101
|
Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. Am J Hum Genet 2019; 105:562-572. [PMID: 31447098 DOI: 10.1016/j.ajhg.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Deciphering the environmental contexts at which genetic effects are most prominent is central for making full use of GWAS results in follow-up experiment design and treatment development. However, measuring a large number of environmental factors at high granularity might not always be feasible. Instead, here we propose extracting cellular embedding of environmental factors from gene expression data by using latent variable (LV) analysis and taking these LVs as environmental proxies in detecting gene-by-environment (GxE) interaction effects on gene expression, i.e., GxE expression quantitative trait loci (eQTLs). Applying this approach to two largest brain eQTL datasets (n = 1,100), we show that LVs and GxE eQTLs in one dataset replicate well in the other dataset. Combining the two samples via meta-analysis, 895 GxE eQTLs are identified. On average, GxE effect explains an additional ∼4% variation in expression of each gene that displays a GxE effect. Ten of these 52 genes are associated with cell-type-specific eQTLs, and the remaining genes are multi-functional. Furthermore, after substituting LVs with expression of transcription factors (TF), we found 91 TF-specific eQTLs, which demonstrates an important use of our brain GxE eQTLs.
Collapse
|
102
|
Samaraweera AV, Sandamalika WMG, Liyanage DS, Lee S, Priyathilaka TT, Lee J. Molecular characterization and functional analysis of glutathione S-transferase kappa 1 (GSTκ1) from the big belly seahorse (Hippocampus abdominalis): Elucidation of its involvement in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 92:356-366. [PMID: 31200074 DOI: 10.1016/j.fsi.2019.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) are essential enzymes for the bioactivation of xenobiotics through the conjugation of the thiol group of glutathione (GSH). In this study, a kappa class of GST was identified from the big belly seahorse (Hippocampus abdominalis) (HaGSTκ1) and its biochemical and functional properties were analyzed. HaGSTκ1 has 231 amino acids encoded by a 696 bp open reading frame (ORF). The protein has a predicted molecular mass of 26.04 kDa and theoretical isoelectric point (pI) of 8.28. It comprised a thioredoxin domain, disulfide bond formation protein A (DsbA) general fold, and Ser15 catalytic site as well as GSH-binding and polypeptide-binding sites. Phylogenetic analysis revealed that HaGSTκ1 is closely clustered with the kappa class of GSTs from teleost fishes. The recombinant (rHaGSTκ1) protein exhibited activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 4-nitrobenzyl (4-NBC), and 4-nitrophenethyl bromide (4-NPB) but not 1,2-dichloro-4-nitrobenzene (DCNB). The optimum pH and temperature were 8 and 30 °C, respectively, for the catalysis of CDNB and the universal substrate of GSTs. The rHaGSTκ1 activity was efficiently inhibited in the presence of Cibacron blue (CB) as compared with hematin. Most prominent expression of HaGSTκ1 was observed in the liver and kidney among the fourteen different tissues of normal seahorse. After challenge with lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), gram-negative Edwardsiella tarda, and gram-positive Streptococcus iniae, HaGSTκ1 expression was significantly modulated in the liver and blood tissues. Altogether, our study proposes the plausible important role of HaGSTκ1 in innate immunity and detoxification of harmful xenobiotics.
Collapse
Affiliation(s)
- Anushka Vidurangi Samaraweera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
103
|
Carpentier S, Romagné F, Vivier E. A comprehensive approach to gene expression profiling in immune cells. Methods Enzymol 2019; 636:1-47. [PMID: 32178815 DOI: 10.1016/bs.mie.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
With the advent of whole-transcriptome studies and the growing need for public repositories, it has become essential to combine multiple heterogeneous datasets for immune cells. In this chapter, we describe the implementation of a compendium of 10,833 genes for 975 samples, corresponding to 52 resting immune cell types. We begin by describing the datasets, and their selection, in particular. We then explain the methodology implemented to create a qualified compendium: the processing of each array (quality control, normalization and bias correction), integration (merging rules, global normalization and batch removal) and validation. Finally some examples of use will be detailed. The utility and limitations of the compendium are also discussed, as an introduction to the next version.
Collapse
Affiliation(s)
| | | | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France; Aix-Marseille Univ, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France.
| |
Collapse
|
104
|
Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, Jegg AM, Ries C, Christen R, Meneses-Lorente G, Jacob W, Klaman I, Ooi CH, Watson C, Wonde K, Reis B, Michielin F, Rüttinger D, Delord JP, Blay JY. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol 2019; 30:1381-1392. [PMID: 31114846 PMCID: PMC8887589 DOI: 10.1093/annonc/mdz163] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Emactuzumab is a monoclonal antibody against the colony-stimulating factor-1 receptor and targets tumor-associated macrophages (TAMs). This study assessed the safety, clinical activity, pharmacokinetics (PK) and pharmacodynamics (PD) of emactuzumab, as monotherapy and in combination with paclitaxel, in patients with advanced solid tumors. PATIENTS AND METHODS This open-label, phase Ia/b study comprised two parts (dose escalation and dose expansion), each containing two arms (emactuzumab, every 2 or 3 weeks, as monotherapy or in combination with paclitaxel 80 mg/m2 weekly). The dose-escalation part explored the maximum tolerated dose and optimal biological dose (OBD). The dose-expansion part extended the safety assessment and investigated the objective response rate. A PK/PD analysis of serial blood, skin and tumor biopsies was used to explore proof of mechanism and confirm the OBD. RESULTS No maximum tolerated dose was reached in either study arm, and the safety profile of emactuzumab alone and in combination does not appear to preclude its use. No patients receiving emactuzumab monotherapy showed an objective response; the objective response rate for emactuzumab in combination with paclitaxel was 7% across all doses. Skin macrophages rather than peripheral blood monocytes or circulating colony-stimulating factor-1 were identified as an optimal surrogate PD marker to select the OBD. Emactuzumab treatment alone and in combination with paclitaxel resulted in a plateau of immunosuppressive TAM reduction at the OBD of 1000 mg administered every 2 weeks. CONCLUSIONS Emactuzumab showed specific reduction of immunosuppressive TAMs at the OBD in both treatment arms but did not result in clinically relevant antitumor activity alone or in combination with paclitaxel. (ClinicalTrials.gov Identifier: NCT01494688).
Collapse
Affiliation(s)
- C A Gomez-Roca
- Department of Medicine & Clinical Research Unit, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse (IUCT-Oncopole), Toulouse.
| | - A Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux.
| | - C Le Tourneau
- Department of Drug Development and Innovation, Institut Curie, Paris & Saint-Cloud; INSERM U900 Research Unit, Saint-Cloud; Paris-Saclay University, Paris
| | - P A Cassier
- Department of Medicine, Centre Léon Bérard, Lyon, France
| | - M Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux
| | - S P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York; Weill Cornell Medical College, New York, USA
| | - M Campone
- ICO René Gauducheau, Saint-Herblain, France
| | - K L Weber
- Department of Orthopedic Oncology, Penn Medicine, Pennsylvania, USA
| | - D Loirat
- Department of Drug Development and Innovation, Institut Curie, Paris & Saint-Cloud
| | - M A Cannarile
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - A-M Jegg
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - C Ries
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - R Christen
- Licensing and Early Development (LEAD) Safety Science, Roche Innovation Center Basel, Basel, Switzerland
| | - G Meneses-Lorente
- Roche Innovation Center Welwyn, Roche Pharmaceutical Research and Early Development, Welwyn Garden City
| | - W Jacob
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - I Klaman
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - C-H Ooi
- Licensing and Early Development (LEAD) Safety Science, Roche Innovation Center Basel, Basel, Switzerland
| | - C Watson
- A4P Consulting Ltd, Sandwich, UK
| | - K Wonde
- Licensing and Early Development (LEAD) Safety Science, Roche Innovation Center Basel, Basel, Switzerland
| | - B Reis
- Licensing and Early Development (LEAD) Safety Science, Roche Innovation Center Basel, Basel, Switzerland
| | - F Michielin
- Licensing and Early Development (LEAD) Safety Science, Roche Innovation Center Basel, Basel, Switzerland
| | - D Rüttinger
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - J-P Delord
- Department of Drug Development and Innovation, Institut Curie, Paris & Saint-Cloud
| | - J-Y Blay
- Department of Medicine & Clinical Research Unit, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse (IUCT-Oncopole), Toulouse
| |
Collapse
|
105
|
Hao D, Wang G, Yang W, Gong J, Li X, Xiao M, He L, Wang L, Li X, Di L. Reactive versus Constitutive: Reconcile the Controversial Results about the Prognostic Value of PD-L1 Expression in cancer. Int J Biol Sci 2019; 15:1933-1941. [PMID: 31523194 PMCID: PMC6743303 DOI: 10.7150/ijbs.33297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
The prognostic value of programmed death-ligand 1 (PD-L1) has been controversial in recent studies. PD-L1 is known to play a major role in suppressing the immune response, yet increasing studies have reported that PD-L1 expression has a favorable prognostic value for cancer patients. This raises the concern about how to understand PD-L1 expression: merely an immune inhibitory signal, or more likely a reactive process to T-cell response that indicates cytotoxic T lymphocyte (CTL) level in a tumor? To solve this dilemma, an integrative investigation is required. We compared the PD-L1 expression between tumor cells and immune cells, and characterized the inter- and intra-tumor correlation between CTL and PD-L1 expression. The prognostic values between PD-L1 and CTL is compared across 15 solid cancers and 11 independent cohorts of ovarian cancer. PD-L1 and PD-L1-adjusted CTL are analyzed in immunotherapy dataset receiving nivolumab. We observed unexpected high concordance between the prognostic value of PD-L1 and CTL across different cancers and cohorts. We found primarily reactive rather than constitutive PD-L1 expression in most tumors. We revealed that PD-L1-adjusted CTL level, rather than the expression of PD-L1, effectively predicts the responders to immune checkpoint inhibitors. This study highlights the importance of PD-L1 expression, as primarily a signature of reacting efficiency of pre-existing anti-tumor immunity, in balancing the tumor microenvironment. Importantly, it suggests that the reactive efficiency of PD-L1 is more useful to predict the response to immunotherapy.
