101
|
Albuquerque P, Ribeiro I, Correia S, Mucha AP, Tamagnini P, Braga-Henriques A, Carvalho MDF, Mendes MV. Complete Genome Sequence of Two Deep-Sea Streptomyces Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential. Mar Drugs 2021; 19:md19110621. [PMID: 34822492 PMCID: PMC8622039 DOI: 10.3390/md19110621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the Streptomyces genus, whereas strain S07_1.15 is closely related to the type strain of Streptomyces xinghaiensis. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to S. xinghaiensis. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process.
Collapse
Affiliation(s)
- Pedro Albuquerque
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Correia
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
| | - Ana Paula Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Andreia Braga-Henriques
- OOM—Oceanic Observatory of Madeira & MARE—Marine and Environmental Sciences Centre, ARDITI—Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Caminho da Penteada, 9020-105 Funchal, Portugal;
- Regional Directorate for Fisheries, Regional Secretariat for the Sea and Fisheries, Government of the Azores, Rua Cônsul Dabney—Colónia Alemã, 9900-014 Horta, Portugal
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta V. Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
102
|
Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria. Appl Microbiol Biotechnol 2021; 105:8805-8822. [PMID: 34716462 DOI: 10.1007/s00253-021-11659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.
Collapse
|
103
|
Caicedo-Montoya C, Manzo-Ruiz M, Ríos-Estepa R. Pan-Genome of the Genus Streptomyces and Prioritization of Biosynthetic Gene Clusters With Potential to Produce Antibiotic Compounds. Front Microbiol 2021; 12:677558. [PMID: 34659136 PMCID: PMC8510958 DOI: 10.3389/fmicb.2021.677558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023] Open
Abstract
Species of the genus Streptomyces are known for their ability to produce multiple secondary metabolites; their genomes have been extensively explored to discover new bioactive compounds. The richness of genomic data currently available allows filtering for high quality genomes, which in turn permits reliable comparative genomics studies and an improved prediction of biosynthetic gene clusters (BGCs) through genome mining approaches. In this work, we used 121 genome sequences of the genus Streptomyces in a comparative genomics study with the aim of estimating the genomic diversity by protein domains content, sequence similarity of proteins and conservation of Intergenic Regions (IGRs). We also searched for BGCs but prioritizing those with potential antibiotic activity. Our analysis revealed that the pan-genome of the genus Streptomyces is clearly open, with a high quantity of unique gene families across the different species and that the IGRs are rarely conserved. We also described the phylogenetic relationships of the analyzed genomes using multiple markers, obtaining a trustworthy tree whose relationships were further validated by Average Nucleotide Identity (ANI) calculations. Finally, 33 biosynthetic gene clusters were detected to have potential antibiotic activity and a predicted mode of action, which might serve up as a guide to formulation of related experimental studies.
Collapse
Affiliation(s)
- Carlos Caicedo-Montoya
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Monserrat Manzo-Ruiz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
104
|
Vela Gurovic MS, Díaz ML, Gallo CA, Dietrich J. Phylogenomics, CAZyome and core secondary metabolome of Streptomyces albus species. Mol Genet Genomics 2021; 296:1299-1311. [PMID: 34564766 DOI: 10.1007/s00438-021-01823-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
A phylogenomic study conducted with different bioinformatic tools such as TYGS, REALPHY and AAI comparisons revealed a high rate of misidentified Streptomyces albus genomes in GenBank. Only 9 of the 18 annotated genomes available in the public database were correctly identified as S. albus species. The pangenome of the nine in silico confirmed S. albus genomes was almost closed. Lignocellulosic agroresidues were a common niche among strains of the S. albus clade while carbohydrate active enzymes (CAZymes) were highly conserved. Relevant enzymes for cellulose degradation such as beta glucosidases belonging to the GH1 family, a GH6 cellulase and a monooxygenase AA10-CBM2 were encoded by all S. albus genomes. Among them, one GH1 glycosidase would be regulated by CebR. However, this regulatory mechanism was not confirmed for other genes related to cellulose degradation. Based on AntiSMASH predictions, the core secondary metabolome of S. albus encompassed a total of 23 biosynthetic gene clusters (BGCs), where 4 were related to common metabolites within Streptomyces genus. Species specific BGCs included those related to pseudouridimycin and xantholipin. Additionally, four BGCs encoded putative derivatives of ibomycin, the lasso peptide SSV-2086, the lanthipeptide SapB and the terpene isorenieratene. Known metabolites could not be assigned to ten BGCs and three clusters did not match with any previously described BGC. The core genome of S. albus retrieved from nine closely related genomes revealed a high potential for the discovery of novel bioactive metabolites and underexplored regulatory genomic elements related to lignocellulose deconstruction.
