101
|
Intraoperative Assessment of Surgical Stress Response Using Nociception Monitor under General Anesthesia and Postoperative Complications: A Narrative Review. J Clin Med 2022; 11:jcm11206080. [PMID: 36294399 PMCID: PMC9604770 DOI: 10.3390/jcm11206080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
We present a narrative review focusing on the new role of nociception monitor in intraoperative anesthetic management. Higher invasiveness of surgery elicits a higher degree of surgical stress responses including neuroendocrine-metabolic and inflammatory-immune responses, which are associated with the occurrence of major postoperative complications. Conversely, anesthetic management mitigates these responses. Furthermore, improper attenuation of nociceptive input and related autonomic effects may induce increased stress response that may adversely influence outcome even in minimally invasive surgeries. The original role of nociception monitor, which is to assess a balance between nociception caused by surgical trauma and anti-nociception due to anesthesia, may allow an assessment of surgical stress response. The goal of this review is to inform healthcare professionals providing anesthetic management that nociception monitors may provide intraoperative data associated with surgical stress responses, and to inspire new research into the effects of nociception monitor-guided anesthesia on postoperative complications.
Collapse
|
102
|
Muacevic A, Adler JR. Acute Disseminated Encephalomyelitis Following Thoracic Endovascular Aortic Repair. Cureus 2022; 14:e30562. [PMID: 36415419 PMCID: PMC9676073 DOI: 10.7759/cureus.30562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Acute disseminated encephalomyelitis (ADEM) is a central nervous system demyelinating condition. The postulated etiology is an autoimmune reaction, however, the mechanistic details are yet unknown. While infection and immunization are the most prevalent precipitating causes of ADEM, we postulate that radiopaque contrast material might have played a role as an immunological trigger. This presentation is unusual and has not been recorded so far. This case also emphasizes the challenges involved in evaluating emerging neurological problems following a period of intubation/sedation among these patients. We present a patient who passed away due to the manifestations of ADEM following admission to the intensive care unit after thoracic endovascular aortic repair for type B aortic dissection. Magnetic resonance imaging (MRI) performed following multiple attempts at sedation weaning demonstrated typical features of this condition. Clinicians and radiologists should be diligent and consider ADEM as a differential diagnosis when treating patients who present with neurological symptoms following radiological interventional procedures and have a high index suspicion to reduce mortality and achieve satisfactory clinical outcomes.
Collapse
|
103
|
Wang W, Huo P, Zhang L, Lv G, Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front Neurosci 2022; 16:972918. [PMID: 36203795 PMCID: PMC9530360 DOI: 10.3389/fnins.2022.972918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative neurological complication in elderly patients. Circular RNAs (circRNAs) are abundant in the mammalian brain and can probably regulate cognitive function. However, the competitive endogenous RNA (ceRNA) regulatory network in POCD remains illiterate. Transcriptomic signatures in the hippocampus of POCD mice derived from the Gene Expression Omnibus (GEO) dataset GSE190880, GSE95070, and GSE115440 were used to identify the circRNA, miRNA, and mRNA expression profiles of POCD mice compared with controls, respectively. A set of differentially expressed RNAs, including 119 circRNAs, 33 miRNAs, and 49 mRNAs were identified. Transcript validation showed the enhanced expression of circ_0001634, circ_0001345, and circ_0001493. A ceRNA regulatory network composed of three circRNAs, three miRNAs, and six mRNAs was established. The hub mRNAs in the ceRNA network were further found to be involved in the hormone catabolic process and regulation of canonical Wnt signaling pathway, revealing their crucial role in POCD. Finally, three miRNAs and four mRNAs were verified by qRT-PCR. These results based on bioinformatics and PCR array suggest that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1, circ_0001345/miR-7001-5p/Sostdc1, and circ_0001493/miR-7001-5p/Sostdc1 may be novel diagnostic biomarkers and therapeutic targets for POCD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengwei Huo
- Department of Anesthesiology, Yulin No.2 Hospital, Yulin, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Gang Lv,
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Zhongyuan Xia,
| |
Collapse
|
104
|
Salinas Fredricson A, Krüger Weiner C, Adami J, Rosén A, Lund B, Hedenberg-Magnusson B, Fredriksson L, Naimi-Akbar A. The Role of Mental Health and Behavioral Disorders in the Development of Temporomandibular Disorder: A SWEREG-TMD Nationwide Case-Control Study. J Pain Res 2022; 15:2641-2655. [PMID: 36097536 PMCID: PMC9464023 DOI: 10.2147/jpr.s381333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose There is a well-known association between mental and behavioral disorders (MBD) and temporomandibular disorder (TMD), although the association has not been established in population-based samples. This study aimed to investigate this relationship using national population-based registry data. Patients and Methods This case-control study used prospectively collected data from Swedish national registries to investigate exposure to MBD and the probability of developing TMD in all Swedish citizens with hospital-diagnosed or surgically treated TMD between 1998 and 2016. Odds ratios were calculated using conditional logistic regression adjusted for educational level, living area, country of birth, musculoskeletal comorbidity, and history of orofacial/neck trauma. Results A statistically significant association between MBD and TMD was found for mood affective disorders (OR 1.4), neurotic, stress-related and somatoform disorders (OR 1.7), behavioral syndromes associated with psychological disturbances and physical factors (OR 1.4), disorders of adult personality and behavior (OR 1.4), disorders of psychological development (OR 1.3), behavioral and emotional disorders with onset usually occurring in childhood and adolescence (OR 1.4), and unspecified mental disorder (OR 1.3). The association was stronger for TMD requiring surgery, with the strongest association in patients with disorders of psychological development (OR 2.9). No significant association was found with schizophrenia, schizotypal and delusional disorders, or mental retardation. Conclusion The findings indicate an increased probability of TMD among patients with a history of certain MBD diagnoses, and a stronger association with TMD requiring surgery, specifically repeated surgery. This highlights the need for improved preoperative understanding of the impact of MBD on TMD, as TMD and chronic pain itself may have a negative impact on mental health.
Collapse
Affiliation(s)
- Adrian Salinas Fredricson
- Public Dental Services, Folktandvården Stockholm, Eastmaninstitutet, Department of Oral and Maxillofacial Surgery, Stockholm, Sweden.,Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carina Krüger Weiner
- Public Dental Services, Folktandvården Stockholm, Eastmaninstitutet, Department of Oral and Maxillofacial Surgery, Stockholm, Sweden.,Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Annika Rosén
- Department of Clinical Dentistry, Division of Oral and Maxillofacial Surgery, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Bodil Lund
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Medical Unit for Reconstructive Plastic and Craniofacial Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Hedenberg-Magnusson
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Public Dental Services, Folktandvården Stockholm, Eastmaninstitutet, Department of Orofacial Pain and Jaw Function, Stockholm, Sweden
| | - Lars Fredriksson
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Public Dental Services, Folktandvården Stockholm, Eastmaninstitutet, Department of Orofacial Pain and Jaw Function, Stockholm, Sweden
| | - Aron Naimi-Akbar
- Public Dental Services, Folktandvården Stockholm, Eastmaninstitutet, Department of Oral and Maxillofacial Surgery, Stockholm, Sweden.,Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Health Technology Assessment-Odontology (HTA-O), Malmö University, Malmö, Sweden
| |
Collapse
|
105
|
Song Y, Luo Y, Zhang F, Ma Y, Lou J, Li H, Liu Y, Mi W, Cao J. Systemic immune-inflammation index predicts postoperative delirium in elderly patients after surgery: a retrospective cohort study. BMC Geriatr 2022; 22:730. [PMID: 36064357 PMCID: PMC9446812 DOI: 10.1186/s12877-022-03418-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Postoperative delirium (POD) is a common complication among elderly patients after surgery. It is unclear whether the systemic immune-inflammation index (SII) can be a predictor of POD. We explored the prognostic value of the SII in predicting POD in elderly patients undergoing non-neurosurgery and non-cardiac surgery in a large retrospective cohort. Methods We enrolled elderly patients undergoing non-neurosurgery and non-cardiac surgery between January 2014 and August 2019. Univariate and multivariate logistic regression analyses were performed to explore the correlation between POD and the SII value as both a continuous and categorical variable. Then, propensity score matching (PSM) analysis was applied to eliminate the confounding effect of covariates and prove our results. Subgroup analyses were then performed to discover the association between the SII and POD in different subgroups. Results A total of 29,608 patients with a median age of 70 years (IQR: 67–74) were enrolled in the retrospective cohort. The cut-off value of the SII was 650, which was determined by the receiver operating characteristic (ROC) curve. The ORs of an SII value > 650 was 2.709 (95% CI:2.373–3.092, P < 0.001), 1.615 (95% CI:1.384–1.882, P < 0.001), 1.855 (95% CI:1.602–2.146, P < 0.001), and 1.302 (95% CI:1.106–1.531, P = 0.001) for prediction of POD in univariate model and three multivariate regression models. After PSM, the OR of an SII value > 650 was 1.301 (95% CI: 1.062–1.598, P = 0.011). The subgroup analysis indicated that the SII indicates a significantly increased risk of POD in patients with Hb < 130 g/L, 4*109/L < WBC ≤ 10*109/L, albumin < 39 g/L, or duration of MAP < 60 mmHg ≥ 5 min. The SII was found to be a useful prognostic predictor of POD for patients of different ages, sexes, and ASA classifications. Conclusions The SII had a predictive value for POD in patients undergoing non-neurosurgery and non-cardiac surgery. As an index generated from routine blood tests, the SII has advantages regarding cost and time. After further validation, the SII may provide a new option for POD prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03418-4.