Collapse
Affiliation(s)
- Dapeng Hao
- Department of Pathology, Harbin Medical University, Harbin, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinan Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | | | - Mingming Xiao
- Department of Pathology, People's Hospital of Liaoning Province. Shenyang, China
| | - Lijie He
- Department of Medical Oncology, People's Hospital of Liaoning Province. Shenyang, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
106
|
Papasavvas E, Azzoni L, Kossenkov AV, Dawany N, Morales KH, Fair M, Ross BN, Lynn K, Mackiewicz A, Mounzer K, Tebas P, Jacobson JM, Kostman JR, Showe L, Montaner LJ. NK Response Correlates with HIV Decrease in Pegylated IFN-α2a-Treated Antiretroviral Therapy-Suppressed Subjects. THE JOURNAL OF IMMUNOLOGY 2019; 203:705-717. [PMID: 31253727 DOI: 10.4049/jimmunol.1801511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 01/27/2023]
Abstract
We previously reported that pegylated IFN-α2a (Peg-IFN-α2a) added to antiretroviral therapy (ART)-suppressed, HIV-infected subjects resulted in plasma HIV control and integrated HIV DNA decrease. We now evaluated whether innate NK cell activity or PBMC transcriptional profiles were associated with decreases in HIV measures. Human peripheral blood was analyzed prior to Peg-IFN-α2a administration (ART, baseline), after 5 wk of ART+Peg-IFN-α2a, and after 12 wk of Peg-IFN-α2a monotherapy (primary endpoint). After 5 wk of ART+Peg-IFN-α2a, immune subset frequencies were preserved, and induction of IFN-stimulated genes was noted in all subjects except for a subset in which the lack of IFN-stimulated gene induction was associated with increased expression of microRNAs. Viral control during Peg-IFN-α2a monotherapy was associated with 1) higher levels of NK cell activity and IFN-γ-induced protein 10 (IP-10) on ART (preimmunotherapy) and 2) downmodulation of NK cell KIR2DL1 and KIR2DL2/DL3 expression, transcriptional enrichment of expression of genes associated with NK cells in HIV controller subjects, and higher ex vivo IFN-α-induced NK cytotoxicity after 5 wk of ART+Peg-IFN-α2a. Integrated HIV DNA decline after immunotherapy was also associated with gene expression patterns indicative of cell-mediated activation and NK cytotoxicity. Overall, an increase in innate activity and NK cell cytotoxicity were identified as correlates of Peg-IFN-α2a-mediated HIV control.
Collapse
Affiliation(s)
| | | | | | - Noor Dawany
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Knashawn H Morales
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Kenneth Lynn
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA 19104
| | | | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19107
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey M Jacobson
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Jay R Kostman
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19107
| | | | | |
Collapse
|
107
|
Backman M, Flenkenthaler F, Blutke A, Dahlhoff M, Ländström E, Renner S, Philippou-Massier J, Krebs S, Rathkolb B, Prehn C, Grzybek M, Coskun Ü, Rothe M, Adamski J, de Angelis MH, Wanke R, Fröhlich T, Arnold GJ, Blum H, Wolf E. Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus. Mol Metab 2019; 26:30-44. [PMID: 31221621 PMCID: PMC6667734 DOI: 10.1016/j.molmet.2019.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically. METHODS We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics. RESULTS Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples. CONCLUSIONS The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.
Collapse
Affiliation(s)
- Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Birgit Rathkolb
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michal Grzybek
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | | | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany.
| |
Collapse
|
108
|
Treatment of murine lupus with TIGIT-Ig. Clin Immunol 2019; 203:72-80. [DOI: 10.1016/j.clim.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
|
109
|
Bergdorf K, Ferguson DC, Mehrad M, Ely K, Stricker T, Weiss VL. Papillary thyroid carcinoma behavior: clues in the tumor microenvironment. Endocr Relat Cancer 2019; 26:601-614. [PMID: 30965283 PMCID: PMC8279427 DOI: 10.1530/erc-19-0074] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
The prevalence of thyroid carcinoma is increasing and represents the most common endocrine malignancy, with papillary thyroid carcinoma (PTC) being the most frequent subtype. The genetic alterations identified in PTCs fail to distinguish tumors with different clinical behaviors, such as extra-thyroidal extension and lymph node metastasis. We hypothesize that the immune microenvironment may play a critical role in tumor invasion and metastasis. Computational immunogenomic analysis was performed on 568 PTC samples in The Cancer Genome Atlas using CIBERSORT, TIMER and TIDE deconvolution analytic tools for characterizing immune cell composition. Immune cell infiltrates were correlated with histologic type, mutational type, tumor pathologic T stage and lymph node N stage. Dendritic cells (DCs) are highly associated with more locally advanced tumor T stage (T3/T4, odds ratio (OR) = 2.6, CI = 1.4-4.5, P = 5.4 × 10-4). Increased dendritic cells (OR = 3.4, CI = 1.9-6.3, P = 5.5 × 10-5) and neutrophils (OR = 10.5, CI = 2.7-44, P = 8.7 × 10-4) significantly correlate with lymph node metastasis. In addition, dendritic cells positively correlate with tall cell morphology (OR = 4.5, CI = 1.6-13, P = 4.9 × 10-3) and neutrophils negatively correlate with follicular morphology (OR = 1.3 × 10-3, CI = 5.3 × 10-5-0.031, P = 4.1 × 10-5). TIDE analysis indicates an immune-exclusive phenotype that may be mediated by increased galectin-3 found in PTCs. Thus, characterization of the PTC immune microenvironment using three computational platforms shows that specific immune cells correlate with mutational type, histologic type, local tumor extent and lymph node metastasis. Immunologic evaluation of PTCs may provide a better indication of biologic behavior, resulting in the improved diagnosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Kensey Bergdorf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Donna C Ferguson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mitra Mehrad
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kim Ely
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Thomas Stricker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vivian L Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
110
|
Abstract
Ebola virus (EBOV) is a single-stranded RNA virus that causes Ebola virus disease (EVD), characterized by excessive inflammation, lymphocyte apoptosis, hemorrhage, and coagulation defects leading to multiorgan failure and shock. Recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (VSV-EBOV), which is highly efficacious against lethal challenge in nonhuman primates, is the only vaccine that successfully completed a phase III clinical trial. Additional studies showed VSV-EBOV provides complete and partial protection to macaques immunized 7 and 3 days before EBOV challenge, respectively. However, the mechanisms by which this live-attenuated vaccine elicits rapid protection are only partially understood. To address this, we carried out a longitudinal transcriptome analysis of host responses in whole-blood samples collected from cynomolgus macaques vaccinated with VSV-EBOV 28, 21, 14, 7, and 3 days before EBOV challenge. Our findings indicate the transcriptional response to the vaccine peaks 7 days following vaccination and contains signatures of both innate antiviral immunity as well as B-cell activation. EBOV challenge 1 week after vaccination resulted in large gene expression changes suggestive of a recall adaptive immune response 14 days postchallenge. Lastly, the timing and magnitude of innate immunity and interferon-stimulated gene expression correlated with viral burden and disease outcome in animals vaccinated 3 days before challenge.IMPORTANCE Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), a deadly disease and major public health threat worldwide. A safe and highly efficacious vesicular stomatitis virus-based vaccine against EBOV is the only platform that has successfully completed phase III clinical trials and has been used in recent and ongoing outbreaks. Earlier studies showed that antibodies are the main mode of protection when this vaccine is administered 28 days before EBOV challenge. Recently, we showed this vaccine can provide protection when administered as early as 3 days before challenge and before antibodies are detected. This study seeks to identify the mechanisms of rapid protection, which in turn will pave the way for improved vaccines and therapeutics. Additionally, this study provides insight into host gene expression signatures that could provide early biomarkers to identify infected individuals who are at highest risk of poor outcomes.