Collapse
Affiliation(s)
- María Soledad Vela Gurovic
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina. .,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Marina Lucía Díaz
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Cristian Andres Gallo
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina
| | - Julián Dietrich
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| |
Collapse
|
105
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
106
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Comprehensive genome analysis of a novel actinobacterium with high potential for biotechnological applications, Nonomuraea aridisoli sp. nov., isolated from desert soil. Antonie van Leeuwenhoek 2021; 114:1963-1975. [PMID: 34529164 DOI: 10.1007/s10482-021-01654-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
During a study to isolate such actinobacteria with unique metabolic potential, a novel actinobacterium, designated KC333T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of the strain was investigated using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain was most closely related to Nonomuraea terrae CH32T (99.0% sequence similarity), Nonomuraea maritima FXJ7.203 T (98.9%), Nonomuraea candida HMC10T (98.7%) and Nonomuraea gerenzanensis ATCC 39727 T (98.6%), and is therefore considered to represent a member of the genus Nonomuraea. However, the average nucleotide identity and digital DNA-DNA hybridization based on whole-genome sequences between strain KC333T and close relatives demonstrated that it represents a novel species of the genus Nonomuraea. The major cellular fatty acids of strain KC333T were iso-C16: 0, C17:0 10-methyl and iso-C16: 0 2OH. Strain KC333T contained meso-diaminopimelic, mannose, madurose and ribose in the cell-wall peptidoglycan. The predominant menaquinones were MK-9(H4) and MK-9(H6). The genome size of strain KC333T is approximately 9.86 Mb, and the genomic DNA G + C content of the strain is 71.3%. In addition to the polyphasic characterisation, comprehensive genome analysis for gene clusters encoding carbohydrate-active enzymes and bioactive secondary metabolites as well as CRISPR-associated sequences revealed the high biotechnological potential of the strain. Based on evidence collected from the genotypic, phenotypic, and phylogenetic analyses, a novel species, Nonomuraea aridisoli sp. nov. is proposed with KC333T (= DSM 107062 T = JCM 32584 T = KCTC 49111 T) as the type strain.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.,Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.
| |
Collapse
|
107
|
Gren T, Whitford CM, Mohite OS, Jørgensen TS, Kontou EE, Nielsen JB, Lee SY, Weber T. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Sci Rep 2021; 11:18301. [PMID: 34526549 PMCID: PMC8443760 DOI: 10.1038/s41598-021-97571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.
Collapse
Affiliation(s)
- Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
108
|
Tenebro CP, Trono DJVL, Vicera CVB, Sabido EM, Ysulat JA, Macaspac AJM, Tampus KA, Fabrigar TAP, Saludes JP, Dalisay DS. Multiple strain analysis of Streptomyces species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Sci Rep 2021; 11:17544. [PMID: 34475427 PMCID: PMC8413401 DOI: 10.1038/s41598-021-96886-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
The marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.
Collapse
Affiliation(s)
- Chuckcris P Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Dana Joanne Von L Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Carmela Vannette B Vicera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Edna M Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Jovito A Ysulat
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Aaron Joseph M Macaspac
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Kimberly A Tampus
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Trisha Alexis P Fabrigar
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Jonel P Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines.,Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, 5000, Iloilo City, Philippines.,Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), 1631, Bicutan, Taguig City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines. .,Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, 5000, Iloilo City, Philippines. .,Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), 1631, Bicutan, Taguig City, Philippines.
| |
Collapse
|
109
|
Sabido EM, Tenebro CP, Trono DJVL, Vicera CVB, Leonida SFL, Maybay JJWB, Reyes-Salarda R, Amago DS, Aguadera AMV, Octaviano MC, Saludes JP, Dalisay DS. Insights into the Variation in Bioactivities of Closely Related Streptomyces Strains from Marine Sediments of the Visayan Sea against ESKAPE and Ovarian Cancer. Mar Drugs 2021; 19:md19080441. [PMID: 34436280 PMCID: PMC8399204 DOI: 10.3390/md19080441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.
Collapse
Affiliation(s)
- Edna M. Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Dana Joanne Von L. Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Carmela Vannette B. Vicera
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Sheeny Fane L. Leonida
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jose Jeffrey Wayne B. Maybay
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Rikka Reyes-Salarda
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Diana S. Amago
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Angelica Marie V. Aguadera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - May C. Octaviano
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| |
Collapse
|
110
|
Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain. Microorganisms 2021; 9:microorganisms9081609. [PMID: 34442689 PMCID: PMC8399532 DOI: 10.3390/microorganisms9081609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Targeted genome mining is an efficient method of biosynthetic gene cluster prioritization within constantly growing genome databases. Using two capreomycidine biosynthesis genes, alpha-ketoglutarate-dependent arginine beta-hydroxylase and pyridoxal-phosphate-dependent aminotransferase, we identified two types of clusters: one type containing both genes involved in the biosynthesis of the abovementioned moiety, and other clusters including only arginine hydroxylase. Detailed analysis of one of the clusters, the flk cluster from Streptomyces albus, led to the identification of a cyclic peptide that contains a rare D-capreomycidine moiety for the first time. The absence of the pyridoxal-phosphate-dependent aminotransferase gene in the flk cluster is compensated by the XNR_1347 gene in the S. albus genome, whose product is responsible for biosynthesis of the abovementioned nonproteinogenic amino acid. Herein, we report the structure of cyclofaulknamycin and the characteristics of its biosynthetic gene cluster, biosynthesis and bioactivity profile.