Collapse
Affiliation(s)
- Yuxiang Song
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yungen Luo
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Beijing, China
| | - Faqiang Zhang
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.
| |
Collapse
|
106
|
Smith RJ, Lachner C, Singh VP, Trivedi S, Khatua B, Cartin-Ceba R. Cytokine profiles in intensive care unit delirium. Acute Crit Care 2022; 37:415-428. [PMID: 35791660 PMCID: PMC9475146 DOI: 10.4266/acc.2021.01508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neuroinflammation causing disruption of the blood-brain barrier and immune cell extravasation into the brain parenchyma may cause delirium; however, knowledge of the exact pathophysiologic mechanism remains incomplete. The purpose of our study was to determine whether cytokine profiles differ depending on whether delirium occurs in the setting of sepsis, coronavirus disease 2019 (COVID-19), or recent surgery. Methods This prospective observational cohort study involved 119 critically ill patients admitted to a multidisciplinary intensive care unit (ICU) during 2019 and 2020. Delirium was identified using the validated confusion assessment method for the ICU. Multiple delirium risk factors were collected daily including clinical characteristics, hospital course, lab values, vital signs, surgical exposure, drug exposure, and COVID-19 characteristics. Serums samples were collected within 12 hours of ICU admission and cytokine levels were measured. Results: The following proinflammatory cytokines were elevated in our delirium population: tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-18, C-C motif ligand (CCL) 2, CCL3, C-X-C motif chemokine ligand (CXCL)1, CXCL10, IL-8, IL-1 receptor antagonist, and IL-10. Analysis of relative cytokine levels in those patients that developed delirium in the setting of sepsis, COVID-19, and recent surgery showed elevations of CCL2, CXCL10, and TNF-α in both the sepsis and COVID-19 group in comparison to the postsurgical population. In the postsurgical group, granulocyte colony-stimulating factor was elevated and CXCL10 was decreased relative to the opposing groups. Conclusions We identify several cytokines and precipitating factors known to be associated with delirium. However, our study suggests that the cytokine profile associated with delirium is variable and contingent upon delirium precipitating factors.
Collapse
|
107
|
Lu B, Yuan H, Mo L, Sun D, Liu R, Zhou H, Zhai X, Wang R, Chen J, Meng B. Effects of different types of non-cardiac surgical trauma on hippocampus-dependent memory and neuroinflammation. Front Behav Neurosci 2022; 16:950093. [PMID: 36035019 PMCID: PMC9399929 DOI: 10.3389/fnbeh.2022.950093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Older individuals have been reported to suffer from cognitive disorders after surgery. Various types of surgical trauma have been used to establish postoperative cognitive dysfunction (POCD) animal models in preclinical studies. However, few comparative analyses of these animal models were conducted. Methods Tibial surgery, abdominal surgery, and extended abdominal surgery were performed on aged ICR mice to establish POCD models. Behavioral tests included open field, novel object recognition, fear conditioning, and Morris water maze tests. The Z-score methodology was adopted to obtain a comprehensive and integrated memory performance profile. The changes in hippocampal neuroinflammation were analyzed by ELISA, PCR, and immunofluorescence. Results In this study, we found that each type of non-cardiac surgical trauma has a different effects on locomotor activity. Tibial and extended abdominal surgeries led to more significant cognitive impairment than abdominal surgery. Inflammatory cytokines peaked on postoperative day 1 and decreased to control levels on days 3 and 7. Hippocampal neuroinflammation indicators between the three surgery types on postoperative day 1 had no statistical differences. Conclusion Overall, the type and intensity of non-cardiac surgical trauma can affect cognitive behavioral outcomes and central inflammation. The shortcomings and emerging issues of POCD animal research methods need to be further studied and solved.
Collapse
Affiliation(s)
- Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lan Mo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Daofan Sun
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Han Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruichun Wang
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junping Chen,
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Bo Meng,
| |
Collapse
|
108
|
Breaking barriers in postoperative delirium. Br J Anaesth 2022; 129:147-150. [PMID: 35718561 DOI: 10.1016/j.bja.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022] Open
Abstract
Systemic perturbations such as peripheral surgical trauma induce neurovascular, inflammatory, and cognitive changes. The blood-brain barrier is a key interface between the periphery and the central nervous system, and is critically involved in regulating neuroimmune interactions to maintain overall homeostasis. Mounting evidence suggests that blood-brain barrier dysfunction is a hallmark of ageing and multiple neurological conditions including Alzheimer's disease. We discuss a recent study published in the British Journal of Anaesthesia that describes blood-brain barrier changes and neuroinflammation in patients with postoperative delirium after non-intracranial surgery.
Collapse
|
109
|
Suo Z, Yang J, Zhou B, Qu Y, Xu W, Li M, Xiao T, Zheng H, Ni C. Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther 2022; 28:1576-1595. [PMID: 35899365 PMCID: PMC9437242 DOI: 10.1111/cns.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period. METHODS Aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia. Whole-transcriptome sequencing (RNA-seq analysis) was performed on the hippocampi from control condition (Con), 30 min (Day0), 2 days (Day2), and 7 days (Day7) after surgery. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses, quantitative real-time PCR, immunofluorescence, and fear conditioning test were also performed to elucidate the pathological processes and modulation networks during the period. RESULTS Through RNA-seq analysis, 328, 3597, and 4179 differentially expressed genes (DEGs) were screened out in intraoperative period (Day0 vs. Con), early postoperative period (Day2 vs. Day0), and late postoperative period (Day7 vs. Day2). The involved GO biological processes were divided into 9 categories, and positive-regulated processes were more than negative-regulated ones. Seventy-four transcription factors were highlighted. The potential synaptic and neuroinflammatory pathways were constructed for Neurotransmitter, Synapse and Neuronal alteration categories with 9 genes (Htr1a, Rims1, and Ezh2, etc.). The metabolic and mitochondrial pathways were constructed for metabolism, oxidative stress, and biological rhythm categories with 9 genes (Gpld1, Sirt1, and Cry2, etc.). The blood-brain barrier and neurotoxicity related pathways were constructed for blood-brain barrier, neurotoxicity, and cognitive function categories with 10 genes (Mmp2, Itpr1, and Nrf1, etc.). CONCLUSION The results revealed gene expression patterns and modulation networks in the aged hippocampus during perioperative period, which provide insights into overall mechanisms and potential therapeutic targets for prevention and treatment of perioperative central nervous system diseases, such as PND, from the genetic level.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
110
|
Cytokine changes in cerebrospinal fluid following vascular surgery on the thoracic aorta. Sci Rep 2022; 12:12839. [PMID: 35896592 PMCID: PMC9329310 DOI: 10.1038/s41598-022-16882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
There is growing evidence that surgery can drive an inflammatory response in the brain. However, the mechanisms behind this response are incompletely understood. Here, we investigate the hypotheses that 1. Cerebrospinal fluid (CSF) cytokines increase after vascular surgery and 2. That these changes in CSF cytokines are interrelated. Patients undergoing either open or endovascular elective surgery of the thoracic aorta were invited to participate in this study. Cerebrospinal fluid samples were taken before surgery and on the first post-operative day. These were analysed for the presence of ten cytokines by immunoassay to examine for post-operative changes in cytokine levels. After surgery, there were significant increases in six out of the ten measured CSF cytokines (IL-1β, 2, 6, 8, 10 and 13). This included changes in both putative pro-inflammatory (IL-1β, 6 and 8) and putative anti-inflammatory (IL-2, 10 and 13) cytokines. The greatest increases occurred in IL-6 and IL-8, which showed a 63-fold and a 31-fold increase respectively. There was strong intercorrelation between CSF cytokines after the operation. Following surgery on the thoracic aorta, there was a marked increase in CSF cytokines, consistent with a potential role in neuroinflammation. The ten measured cytokines showed intercorrelation after the operation, indicating that a balance between multiple pro- and anti-inflammatory cytokines may be present.
Collapse
|
111
|
HDAC6 Inhibition Alleviates Anesthesia and Surgery-Induced Less Medial Prefrontal-Dorsal Hippocampus Connectivity and Cognitive Impairment in Aged Rats. Mol Neurobiol 2022; 59:6158-6169. [PMID: 35882756 DOI: 10.1007/s12035-022-02959-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
To investigate the underlying mechanisms of postoperative cognitive dysfunction and the impairment of medial prefrontal cortex-hippocampus connectivity. Postoperative cognitive dysfunction frequently affects elderly following surgery. The role of inter-brain-region connectivity abnormality after anesthesia and surgery on postoperative cognitive dysfunction development remains unclear. Medial prefrontal cortex-hippocampus connectivity of aged and adult rats was evaluated by injecting neurotracer biotinylated dextranamine (BDA) into bilateral hippocampus 3 days before partial hepatectomy, and biotinylated dextranamine positive cells of medial prefrontal cortex 2 days after hepatectomy were counted. HDAC6 shRNA was injected into medial prefrontal cortex and hippocampus bilaterally before hepatectomy or an HDAC6 activity inhibitor Tubastatin A was administered systemically after hepatectomy. Neuroinflammation and HDAC6 down-target ac-tubulin in medial prefrontal cortex and hippocampus were detected. Learning and memory of rats were evaluated by Barnes Maze task during 2-5 days after surgery and delayed matching-to-place water maze task during 10-23 days after surgery. Compared to the age-matched normal controls, anesthesia and surgery significantly decreased BDA-positive neurons in medial prefrontal cortex of aged rats, but not young adult rats. Local HDAC6 knockdown and systemic HDAC6 inhibition both increased BDA-positive neurons number of medial prefrontal cortex, alleviated learning and memory impairment in the Barnes Maze task and water maze task, decreased HDAC6 expression, inflammatory cytokines, astrocyte and microglial activation, and increased ac-tubulin expression in aged rats which received surgery. Our data indicated that anesthesia and surgery impaired medial prefrontal cortex-hippocampus connectivity and cognition which was associated with HDAC6 overexpression.