Collapse
|
111
|
Taroni JN, Grayson PC, Hu Q, Eddy S, Kretzler M, Merkel PA, Greene CS. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Syst 2019; 8:380-394.e4. [PMID: 31121115 PMCID: PMC6538307 DOI: 10.1016/j.cels.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Most gene expression datasets generated by individual researchers are too small to fully benefit from unsupervised machine-learning methods. In the case of rare diseases, there may be too few cases available, even when multiple studies are combined. To address this challenge, we utilize transfer learning to extract coordinated expression patterns and use learned patterns to analyze small rare disease datasets. We trained a pathway-level information extractor (PLIER) model on a large public data compendium comprising multiple experiments, tissues, and biological conditions and then transferred the model to small datasets in an approach we call MultiPLIER. Models constructed from the public data compendium included features that aligned well to known biological factors and were more comprehensive than those constructed from individual datasets or conditions. When transferred to rare disease datasets, the models describe biological processes related to disease severity more effectively than models trained only on a given dataset.
Collapse
Affiliation(s)
- Jaclyn N Taroni
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Childhood Cancer Data Laboratory, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiwen Hu
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, USA
| | - Peter A Merkel
- Division of Rheumatology and the Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey S Greene
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Childhood Cancer Data Laboratory, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA; Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute of Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
112
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
113
|
Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 2019; 37:773-782. [PMID: 31061481 PMCID: PMC6610714 DOI: 10.1038/s41587-019-0114-2] [Citation(s) in RCA: 2609] [Impact Index Per Article: 434.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Single-cell RNA-sequencing has emerged as a powerful technique for characterizing cellular heterogeneity, but it is currently impractical on large sample cohorts and cannot be applied to fixed specimens collected as part of routine clinical care. We previously developed an approach for digital cytometry, called CIBERSORT, that enables estimation of cell type abundances from bulk tissue transcriptomes. We now introduce CIBERSORTx, a machine learning method that extends this framework to infer cell-type-specific gene expression profiles without physical cell isolation. By minimizing platform-specific variation, CIBERSORTx also allows the use of single-cell RNA-sequencing data for large-scale tissue dissection. We evaluated the utility of CIBERSORTx in multiple tumor types, including melanoma, where single-cell reference profiles were used to dissect bulk clinical specimens, revealing cell-type-specific phenotypic states linked to distinct driver mutations and response to immune checkpoint blockade. We anticipate that digital cytometry will augment single-cell profiling efforts, enabling cost-effective, high-throughput tissue characterization without the need for antibodies, disaggregation or viable cells.
Collapse
Affiliation(s)
- Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Chloé B Steen
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Chih Long Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Center for Cancer Systems Biology, Stanford University, Stanford, CA, USA.,Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Florian Scherer
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michael S Khodadoust
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Mohammad S Esfahani
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Center for Cancer Systems Biology, Stanford University, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Bogdan A Luca
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Steiner
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.,Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ash A Alizadeh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA. .,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA. .,Center for Cancer Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford Cancer Institute, Stanford University, Stanford, CA, USA. .,Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
114
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Tibullo D, Li Volti G, Barbagallo I, Vicario N, Musumeci G, Di Rosa M. Middle-aged healthy women and Alzheimer's disease patients present an overlapping of brain cell transcriptional profile. Neuroscience 2019; 406:333-344. [DOI: 10.1016/j.neuroscience.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
|
115
|
Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity - indications of immune cell activation. Sci Rep 2019; 9:6250. [PMID: 31000755 PMCID: PMC6472354 DOI: 10.1038/s41598-019-42750-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Birth by Cesarean section increases the risk of developing type 1 diabetes later in life. We aimed to elucidate common regulatory processes observed after Cesarean section and the development of islet autoimmunity, which precedes type 1 diabetes, by investigating the transcriptome of blood cells in the developing immune system. To investigate Cesarean section effects, we analyzed longitudinal gene expression profiles from peripheral blood mononuclear cells taken at several time points from children with increased familial and genetic risk for type 1 diabetes. For islet autoimmunity, we compared gene expression differences between children after initiation of islet autoimmunity and age-matched children who did not develop islet autoantibodies. Finally, we compared both results to identify common regulatory patterns. We identified the pentose phosphate pathway and pyrimidine metabolism - both involved in nucleotide synthesis and cell proliferation - to be differentially expressed in children born by Cesarean section and after islet autoimmunity. Comparison of global gene expression signatures showed that transcriptomic changes were systematically and significantly correlated between Cesarean section and islet autoimmunity. Moreover, signatures of both Cesarean section and islet autoimmunity correlated with transcriptional changes observed during activation of isolated CD4+ T lymphocytes. In conclusion, we identified shared molecular changes relating to immune cell activation in children born by Cesarean section and children who developed autoimmunity. Our results serve as a starting point for further investigations on how a type 1 diabetes risk factor impacts the young immune system at a molecular level.
Collapse
|
116
|
Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, Schubert D, Warnatz K, Grimbacher B. Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 ( IKZF1) in a Cohort of Patients With Primary Immunodeficiency. Front Immunol 2019; 10:568. [PMID: 31057532 PMCID: PMC6477086 DOI: 10.3389/fimmu.2019.00568] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.
Collapse
Affiliation(s)
- Zoya Eskandarian
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rosie Hague
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Cristian Roberto Smulski
- Department of Medical Physics, Centro Atómico Bariloche, CONICET, San Carlos de Bariloche, Argentina
| | - Desirée Schubert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, CCI, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Satellite Center Freiburg, RESIST-Cluster of Excellence 2155, Hanover Medical School, Freiburg, Germany.,Satellite Center Freiburg, German Center for Infection Research, Freiburg, Germany.,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
117
|
Altman MC, Gern JE. Reply. J Allergy Clin Immunol 2019; 143:2334-2335. [PMID: 30979657 DOI: 10.1016/j.jaci.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Matthew C Altman
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash.
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
118
|
George AP, Kuzel TM, Zhang Y, Zhang B. The Discovery of Biomarkers in Cancer Immunotherapy. Comput Struct Biotechnol J 2019; 17:484-497. [PMID: 31011407 PMCID: PMC6465579 DOI: 10.1016/j.csbj.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anil P. George
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Illinois College of Medicine, United States of America
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, United States of America
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bin Zhang
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, United States of America
| |
Collapse
|
119
|
Rhoades N, Mendoza N, Jankeel A, Sureshchandra S, Alvarez AD, Doratt B, Heidari O, Hagan R, Brown B, Scheibel S, Marbley T, Taylor J, Messaoudi I. Altered Immunity and Microbial Dysbiosis in Aged Individuals With Long-Term Controlled HIV Infection. Front Immunol 2019; 10:463. [PMID: 30915086 PMCID: PMC6423162 DOI: 10.3389/fimmu.2019.00463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 01/22/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) resulted in a significant increase in life expectancy for HIV patients. Indeed, in 2015, 45% of the HIV+ individuals in the United States were ≥55 years of age. Despite improvements in diagnosis and treatment of HIV infection, geriatric HIV+ patients suffer from higher incidence of comorbidities compared to age-matched HIV- individuals. Both chronic inflammation and dysbiosis of the gut microbiome are believed to be major contributors to this phenomenon, however carefully controlled studies investigating the impact of long-term (>10 years) controlled HIV (LTC-HIV) infection are lacking. To address this question, we profiled circulating immune cells, immune mediators, and the gut microbiome from elderly (≥55 years old) LTC-HIV+ and HIV- gay men living in the Palm Springs area. LTC-HIV+ individuals had lower frequency of circulating monocytes and CD4+ T-cells, and increased frequency CD8+ T-cells. Moreover, levels of systemic INFγ and several growth factors were increased while levels of IL-2 and several chemokines were reduced. Upon stimulation, immune cells from LTC-HIV+ individuals produced higher levels of pro-inflammatory cytokines. Last but not least, the gut microbiome of LTC-HIV+ individuals was enriched in bacterial taxa typically found in the oral cavity suggestive of loss of compartmentalization, while levels of beneficial butyrate producing taxa were reduced. Additionally, prevalence of Prevotella negatively correlated with CD4+ T-cells numbers in LTC-HIV+ individuals. These results indicate that despite long-term adherence and undetectable viral loads, LTC-HIV infection results in significant shifts in immune cell frequencies and gut microbial communities.