Collapse
|
111
|
Zerouki C, Bensalah F, Kuittinen S, Pappinen A, Turunen O. Whole-genome sequencing of two Streptomyces strains isolated from the sand dunes of Sahara. BMC Genomics 2021; 22:578. [PMID: 34315408 PMCID: PMC8317367 DOI: 10.1186/s12864-021-07866-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sahara is one of the largest deserts in the world. The harsh climatic conditions, especially high temperature and aridity lead to unique adaptation of organisms, which could be a potential source of new metabolites. In this respect, two Saharan soils from El Oued Souf and Beni Abbes in Algeria were collected. The bacterial isolates were selected by screening for antibacterial, antifungal, and enzymatic activities. The whole genomes of the two native Saharan strains were sequenced to study desert Streptomyces microbiology and ecology from a genomic perspective. RESULTS Strains Babs14 (from Beni Abbes, Algeria) and Osf17 (from El Oued Souf, Algeria) were initially identified by 16S rRNA sequencing as belonging to the Streptomyces genus. The whole genome sequencing of the two strains was performed using Pacific Biosciences Sequel II technology (PacBio), which showed that Babs14 and Osf17 have a linear chromosome of 8.00 Mb and 7.97 Mb, respectively. The number of identified protein coding genes was 6910 in Babs14 and 6894 in Osf17. No plasmids were found in Babs14, whereas three plasmids were detected in Osf17. Although the strains have different phenotypes and are from different regions, they showed very high similarities at the DNA level. The two strains are more similar to each other than either is to the closest database strain. The search for potential secondary metabolites was performed using antiSMASH and predicted 29 biosynthetic gene clusters (BGCs). Several BGCs and proteins were related to the biosynthesis of factors needed in response to environmental stress in temperature, UV light and osmolarity. CONCLUSION The genome sequencing of Saharan Streptomyces strains revealed factors that are related to their adaptation to an extreme environment and stress conditions. The genome information provides tools to study ecological adaptation in a desert environment and to explore the bioactive compounds of these microorganisms. The two whole genome sequences are among the first to be sequenced for the Streptomyces genus of Algerian Sahara. The present research was undertaken as a first step to more profoundly explore the desert microbiome.
Collapse
Affiliation(s)
- Chahira Zerouki
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland.
- Laboratory of Microbial Genetics, Department of Biology, University ORAN 1, 31000, Oran, Algeria.
| | - Farid Bensalah
- Laboratory of Microbial Genetics, Department of Biology, University ORAN 1, 31000, Oran, Algeria
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland
| |
Collapse
|
112
|
Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in Streptomyces. mBio 2021; 12:e0107721. [PMID: 34311581 PMCID: PMC8406272 DOI: 10.1128/mbio.01077-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to “countersilence” Lsr2’s repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.
Collapse
|
113
|
Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol 2021; 48:6119915. [PMID: 33825906 PMCID: PMC9113425 DOI: 10.1093/jimb/kuaa001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Actinomycetes are a rich source of bioactive natural products important for novel drug leads. Recent genome mining approaches have revealed an enormous number of secondary metabolite biosynthetic gene clusters (smBGCs) in actinomycetes. However, under standard laboratory culture conditions, many smBGCs are silent or cryptic. To activate these dormant smBGCs, several approaches, including culture-based or genetic engineering-based strategies, have been developed. Above all, coculture is a promising approach to induce novel secondary metabolite production from actinomycetes by mimicking an ecological habitat where cryptic smBGCs may be activated. In this review, we introduce coculture studies that aim to expand the chemical diversity of actinomycetes, by categorizing the cases by the type of coculture partner. Furthermore, we discuss the current challenges that need to be overcome to support the elicitation of novel bioactive compounds from actinomycetes.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
114
|
Siupka P, Hansen FT, Schier A, Rocco S, Sørensen T, Piotrowska-Seget Z. Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water. Int J Mol Sci 2021; 22:ijms22147441. [PMID: 34299061 PMCID: PMC8303363 DOI: 10.3390/ijms22147441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain’s biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.