Collapse
|
112
|
Eun JD, Jimenez H, Adrien L, Wolin A, Marambaud P, Davies P, Koppel JL. Anesthesia promotes acute expression of genes related to Alzheimer's disease and latent tau aggregation in transgenic mouse models of tauopathy. Mol Med 2022; 28:83. [PMID: 35858831 PMCID: PMC9297560 DOI: 10.1186/s10020-022-00506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to anesthesia in the elderly might increase the risk of dementia. Although the mechanism underlying the association is uncertain, anesthesia has been shown to induce acute tau hyperphosphorylation in preclinical models. We sought to investigate the impact of anesthesia on gene expression and on acute and long-term changes in tau biochemistry in transgenic models of tauopathy in order to better understand how anesthesia influences the pathophysiology of dementia. Methods We exposed mice with over-expressed human mutant tau (P301L and hyperdopaminergic COMTKO/P301L) to two hours of isoflurane and compared anesthetized mice to controls at several time points. We evaluated tau hyperphosphorylation with quantitative high-sensitivity enzyme-linked immunosorbent assay and performed differential expression and functional transcriptome analyses following bulk mRNA-sequencing. Results Anesthesia induced acute hyperphosphorylation of tau at epitopes related to Alzheimer’s disease (AD) in both P301L-based models. Anesthesia was associated with differential expression of genes in the neurodegenerative pathways (e.g., AD-risk genes ApoE and Trem2) and thermogenesis pathway, which is related to both mammalian hibernation and tau phosphorylation. One and three months after anesthesia, hyperphosphorylated tau aggregates were increased in the anesthetized mice. Conclusions Anesthesia may influence the expression of AD-risk genes and induce biochemical changes in tau that promote aggregation even after single exposure. Further preclinical and human studies are necessary to establish the relevance of our transcriptomic and biochemical findings in these preclinical models to the pathogenesis of dementia following anesthesia. Trial registration: Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00506-4.
Collapse
Affiliation(s)
- John David Eun
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Heidy Jimenez
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Leslie Adrien
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Adam Wolin
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Peter Davies
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Jeremy L Koppel
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA. .,Zucker Hillside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA.
| |
Collapse
|
113
|
Rump K, Holtkamp C, Bergmann L, Nowak H, Unterberg M, Orlowski J, Thon P, Bazzi Z, Bazzi M, Adamzik M, Koos B, Rahmel T. Midazolam impacts acetyl-And butyrylcholinesterase genes: An epigenetic explanation for postoperative delirium? PLoS One 2022; 17:e0271119. [PMID: 35802656 PMCID: PMC9269431 DOI: 10.1371/journal.pone.0271119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Midazolam is a widely used short-acting benzodiazepine. However, midazolam is also criticized for its deliriogenic potential. Since delirium is associated with a malfunction of the neurotransmitter acetylcholine, midazolam appears to interfere with its proper metabolism, which can be triggered by epigenetic modifications. Consequently, we tested the hypothesis that midazolam indeed changes the expression and activity of cholinergic genes by acetylcholinesterase assay and qPCR. Furthermore, we investigated the occurrence of changes in the epigenetic landscape by methylation specific PCR, ChiP-Assay and histone ELISA. In an in-vitro model containing SH-SY5Y neuroblastoma cells, U343 glioblastoma cells, and human peripheral blood mononuclear cells, we found that midazolam altered the activity of acetylcholinesterase /buturylcholinesterase (AChE / BChE). Interestingly, the increased expression of the buturylcholinesterase evoked by midazolam was accompanied by a reduced methylation of the BCHE gene and the di-methylation of histone 3 lysine 4 and came along with an increased expression of the lysine specific demethylase KDM1A. Last, inflammatory cytokines were not induced by midazolam. In conclusion, we found a promising mechanistic link between midazolam treatment and delirium, due to a significant disruption in cholinesterase homeostasis. In addition, midazolam seems to provoke profound changes in the epigenetic landscape. Therefore, our results can contribute to a better understanding of the hitherto poorly understood interactions and risk factors of midazolam on delirium.
Collapse
Affiliation(s)
- Katharina Rump
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Caroline Holtkamp
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Lars Bergmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Unterberg
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Jennifer Orlowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Thon
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Zainab Bazzi
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Maha Bazzi
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Adamzik
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Björn Koos
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Tim Rahmel
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
114
|
Chen B, Qin G, Xiao J, Deng X, Lin A, Liu H. Transient neuroinflammation following surgery contributes to long-lasting cognitive decline in elderly rats via dysfunction of synaptic NMDA receptor. J Neuroinflammation 2022; 19:181. [PMID: 35831873 PMCID: PMC9281167 DOI: 10.1186/s12974-022-02528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022] Open
Abstract
Background Perioperative neurocognitive disorders (PNDs) are considered the most common postoperative complication in geriatric patients. However, its pathogenesis is not fully understood. Surgery-triggered neuroinflammation is a major contributor to the development of PNDs. Neuroinflammation can influence N-methyl-D-aspartate receptor (NMDAR) expression or function which is closely associated with cognition. We, therefore, hypothesized that the persistent changes in NMDAR expression or function induced by transient neuroinflammation after surgery were involved in the development of PNDs. Methods Eighteen-month-old male Sprague–Dawley rats were subjected to abdominal surgery with sevoflurane anesthesia to establish the PNDs animal model. Then, we determined the transient neuroinflammation by detecting the protein levels of proinflammatory cytokines and microglia activation using ELISA, western blot, immunohistochemistry, and microglial morphological analysis from postoperative days 1–20. Persistent changes in NMDAR expression were determined by detecting the protein levels of NMDAR subunits from postoperative days 1–59. Subsequently, the dysfunction of synaptic NMDAR was evaluated by detecting the structural plasticity of dendritic spine using Golgi staining. Pull-down assay and western blot were used to detect the protein levels of Rac1-GTP, phosphor-cofilin, and Arp3, which contribute to the regulation of the structural plasticity of dendritic spine. Finally, glycyrrhizin, an anti-inflammatory agent, was administered to further explore the role of synaptic NMDAR dysfunction induced by transient neuroinflammation in the neuropathogenesis of PNDs. Results We showed that transient neuroinflammation induced by surgery caused sustained downregulation of synaptic NR2A and NR2B subunits in the dorsal hippocampus and led to a selective long-term spatial memory deficit. Meanwhile, the detrimental effect of neuroinflammation on the function of synaptic NMDARs was shown by the impaired structural plasticity of dendritic spines and decreased activity of the Rac1 signaling pathways during learning. Furthermore, anti-inflammatory treatment reversed the downregulation and hypofunction of synaptic NR2A and NR2B and subsequently rescued the long-term spatial memory deficit. Conclusions Our results identify sustained synaptic NR2A and NR2B downregulation and hypofunction induced by transient neuroinflammation following surgery as important contributors to the development of PNDs in elderly rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02528-5.
Collapse
Affiliation(s)
- Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Guangcheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xiaoyuan Deng
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Aolei Lin
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
115
|
Bhuiyan P, Chuwdhury GS, Sun Z, Chen Y, Dong H, Ahmed FF, Nana L, Rahman MH, Qian Y. Network Biology Approaches to Uncover Therapeutic Targets Associated with Molecular Signaling Pathways from circRNA in Postoperative Cognitive Dysfunction Pathogenesis. J Mol Neurosci 2022; 72:1875-1901. [PMID: 35792980 DOI: 10.1007/s12031-022-02042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a cognitive deterioration and dementia that arise after a surgical procedure, affecting up to 40% of surgery patients over the age of 60. The precise etiology and molecular mechanisms underlying POCD remain uncovered. These reasons led us to employ integrative bioinformatics and machine learning methodologies to identify several biological signaling pathways involved and molecular signatures to better understand the pathophysiology of POCD. A total of 223 differentially expressed genes (DEGs) comprising 156 upregulated and 67 downregulated genes were identified from the circRNA microarray dataset by comparing POCD and non-POCD samples. Gene ontology (GO) analyses of DEGs were significantly involved in neurogenesis, autophagy regulation, translation in the postsynapse, modulating synaptic transmission, regulation of the cellular catabolic process, macromolecule modification, and chromatin remodeling. Pathway enrichment analysis indicated some key molecular pathways, including mTOR signaling pathway, AKT phosphorylation of cytosolic targets, MAPK and NF-κB signaling pathway, PI3K/AKT signaling pathway, nitric oxide signaling pathway, chaperones that modulate interferon signaling pathway, apoptosis signaling pathway, VEGF signaling pathway, cellular senescence, RANKL/RARK signaling pathway, and AGE/RAGE pathway. Furthermore, seven hub genes were identified from the PPI network and also determined transcription factors and protein kinases. Finally, we identified a new predictive drug for the treatment of SCZ using the LINCS L1000, GCP, and P100 databases. Together, our results bring a new era of the pathogenesis of a deeper understanding of POCD, identified novel therapeutic targets, and predicted drug inhibitors in POCD.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - G S Chuwdhury
- Department of Computer Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Li Nana
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
116
|
Chen J, Ding Q, Jiao X, Wang B, Sun Z, Zhang Y, Zhao J. Dexmedetomidine attenuates hippocampal neuroinflammation in postoperative neurocognitive disorders by inhibiting microRNA-329-3p and activating the CREB1/IL1RA axis. Psychopharmacology (Berl) 2022; 239:2171-2186. [PMID: 35412062 DOI: 10.1007/s00213-022-06091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Due to its anti-inflammatory effect, dexmedetomidine (DEX) can confer neuroprotection in postoperative neurocognitive disorders (NCD). Here, the mechanism responsible for this effect of DEX is rarely ascertained. OBJECTIVES Our research was implemented to figure out mechanism governing the protection of DEX against hippocampal neuroinflammation in postoperative NCD. METHODS Exploratory laparotomy was applied for generating a postoperative NCD mouse model before bilateral hippocampal injection with microRNA (miR)-329-3p-agomir and intraperitoneal injection with DEX. Cognitive function of mice was evaluated by water maze test and fear conditioning test. Immunofluorescence was performed to assess microglial activation in hippocampus. After cell transfection and DEX treatment, mouse microglial cells (BV-2) were stimulated by lipopolysaccharide (LPS). IL-1β, IL-6, and TNF-α levels and the number of phagocytes were assessed by ELISA and flow cytometry. Dual-luciferase reporter assay was adopted to assess the relationship between miR-329-3p and CREB1. RESULTS miR-329-3p expression was reduced in the postoperative NCD mice after DEX treatment. DEX treatment or miR-329-3p downregulation caused attenuated cognitive dysfunction and microglia activation as well as reduced IL-1β, IL-6, and TNF-α levels in the hippocampus of the postoperative NCD mice. Mechanistically, miR-329-3p inversely targeted CREB1 that activated IL1RA in LPS-induced BV-2 cells. DEX treatment, miR-329-3p inhibition, or CREB1 or IL1RA upregulation curtailed the release of proinflammatory proteins and the number of phagocytes in LPS-induced BV-2 cells. CONCLUSIONS Collectively, our data provided the novel insight of the neuroprotective mechanism of DEX in postoperative NCD pertaining to the miR-329-3p/CREB1/IL1RA axis.