Collapse
Affiliation(s)
- Nicholas Rhoades
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Norma Mendoza
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Allen Jankeel
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Alexander D Alvarez
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Brianna Doratt
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Omeid Heidari
- School of Nursing, John Hopkins University, Baltimore, MD, United States
| | - Rod Hagan
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Brandon Brown
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Steven Scheibel
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Theodore Marbley
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Jeff Taylor
- HIV+ Aging-Palm Springs, Palm Springs, CA, United States
| | - Ilhem Messaoudi
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
120
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
121
|
Sharma S, Wang J, Alqassim E, Portwood S, Cortes Gomez E, Maguire O, Basse PH, Wang ES, Segal BH, Baysal BE. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 2019; 20:37. [PMID: 30791937 PMCID: PMC6383285 DOI: 10.1186/s13059-019-1651-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein recoding by RNA editing is required for normal health and evolutionary adaptation. However, de novo induction of RNA editing in response to environmental factors is an uncommon phenomenon. While APOBEC3A edits many mRNAs in monocytes and macrophages in response to hypoxia and interferons, the physiological significance of such editing is unclear. Results Here, we show that the related cytidine deaminase, APOBEC3G, induces site-specific C-to-U RNA editing in natural killer cells, lymphoma cell lines, and, to a lesser extent, CD8-positive T cells upon cellular crowding and hypoxia. In contrast to expectations from its anti-HIV-1 function, the highest expression of APOBEC3G is shown to be in cytotoxic lymphocytes. RNA-seq analysis of natural killer cells subjected to cellular crowding and hypoxia reveals widespread C-to-U mRNA editing that is enriched for genes involved in mRNA translation and ribosome function. APOBEC3G promotes Warburg-like metabolic remodeling in HuT78 T cells under similar conditions. Hypoxia-induced RNA editing by APOBEC3G can be mimicked by the inhibition of mitochondrial respiration and occurs independently of HIF-1α. Conclusions APOBEC3G is an endogenous RNA editing enzyme in primary natural killer cells and lymphoma cell lines. This RNA editing is induced by cellular crowding and mitochondrial respiratory inhibition to promote adaptation to hypoxic stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Present Address: Translate Bio, Lexington, MA, 02421, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Emad Alqassim
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Orla Maguire
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Per H Basse
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
122
|
Peters MC, Ringel L, Dyjack N, Herrin R, Woodruff PG, Rios C, O’Connor B, Fahy JV, Seibold MA. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am J Respir Crit Care Med 2019; 199:465-477. [PMID: 30371106 PMCID: PMC6376622 DOI: 10.1164/rccm.201807-1291oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 (T2) inflammation drives airway dysfunction in many patients with asthma; yet, we lack a comprehensive understanding of the airway immune cell types and networks that sustain this inflammation. Moreover, defects in the airway immune system in patients with asthma without T2 inflammation are not established. OBJECTIVES To determine the gene networks that sustain T2 airway inflammation in T2-high asthma and to explore the gene networks that characterize T2-low asthma. METHODS Network analysis of sputum cell transcriptome expression data from 84 subjects with asthma and 27 healthy control subjects was used to identify immune cell type-enriched networks that underlie asthma subgroups. RESULTS Sputum T2 gene expression was characterized by an immune cell network derived from multiple innate immune cells, including eosinophils, mast cells/basophils, and inflammatory dendritic cells. Clustering of subjects within this network stratified subjects into T2-high and T2-low groups, but it also revealed a subgroup of T2-high subjects with uniformly higher expression of the T2 network. These "T2-ultrahigh subjects" were characterized clinically by older age and more severe airflow obstruction and pathologically by a second T2 network derived from T2-skewed, CD11b+/CD103-/IRF4+ classical dendritic cells. Subjects with T2-low asthma were differentiated from healthy control subjects by lower expression of a cytotoxic CD8+ T-cell network, which was negatively correlated with body mass index and plasma IL-6 concentrations. CONCLUSIONS Persistent airway T2 inflammation is a complex construct of innate and adaptive immunity gene expression networks that are variable across individuals with asthma and persist despite steroid treatment. Individuals with T2-low asthma exhibit an airway deficiency in cytotoxic T cells associated with obesity-driven inflammation.
Collapse
Affiliation(s)
- Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | | | | | | | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Cydney Rios
- Center for Genes, Environment, and Health and
| | | | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Max A. Seibold
- Center for Genes, Environment, and Health and
- Department of Pediatrics, National Jewish Health, Denver, Colorado; and
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado – Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
123
|
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhães J, Larbi A. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep 2019; 26:1627-1640.e7. [PMID: 30726743 PMCID: PMC6367568 DOI: 10.1016/j.celrep.2019.01.041] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
The molecular characterization of immune subsets is important for designing effective strategies to understand and treat diseases. We characterized 29 immune cell types within the peripheral blood mononuclear cell (PBMC) fraction of healthy donors using RNA-seq (RNA sequencing) and flow cytometry. Our dataset was used, first, to identify sets of genes that are specific, are co-expressed, and have housekeeping roles across the 29 cell types. Then, we examined differences in mRNA heterogeneity and mRNA abundance revealing cell type specificity. Last, we performed absolute deconvolution on a suitable set of immune cell types using transcriptomics signatures normalized by mRNA abundance. Absolute deconvolution is ready to use for PBMC transcriptomic data using our Shiny app (https://github.com/giannimonaco/ABIS). We benchmarked different deconvolution and normalization methods and validated the resources in independent cohorts. Our work has research, clinical, and diagnostic value by making it possible to effectively associate observations in bulk transcriptomics data to specific immune subsets.
Collapse
Affiliation(s)
- Gianni Monaco
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK; Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland.
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Seri Mustafah
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | | | | | | | - Michele Ceccarelli
- BIOGEM Research Center, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK.
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia; Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
124
|
Tasnim F, Xing J, Huang X, Mo S, Wei X, Tan MH, Yu H. Generation of mature kupffer cells from human induced pluripotent stem cells. Biomaterials 2019; 192:377-391. [DOI: 10.1016/j.biomaterials.2018.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
|
125
|
Högstrand K, Lindvall JM, Sundblad A, Grandien A. Transformation of mature mouse B cells into malignant plasma cells in vitro via introduction of defined genetic elements. Eur J Immunol 2019; 49:454-461. [PMID: 30664244 DOI: 10.1002/eji.201847855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
An experimental system where defined alterations in gene function or gene expression levels in primary B cells would result in the development of transformed plasma cells in vitro would be useful in order to facilitate studies of the underlying molecular mechanisms of plasma cell malignancies. Here, such a system is described in which primary murine B cells rapidly become transformed into surface CD138+ , IgM-/low , CD19- IgM-secreting plasma cells as a result of expression of the transcription factors IRF4 and MYC together with simultaneous expression of BMI1, mutated p53 or silencing of p19Arf , and suppression of intrinsic apoptosis through expression of BCLXL. Analysis of gene expression patterns revealed that this combination of transforming genes resulted in expression of a number of genes previously associated with terminally differentiated B cells (plasma cells) and myeloma cells, whereas many genes associated with mature B cells and B-cell lymphomas were not expressed. Upon transplantation, the transformed cells preferentially localized to the bone marrow, presenting features of a plasma cell malignancy of the IgM isotype. The present findings may also be applicable in the development of novel methods for production of monoclonal antibodies.