Collapse
Affiliation(s)
- Piotr Siupka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
- Correspondence:
| | - Frederik Teilfeldt Hansen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Aleksandra Schier
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Simone Rocco
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Trine Sørensen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Zofia Piotrowska-Seget
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| |
Collapse
|
115
|
Schneider YK. Bacterial Natural Product Drug Discovery for New Antibiotics: Strategies for Tackling the Problem of Antibiotic Resistance by Efficient Bioprospecting. Antibiotics (Basel) 2021; 10:antibiotics10070842. [PMID: 34356763 PMCID: PMC8300778 DOI: 10.3390/antibiotics10070842] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
The problem of antibiotic resistance has become a challenge for our public health and society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics that are introduced to the market face the rise of resistant pathogens after a certain period of use. The relatively fast development of resistance against some antibiotics seems to be closely linked to their microbial origin and function in nature. Antibiotics in clinical use are merely products of microorganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has progressed with the evolution of the respective resistance mechanisms in microbes for billions of years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by pathogens through horizontal gene transfer. Natural products from bacteria are an important source of leads for drug development, and microbial natural products have contributed the most antibiotics in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such as redetection of known compounds and low compound yields consume significant resources. The number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the most promising sources for chemical novelty and bioactivity, employing the appropriate scientific tools. This can be done by first looking into under- or unexplored environments for bacterial isolates and by focusing on the promising candidates to reduce the number of subjects.
Collapse
Affiliation(s)
- Yannik K Schneider
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
116
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
117
|
Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol 2021; 31:3479-3489.e5. [PMID: 34186025 DOI: 10.1016/j.cub.2021.05.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Bacteria produce diverse specialized metabolites that mediate ecological interactions and serve as a rich source of industrially relevant natural products. Biosynthetic pathways for these metabolites are encoded by organized groups of genes called biosynthetic gene clusters (BGCs). Understanding the natural function and distribution of BGCs provides insight into the mechanisms through which microorganisms interact and compete. Further, understanding BGCs is extremely important for biocontrol and the mining of new bioactivities. Here, we investigated phage-encoded BGCs (pBGCs), challenging the relationship between phage origin and BGC structure and function. The results demonstrated that pBGCs are rare, and they predominantly reside within temperate phages infecting commensal or pathogenic bacterial hosts. Further, the vast majority of pBGCs were found to encode for bacteriocins. Using the soil- and gut-associated bacterium Bacillus subtilis, we experimentally demonstrated how a temperate phage equips a bacterium with a fully functional BGC, providing a clear competitive fitness advantage over the ancestor. Moreover, we demonstrated a similar transfer of the same phage in prophage form. Finally, using genetic and genomic comparisons, a strong association between pBGC type and phage host range was revealed. These findings suggest that bacteriocins are encoded in temperate phages of a few commensal bacterial genera. In these cases, lysogenic conversion provides an evolutionary benefit to the infected host and, hence, to the phage itself. This study is an important step toward understanding the natural role of bacterial compounds encoded by BGCs, the mechanisms driving their horizontal transfer, and the sometimes mutualistic relationship between bacteria and temperate phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet bldg. 423, DK-2800 Kgs Lyngby, Denmark; National Center for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej bldg. 307, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
118
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
119
|
Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst Appl Microbiol 2021; 44:126223. [PMID: 34157595 DOI: 10.1016/j.syapm.2021.126223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Streptomyces thermoautotrophicus UBT1T has been suggested to merit generic status due to its phylogenetic placement and distinctive phenotypes among Actinomycetia. To evaluate whether 'S. thermoautotrophicus' represents a higher taxonomic rank, 'S. thermoautotrophicus' strains UBT1T and H1 were compared to Actinomycetia using 16S rRNA gene sequences and comparative genome analyses. The UBT1T and H1 genomes each contain at least two different 16S rRNA sequences, which are closely related to those of Acidothermus cellulolyticus (order Acidothermales). In multigene-based phylogenomic trees, UBT1T and H1 typically formed a sister group to the Streptosporangiales-Acidothermales clade. The Average Amino Acid Identity, Percentage of Conserved Proteins, and whole-genome Average Nucleotide Identity (Alignment Fraction) values were ≤58.5%, ≤48%, ≤75.5% (0.3) between 'S. thermoautotrophicus' and Streptosporangiales members, all below the respective thresholds for delineating genera. The values for genomics comparisons between strains UBT1T and H1 with Acidothermales, as well as members of the genus Streptomyces, were even lower. A review of the 'S. thermoautotrophicus' proteomic profiles and KEGG orthology demonstrated that UBT1T and H1 present pronounced differences, both tested and predicted, in phenotypic and chemotaxonomic characteristics compared to its sister clades and Streptomyces. The distinct phylogenetic position and the combination of genotypic and phenotypic characteristics justify the proposal of Carbonactinospora gen. nov., with the type species Carbonactinospora thermoautotrophica comb. nov. (type strain UBT1T, = DSM 100163T = KCTC 49540T) belonging to Carbonactinosporaceae fam. nov. within Actinomycetia.