Collapse
Affiliation(s)
- Jinquan Chen
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Qian Ding
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Xiangxue Jiao
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Binrong Wang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Zhenzhong Sun
- Department of Anesthesiology, Guangdong Armed Police Corps Hospital, Guangzhou, 510507, People's Republic of China
| | - Yutao Zhang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Juan Zhao
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China.
| |
Collapse
|
117
|
sVCAM1 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Mice by Inducing Microglial Activation Through the VLA-4 Receptor. Mol Neurobiol 2022; 59:5485-5503. [PMID: 35727436 DOI: 10.1007/s12035-022-02924-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a severe postsurgical complication, but its underlying mechanisms remain unclear. Neuroinflammation mediated by microglial activation plays a major role in POCD pathophysiology. Upregulation of vascular cell adhesion molecule 1 (VCAM1) on brain endothelial cells is closely correlated with microglial activation in the mouse hippocampus. However, the role of VCAM1 upregulation in microglial activation remains unknown. Soluble VCAM1 (sVCAM1) activates the very late antigen-4 (VLA-4) receptor under inflammatory conditions. Therefore, we hypothesized that sVCAM1 which is shed from VCAM1 contributes to POCD by triggering hippocampal microglial activation through the VLA-4 receptor. We found that VCAM1 and sVCAM1 expression in the mouse hippocampus was upregulated after surgery, and the upregulation was accompanied by hippocampal microglial activation. sVCAM1 levels in mouse and human serum were increased after surgery. Anti-VCAM1 treatment inhibited microglial activation, proinflammatory cytokine production, VLA-4 expression and P38 mitogen-associated protein kinase (MAPK) pathway activation and attenuated hippocampal-dependent cognitive dysfunction. In vitro, recombinant sVCAM1 promoted M1 polarization in BV2 cells, increased VLA-4 expression and activated the P38 MAPK pathway. These effects were reversed by VLA-4 receptor blockade. Anti-VLA-4 treatment ameliorated hippocampal-dependent cognitive dysfunction after surgery by inhibiting microglial activation, proinflammatory cytokine production and P38 pathway activation. In conclusion, increased sVCAM1 in the hippocampus is involved in microglial activation and cognitive dysfunction induced by surgery. Inhibiting the sVCAM1-VLA-4 interaction in microglia may be a therapeutic strategy for POCD.
Collapse
|
118
|
Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota—Gut—Brain Axis in Perioperative Neurocognitive Dysfunction. Front Pharmacol 2022; 13:879745. [PMID: 35774608 PMCID: PMC9237434 DOI: 10.3389/fphar.2022.879745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
With the aging of the world population and advances in medical and health technology, more and more elderly patients are undergoing anesthesia and surgery, and perioperative neurocognitive dysfunction (PND) is receiving increasing attention. The latest definition of PND, published simultaneously in November 2018 in 6 leading journals in the field of anesthesiology, clarifies that PND includes preoperatively cognitive impairment, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction and meets the diagnostic criteria for neurocognitive impairment in the Diagnostic and Statistical Manual of Mental Disorders -fifth edition (DSM-5). The time frame for PND includes preoperatively and within 12 months postoperatively. Recent studies have shown that gut microbiota regulates central nervous function and behavior through the gut microbiota - gut - brain axis, but the role of the axis in the pathogenesis of PND remains unclear. Therefore, this article reviews the mechanism of the role of gut microbiota-gut-brain axis in PND, so as to help explore reasonable early treatment strategies.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenlong Hou
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Sunan Gao
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Youming Zong
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
- *Correspondence: Youming Zong,
| |
Collapse
|
119
|
Wei P, Lyu W, Xu L, Feng H, Zhou H, Li J. α7 Nicotinic Acetylcholine Receptor May Be a Pharmacological Target for Perioperative Neurocognitive Disorders. Front Pharmacol 2022; 13:907713. [PMID: 35721159 PMCID: PMC9204176 DOI: 10.3389/fphar.2022.907713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The α7 nicotinic acetylcholine receptor (α7nAChR) is a promising therapeutic target in neurodegenerative diseases. This study examined the effects of surgery and anesthesia on α7nAChR expression in the central nervous system and determined the mechanisms by which α7nAChR mediates neuroprotection in perioperative neurocognitive disorders (PNDs) in aged mice. Methods: Eighteen-month-old male C57BL/6J mice underwent aseptic laparotomy under isoflurane anesthesia, maintaining spontaneous ventilation to establish the PNDs model. Agonists and antagonists of the α7nAChR and tropomyosin receptor kinase B (TrkB) receptors were administered before anesthesia. The α7nAChR expression, peripheral as well as hippocampal interleukin-1β (IL-1β), and the brain-derived neurotrophic factor (BDNF) levels were assessed. Separate cohorts of aged mice were tested for cognitive decline using the Morris water maze (MWM). Results: Surgery and anesthesia significantly suppressed α7nAChR expression in the hippocampus and cortex. Surgery-induced IL-1β upregulation in the serum as well as hippocampus and hippocampal microglial activation were reversed by the α7nAChR agonist. A significant reduction in the hippocampal BDNF levels were also observed. The α7nAChR stimulation reversed, and α7nAChR suppression promoted BDNF reduction in the hippocampus. Blocking the BDNF/TrkB signaling pathway abolished α7nAChR-induced neuroprotection in PNDs, as evidenced by poor cognitive performance in the MWM test. Conclusions: These data reveal that α7nAChR plays a key role in PNDs. The mechanisms of the anti-inflammatory pathway and BDNF/TrkB signaling pathways are involved in α7nAChR-meidiated neuroprotection in PNDs.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
120
|
Ji L, Li F. Potential Markers of Neurocognitive Disorders After Cardiac Surgery: A Bibliometric and Visual Analysis. Front Aging Neurosci 2022; 14:868158. [PMID: 35721025 PMCID: PMC9199578 DOI: 10.3389/fnagi.2022.868158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Background Identifying useful markers is essential for diagnosis and prevention of perioperative neurocognitive disorders (PNDs). Here, we attempt to understand the research basis and status, potential hotspots and trends of predictive markers associated with PNDs after cardiac surgery via bibliometric analysis. Methods A total of 4,609 original research articles and reviews that cited 290 articles between 2001 and 2021 were obtained from the Web of Science Core Collection (WoSCC) as the data source. We used the software CiteSpace to generate and analyze visual networks of bibliographic information, including published years and journals, collaborating institutions, co-cited references, and co-occurring keywords. Results The number of annual and cumulative publications from 2001 to 2021 has been increasing on the whole. The Harvard Medical School was a very prolific and important institution in this field. The journal of Ann Thorac Surg (IF 4.33) had the most publications, while New Engl J Med was the most cited journal. Neuron-specific enolase (NSE), S100b and kynurenic acid (KYNA) were frequently discussed as possible markers of PNDs in many references. Cardiopulmonary bypass (CPB) was a keyword with high frequency (430) and sigma (6.26), and inflammation was the most recent burst keyword. Conclusion Potential markers of PNDs has received growing attention across various disciplines for many years. The research basis mainly focuses on three classic biomarkers of S100b, NSE, and KYNA. The most active frontiers are the inflammation-related biomarkers (e.g., inflammatory cells, cytokines, or mediators) and surgery-related monitoring parameters (e.g., perfusion, oxygen saturation, and the depth of anesthesia).
Collapse
|
121
|
Wang J, Xin Y, Chu T, Liu C, Xu A. Dexmedetomidine attenuates perioperative neurocognitive disorders by suppressing hippocampal neuroinflammation and HMGB1/RAGE/NF-κB signaling pathway. Biomed Pharmacother 2022; 150:113006. [PMID: 35486975 DOI: 10.1016/j.biopha.2022.113006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Surgical trauma can induce an inflammatory response in the central nervous system. Neuroinflammation is a crucial pathological mechanism of perioperative neurocognitive disorders (PND). Dexmedetomidine (Dex) is an alpha (α)-2 adrenoceptor agonist that is widely used in the perioperative period. Previous studies have shown that Dex has neuroprotection in various nerve injury models, but its role in PND remains unclear. Our study aimed to observe the neuroprotective effect of Dex pretreatment on postoperative cognitive change and explore the effects of hippocampal neuroinflammation, microglial polarization and HMGB1/RAGE/NF-κB signaling pathway involved in Dex on PND in rats. Rats were pretreated with Dex alone or in combination with yohimbine (α-2 adrenoceptor antagonist) before surgery. Behavioral tests results showed that Dex ameliorated surgery-induced cognitive impairment in rats. Nissl, immunohistochemistry and TUNEL-NeuN staining results indicated that Dex reduced hippocampus damage and neuronal apoptosis caused by surgery. Dex preconditioning reduced the expression of the proinflammatory cytokines IL-1β, TNF-α and IL-6 in hippocampus. Immunohistochemical and immunofluorescence results showed that Dex preconditioning inhibited the activation of glial cells induced by surgery. Western blot analysis showed that Dex preconditioning downregulated the expression of M1 phenotype markers (CD86 and iNOS), HMGB1, RAGE and nuclear NF-κB and upregulated the expression of M2 phenotype markers (Arginase 1 and CD206) and cytoplasmic NF-κB. Yohimbine could inhibit the neuroprotective effect of Dex. These results indicated that Dex pretreatment could improve postoperative short-term cognitive impairment, and the neuroprotective mechanism may involve the suppression of hippocampal neuroinflammation, regulation of M1/M2 polarization, and inhibition of HMGB1/RAGE/NF-κB signal transduction.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Chu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aijun Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
122
|
Pereira C, Dani M, Taylor-Robinson SD, Fertleman M. Putative Involvement of Cytokine Modulation in the Development of Perioperative Neurocognitive Disorders. Int J Gen Med 2022; 15:5349-5360. [PMID: 35677803 PMCID: PMC9167835 DOI: 10.2147/ijgm.s364954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Following surgery, local cytokine-driven inflammation occurs, as part of the normal healing process. Cytokines in the central nervous system such as IL-6 and IL-8 may also be elevated. These cytokine changes likely contribute to neuroinflammation, but the complex mechanisms through which this occurs are incompletely understood. It may be that perioperative changes in pro- and anti-inflammatory cytokines have a role in the development of perioperative neurocognitive disorders (PND), such as post-operative delirium (POD). This review considers the current evidence regarding perioperative cytokine changes in the blood and cerebrospinal fluid (CSF), as well as considering the potential for cytokine-altering therapies to prevent and treat PND.