Collapse
Affiliation(s)
- Kari Högstrand
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jessica M Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anne Sundblad
- Hematology Center, CMM, Bioclinicum, Department of Medicine, Karolinska Institutet, Karolinska University Hospital - Solna, Solna, Sweden
| | - Alf Grandien
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
126
|
Survival analysis with regard to PD-L1 and CD155 expression in human small cell lung cancer and a comparison with associated receptors. Oncol Lett 2019; 17:2960-2968. [PMID: 30854074 PMCID: PMC6365950 DOI: 10.3892/ol.2019.9910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/03/2018] [Indexed: 01/20/2023] Open
Abstract
Immune checkpoints expressed on tumor cells may suppress the cytotoxicity of tumor-infiltrating lymphocytes (TILs) via interaction with their ligands. In the present study, checkpoint proteins and ligands, including programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), cluster of differentiation (CD)155 and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) were systematically analyzed in patients with small cell lung cancer (SCLC). Furthermore their clinicopathological features and survival rates were investigated. Immunohistochemistry was performed in order to analyze the expression of PD-L1, CD155, PD-1 and TIGIT in 60 patients with SCLC, and survival analyses were performed using the Kaplan-Meier method and Cox proportional hazards model. It was reported that CD155/TIGIT and PD-L1/PD-1 were highly expressed on tissues of surgically resected SCLC. High expression levels of PD-L1, CD155 or PD-L1+CD155 were significantly associated with shorter survival. However, high expression levels of PD-1 or TIGIT exhibited no obvious association with shorter survival time. Moreover, patients with SCLC in whom PD-L1 and CD155 levels were highly expressed had the shortest survival rate. Multivariate survival analysis revealed that highly expressed PD-L1 [hazard ratio (HR)=2.55, 95% confidence interval (CI)=1.18–5.51, P=0.017] and CD155 (HR=2.40, 95% CI=1.05–5.50, P=0.038) were independent prognostic factors for overall survival (OS) time in SCLC. In addition, it was reported that TIGIT and PD-1, the receptors of CD155 and PD-L1, respectively, were also constitutively expressed on CD8+ TILs and tumor cells in SCLC. High expression levels of PD-L1 and CD155 were independent prognostic factors for OS time in patients with SCLC.
Collapse
|
127
|
Seitz C, Liu S, Klocke K, Joly AL, Czarnewski PV, Tibbitt CA, Parigi SM, Westerberg LS, Coquet JM, Villablanca EJ, Wing K, Andersson J. Multi-faceted inhibition of dendritic cell function by CD4 +Foxp3 + regulatory T cells. J Autoimmun 2019; 98:86-94. [PMID: 30616979 DOI: 10.1016/j.jaut.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
CTLA-4 is required for CD4+Foxp3+ regulatory T (Treg) cell function, but its mode of action remains incompletely defined. Herein we generated Ctla-4ex2fl/flFoxp3-Cre mice with Treg cells exclusively expressing a naturally occurring, ligand-independent isoform of CTLA-4 (liCTLA-4) that cannot interact with the costimulatory molecules CD80 and CD86. The mice did not exhibit any signs of effector T cell activation early in life, however, at 6 months of age they exhibited excessive T cell activation and inflammation in lungs. In contrast, mice with Treg cells completely lacking CTLA-4 developed lymphoproliferative disease characterized by multi-organ inflammation early in life. In vitro, Treg cells exclusively expressing liCTLA-4 inhibited CD80 and CD86 expression on dendritic cells (DC). Conversely, Treg cells required the extra-cellular part of CTLA-4 to up-regulate expression of the co-inhibitory molecule PD-L2 on DCs. Transcriptomic analysis of suppressed DCs revealed that Treg cells induced a specific immunosuppressive program in DCs.
Collapse
Affiliation(s)
- Christina Seitz
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sang Liu
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Klocke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Laure Joly
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sara M Parigi
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Kajsa Wing
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - John Andersson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
128
|
Altman MC, Whalen E, Togias A, O'Connor GT, Bacharier LB, Bloomberg GR, Kattan M, Wood RA, Presnell S, LeBeau P, Jaffee K, Visness CM, Busse WW, Gern JE. Allergen-induced activation of natural killer cells represents an early-life immune response in the development of allergic asthma. J Allergy Clin Immunol 2018; 142:1856-1866. [PMID: 29518416 PMCID: PMC6123299 DOI: 10.1016/j.jaci.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Childhood asthma in inner-city populations is a major public health burden, and understanding early-life immune mechanisms that promote asthma onset is key to disease prevention. Children with asthma demonstrate a high prevalence of aeroallergen sensitization and TH2-type inflammation; however, the early-life immune events that lead to TH2 skewing and disease development are unknown. OBJECTIVE We sought to use RNA sequencing of PBMCs collected at age 2 years to determine networks of immune responses that occur in children with allergy and asthma. METHODS In an inner-city birth cohort with high asthma risk, we compared gene expression using RNA sequencing in PBMCs collected at age 2 years between children with 2 or more aeroallergen sensitizations, including dust mite, cockroach, or both, by age 3 years and asthma by age 7 years (cases) and matched control subjects who did not have any aeroallergen sensitization or asthma by age 7 years. RESULTS PBMCs from the cases showed higher levels of expression of natural killer (NK) cell-related genes. After cockroach or dust mite allergen but not tetanus antigen stimulation, PBMCs from the cases compared with the control subjects showed differential expression of 244 genes. This gene set included upregulation of a densely interconnected NK cell-like gene network reflecting a pattern of cell activation and induction of inflammatory signaling molecules, including the key TH2-type cytokines IL9, IL13, and CCL17, as well as a dendritic cell-like gene network, including upregulation of CD1 lipid antigen presentation molecules. The NK cell-like response was reproducible in an independent group of children with later-onset allergic sensitization and asthma and was found to be specific to only those children with both aeroallergen sensitization and asthma. CONCLUSION These findings provide important mechanistic insight into an early-life immune pathway involved in TH2 polarization, leading to the development of allergic asthma.
Collapse
Affiliation(s)
- Matthew C Altman
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash.
| | - Elizabeth Whalen
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Robert A Wood
- Johns Hopkins University School of Medicine, Baltimore, Md
| | - Scott Presnell
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash
| | | | | | | | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
129
|
Fang J, Liu C, Wang Q, Lin P, Cheng F. In silico polypharmacology of natural products. Brief Bioinform 2018; 19:1153-1171. [PMID: 28460068 DOI: 10.1093/bib/bbx045] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 01/03/2025] Open
Abstract
Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuang Liu
- Alibaba Research Center for Complexity Sciences at the Hangzhou Normal University, Hangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Lin
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center in Nashville (United States)
| |
Collapse
|
130
|
Vis B, Hewitt RE, Faria N, Bastos C, Chappell H, Pele L, Jugdaohsingh R, Kinrade SD, Powell JJ. Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells. ACS NANO 2018; 12:10843-10854. [PMID: 30346692 DOI: 10.1021/acsnano.8b03363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sub-micron-sized silica nanoparticles, even as small as 10-20 nm in diameter, are well-known for their activation of mononuclear phagocytes. In contrast, the cellular impact of those <10 nm [ i.e., ultrasmall silica nanoparticles (USSN)] is not well-established for any cell type despite anticipated human exposure. Here, we synthesized discrete populations of USSN with volume median diameters between 1.8 to 16 nm and investigated their impact on the mixed cell population of human primary peripheral mononuclear cells. USSN 1.8-7.6 nm in diameter, optimally 3.6-5.1 nm in diameter, induced dose-dependent CD4 and CD8 T-cell activation in terms of cell surface CD25 and CD69 up-regulation at concentrations above 150 μM Sitotal (∼500 nM particles). Induced activation with only ∼2.4 μM particles was (a) equivalent to that observed with typical positive control levels of Staphylococcal enterotoxin B (SEB) and (b) evident in antigen presenting cell-deplete cultures as well as in a pure T-cell line (Jurkat) culture. In the primary mixed-cell population, USSN induced IFN-γ secretion but failed to induce T-cell proliferation or the secretion of IL-2, IL-10, or IL-4. Collectively, these data indicate that USSN initiate activation, with Th1 polarization, of T cells via direct particle-cell interaction. Finally, similarly sized iron hydroxide particles did not induce the expression of T-cell activation markers, indicating some selectivity of the ultrasmall particle type. Given that humans may be exposed to ultrasmall particles and that these materials have emerging bioclinical applications, their off-target immunomodulatory effects via direct T-cell activation should be carefully considered.
Collapse
Affiliation(s)
- Bradley Vis
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Nuno Faria
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Carlos Bastos
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Helen Chappell
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- School of Food Science and Nutrition , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom
| | - Laetitia Pele
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Stephen D Kinrade
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| |
Collapse
|
131
|
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases. Nat Commun 2018; 9:4735. [PMID: 30413720 PMCID: PMC6226523 DOI: 10.1038/s41467-018-07242-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
In silico quantification of cell proportions from mixed-cell transcriptomics data (deconvolution) requires a reference expression matrix, called basis matrix. We hypothesize that matrices created using only healthy samples from a single microarray platform would introduce biological and technical biases in deconvolution. We show presence of such biases in two existing matrices, IRIS and LM22, irrespective of deconvolution method. Here, we present immunoStates, a basis matrix built using 6160 samples with different disease states across 42 microarray platforms. We find that immunoStates significantly reduces biological and technical biases. Importantly, we find that different methods have virtually no or minimal effect once the basis matrix is chosen. We further show that cellular proportion estimates using immunoStates are consistently more correlated with measured proportions than IRIS and LM22, across all methods. Our results demonstrate the need and importance of incorporating biological and technical heterogeneity in a basis matrix for achieving consistently high accuracy.