Collapse
|
120
|
Handayani I, Saad H, Ratnakomala S, Lisdiyanti P, Kusharyoto W, Krause J, Kulik A, Wohlleben W, Aziz S, Gross H, Gavriilidou A, Ziemert N, Mast Y. Mining Indonesian Microbial Biodiversity for Novel Natural Compounds by a Combined Genome Mining and Molecular Networking Approach. Mar Drugs 2021; 19:316. [PMID: 34071728 PMCID: PMC8227522 DOI: 10.3390/md19060316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Indonesia is one of the most biodiverse countries in the world and a promising resource for novel natural compound producers. Actinomycetes produce about two thirds of all clinically used antibiotics. Thus, exploiting Indonesia's microbial diversity for actinomycetes may lead to the discovery of novel antibiotics. A total of 422 actinomycete strains were isolated from three different unique areas in Indonesia and tested for their antimicrobial activity. Nine potent bioactive strains were prioritized for further drug screening approaches. The nine strains were cultivated in different solid and liquid media, and a combination of genome mining analysis and mass spectrometry (MS)-based molecular networking was employed to identify potential novel compounds. By correlating secondary metabolite gene cluster data with MS-based molecular networking results, we identified several gene cluster-encoded biosynthetic products from the nine strains, including naphthyridinomycin, amicetin, echinomycin, tirandamycin, antimycin, and desferrioxamine B. Moreover, 16 putative ion clusters and numerous gene clusters were detected that could not be associated with any known compound, indicating that the strains can produce novel secondary metabolites. Our results demonstrate that sampling of actinomycetes from unique and biodiversity-rich habitats, such as Indonesia, along with a combination of gene cluster networking and molecular networking approaches, accelerates natural product identification.
Collapse
Affiliation(s)
- Ira Handayani
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Shanti Ratnakomala
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia;
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Wien Kusharyoto
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Saefuddin Aziz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Athina Gavriilidou
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
| | - Nadine Ziemert
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Department of Microbiology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
121
|
An Analysis of Biosynthesis Gene Clusters and Bioactivity of Marine Bacterial Symbionts. Curr Microbiol 2021; 78:2522-2533. [PMID: 34041587 DOI: 10.1007/s00284-021-02535-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023]
Abstract
Symbiotic marine bacteria have a pivotal role in drug discovery due to the synthesis of diverse biologically potential compounds. The marine bacterial phyla proteobacteria, actinobacteria and firmicutes are commonly associated with marine macro organisms and frequently reported as dominant bioactive compound producers. They can produce biologically active compounds that possess antimicrobial, antiviral, antitumor, antibiofilm and antifouling properties. Synthesis of these bioactive compounds is controlled by a set of genes of their genomes that is known as biosynthesis gene clusters (BGCs). The development in the field of biotechnology and bioinformatics has uncovered the potential BGCs of the bacterial genome and its functions. Now-a-days researchers have focused their attention on the identification of potential BGCs for the discovery of novel bioactive compounds using advanced technology. This review highlights the marine bacterial symbionts and their BGCs which are responsible for the synthesis of bioactive compounds.
Collapse
|
122
|
Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites 2021; 11:metabo11040239. [PMID: 33924621 PMCID: PMC8069389 DOI: 10.3390/metabo11040239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.
Collapse
|
123
|
Park CJ, Caimi NA, Buecher DC, Valdez EW, Northup DE, Andam CP. Unexpected genomic, biosynthetic and species diversity of Streptomyces bacteria from bats in Arizona and New Mexico, USA. BMC Genomics 2021; 22:247. [PMID: 33827425 PMCID: PMC8028829 DOI: 10.1186/s12864-021-07546-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces. Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07546-w.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.,U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
124
|
Majer HM, Ehrlich RL, Ahmed A, Earl JP, Ehrlich GD, Beld J. Whole genome sequencing of Streptomyces actuosus ISP-5337, Streptomyces sioyaensis B-5408, and Actinospica acidiphila B-2296 reveals secondary metabolomes with antibiotic potential. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00596. [PMID: 33643857 PMCID: PMC7893419 DOI: 10.1016/j.btre.2021.e00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Whole genome sequencing of Actinomycetes reveals metabolic potential. High quality genomes are necessary for mining of biosynthetic gene clusters. Characterization of thiopeptides by high resolution mass spectrometry. Thiopeptides are potent antibacterials against Staphylococcus aureus.
Streptomycetes are bacteria of biotechnological importance since they are avid producers of secondary metabolites, including antibiotics. Progress in genome mining has recently shown that Streptomyces species encode for many biosynthetic gene clusters which are mostly unexplored. Here, we selected three Actinomycetes species for whole genome sequencing that are known to produce potent thiopeptide antibiotics. Streptomyces actuosus biosynthesizes nosiheptide, Streptomyces sioyaensis produces siomycin, and Actinospica acidiphila is a member of the Actinomycete subfamily. Bioinformatic analyses demonstrated diverse secondary metabolomes with multiple antibiotic-encoding gene clusters. Detailed mass spectrometry analysis of metabolite extracts verified the active expression of nosiheptide and siomycin from S. actuosus and S. sioyaensis while fractionation of the bacterial extracts and subsequent challenge against Staphylococcus aureus demonstrated potent antibiotic activity of fractions containing these compounds. Whole genome sequencing of these species facilitates future bioengineering efforts for thiopeptides and characterization of relevant secondary metabolites.