Collapse
Affiliation(s)
- Christopher Pereira
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | - Melanie Dani
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | | | - Michael Fertleman
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
123
|
Belcher EK, Culakova E, Gilmore NJ, Hardy SJ, Kleckner AS, Kleckner IR, Lei L, Heckler C, Sohn MB, Thompson BD, Lotta LT, Werner ZA, Geer J, Hopkins JO, Corso SW, Rich DQ, van Wijngaarden E, Janelsins MC. Inflammation, Attention, and Processing Speed in Patients With Breast Cancer Before and After Chemotherapy. J Natl Cancer Inst 2022; 114:712-721. [PMID: 35134984 PMCID: PMC9086766 DOI: 10.1093/jnci/djac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation may contribute to cognitive difficulties in patients with breast cancer. We tested 2 hypotheses: inflammation is elevated in patients with breast cancer vs noncancer control participants and inflammation in patients is associated with worse attention and processing speed over the course of chemotherapy. METHODS Serum cytokines (interleukin [IL]-4, 6, 8, 10; tumor necrosis factor [TNF]-α) and soluble receptors [sTNFRI, II]) were measured in 519 females with breast cancer before and after chemotherapy and 338 females without cancer serving as control participants. Attention and processing speed were measured by Rapid Visual Processing (RVP), Backward Counting (BCT), and Trail Making-A (TMT-A) tests. Linear regression models examined patient vs control cytokines and receptor levels, adjusting for covariates. Linear regression models also examined relationships between patient cytokines and receptor levels and test performance, adjusting for age, body mass index, anxiety, depression, cognitive reserve, and chemotherapy duration. Statistical tests were 2-sided (α = .05). RESULTS sTNFRI and sTNFRII increased over time in patients relative to controls, whereas IL-4, IL-6, and IL-10 decreased. Prechemotherapy, higher IL-8 associated with worse BCT (β = 0.610, SE = 0.241, P = .01); higher IL-4 (β = -1.098, SE = 0.516, P = .03) and IL-10 (β = -0.835, SE = 0.414, P = .04) associated with better TMT-A. Postchemotherapy, higher IL-8 (β = 0.841, SE = 0.260, P = .001), sTNFRI (β = 6.638, SE = 2.208, P = .003), and sTNFRII (β = 0.913, SE = 0.455, P = .045) associated with worse BCT; higher sTNFRII also associated with worse RVP (β = -1.316, SE = 0.587, P = .03). At prechemotherapy, higher IL-4 predicted RVP improvement over time (β = 0.820, SE = 0.336, P = .02); higher sTNFRI predicted worse BCT over time (β = 5.566, SE = 2.367, P = .02). Longitudinally, increases in IL-4 associated with BCT improvement (β = -0.564, SE = 0.253, P = .03). CONCLUSIONS Generally, worse attention and processing speed were associated with higher inflammatory cytokines and receptors and lower anti-inflammatory cytokines in patients; future confirmatory studies are needed.
Collapse
Affiliation(s)
- Elizabeth K Belcher
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva Culakova
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Nikesha J Gilmore
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Sara J Hardy
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
- Department of Radiation Oncology and Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber S Kleckner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Ian R Kleckner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianlian Lei
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Charles Heckler
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Sohn
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Bryan D Thompson
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Louis T Lotta
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary A Werner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Jodi Geer
- Metro Minnesota Community Oncology Research Consortium, Louis Park, MN, USA
| | | | - Steven W Corso
- Upstate Carolina National Cancer Institute Community Oncology Research Program, Spartanburg Regional Medical Center, Spartanburg, SC, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Janelsins
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
124
|
Zhang Z, Ma Q, Velagapudi R, Barclay WE, Rodriguiz RM, Wetsel WC, Yang T, Shinohara ML, Terrando N. Annexin-A1 Tripeptide Attenuates Surgery-Induced Neuroinflammation and Memory Deficits Through Regulation the NLRP3 Inflammasome. Front Immunol 2022; 13:856254. [PMID: 35603196 PMCID: PMC9120413 DOI: 10.3389/fimmu.2022.856254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation is a growing hallmark of perioperative neurocognitive disorders (PNDs), including delirium and longer-lasting cognitive deficits. We have developed a clinically relevant orthopedic mouse model to study the impact of a common surgical procedure on the vulnerable brain. The mechanism underlying PNDs remains unknown. Here we evaluated the impact of surgical trauma on the NLRP3 inflammasome signaling, including the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and IL-1β in the hippocampus of C57BL6/J male mice, adult (3-months) and aged (>18-months). Surgery triggered ASC specks formation in CA1 hippocampal microglia, but without inducing significant morphological changes in NLRP3 and ASC knockout mice. Since no therapies are currently available to treat PNDs, we assessed the neuroprotective effects of a biomimetic peptide derived from the endogenous inflammation-ending molecule, Annexin-A1 (ANXA1). We found that this peptide (ANXA1sp) inhibited postoperative NLRP3 inflammasome activation and prevented microglial activation in the hippocampus, reducing PND-like memory deficits. Together our results reveal a previously under-recognized role of hippocampal ANXA1 and NLRP3 inflammasome dysregulation in triggering postoperative neuroinflammation, offering a new target for advancing treatment of PNDs through the resolution of inflammation.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - William E. Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Ting Yang
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, NC, United States
| | - Mari L. Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| |
Collapse
|
125
|
Lu W, Zhang K, Chang X, Yu X, Bian J. The Association Between Systemic Immune-Inflammation Index and Postoperative Cognitive Decline in Elderly Patients. Clin Interv Aging 2022; 17:699-705. [PMID: 35535363 PMCID: PMC9078355 DOI: 10.2147/cia.s357319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Postoperative cognitive decline (POCD) is highly prevalent in elderly patients who received surgery. The systemic immune-inflammation index (SII) has been shown to be an independent predictor of many diseases associated with inflammation, but the relationship between the SII and POCD is unknown. We aimed to investigate the association between POCD and SII levels to examine the potential of SII in predicting POCD in elderly patients. Patients and Methods The present study was carried out among elderly patients who underwent elective orthopedics operation in our hospital, and SII, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR) were calculated from the admission blood sample. POCD was measured by Mini-mental State Examination (MMSE) in elderly patients. The association between SII levels and POCD was analyzed by binary logistic regression analysis. Results Finally, 19 (25%) of 76 patients were diagnosed with POCD. Compared with Non-POCD patients, POCD patients showed significantly higher levels of NLR, MLR, SII, especially SII at admission. SII was independently associated with the occurrence of POCD through the logistic regression analysis. Receiver operating characteristic curve analysis indicated that preoperative SII was a significant predictor for POCD, and the area under the curve was 0.909. Conclusion Our data suggest that preoperative NLR, MLR, SII levels in the blood are related to the occurrence of POCD. Preoperative SII level is a prognostic biomarker of POCD in elderly patients after orthopedics operation. More clinical studies are needed to further verify the value of SII in POCD.
Collapse
Affiliation(s)
- Wenbin Lu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
| | - Keqin Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
- Department of Anesthesiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Xinning Chang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
| | - Xiya Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
- Correspondence: Xiya Yu; Jinjun Bian, Faculty of Anesthesiology, Changhai Hospital, Naval Medical Unversity, 168, Changhai Road, Shanghai, 200433, People’s Republic of China, Tel/Fax +86-021-31161886; +86-021-31161841, Email ;
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
126
|
Ran W, Liang N, Yuan R, Wang Z, Gao J. Identification of Potential Key circRNAs in Aged Mice With Postoperative Delirium. Front Mol Neurosci 2022; 15:836534. [PMID: 35493320 PMCID: PMC9047966 DOI: 10.3389/fnmol.2022.836534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Postoperative delirium (POD) is a common postoperative complication in elderly patients and seriously affects postoperative recovery. The exact mechanism of POD is still unclear. Therefore, it is necessary to explore the mechanism of POD in transcriptional regulation. At present, circRNAs have been proven to play an important role in a variety of mental health and cognitive disorders, such as Alzheimer’s disease, depression and schizophrenia. To reveal the effect of circRNA on POD, we used microarray to analyze the differential expression profiles of circRNAs in the hippocampus of 12-month-old mice between the tibial fracture and control groups. A total of 1,4236 circRNAs were identified. Compared with the control group, there were 500 circRNAs with increased expression and 187 with decreased expression. The accuracy of the microarray data was further verified by qRT–PCR. Finally, GO enrichment and KEGG pathway analyses indicated that changes in axon orientation, ubiquitin-mediated proteolysis, glutamate synapses, the estrogen signaling pathway, the RAS signaling pathway and other systems may be important potential pathological mechanisms in the progression of POD. In particular, we found that the HOMER1 gene and its transcript mmu_circRNA_26701 are specifically expressed in the glutamate synapse, which may provide new clues and intervention targets for the progression of this refractory disease.