Collapse
|
132
|
Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH. Genome-wide DNA Methylation in Treatment-naïve Ulcerative Colitis. J Crohns Colitis 2018; 12:1338-1347. [PMID: 30137272 PMCID: PMC6236200 DOI: 10.1093/ecco-jcc/jjy117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the genome-wide DNA methylation status in treatment-naïve ulcerative colitis [UC], and to explore the relationship between DNA methylation patterns and gene expression levels in tissue biopsies from a well-stratified treatment-naïve UC patient group. METHODS Mucosal biopsies from treatment-naïve patients [n = 10], and a healthy control group [n = 11] underwent genome-wide DNA bisulfite sequencing. Principal component analysis [PCA] and diverse statistical methods were applied to obtain a dataset of differentially methylated genes. DNA methylation annotation was investigated using the UCSC Genome Browser. Gene set enrichments were obtained using the Kyoto Encyclopaedia of Genes and Genomes [KEGG] and PANTHER. RESULTS Of all significantly differentially expressed genes [DEGs], 25% correlated with DNA methylation patterns; 30% of these genes were methylated at CpG sites near their transcription start site [TSS]. Hyper-methylation was observed for genes involved in homeostasis and defence, whereas hypo-methylation was observed for genes playing a role in immune response [i.e. chemokines and interleukins]. Of the differentially DNA methylated genes, 25 were identified as inflammatory bowel disease [IBD] susceptibility genes. Four genes [DEFFA6, REG1B, BTNL3, OLFM4] showed DNA methylation in the absence of known CpG islands. CONCLUSIONS Genome-wide DNA methylation analysis revealed distinctive functional patterns for hyper-and hypo-methylation in treatment-naïve UC. These distinct patterns could be of importance in the development and pathogenesis of UC. Further investigation of DNA methylation patterns may be useful in the development of the targeting of epigenetic processes, and may allow new treatment and target strategies for UC patients.
Collapse
Affiliation(s)
- Hagar Taman
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Christopher G Fenton
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Inga V Hensel
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Department of Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomics Support Centre Tromsø [GSCT], Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Arctic University of Norway, Tromsø, Norway,Corresponding author: Ruth H. Paulssen, PhD, Department of Clinical Medicine, Gastroenterology and Nutrition Research Group, UiT The Arctic University of Norway, Faculty of Health, Sykehusveien 38, N-9038 Tromsø, Norway/ Tel.: +47 77 64 54 80;
| |
Collapse
|
133
|
Abstract
The principal focus of this paper is to consider the implications of head and neck transplantation surgery on the issue of personal identity. To this end, it is noted that the immune system has not only been established to impose a level of self-identity on bodily cells, it has also been implicated in mental development and the regulation of mental state. In this it serves as a paradigm for the mind as the product of cephalic and extracephalic systems. The importance of bodily systems in identity is then discussed in relation to phantom tissue syndrome. The data strongly indicate that, even if surgically successful, head and neck transplantation will result in the loss of the continuity of personal identity.
Collapse
|
134
|
Bah SY, Forster T, Dickinson P, Kampmann B, Ghazal P. Meta-Analysis Identification of Highly Robust and Differential Immune-Metabolic Signatures of Systemic Host Response to Acute and Latent Tuberculosis in Children and Adults. Front Genet 2018; 9:457. [PMID: 30337941 PMCID: PMC6180280 DOI: 10.3389/fgene.2018.00457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
Background: Whole blood expression profiling is a mainstay for delineating differential diagnostic signatures of infection yet is subject to high variability that reduces power and complicates clinical usefulness. To date, confirmatory high confidence expression profiling signatures for clinical use remain uncertain. Here we have sought to evaluate the reproducibility and confirmatory nature of differential expression signatures, comprising molecular and cellular pathways, across multiple international clinical observational studies investigating children and adult whole blood transcriptome responses to tuberculosis (TB). Methods and findings: A systematic search and quality control assessment of gene expression repositories for human TB using whole blood resulted in 11 datasets with a total of 1073 patients from Africa, Europe, and South America. A non-parametric estimation of percentage of false prediction was used for meta-analysis of high confidence differential expression analysis. Deconvolution analysis was applied to infer changes in immune cell proportions and enrichment tests applied using pathway database resources. Meta-analysis identified high confidence differentially expressed genes, comprising 372 in adult active-TB versus latent-TB (LTBI), 332 in adult active-TB versus controls (CON), five in LTBI versus CON, and 415 in childhood active-TB versus LTBI. Notably, these confirmatory markers have low representation in published signatures for diagnosing TB. Pathway biology analysis of high confidence gene sets revealed dominant metabolic and innate-immune pathway signatures while suppressed signatures were enriched with adaptive signaling pathways and reduced proportions of T and B cells. Childhood TB showed uniquely strong inflammasome antagonist signature (IL1RN and ILR2), while adult TB patients exhibit a significant preponderance type I and type II IFN markers. Key limitations of the study include the paucity of data on potential confounders. Conclusion: Meta-analysis identified high confidence confirmatory immune-metabolic and cellular expression signatures across studies regardless of the population resource setting, HIV status and circulating endemic pathogens. Notably, previously identified diagnostic signature markers for TB show limited concordance with the confirmatory meta-analysis. Overall, our results support the use of the confirmatory expression signatures for guiding optimized diagnostic, prognostic, and therapeutic monitoring modalities in TB.
Collapse
Affiliation(s)
- Saikou Y Bah
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom.,West African Centre for Cellular Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.,Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Tropical Medicine and Hygiene, Banjul, Gambia
| | - Thorsten Forster
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Paul Dickinson
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Tropical Medicine and Hygiene, Banjul, Gambia.,Centre of International Child Health, Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Peter Ghazal
- Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom.,Systems Immunity Research Institute, School of Medicine Laboratory of Immunity and Metabolism, University of Cardiff, Wales, United Kingdom
| |
Collapse
|
135
|
Nirmal AJ, Regan T, Shih BB, Hume DA, Sims AH, Freeman TC. Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumors. Cancer Immunol Res 2018; 6:1388-1400. [PMID: 30266715 DOI: 10.1158/2326-6066.cir-18-0342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/21/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
The immune composition of the tumor microenvironment regulates processes including angiogenesis, metastasis, and the response to drugs or immunotherapy. To facilitate the characterization of the immune component of tumors from transcriptomics data, a number of immune cell transcriptome signatures have been reported that are made up of lists of marker genes indicative of the presence a given immune cell population. The majority of these gene signatures have been defined through analysis of isolated blood cells. However, blood cells do not reflect the differentiation or activation state of similar cells within tissues, including tumors, and consequently markers derived from blood cells do not necessarily transfer well to tissues. To address this issue, we generated a set of immune gene signatures derived directly from tissue transcriptomics data using a network-based deconvolution approach. We define markers for seven immune cell types, collectively named ImSig, and demonstrate how these markers can be used for the quantitative estimation of the immune cell content of tumor and nontumor tissue samples. The utility of ImSig is demonstrated through the stratification of melanoma patients into subgroups of prognostic significance and the identification of immune cells with the use of single-cell RNA-sequencing data derived from tumors. Use of ImSig is facilitated by an R package (imsig). Cancer Immunol Res; 6(11); 1388-400. ©2018 AACR.