Collapse
Affiliation(s)
- Haley M Majer
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Rachel L Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Azad Ahmed
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Joshua P Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| |
Collapse
|
125
|
An efficient system for stable markerless integration of large biosynthetic gene clusters into Streptomyces chromosomes. Appl Microbiol Biotechnol 2021; 105:2123-2137. [PMID: 33564923 DOI: 10.1007/s00253-021-11161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The bacteria of the genus Streptomyces are among the most important producers of biologically active secondary metabolites. Moreover, recent genomic sequence data have shown their enormous genetic potential for new natural products, although many new biosynthetic gene clusters (BGCs) are silent. Therefore, efficient and stable genome modification techniques are needed to activate their production or to manipulate their biosynthesis towards increased production or improved properties. We have recently developed an efficient markerless genome modification system for streptomycetes based on positive blue/white selection of double crossovers using the bpsA gene from indigoidine biosynthesis, which has been successfully applied for markerless deletions of genes and BGCs. In the present study, we optimized this system for markerless insertion of large BGCs. In a pilot test experiment, we successfully inserted a part of the landomycin BGC (lanFABCDL) under the control of the ermEp* promoter in place of the actinorhodin BGC (act) of Streptomyces lividans TK24 and RedStrep 1.3. The resulting strains correctly produced UWM6 and rabelomycin in twice the yield compared to S. lividans strains with the same construct inserted using the PhiBT1 phage-based integration vector system. Moreover, the system was more stable. Subsequently, using the same strategy, we effectively inserted the entire BGC for mithramycin (MTM) in place of the calcium-dependent antibiotic BGC (cda) of S. lividans RedStrep 1.3 without antibiotic-resistant markers. The resulting strain produced similar levels of MTM when compared to the previously described S. lividans RedStrep 1.3 strain with the VWB phage-based integration plasmid pMTMF. The system was also more stable. KEY POINTS: • Optimized genome editing system for markerless insertion of BGCs into Streptomyces genomes • Efficient heterologous production of MTM in the stable engineered S. lividans strain.
Collapse
|
126
|
Genomic insight into a novel actinobacterium, Actinomadura rubrisoli sp. nov., reveals high potential for bioactive metabolites. Antonie van Leeuwenhoek 2021; 114:195-208. [DOI: 10.1007/s10482-020-01511-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
127
|
Kang HS, Kim ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr Opin Biotechnol 2021; 69:118-127. [PMID: 33445072 DOI: 10.1016/j.copbio.2020.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The heterologous expression of natural product biosynthetic gene clusters (BGCs) has traditionally been used as a genetic platform to link various natural product chemotypes to their corresponding genotypes. In recent years, heterologous expression has played an increasing role in natural products research with the advances in sequencing technologies and bioinformatics tools that allow for the rapid and systematic identification of known and cryptic BGCs from a large number of microbial genome sequences. The advances in synthetic biology have also facilitated the process of heterologous expression by providing tools for rapid cloning and engineering of BGCs to improve production yield or to activate silent BGCs. This paper summarizes the recent progress in the cloning and engineering of natural product BGCs and highlights recent examples of the heterologous expression of both known and cryptic BGCs in Streptomyces hosts, which will continue to play a pivotal role in genomics-driven natural product research.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
128
|
Lebedeva J, Jukneviciute G, Čepaitė R, Vickackaite V, Pranckutė R, Kuisiene N. Genome Mining and Characterization of Biosynthetic Gene Clusters in Two Cave Strains of Paenibacillus sp. Front Microbiol 2021; 11:612483. [PMID: 33505378 PMCID: PMC7829367 DOI: 10.3389/fmicb.2020.612483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The genome sequencing and mining of microorganisms from unexplored and extreme environments has become important in the process of identifying novel biosynthetic pathways. In the present study, the biosynthetic potential of Paenibacillus sp. strains 23TSA30-6 and 28ISP30-2 was investigated. Both strains were isolated from the deep oligotrophic Krubera-Voronja Cave and were found to be highly active against both Gram-positive and Gram-negative bacteria. Genome mining revealed a high number of biosynthetic gene clusters in the cave strains: 21 for strain 23TSA30-6 and 19 for strain 28ISP30-2. Single clusters encoding the biosynthesis of phosphonate, terpene, and siderophore, as well as a single trans-AT polyketide synthase/non-ribosomal peptide synthetase, were identified in both genomes. The most numerous clusters were assigned to the biosynthetic pathways of non-ribosomal peptides and ribosomally synthesized and post-translationally modified peptides. Although four non-ribosomal peptide synthetase gene clusters were predicted to be involved in the biosynthesis of known compounds (fusaricidin, polymyxin B, colistin A, and tridecaptin) of the genus Paenibacillus, discrepancies in the structural organization of the clusters, as well as in the substrate specificity of some adenylation domains, were detected between the reference pathways and the clusters in our study. Among the clusters involved in the biosynthesis of ribosomally synthesized peptides, only one was predicted to be involved in the biosynthesis of a known compound: paenicidin B. Most biosynthetic gene clusters in the genomes of the cave strains showed a low similarity with the reference pathways and were predicted to represent novel biosynthetic pathways. In addition, the cave strains differed in their potential to encode the biosynthesis of a few unique, previously unknown compounds (class II lanthipeptides and three non-ribosomal peptides). The phenotypic characterization of proteinaceous and volatile compounds produced by strains 23TSA30-6 and 28ISP30-2 was also performed, and the results were compared with those of genome mining.