Collapse
|
127
|
Xiang X, Tang X, Yu Y, Xie S, Liu L, Chen M, Zhang R, Kang X, Zheng Y, Yang G, Gan S, Zhu S. Role of lipocalin-2 in surgery-induced cognitive decline in mice: a signal from neuron to microglia. J Neuroinflammation 2022; 19:92. [PMID: 35413913 PMCID: PMC9006597 DOI: 10.1186/s12974-022-02455-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PNDs) are common complications observed among surgical patients. Accumulating evidence suggests that neuroinflammation is one of the major contributors to the development of PNDs, but the underlying mechanisms remain unclear. METHODS qPCR and ELISA analysis were used for detecting LCN2 and cytokine levels. cx3cr1CreER/-:: R26iDTR/- crossed mouse line was used for microglia depletion; intracranial injection of recombinant LCN2 (rLCN2) and adeno-associated viruses (AAV)-mediated shRNA silencing approaches were used for gain and loss of function, respectively. Combing with in vitro microglia cell culture, we have studied the role of LCN2 in surgery-induced cognitive decline in mice. RESULTS We revealed that Lcn2 mRNA and protein levels were greatly increased in mouse hippocampal neurons after surgery. This surgery-induced elevation of LCN2 was independent of the presence of microglia. Gain of function by intracranial injection of rLCN2 protein into hippocampus disrupted fear memory in naive mice without surgery. Conversely, silencing LCN2 in hippocampus by AAV-shRNA protected mice from surgery-induced microglia morphological changes, neuroinflammation and cognitive decline. In vitro, application of rLCN2 protein induced the expression of several pro-inflammatory cytokines in both BV-2 and primary microglia culture. CONCLUSIONS These data suggest LCN2 acts as a signal from neuron to induce proinflammatory microglia, which contributes to surgery-induced neuroinflammation and cognitive decline in mice.
Collapse
Affiliation(s)
- Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Xiaodong Tang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yang Yu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Shulan Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - ManLi Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Rong Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Guang Yang
- 2Department of Anesthesiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Shuyuan Gan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
128
|
Affiliation(s)
- Mark A Oldham
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
129
|
Otto LD, Russart KLG, Kulkarni P, McTigue DM, Ferris CF, Pyter LM. Paclitaxel Chemotherapy Elicits Widespread Brain Anisotropy Changes in a Comprehensive Mouse Model of Breast Cancer Survivorship: Evidence From In Vivo Diffusion Weighted Imaging. Front Oncol 2022; 12:798704. [PMID: 35402248 PMCID: PMC8984118 DOI: 10.3389/fonc.2022.798704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is one of the most common diseases in the United States with 1 in 8 women developing the disease in her lifetime. Women who develop breast cancer are often post-menopausal and undergo a complex sequence of treatments including surgery, chemotherapy, and aromatase inhibitor therapy. Both independently and through potential interactions, these factors and treatments are associated with behavioral comorbidities reported in patients (e.g., fatigue), although the underlying neurobiological mechanisms are poorly understood. Currently, brain imaging is the most feasible way to assess neurobiology in patients. Indeed, breast cancer patients display alterations in white matter connections and chemotherapy is associated with decreased white and gray matter in the corpus callosum and cortex as well as decreased hippocampal volume. However, imaging in breast cancer rodent models is lacking, impeding translation of the mechanistic neurobiological findings made possible through modeling. Furthermore, current rodent models of breast cancer often lack the complexity of typical multimodal breast cancer treatments, thereby limiting translational value. The present study aimed to develop a comprehensive model of post-menopausal breast cancer survival using immunocompetent ovariectomized mice, including an orthotopic syngeneic tumor, surgical tumor removal, chemotherapy, and aromatase inhibitor therapy. Using this model, we systematically investigated the cumulative effects of chemotherapy and hormone replacement therapy on neurostructure and behavior using diffusion weighted imaging, open field test, and spontaneous alternation test. Our previous findings, in a simplified chemotherapy-only model, indicate that this regimen of chemotherapy causes circulating and central inflammation concurrent with reduced locomotor activity. The current study, in the more comprehensive model, has recapitulated the peripheral inflammation coincident with reduced locomotor activity as well as demonstrated that chemotherapy also drives widespread changes in brain anisotropy. Validating the clinical relevance of this comprehensive rodent breast cancer model will allow for additional neurobiological investigations of the interactions among various cancer components associated with behavioral comorbidities, as well as the relationship between these mechanisms and neurostructural imaging changes that can be measured in cancer patients.
Collapse
Affiliation(s)
- Lauren D. Otto
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kathryn L. G. Russart
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Dana M. McTigue
- Department of Neuroscience, Ohio State University, Columbus, OH, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Leah M. Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH, United States
- Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States
| |
Collapse
|
130
|
Kawada K, Ishida T, Jobu K, Morisawa S, Kawazoe T, Nishida M, Nishimura S, Tamura N, Yoshioka S, Miyamura M. Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital. J Nat Med 2022; 76:634-644. [PMID: 35257304 DOI: 10.1007/s11418-022-01612-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is associated with the development of hypoactive delirium, which results in poor clinical outcomes. Drugs effective against hypoactive sur have not yet been established. Yokukansan has an anti-neuroinflammatory effect, making it potentially effective against hypoactive delirium. This study aimed to examine the effect of Yokukansan on the pentobarbital-induced loss of righting reflex duration extended with lipopolysaccharide (LPS)-induced neuroinflammation and diazepam-induced gamma-aminobutyric acid receptor stimulation in a mouse model. The active ingredients in Yokukansan and its anti-neuroinflammatory effect on the hippocampus were also investigated. Furthermore, we examined the in vitro anti-inflammatory effects of Yokukansan on LPS-stimulated BV2 cells, a murine microglial cell line. Findings revealed that treatment with Yokukansan significantly decreased the duration of pentobarbital-induced loss of righting reflex by attenuating the LPS-induced increase in interleukin-6 and tumor necrosis factor-alpha levels in the hippocampus. Moreover, treatment with Yokukansan significantly decreased the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus after 24 h of LPS administration. In addition, glycyrrhizic acid, an active ingredient in Yokukansan, partially decreased the duration of pentobarbital-induced loss of righting reflex. Treatment with Yokukansan also suppressed the expression of inducible nitric oxide, interleukin-6, and tumor necrosis factor mRNA in LPS-stimulated BV2 cells. Thus, these findings suggest that Yokukansan and glycyrrhizic acid may be effective therapeutic agents for treating neuroinflammation-induced hypoactive delirium.
Collapse
Affiliation(s)
- Kei Kawada
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan. .,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan.
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Shumpei Morisawa
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Tetsushi Kawazoe
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Motoki Nishida
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Satomi Nishimura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Naohisa Tamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Saburo Yoshioka
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Mitsuhiko Miyamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| |
Collapse
|
131
|
Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology (Berl) 2022; 239:709-728. [PMID: 35187594 DOI: 10.1007/s00213-022-06096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Perioperative neurocognitive disorder (PND) is a common surgery outcome affecting up to a third of the elderly patients, and it is associated with high morbidity and increased risk for Alzheimer's disease development. PND is characterized by cognitive impairment that can manifest acutely in the form of postoperative delirium (POD) or after hospital discharge as postoperative cognitive dysfunction (POCD). Although POD and POCD are clinically distinct, their development seems to be mediated by a systemic inflammatory reaction triggered by surgical trauma that leads to dysfunction of the blood-brain barrier and facilitates the occurrence of neuroinflammation. Recent studies have suggested that the gut microbiota composition may play a pivotal role in the PND development by modulating the risk of neuroinflammation establishment. In fact, modulation of gut microbiome composition with pre- and probiotics seems to be effective for the prevention and treatment of PND in animals. Interestingly, general anesthetics seem to have major responsibility on the gut microbiota composition changes following surgery and, consequently, can be an important element in the process of PND initiation. This concept represents an important milestone for the understanding of PND pathogenesis and may unveil new opportunities for the development of preventive or mitigatory strategies against the development of these conditions. The aim of this review is to discuss how anesthetics used in general anesthesia can interact and alter the gut microbiome composition and contribute to PND development by favoring the emergence of neuroinflammation.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lihua Shang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongxue Jin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
132
|
Xin YY, Wang JX, Xu AJ. Electroacupuncture ameliorates neuroinflammation in animal models. Acupunct Med 2022; 40:474-483. [PMID: 35229660 DOI: 10.1177/09645284221076515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture treatment, which can be used as an adjuvant therapy for many diseases. This review focuses on molecular mechanisms of EA in the reduction of neuroinflammation, summarizes relevant basic research and outlines future directions for investigation. Findings: A growing body of basic research has shown that EA can ameliorate neuroinflammation centrally (in animal models of ischemic stroke, Alzheimer’s disease, traumatic brain injury, spinal cord injury, Parkinson’s disease and vascular dementia) and peripherally (e.g. after a surgical insult or injection of lipopolysaccharide) and that its effects involve different molecular mechanisms, including activation of the α7 nicotinic acetylcholine receptor signaling pathway and P2 type purinergic receptors, inhibition of nuclear factor κB, and mitigation of damage secondary to oxidative stress and NOD-like receptor protein 3 inflammasome activation. Conclusions: EA is capable of regulating multiple cell signal transduction pathways to alleviate neuroinflammation in animal models. Although the findings of animal studies are encouraging, further prospective clinical trials are needed to verify the efficacy of EA for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Yue-yang Xin
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-xu Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-jun Xu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
133
|
The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules 2022; 12:biom12020337. [PMID: 35204837 PMCID: PMC8869249 DOI: 10.3390/biom12020337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
The functions of the complement system to both innate and adaptive immunity through opsonization, cell lysis, and inflammatory activities are well known. In contrast, the role of complement in the central nervous system (CNS) which extends beyond immunity, is only beginning to be recognized as important to neurodevelopment and neurodegeneration. In addition to protecting the brain against invasive pathogens, appropriate activation of the complement system is pivotal to the maintenance of normal brain function. Moreover, overactivation or dysregulation may cause synaptic dysfunction and promote excessive pro-inflammatory responses. Recent studies have provided insights into the various responses of complement components in different neurological diseases and the regulatory mechanisms involved in their pathophysiology, as well as a glimpse into targeting complement factors as a potential therapeutic modality. However, there remain significant knowledge gaps in the relationship between the complement system and different brain disorders. This review summarizes recent key findings regarding the role of different components of the complement system in health and pathology of the CNS and discusses the therapeutic potential of anti-complement strategies for the treatment of neurodegenerative conditions.
Collapse
|
134
|
Abstract
Delirium remains a challenging clinical problem in hospitalized older adults, especially for postoperative patients. This complication, with a high risk of postoperative mortality and an increased length of stay, frequently occurs in older adult patients. This brief narrative paper aims to review the recent literature regarding delirium and its most recent update. We also offer physicians a brief and essential clinical practice guide to managing this acute and common disease.