Collapse
Affiliation(s)
- Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara B Shih
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute, University of Queensland, Queensland, Australia
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
136
|
Michlmayr D, Pak TR, Rahman AH, Amir EAD, Kim EY, Kim-Schulze S, Suprun M, Stewart MG, Thomas GP, Balmaseda A, Wang L, Zhu J, Suaréz-Fariñas M, Wolinsky SM, Kasarskis A, Harris E. Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases. Mol Syst Biol 2018; 14:e7862. [PMID: 30150281 PMCID: PMC6110311 DOI: 10.15252/msb.20177862] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV Semi-supervised classification and clustering of single-cell events into 57 sub-communities of canonical leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells. Serum cytokine measurements confirmed significant acute-phase upregulation of monocyte chemoattractants. Distinct transcriptomic signatures were associated with infection timepoint, as well as convalescent-phase anti-CHIKV antibody titer, acute-phase viremia, and symptom severity. We present a multiscale network that summarizes all observed modulations across cellular and transcriptomic levels and their interactions with clinical outcomes, providing a uniquely global view of the biomolecular landscape of human CHIKV infection.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Theodore R Pak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H Rahman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - El-Ad David Amir
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Seunghee Kim-Schulze
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Suprun
- Department of Population Health and Science Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Stewart
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guajira P Thomas
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Li Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mayte Suaréz-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health and Science Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
137
|
Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 2018; 67:1031-1040. [PMID: 29541787 PMCID: PMC6006237 DOI: 10.1007/s00262-018-2150-z] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
By exerting pro- and anti-tumorigenic actions, tumor-infiltrating immune cells can profoundly influence tumor progression, as well as the success of anti-cancer therapies. Therefore, the quantification of tumor-infiltrating immune cells holds the promise to unveil the multi-faceted role of the immune system in human cancers and its involvement in tumor escape mechanisms and response to therapy. Tumor-infiltrating immune cells can be quantified from RNA sequencing data of human tumors using bioinformatics approaches. In this review, we describe state-of-the-art computational methods for the quantification of immune cells from transcriptomics data and discuss the open challenges that must be addressed to accurately quantify immune infiltrates from RNA sequencing data of human bulk tumors.
Collapse
Affiliation(s)
- Francesca Finotello
- Biocenter, Division for Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| | - Zlatko Trajanoski
- Biocenter, Division for Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| |
Collapse
|
138
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
139
|
Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J Toxicol 2018; 2018:1308748. [PMID: 30046306 PMCID: PMC6038661 DOI: 10.1155/2018/1308748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
Nuts are one of the commonly consumed snacks but poor handling and storage practices can make them prone to foodborne infections. The study aimed at assessing the microbiological quality and risk assessment for aflatoxins in groundnuts and cashew nuts consumed in selected locations in Nigeria. The moisture content, colony counts, incidence of pathogenic bacteria, aflatoxin contamination, and risk assessment for aflatoxins were evaluated using standard methods. The moisture content and total viable count ranged from 5.00–8.60% and 5.5–89 × 103 cfug−1, respectively, while the fungal count was between 4–24 × 103 and 1.0–4.5 × 102 cfug−1, respectively. Eleven fungal species belonging to 5 genera were isolated from the nuts, with Aspergillus flavus, Rhizopus oryzae, and Fusarium oxysporum having the highest percentage occurrence of 50%. In addition, the aflatoxin concentration ranged 0.1–6.8 and 29–33.78 ng kg−1 for cashew nuts and groundnuts, respectively. The margin of exposure (MOE) to aflatoxin contamination was 6.10 for groundnuts and 1000 for cashew nuts and the nuts consumers were at a risk of exposure to foodborne diseases and aflatoxin contamination with mean exposure values of 27.96 and 0.17 ng kg−1bwday−1, respectively. The risk of primary liver cancer for groundnuts and cashew nuts consumers was also estimated to be 1.38 and 0.01 canceryear−1100,000−1person, respectively. This calls for mitigation measures from appropriate governmental organizations.
Collapse
|
140
|
Hoon KS, Gu KM, Seon SH, Su KS, Il KY, Geun YS. Lower Beclin-1 mRNA Levels in Pediatric Compared With Adult Patients With Otitis Media With Effusion. J Int Adv Otol 2018; 14:48-52. [PMID: 29764778 DOI: 10.5152/iao.2018.4481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The role of autophagy in the pathophysiology of otitis media with effusion (OME) remains unclear, particularly regarding the difference between pediatric and adult patients. The present study analyzed the expression levels of autophagy-associated mRNAs in effusion fluids obtained from pediatric and adult patients with OME. MATERIALS AND METHODS Middle ear fluid samples were collected from 76 pediatric patients and 41 adult patients with OME, and the levels of mRNAs encoding autophagy-related genes were measured using real-time reverse transcription-polymerase chain reaction. The relationships between the levels of autophagy-associated mRNAs and the frequency of ventilation tube insertion, the characteristics of middle ear fluid, and the results of bacterial culture were analyzed. RESULTS Autophagy-associated mRNAs were present in the effusion fluid of all patients. The level of Beclin-1 mRNA was significantly lower in pediatric than in adult patients, regardless of the frequency of surgery or fluid characteristics (p < 0.05). CONCLUSION Autophagy-associated mRNAs were expressed in effusion fluids of both pediatric and adult patients with OME. However, the level of Beclin-1 mRNA was significantly lower in the effusion fluid of pediatric than adult patients.
Collapse
Affiliation(s)
- Kim Sang Hoon
- Department of Otorhinolaryngology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kim Myung Gu
- Department of Otorhinolaryngology, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Shim Haeng Seon
- Department of Anesthesiology and Pain Medicine, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kim Sung Su
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kim Young Il
- Medical Science Research Institute, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeo Seung Geun
- Department of Otorhinolaryngology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
141
|
Whole Blood Gene Expression Profiling Predicts Severe Morbidity and Mortality in Cystic Fibrosis: A 5-Year Follow-Up Study. Ann Am Thorac Soc 2018; 15:589-598. [DOI: 10.1513/annalsats.201707-527oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
142
|
Pardee TS, Anderson RG, Pladna KM, Isom S, Ghiraldeli LP, Miller LD, Chou JW, Jin G, Zhang W, Ellis LR, Berenzon D, Howard DS, Hurd DD, Manuel M, Dralle S, Lyerly S, Powell BL. A Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia. Clin Cancer Res 2018; 24:2060-2073. [PMID: 29437791 PMCID: PMC5932089 DOI: 10.1158/1078-0432.ccr-17-2282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Purpose: CPI-613, a lipoate analogue that inhibits pyruvate dehydrogenase (PDH) and α-ketogluterate dehydrogenase (KGDH), has activity in patients with myeloid malignancies. This study explored the role of mitochondrial metabolism in chemotherapy response and determined the MTD, efficacy, and safety of CPI-613 combined with high-dose cytarabine and mitoxantrone in patients with relapsed or refractory acute myeloid leukemia.Experimental Design: The role of mitochondrial response to chemotherapy was assessed in cell lines and animal models. A phase I study of CPI-613 plus cytarabine and mitoxantrone was conducted in patients with relapsed or refractory AML.Results: Exposure to chemotherapy induced mitochondrial oxygen consumption that depended on PDH. CPI-613 sensitized AML cells to chemotherapy indicating that mitochondrial metabolism is a source of resistance. Loss of p53 did not alter response to CPI-613. The phase I study enrolled 67 patients and 62 were evaluable for response. The overall response rate was 50% (26CR+5CRi/62). Median survival was 6.7 months. In patients over 60 years old, the CR/CRi rate was 47% (15/32) with a median survival of 6.9 months. The response rate for patients with poor-risk cytogenetics also was encouraging with 46% (11/24 patients) achieving a CR or CRi. RNA sequencing analysis of a subset of baseline bone marrow samples revealed a gene expression signature consistent with the presence of B cells in the pretreatment marrow of responders.Conclusions: The addition of CPI-613 to chemotherapy is a promising approach in older patients and those with poor-risk cytogenetics. Clin Cancer Res; 24(9); 2060-73. ©2018 AACR.
Collapse
Affiliation(s)
- Timothy S Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina.
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
- Rafael Pharmaceuticals Inc, Cranbury, New Jersey
| | - Rebecca G Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Kristin M Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Scott Isom
- Department of Biostatistical Sciences, Wake Forest Public Health Sciences, Winston-Salem, North Carolina
| | - Lais P Ghiraldeli
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistical Sciences, Wake Forest Public Health Sciences, Winston-Salem, North Carolina
- Biostatistics Core, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Guangxu Jin
- Biostatistics Core, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Wei Zhang
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Leslie R Ellis
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Dmitriy Berenzon
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Dianna S Howard
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - David D Hurd
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Megan Manuel
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Sarah Dralle
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Susan Lyerly
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Bayard L Powell
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, North Carolina
| |
Collapse
|
143
|
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O'Connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24:563-571. [PMID: 29713085 DOI: 10.1038/s41591-018-0010-1] [Citation(s) in RCA: 1232] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Elena J Orlando
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Lundh
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina C Boesteanu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Pequignot
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Ambrose
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Changfeng Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Wilcox
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Felipe Bedoya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Corin Dorfmeier
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Harit Parakandi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Minnal Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Liu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadik H Kassim
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Megan M Davis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Division of Transfusion Medicine and Therapeutic Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hans Bitter
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - David L Porter
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
144
|
O'Connell GC, Treadway MB, Petrone AB, Tennant CS, Lucke-Wold N, Chantler PD, Barr TL. Leukocyte Dynamics Influence Reference Gene Stability in Whole Blood: Data-Driven qRT-PCR Normalization Is a Robust Alternative for Measurement of Transcriptional Biomarkers. Lab Med 2018; 48:346-356. [PMID: 29069468 DOI: 10.1093/labmed/lmx035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The use of reference genes for normalization of whole blood qRT-PCR data may be problematic in conditions such as stroke which induce alterations in white blood cell differential. In this study, we assessed the influence of stroke on the stability of commonly employed reference genes, and we evaluated data-driven normalization as an alternative. Methods Peripheral whole blood was sampled from 33 stroke patients and 29 controls, and qRT-PCR was used to measure the expression levels of 10 target genes whose transcripts are known stroke biomarkers. Target gene expression levels were normalized via those of 2 frequently cited reference genes (ACTB and B2M) as well as with the NORMA-Gene data-driven normalization algorithm. Results Whole blood expression levels of reference genes were significantly altered in stroke patients relative to controls. In comparison to normalization via reference genes, NORMA-Gene produced more robust target gene expression data in terms of differential expression dynamics, variance properties, and diagnostic performance. Conclusions Our findings suggest that whole blood expression levels of commonly used reference genes may be sensitive to changes in white blood cell differential, and that data-driven qRT-PCR normalization approaches offer a powerful alternative.
