetrical support for deep relationships within the subclade Afroaves that hints at ancient gene flow involving the owl lineage (Strigiformes). Because DNA-sequence data are challenged by gene tree-reconstruction error, analysis of RIs represents one approach for improving gene tree-based methods when divergences are deep, internodes are short, terminal branches are long, and introgressive hybridization further confounds species−tree inference.
Collapse
Affiliation(s)
- John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
145
|
Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein. Cells 2022; 11:cells11132043. [PMID: 35805127 PMCID: PMC9265643 DOI: 10.3390/cells11132043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Night-migratory birds sense the Earth’s magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. Methods: Protein–protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. Results: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. Conclusions: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.
Collapse
|
146
|
A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nat Methods 2022; 19:635-638. [PMID: 35689027 DOI: 10.1038/s41592-022-01512-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
147
|
Ng CS, Lai CK, Ke HM, Lee HH, Chen CF, Tang PC, Cheng HC, Lu MJ, Li WH, Tsai IJ. Genome Assembly and Evolutionary Analysis of the Mandarin Duck Aix galericulata Reveal Strong Genome Conservation among Ducks. Genome Biol Evol 2022; 14:evac083. [PMID: 35640266 PMCID: PMC9189614 DOI: 10.1093/gbe/evac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsu-Chen Cheng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Meiyeh J. Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois, USA
| | | |
Collapse
|
148
|
SINEs as Credible Signs to Prove Common Ancestry in the Tree of Life: A Brief Review of Pioneering Case Studies in Retroposon Systematics. Genes (Basel) 2022; 13:genes13060989. [PMID: 35741751 PMCID: PMC9223172 DOI: 10.3390/genes13060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/31/2022] Open
Abstract
Currently, the insertions of SINEs (and other retrotransposed elements) are regarded as one of the most reliable synapomorphies in molecular systematics. The methodological mainstream of molecular systematics is the calculation of nucleotide (or amino acid) sequence divergences under a suitable substitution model. In contrast, SINE insertion analysis does not require any complex model because SINE insertions are unidirectional and irreversible. This straightforward methodology was named the “SINE method,” which resolved various taxonomic issues that could not be settled by sequence comparison alone. The SINE method has challenged several traditional hypotheses proposed based on the fossil record and anatomy, prompting constructive discussions in the Evo/Devo era. Here, we review our pioneering SINE studies on salmon, cichlids, cetaceans, Afrotherian mammals, and birds. We emphasize the power of the SINE method in detecting incomplete lineage sorting by tracing the genealogy of specific genomic loci with minimal noise. Finally, in the context of the whole-genome era, we discuss how the SINE method can be applied to further our understanding of the tree of life.
Collapse
|
149
|
Friis G, Vizueta J, Ketterson ED, Milá B. A high-quality genome assembly and annotation of the dark-eyed junco Junco hyemalis, a recently diversified songbird. G3 (BETHESDA, MD.) 2022; 12:jkac083. [PMID: 35404451 PMCID: PMC9157146 DOI: 10.1093/g3journal/jkac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
The dark-eyed junco (Junco hyemalis) is one of the most common passerines of North America, and has served as a model organism in studies related to ecophysiology, behavior, and evolutionary biology for over a century. It is composed of at least 6 distinct, geographically structured forms of recent evolutionary origin, presenting remarkable variation in phenotypic traits, migratory behavior, and habitat. Here, we report a high-quality genome assembly and annotation of the dark-eyed junco generated using a combination of shotgun libraries and proximity ligation Chicago and Dovetail Hi-C libraries. The final assembly is ∼1.03 Gb in size, with 98.3% of the sequence located in 30 full or nearly full chromosome scaffolds, and with a N50/L50 of 71.3 Mb/5 scaffolds. We identified 19,026 functional genes combining gene prediction and similarity approaches, of which 15,967 were associated to GO terms. The genome assembly and the set of annotated genes yielded 95.4% and 96.2% completeness scores, respectively when compared with the BUSCO avian dataset. This new assembly for J. hyemalis provides a valuable resource for genome evolution analysis, and for identifying functional genes involved in adaptive processes and speciation.
Collapse
Affiliation(s)
- Guillermo Friis
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - Joel Vizueta
- Centre for Social Evolution, University of Copenhaguen, Copenhaguen 1165, Denmark
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Borja Milá
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid 28006, Spain
| |
Collapse
|
150
|
Lombardo G, Migliore NR, Colombo G, Capodiferro MR, Formenti G, Caprioli M, Moroni E, Caporali L, Lancioni H, Secomandi S, Gallo GR, Costanzo A, Romano A, Garofalo M, Cereda C, Carelli V, Gillespie L, Liu Y, Kiat Y, Marzal A, López-Calderón C, Balbontín J, Mousseau TA, Matyjasiak P, Møller AP, Semino O, Ambrosini R, Alquati AB, Rubolini D, Ferretti L, Achilli A, Gianfranceschi L, Olivieri A, Torroni A. The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica). Mol Biol Evol 2022; 39:6591937. [PMID: 35617136 PMCID: PMC9174979 DOI: 10.1093/molbev/msac113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (< 20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.
Collapse
Affiliation(s)
- Gianluca Lombardo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Nicola Rambaldi Migliore
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Giulia Colombo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Marco Rosario Capodiferro
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Manuela Caprioli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Moroni
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Hovirag Lancioni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| | - Simona Secomandi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Guido Roberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandra Costanzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Andrea Romano
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Garofalo
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy
| | - Lauren Gillespie
- Department of Academic Education, Central Community College, Columbus, NE 68601, USA
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yosef Kiat
- Israeli Bird Ringing Center (IBRC), Israel Ornithological Center, Tel Aviv, Israel
| | - Alfonso Marzal
- Department of Zoology, University of Extremadura, 06071 Badajoz, Spain
| | - Cosme López-Calderón
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, 41092 Seville, Spain
| | - Javier Balbontín
- Department of Zoology, University of Seville, 41012 Seville, Spain
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Piotr Matyjasiak
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Andrea Bonisoli Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA 91767, USA
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, 27100 Pavia, Italy
| |
Collapse
|