Collapse
|
135
|
Guo Y, Li P. Recent highlights in periopeative neurological disorders, from bench to bedside. CNS Neurosci Ther 2022; 28:467-469. [PMID: 35146923 PMCID: PMC8928913 DOI: 10.1111/cns.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Perioperative neurological disorders are important causes of postoperative disability and even perioperative death, bringing a huge challenge to the vulnerable and increasing aging population. Perioperative neurological disorders usually contain ischemic stroke, hemorrhagic stroke, and neurocognitive disorders during the perioperative period. Although a few prevention and treatment strategies have been developed for each disorder, there is still a lack of effective treatments and the underlying mechanisms are far from well‐understood. This special issue is dedicated to introducing the recent advances in new strategies towards the management of perioperative neurological disorders. The issue collects research articles and reviews focusing on the neuroprotection mechanisms and application of novel technologies in perioperative neurological disorders, including machine learning and nano‐delivery system. These works help to shed lights on developing novel therapeutic targets of perioperative neurological disorders in the pursuit of better recovery and prognosis of the surgical patients.
Collapse
Affiliation(s)
- Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
136
|
Fertleman M, Pereira C, Dani M, Harris BHL, Di Giovannantonio M, Taylor-Robinson SD. Cytokine changes in cerebrospinal fluid and plasma after emergency orthopaedic surgery. Sci Rep 2022; 12:2221. [PMID: 35140282 PMCID: PMC8828833 DOI: 10.1038/s41598-022-06034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
Neuroinflammation after surgery and its contribution to peri-operative neurocognitive disorders (PND) is not well understood. Studying the association between central and peripheral cytokines and neuroinflammation is a prelude to the development of treatments for PND. Here, we investigate the hypotheses that there is a greater cytokine response in cerebrospinal fluid (CSF) than plasma after orthopaedic surgery, and that plasma cytokine levels are directly related to CSF cytokine levels, indicating that plasma cytokine levels may have potential as biomarkers of neuroinflammation. Patients admitted with a fractured neck of femur were invited to participate in this study. Participants had a spinal catheter inserted just prior to induction of anaesthesia. Samples of blood and CSF were taken before, immediately after, and on the first day following emergency surgery. The catheter was then removed. Samples were analysed for the presence of ten cytokines by immunoassay. A spinal catheter was successfully inserted in 11 participants during the 18-month study period. Five plasma cytokines (IL-4, IL-6, IL-10, IL-12p70 and IL-13) rose significantly following surgery, whereas all ten CSF cytokines rose significantly (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFN-γ and TNF-α) (adjusted-p < 0.05). Central (CSF) cytokine levels were consistently higher than their peripheral (plasma) counterparts after surgery, with some patients having a particularly marked neuroinflammatory response. The greatest increases occurred in IL-8 in CSF and IL-6 in plasma. There were significant, strong positive correlations between several of the measured cytokines in the CSF after surgery, but far fewer in plasma. There was no significant correlation between cytokine levels in the plasma and CSF at each of the three time points. To our knowledge, this is the first study to analyse paired samples of plasma and CSF for cytokine levels before and after emergency orthopaedic surgery. This study demonstrates that following surgery for a fractured neck of femur, there is a far greater rise in cytokines in the CSF compared to plasma. The lack of correlation between peripheral and central cytokines suggests measurement of peripheral cytokines are not necessarily related to which patients may have a large neuroinflammatory response.
Collapse
Affiliation(s)
- Michael Fertleman
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK.
| | - Christopher Pereira
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | - Melanie Dani
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | - Benjamin H L Harris
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
| | - Matteo Di Giovannantonio
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
137
|
Role of P2X4/NLRP3 Pathway-Mediated Neuroinflammation in Perioperative Neurocognitive Disorders. Mediators Inflamm 2022; 2022:6355805. [PMID: 35153623 PMCID: PMC8825560 DOI: 10.1155/2022/6355805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that neuroinflammation is the key to perioperative neurocognitive disorders (PND); however, the specific mechanism postsurgery and anesthesia has not yet been fully clarified. The present study is aimed at exploring the effects of P2X4/NLRP3 signaling pathway in neuroinflammation and cognitive impairment after surgery. 12–14-month-old male C57BL/6 mice undergoing open tibial fracture surgery by sevoflurane anesthesia were administered P2X4R inhibitor 5-BDBD or saline was intraperitoneally for 3 consecutive days after surgery. Then, the animals were subjected to Morris water maze test or sacrificed to collect the hippocampus. The level of P2X4R and NLRP3 was estimated by Western blot, the activation of microglia was detected via immunohistochemistry, and the expression of TNF-α, IL-1β, and IL-6 was quantified by enzyme-linked immunosorbent assay. These results indicated that tibial surgery caused cognitive impairment, increased the expression of P2X4R and NLRP3, and aggravated the neuroinflammation and microglia activation. However, intraperitoneal injection of 5-BDBD attenuated these effects. In conclusion, these findings indicated that the P2X4/NLRP3 pathway might be involved in the pathophysiology of PND.
Collapse
|
138
|
Liu Y, Fu H, Wang T. Neuroinflammation in perioperative neurocognitive disorders: From bench to the bedside. CNS Neurosci Ther 2022; 28:484-496. [PMID: 34990087 PMCID: PMC8928922 DOI: 10.1111/cns.13794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
The perioperative neurocognitive disorders (PNDs) are one of the most common complications in elderly patients characterized by various forms of cognitive decline after anesthesia and surgery. Although the etiology for PNDs remained unclear, neuroinflammation has been characterized as one of the major causes, especially in the elderly patients. The activation of glial cells including microglia and astrocytes plays a significant role in the inflammatory responses in central nerve system (CNS). Although carefully designed, clinical studies on PNDs showed controversial results. Meanwhile, preclinical studies provided evidence from various levels, including behavior performance, protein levels, and gene expression. In this review, we summarize high‐quality studies and recent advances from both clinical and preclinical studies and provide a broad view from the onset of PNDs to its potential therapeutic targets. Future studies are needed to investigate the signaling pathways in PNDs for prevention and treatment, as well as the relationship of PNDs and future neurocognitive dysfunction.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
139
|
Maurer SV, Kong C, Terrando N, Williams CL. Dietary Choline Protects Against Cognitive Decline After Surgery in Mice. Front Cell Neurosci 2022; 15:671506. [PMID: 34970119 PMCID: PMC8712952 DOI: 10.3389/fncel.2021.671506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cuicui Kong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Christina L Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
140
|
Efficacy and safety of perioperative vitamin C in patients undergoing noncardiac surgery: a systematic review and meta-analysis of randomised trials. Br J Anaesth 2022; 128:664-678. [DOI: 10.1016/j.bja.2021.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
|
141
|
Cartin-Ceba R, Smith R, Lachner C, Singh V. Intensive care unit delirium in patients with severe COVID-19: A prospective observational cohort study. Int J Crit Illn Inj Sci 2022; 12:61-69. [PMID: 35845128 PMCID: PMC9285129 DOI: 10.4103/ijciis.ijciis_93_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Delirium is common in patients with severe coronavirus disease-19 (COVID-19). The purpose of our study was to determine whether severe COVID-19 is an independent risk factor for the development of delirium in patients treated in the intensive care unit (ICU). Methods: This prospective observational cohort study involved 162 critically ill patients admitted to a multidisciplinary ICU during 2019 and 2020. A validated screening tool was used to diagnose delirium. Multiple delirium risk factors were collected daily including clinical characteristics, hospital course, lab values, vital signs, surgical exposure, drug exposure, and COVID-19 characteristics. After univariate analysis, a multivariate logistic regression analysis was performed to determine independent risk factors associated with the development of delirium. Results: In our study population, 50 (31%) patients developed delirium. A total of 39 (24.1%) tested positive for COVID-19. Initial analysis showed COVID-19 to be more prevalent in those patients that developed delirium (40% vs. 17%; P = 0.003). Multivariate analysis showed opioid use (odds ratio [OR]: 24 [95% confidence intervals (CI): 16–27]; P ≤ 0.001), benzodiazepine use (OR: 23 [95% CI: 16–63] P = 0.001), and estimated mortality based on acute physiology and chronic health evaluation IV score (OR: 1.04 [95% CI: 1.01–1.07] P = 0.002) to be independently associated with delirium development. COVID-19 (OR: 1.44 [95% CI: 0.13–10.6]; P = 0.7) was not found to be associated with delirium. Conclusion: Delirium is prevalent in critically ill patients admitted to the ICU, including those with COVID-19. However, after adjustment for important covariates, we found in this cohort that COVID-19 was not an independent risk factor for delirium.
Collapse
|
142
|
Ren AL, Digby RJ, Needham EJ. Neurological update: COVID-19. J Neurol 2021; 268:4379-4387. [PMID: 33929617 PMCID: PMC8085652 DOI: 10.1007/s00415-021-10581-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 2019 is predominantly a disorder of the respiratory system, but neurological complications have been recognised since early in the pandemic. The major pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, immunologically mediated neurological disorders and the detrimental effects of critical illness on the nervous system. It is still unclear whether direct invasion of the nervous system by the Severe Acute Respiratory Syndrome Coronavirus 2 occurs; given the vast numbers of people infected at this point, this uncertainty suggests that nervous system infection is unlikely to represent a significant issue if it occurs at all. In this review, we explore what has been learnt about the neurological complications of COVID-19 over the course of the pandemic, and by which mechanisms these complications most commonly occur.