Collapse
Affiliation(s)
- Grant C O'Connell
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center.,Department of Pharmaceutical Sciences, School of Pharmacy
| | | | - Ashley B Petrone
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center
| | - Connie S Tennant
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center
| | - Noelle Lucke-Wold
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia
| | | |
Collapse
|
145
|
Soni B, Nimsarkar P, Mol M, Saha B, Singh S. Systems-synthetic biology in understanding the complexities and simple devices in immunology. Cytokine 2018; 108:60-66. [PMID: 29579544 DOI: 10.1016/j.cyto.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Systems and synthetic biology in the coming era has the ability to manipulate, stimulate and engineer cells to counteract the pathogenic immune response. The inherent biological complexities associated with the creation of a device allow capitalizing the biotechnological resources either by simply administering a recombinant cytokine or just reprogramming the immune cells. The strategy outlined, adopted and discussed may mark the beginning with promising therapeutics based on the principles of synthetic immunology.
Collapse
Affiliation(s)
- Bhavnita Soni
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Prajakta Nimsarkar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Milsee Mol
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
146
|
O'Connell GC, Treadway MB, Tennant CS, Lucke-Wold N, Chantler PD, Barr TL. Shifts in Leukocyte Counts Drive the Differential Expression of Transcriptional Stroke Biomarkers in Whole Blood. Transl Stroke Res 2018; 10:26-35. [PMID: 29550910 DOI: 10.1007/s12975-018-0623-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Our group recently identified a panel of ten genes whose RNA expression levels in whole blood have utility for detection of stroke. The purpose of this study was to determine the mechanisms by which these genes become differentially expressed during stroke pathology. First, we assessed the transcriptional distribution of the ten genes across the peripheral immune system by measuring their expression levels on isolated neutrophils, monocytes, B-lymphocytes, CD-4+ T-lymphocytes, CD-8+ T-lymphocytes, and NK-cells generated from the blood of healthy donors (n = 3). Then, we examined the relationship between the whole-blood expression levels of the ten genes and white blood cell counts in a cohort of acute ischemic stroke patients (n = 36) and acute stroke mimics (n = 15) recruited at emergency department admission. All ten genes displayed strong patterns of lineage-specific expression in our analysis of isolated leukocytes, and their whole-blood expression levels were correlated with white blood cell differential across the total patient population, suggesting that many of them are likely differentially expressed in whole blood during stroke as an artifact of stroke-induced shifts in leukocyte counts. Specifically, factor analysis inferred that over 50% of the collective variance in their whole-blood expression levels across the patient population was driven by underlying variance in white blood cell counts alone. However, the cumulative expression levels of the ten genes displayed a superior ability to discriminate between stroke patients and stroke mimics relative to white blood cell differential, suggesting that additional less prominent factors influence their expression levels which add to their diagnostic utility. These findings not only provide insight regarding this particular panel of ten genes, but also into the results of prior stroke transcriptomics studies performed in whole blood.
Collapse
Affiliation(s)
- Grant C O'Connell
- School of Nursing, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4904, USA.
| | - Madison B Treadway
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, USA
| | - Connie S Tennant
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Noelle Lucke-Wold
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
147
|
Ding J, Hagood JS, Ambalavanan N, Kaminski N, Bar-Joseph Z. iDREM: Interactive visualization of dynamic regulatory networks. PLoS Comput Biol 2018. [PMID: 29538379 PMCID: PMC5868853 DOI: 10.1371/journal.pcbi.1006019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dynamic Regulatory Events Miner (DREM) software reconstructs dynamic regulatory networks by integrating static protein-DNA interaction data with time series gene expression data. In recent years, several additional types of high-throughput time series data have been profiled when studying biological processes including time series miRNA expression, proteomics, epigenomics and single cell RNA-Seq. Combining all available time series and static datasets in a unified model remains an important challenge and goal. To address this challenge we have developed a new version of DREM termed interactive DREM (iDREM). iDREM provides support for all data types mentioned above and combines them with existing interaction data to reconstruct networks that can lead to novel hypotheses on the function and timing of regulators. Users can interactively visualize and query the resulting model. We showcase the functionality of the new tool by applying it to microglia developmental data from multiple labs.
Collapse
Affiliation(s)
- Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - James S. Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego and Rady Children’s Hospital, La Jolla, California, United States of America
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
148
|
TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554:538-543. [DOI: 10.1038/nature25492] [Citation(s) in RCA: 1304] [Impact Index Per Article: 186.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
|
149
|
Giuliano CJ, Lin A, Smith JC, Palladino AC, Sheltzer JM. MELK expression correlates with tumor mitotic activity but is not required for cancer growth. eLife 2018; 7:32838. [PMID: 29417930 PMCID: PMC5805410 DOI: 10.7554/elife.32838] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies.
Collapse
Affiliation(s)
| | - Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Ann C Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
150
|
Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH. Transcriptomic Landscape of Treatment-Naïve Ulcerative Colitis. J Crohns Colitis 2018; 12:327-336. [PMID: 29040430 PMCID: PMC6290885 DOI: 10.1093/ecco-jcc/jjx139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease that effects the gastrointestinal tract and is considered one of the most prominent and common forms of inflammatory bowel disease [IBD]. This study aimed to define and describe the entire transcriptomic landscape in a well-stratified, treatment-naïve UC patient population compared with control patients by using next-generation technology, RNA-Seq. METHODS Mucosal biopsies from treatment-naïve UC patients [n = 14], and healthy controls [n = 16] underwent RNA-Seq. Principal component analysis [PCA], cell deconvolution methods, and diverse statistical methods were applied to obtain and characterise a dataset of significantly differentially expressed genes [DEGs]. RESULTS Analyses revealed 1480 significantly DEGs in treatment-naïve UC when compared with controls. Cell populations of monocytes, T cells, neutrophils, B cells/ lymphoid cells, and myeloid cells were increased during inflammation, whereas the fraction of epithelial cells were reduced in UC, which is reflected by the DEGs; 79 DEGs were identified as IBD susceptibility genes, and 58 DEGs were expressed in a gender-specific manner. MUC5B, REG3A, DEFA5, and IL33 might be considered as colorectal cancer [CRC] risk factors following UC in males. AQP9 together with CLDN2 may have a role regulating tissue-specific physiological properties in tight junctions in UC. An additional functional role for AQP9 in the synthesis and/or the function of mucus can be implied. CONCLUSIONS This study reveals new potential players in UC pathogenesis in general, and provides evidence for a gender-dependent pathogenesis for UC. These results can be useful for the development of personalised treatment strategies for UC in the future.
Collapse
Affiliation(s)
- Hagar Taman
- Genomic Support Centre Tromsø [GSCT], Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Christopher G Fenton
- Genomic Support Centre Tromsø [GSCT], Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Inga V Hensel
- Genomic Support Centre Tromsø [GSCT], Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, UiT—The Artic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomic Support Centre Tromsø [GSCT], Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, UiT—The Artic University of Norway, Tromsø, Norway,University Hospital of North Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomic Support Centre Tromsø [GSCT], Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway,Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, UiT—The Artic University of Norway, Tromsø, Norway,Corresponding author: Ruth H. Paulssen, PhD, Department of Clinical Medicine, Gastroenterology and Nutrition Research Group, UiT—The Arctic University of Norway, Faculty of Health, Sykehusveien 38, N-9038 Tromsø, Norway. Tel.: +47 77 64 54 80;
| |
Collapse
|