Collapse
Affiliation(s)
- Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gabriele Jukneviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimvydė Čepaitė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vida Vickackaite
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Raminta Pranckutė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
129
|
Shitut S, Bergman GÖ, Kros A, Rozen DE, Claessen D. Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms 2020; 8:microorganisms8121897. [PMID: 33265975 PMCID: PMC7760116 DOI: 10.3390/microorganisms8121897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous actinobacteria are widely used as microbial cell factories to produce valuable secondary metabolites, including the vast majority of clinically relevant antimicrobial compounds. Secondary metabolites are typically encoded by large biosynthetic gene clusters, which allow for a modular approach to generating diverse compounds through recombination. Protoplast fusion is a popular method for whole genome recombination that uses fusion of cells that are transiently wall-deficient. This process has been applied for both inter- and intraspecies recombination. An important limiting step in obtaining diverse recombinants from fused protoplasts is regeneration of the cell wall, because this forces the chromosomes from different parental lines to segregate, thereby preventing further recombination. Recently, several labs have gained insight into wall-deficient bacteria that have the ability to proliferate without their cell wall, known as L-forms. Unlike protoplasts, L-forms can stably maintain multiple chromosomes over many division cycles. Fusion of such L-forms would potentially allow cells to express genes from both parental genomes while also extending the time for recombination, both of which can contribute to an increased chemical diversity. Here, we present a perspective on how L-form fusion has the potential to become a platform for novel compound discovery and may thus help to overcome the antibiotic discovery void.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence: (S.S.); (D.C.)
| | - Güniz Özer Bergman
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Dennis Claessen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Correspondence: (S.S.); (D.C.)
| |
Collapse
|
130
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
131
|
Belknap KC, Cote AL, McGill CM, Andam CP, Barth BM. The Role of the Microbiome in Cancer and the Development of Cancer Therapeutics. INTERNATIONAL JOURNAL OF BIOPHARMACEUTICAL SCIENCES 2020; 2:118. [PMID: 33778816 PMCID: PMC7993822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer is caused by a compilation of hereditary and environmental factors. In the past decade, next-generation sequencing has revealed the extent to which the microbiome influences the maintenance of homeostasis and therefore the prevention of diseases such as cancer. Current research efforts explore the interaction between cancer and the microbiome, and the results are anticipated to transform how clinicians approach cancer treatment. There is a plausible transition from the use of human genetic biomarkers to microbiomic biomarkers for genomic diagnostics. Considering the expanding knowledge of the ways in which the microbiome can affect the development of cancer, clinicians treating cancer patients should be considerate of how the microbiome can influence the host-drug or microbiome-cancer interactions. Recognition of the importance of the microbiome within the field of oncology is pertinent to understanding and furthering cancer development and treatment.
Collapse
Affiliation(s)
- Kaitlyn C. Belknap
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham NH 03824 USA
| | - Andrea L. Cote
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham NH 03824 USA
| | - Colin M. McGill
- Department of Chemistry, University of Alaska Anchorage,
Anchorage AK 99508 USA
| | - Cheryl P. Andam
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham NH 03824 USA
- Department of Biological Sciences, University at Albany,
State University of New York, Albany, NY 12222 USA
| | - Brian M. Barth
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham NH 03824 USA
| |
Collapse
|
132
|
Kenshole E, Herisse M, Michael M, Pidot SJ. Natural product discovery through microbial genome mining. Curr Opin Chem Biol 2020; 60:47-54. [PMID: 32853968 DOI: 10.1016/j.cbpa.2020.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The advent of the genomic era has opened up enormous possibilities for the discovery of new natural products. Also known as specialized metabolites, these compounds produced by bacteria, fungi, and plants have long been sought for their bioactive properties. Innovations in both DNA sequencing technologies and bioinformatics now allow the wealth of sequence data to be mined at both the genome and metagenome levels for new specialized metabolites. However, a key problem that remains is rapidly and efficiently linking these identified genes to their corresponding compounds. Within this review, we provide specific examples of studies that have used the power of genomic or metagenomic data to overcome these problems and identify new small molecules and their biosynthetic pathways.