Collapse
Affiliation(s)
- A L Ren
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - R J Digby
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - E J Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
143
|
Xiong X, Chen D, Shi J. Is Perioperative Dexmedetomidine Associated With a Reduced Risk of Perioperative Neurocognitive Disorders Following Cardiac Surgery? A Systematic Review and Meta-Analysis With Trial Sequential Analysis of Randomized Controlled Trials. Front Med (Lausanne) 2021; 8:645975. [PMID: 34660613 PMCID: PMC8511308 DOI: 10.3389/fmed.2021.645975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background: To assess the effect of dexmedetomidine on the reducing risk of perioperative neurocognitive disorders (PNDs) following cardiac surgery. Methods: A systematic review and meta-analysis with trial sequential analysis (TSA) of randomized controlled trials were performed. PubMed, Embase, Cochrane Library, and CNKI databases (to August 16, 2020) were searched for relevant articles to analyze the incidence of PND for intraoperative or postoperative dexmedetomidine administration after cardiac surgery. PND included postoperative cognitive dysfunction (POCD) and postoperative delirium (POD). Results: A total of 24 studies with 3,610 patients were included. Compared with the control group, the incidence of POD in the dexmedetomidine group was significantly lower (odds ratio [OR]: 0.59, 95% CI: 0.43–0.82, P = 0.001), with firm evidence from TSA. Subgroup analyses confirmed that dexmedetomidine reduced the incidence of POD with firm evidence following coronary artery bypass grafting surgery (OR: 0.45, 95% CI: 0.26–0.79, P = 0.005), and intervention during the postoperative period (OR: 0.48, 95% CI: 0.34–0.67, P < 0.001). Furthermore, the incidence of POD in the dexmedetomidine group was also decreased in mixed cardiac surgery (OR: 0.68, 95% CI: 0.47–0.98, P = 0.039). Irrespective of whether “Confusion Assessment Method/Confusion Assessment Method for intensive care unit” or “other tools” were used as diagnostic tools, the results showed a decreased risk of POD in the dexmedetomidine group. There was no significant difference in the incidence of POCD (OR: 0.47, 95% CI: 0.22–1.03, P = 0.060) between the two groups, but this result lacked firm evidence from TSA. Conclusion: The administration of dexmedetomidine during the perioperative period reduced the incidence of POD in patients after cardiac surgery, but there was no significant benefit in the incidence of POCD. The effect of dexmedetomidine on the incidence of POD or POCD following different types of surgery and the optimal dose and timing of dexmedetomidine warrant further investigation. Trial registration: PROSPERO registration number: CRD42020203980. Registered on September 13, 2020.
Collapse
Affiliation(s)
- Xinglong Xiong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Shi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
144
|
Ma D, Liu J, Wei C, Shen W, Yang Y, Lin D, Wu A. Activation of CD200-CD200R1 Axis Attenuates Perioperative Neurocognitive Disorder Through Inhibition of Neuroinflammation in Mice. Neurochem Res 2021; 46:3190-3199. [PMID: 34392443 DOI: 10.1007/s11064-021-03422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Perioperative neurocognitive disorder (PND) is the mild cognitive impairment associated with surgery and anesthesia. It is a common surgical complication in the elderly. An important mechanism of PND is the surgically induced neuroinflammation. The interaction between the neuronal surface protein CD200 and its receptor in microglia, CD200R1, is an important regulatory pathway to control neuroinflammation. However, the potential role of the CD200-CD200R1 pathway in the acute period of PND has not been fully investigated. In this study, in a PND mouse model, we first measured the protein expression level of CD200, CD200R1, and the related pro- and anti-inflammatory cytokines in the hippocampus. Then, we investigated cognitive function, neuroinflammation and postsynaptic density protein 95 (PSD-95) expression after the injection of CD200-Fc (agonist), CD200R1-Fc (antagonist) or IgG1-Fc (vehicle) into lateral ventricle in PND models. Compared with the control group, the expression of CD200 was up-regulated at day 1 after surgery in PND models. The injection of the CD200-Fc into the lateral ventricle could mitigate primed neuroinflammation and cognitive decline, increase the expression of PSD-95 at day 1 after surgery in PND models. In conclusion, we have demonstrated that CD200-CD200R1 signaling was involved in the acute inflammatory process of PND, and activating CD200R1 can inhibit neuroinflammation and attenuate PND. Thus, the CD200-CD200R1 axis is a potential novel target for PND prevention and treatment.
Collapse
Affiliation(s)
- Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jinhu Liu
- Department of Anesthesiology, Beijing First Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100021, People's Republic of China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Wenzhen Shen
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yinan Yang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
145
|
COVID-19: a novel risk factor for perioperative neurocognitive disorders. Br J Anaesth 2021; 127:e113-e115. [PMID: 34266660 PMCID: PMC8214172 DOI: 10.1016/j.bja.2021.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
|
146
|
Ren X, Liu S, Lian C, Li H, Li K, Li L, Zhao G. Dysfunction of the Glymphatic System as a Potential Mechanism of Perioperative Neurocognitive Disorders. Front Aging Neurosci 2021; 13:659457. [PMID: 34163349 PMCID: PMC8215113 DOI: 10.3389/fnagi.2021.659457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Perioperative neurocognitive disorder (PND) frequently occurs in the elderly as a severe postoperative complication and is characterized by a decline in cognitive function that impairs memory, attention, and other cognitive domains. Currently, the exact pathogenic mechanism of PND is multifaceted and remains unclear. The glymphatic system is a newly discovered glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Recent studies have highlighted the significant role of the glymphatic system in the removal of harmful metabolites in the brain. Dysfunction of the glymphatic system can reduce metabolic waste removal, leading to neuroinflammation and neurological disorders. We speculate that there is a causal relationship between the glymphatic system and symptomatic progression in PND. This paper reviews the current literature on the glymphatic system and some perioperative factors to discuss the role of the glymphatic system in PND.
Collapse
Affiliation(s)
- Xuli Ren
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Chuang Lian
- Department of Anaesthesiology, Jilin City People's Hospital, Jilin, China
| | - Haixia Li
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Longyun Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guoqing Zhao
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China.,Jilin University, Changchun, China
| |
Collapse
|
147
|
Wang WW, Liu T, Lv YM, Zhang WY, Liu ZG, Gao JM, Li D. Design, Synthesis, and Biological Evaluation of Novel 3-Aminomethylindole Derivatives as Potential Multifunctional Anti-Inflammatory and Neurotrophic Agents. ACS Chem Neurosci 2021; 12:1593-1605. [PMID: 33884870 DOI: 10.1021/acschemneuro.1c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of multifunctional molecules that are able to simultaneously interact with several pathological components has been considered as a solution to treat the complex pathologies of neurodegenerative diseases. Herein, a series of aminomethylindole derivatives were synthesized, and evaluation of their application for antineuroinflammation and promoting neurite outgrowth was disclosed. Our initial screening showed that most of the compounds potently inhibited lipopolysaccharide (LPS)-stimulated production of NO in microglial cells and potentiated the action of NGF to promote neurite outgrowth of PC12 cells. Interestingly, with outstanding NO/TNF-α production inhibition and neurite outgrowth-promoting activities, compounds 8c and 8g were capable of rescuing cells after injury by H2O2. Their antineuroinflammatory effects were associated with the downregulation of the LPS-induced expression of the inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Western blotting and immunofluorescence assay results indicated that the mechanism of their antineuroinflammatory actions involved suppression of the MAPK/NF-κB signal pathways. Further studies revealed that another important reason for the high comprehensive antineuroinflammatory activity was the anti-COX-2 capabilities of the compounds. All these results suggest that the potential biochemical multifunctional profiles of the aminomethylindole derivatives provide a new sight for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Ting Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yu-Meng Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wu-Yang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhi-Gang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
148
|
Vasunilashorn SM, Ngo LH, Dillon ST, Fong TG, Carlyle BC, Kivisäkk P, Trombetta BA, Vlassakov KV, Kunze LJ, Arnold SE, Xie Z, Inouye SK, Libermann TA, Marcantonio ER. Plasma and cerebrospinal fluid inflammation and the blood-brain barrier in older surgical patients: the Role of Inflammation after Surgery for Elders (RISE) study. J Neuroinflammation 2021; 18:103. [PMID: 33931093 PMCID: PMC8088047 DOI: 10.1186/s12974-021-02145-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Our understanding of the relationship between plasma and cerebrospinal fluid (CSF) remains limited, which poses an obstacle to the identification of blood-based markers of neuroinflammatory disorders. To better understand the relationship between peripheral and central nervous system (CNS) markers of inflammation before and after surgery, we aimed to examine whether surgery compromises the blood-brain barrier (BBB), evaluate postoperative changes in inflammatory markers, and assess the correlations between plasma and CSF levels of inflammation. Methods We examined the Role of Inflammation after Surgery for Elders (RISE) study of adults aged ≥ 65 who underwent elective hip or knee surgery under spinal anesthesia who had plasma and CSF samples collected at baseline and postoperative 1 month (PO1MO) (n = 29). Plasma and CSF levels of three inflammatory markers previously identified as increasing after surgery were measured using enzyme-linked immunosorbent assay: interleukin-6 (IL-6), C-reactive protein (CRP), and chitinase 3-like protein (also known as YKL-40). The integrity of the BBB was computed as the ratio of CSF/plasma albumin levels (Qalb). Mean Qalb and levels of inflammation were compared between baseline and PO1MO. Spearman correlation coefficients were used to determine the correlation between biofluids. Results Mean Qalb did not change between baseline and PO1MO. Mean plasma and CSF levels of CRP and plasma levels of YKL-40 and IL-6 were higher on PO1MO relative to baseline, with a disproportionally higher increase in CRP CSF levels relative to plasma levels (CRP tripled in CSF vs. increased 10% in plasma). Significant plasma-CSF correlations for CRP (baseline r = 0.70 and PO1MO r = 0.89, p < .01 for both) and IL-6 (PO1MO r = 0.48, p < .01) were observed, with higher correlations on PO1MO compared with baseline. Conclusions In this elective surgical sample of older adults, BBB integrity was similar between baseline and PO1MO, plasma-CSF correlations were observed for CRP and IL-6, plasma levels of all three markers (CRP, IL-6, and YKL-40) increased from PREOP to PO1MO, and CSF levels of only CRP increased between the two time points. Our identification of potential promising plasma markers of inflammation in the CNS may facilitate the early identification of patients at greatest risk for neuroinflammation and its associated adverse cognitive outcomes.
Collapse
Affiliation(s)
- Sarinnapha M Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Simon T Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Tamara G Fong
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Marcus Institute for Aging Research, Boston, MA, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Pia Kivisäkk
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kamen V Vlassakov
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesia, Brigham and Women's Hospital, Boston, MA, USA
| | - Lisa J Kunze
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesia, Massachusetts General Hospital, Boston, MA, USA
| | - Sharon K Inouye
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Marcus Institute for Aging Research, Boston, MA, USA
| | - Towia A Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Edward R Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|