Collapse
Affiliation(s)
- Emma Kenshole
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Australia, 3000
| | - Marion Herisse
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Australia, 3000
| | - Michael Michael
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Australia, 3000
| | - Sacha J Pidot
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, Australia, 3000.
| |
Collapse
|
133
|
Lee N, Hwang S, Kim J, Cho S, Palsson B, Cho BK. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput Struct Biotechnol J 2020; 18:1548-1556. [PMID: 32637051 PMCID: PMC7327026 DOI: 10.1016/j.csbj.2020.06.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023] Open
Abstract
Streptomyces are a large and valuable resource of bioactive and complex secondary metabolites, many of which have important clinical applications. With the advances in high throughput genome sequencing methods, various in silico genome mining strategies have been developed and applied to the mapping of the Streptomyces genome. These studies have revealed that Streptomyces possess an even more significant number of uncharacterized silent secondary metabolite biosynthetic gene clusters (smBGCs) than previously estimated. Linking smBGCs to their encoded products has played a critical role in the discovery of novel secondary metabolites, as well as, knowledge-based engineering of smBGCs to produce altered products. In this mini review, we discuss recent progress in Streptomyces genome sequencing and the application of genome mining approaches to identify and characterize smBGCs. Furthermore, we discuss several challenges that need to be overcome to accelerate the genome mining process and ultimately support the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
134
|
Matroodi S, Siitonen V, Baral B, Yamada K, Akhgari A, Metsä-Ketelä M. Genotyping-Guided Discovery of Persiamycin A From Sponge-Associated Halophilic Streptomonospora sp. PA3. Front Microbiol 2020; 11:1237. [PMID: 32582127 PMCID: PMC7296137 DOI: 10.3389/fmicb.2020.01237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Microbial natural products have been a cornerstone of the pharmaceutical industry, but the supply of novel bioactive secondary metabolites has diminished due to extensive exploration of the most easily accessible sources, namely terrestrial Streptomyces species. The Persian Gulf is a unique habitat for marine sponges, which contain diverse communities of microorganisms including marine Actinobacteria. These exotic ecosystems may cradle rare actinomycetes with high potential to produce novel secondary metabolites. In this study, we harvested 12 different species of sponges from two locations in the Persian Gulf and isolated 45 symbiotic actinomycetes to assess their biodiversity and sponge-microbe relationships. The isolates were classified into Nocardiopsis (24 isolates), Streptomyces (17 isolates) and rare genera (4 isolates) by 16S rRNA sequencing. Antibiotic activity tests revealed that culture extracts from half of the isolates displayed growth inhibitory effects against seven pathogenic bacteria. Next, we identified five strains with the genetic potential to produce aromatic polyketides by genotyping ketosynthase genes responsible for synthesis of carbon scaffolds. The combined data led us to focus on Streptomonospora sp. PA3, since the genus has rarely been examined for its capacity to produce secondary metabolites. Analysis of culture extracts led to the discovery of a new bioactive aromatic polyketide denoted persiamycin A and 1-hydroxy-4-methoxy-2-naphthoic acid. The genome harbored seven gene clusters involved in secondary metabolism, including a tetracenomycin-type polyketide synthase pathway likely involved in persiamycin formation. The work demonstrates the use of multivariate data and underexplored ecological niches to guide the drug discovery process for antibiotics and anticancer agents.
Collapse
Affiliation(s)
- Soheila Matroodi
- Laboratory of Biotechnology, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Vilja Siitonen
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Bikash Baral
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Keith Yamada
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Amir Akhgari
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Mikko Metsä-Ketelä
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
135
|
Kim W, Lee N, Hwang S, Lee Y, Kim J, Cho S, Palsson B, Cho BK. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules 2020; 10:biom10060864. [PMID: 32516997 PMCID: PMC7357120 DOI: 10.3390/biom10060864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/02/2023] Open
Abstract
Streptomyces venezuelae is well known to produce various secondary metabolites, including chloramphenicol, jadomycin, and pikromycin. Although many strains have been classified as S. venezuelae species, only a limited number of strains have been explored extensively for their genomic contents. Moreover, genomic differences and diversity in secondary metabolite production between the strains have never been compared. Here, we report complete genome sequences of three S. venezuelae strains (ATCC 10712, ATCC 10595, and ATCC 21113) harboring chloramphenicol and jadomycin biosynthetic gene clusters (BGC). With these high-quality genome sequences, we revealed that the three strains share more than 85% of total genes and most of the secondary metabolite biosynthetic gene clusters (smBGC). Despite such conservation, the strains produced different amounts of chloramphenicol and jadomycin, indicating differential regulation of secondary metabolite production at the strain level. Interestingly, antagonistic production of chloramphenicol and jadomycin was observed in these strains. Through comparison of the chloramphenicol and jadomycin BGCs among the three strains, we found sequence variations in many genes, the non-coding RNA coding regions, and binding sites of regulators, which affect the production of the secondary metabolites. We anticipate that these genome sequences of closely related strains would serve as useful resources for understanding the complex secondary metabolism and for designing an optimal production process using Streptomyces strains.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Jihun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-2660
| |
Collapse
|